平行线的性质第2课时

合集下载

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。

5.3.1 平行线的性质(第2课时)

5.3.1 平行线的性质(第2课时)
1. 分清平行线的性质和判定,已知平行用性 质,要证平行用判定 .
探究新知
知识点 1 平行线性质和判定的综合应用
如图,已知:AD∥BC, ∠AEF=∠B,
求证:AD∥EF.
证明:∵ AD ∥BC(已知),
∴ ∠A+∠B=180°
( 两直线平行,同旁内角互补 ).
∵ ∠AEF=∠B(已知), ∴ ∠A+∠AEF=180°(等量代换). ∴ AD∥EF( 同旁内角互补,两直线平行).
【思考】在填写依据时要注意什么问题?
巩固练习
如图,AB∥EF,∠ECD=∠E,则∠A=∠ECD.
理由如下:
B
A
∵∠ECD=∠E, ∴CD∥EF( 内错角相等,两直线平行 又AB∥EF,
D
C
)E
F
∴CD∥AB(平行于同一直线的两条直线互相__平__行_ ).
∴∠A=∠ECD( 两直线平行,同位角相等 __ ).
A.74°
B.76°
C.84°
D.86°
56
课堂检测
基础巩固题
1. 如图所示,AB∥CD∥EF,那么∠BAC+∠ACE+∠CEF
= ( C)
A. 180°
B. 270°
C. 360°
D. 540°
课堂检测
2.如图 所 示 ,在△ABC中,∠B=∠C,∠BAC=80°,
AD∥EF,∠1=∠2,求∠BDG的度数.
C
求∠AGD的度数.
解: ∵EF∥AD (已知),
∴∠2=∠3(两直线平行,同位角相等)B. 又∵∠1=∠2 (已知),
D F
1
G
23
E
A
∴∠1=∠3 (等量代换) .

《平行线的性质》第2课时示范公开课教学PPT课件【部编北师大版七年级数学下册】

《平行线的性质》第2课时示范公开课教学PPT课件【部编北师大版七年级数学下册】

B.∠DAB=60°
C.∠EAC=60°
D.∠BAC=60°
随堂练习
(3)如图,已知AB∥CD,直线l分别交AB,CD于点E,F,EG平 分∠BEF,若∠EFG=40°,则∠EGF的度数为( B).
A.60° B.70° C.80° D.90°
(4)已知两个角的两条边都平行,并且
这两个角的差是90°,则这两个角分别为( D ).
典型例题
例3.如图,AB∥CD,∠D=∠C,
D
C
∠1=45°,求∠B,∠C,∠D的度数.
解:∵AB∥CD(已知),
A1
B
∴∠D=∠1=45°(两直线平行,同位角相等).
∵∠D=∠C(已知),
∴∠C=45°(等量代换),
∴∠B+∠C=180°(两直线平行,同旁内角互补),
∴∠B=180°-45°=135°.
A
21 B
34
C
D
典型例题
例2.(1)如图,如果a∥b则下列结论:①∠1=∠2;②∠1= ∠3;③∠3=∠2正确的个数是( D ).
A.0个
B.1个
C.2个
D.3个
a
c 1 3
b
2பைடு நூலகம்
典型例题
(2)如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的 度数为( D ) A.95° B.85° C.70° D.55°
随堂练习
2.(1)如图,AB∥EF,BC∥DE, 则∠E+∠B的度数为__1_8_0_°__.
(2)如图,已知∠1=∠2=∠3=62°, 则∠4=___1_1_8_°____.
随堂练习
(3)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于 地面AE,则∠ABC+∠BCD=__2_7_0_°___度.

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

人教版七年级数学下册相交线与平行线《平行线的性质(第2课时)》示范教学设计

平行线的性质(第2课时)教学目标1.能够灵活应用平行线的性质解决问题.2.加深对平行线的三条性质的理解,提高分析问题、解决问题的能力.教学重点掌握平行线的性质.教学难点应用平行线的性质解决问题.教学过程知识回顾平行线的性质1:两直线平行,同位角相等.平行线的性质2:两直线平行,内错角相等.平行线的性质3:两直线平行,同旁内角互补.本节课,我们针对平行线的性质的应用,展开学习.【设计意图】对上节课所学习的平行线的性质进行复习回顾,为本节课题目的讲解提供理论依据.新知探究一、探究学习【问题】1.如图,直线AB∥CD,OG是∠EOB的平分线,∠EFD=70°,则∠BOG 的度数是().A.70°B.20°C.35°D.40°【师生活动】学生独立分析题目,得到过程如下:∵AB∥CD,∴∠EOB=∠EFD=70°.又∵OG平分∠EOB,∴∠BOG=12∠EOB=12×70°=35°.【答案】C【归纳】(1)在确定两角之间数量关系或求角度的问题中,如果有平行线,那么先考虑平行线的性质;(2)利用平行线的性质求角的度数时,一定要弄清楚所求角与已知角的关系.【问题】2.如图,CD⊥AB于点D,点F是BC上任意一点,FE⊥AB于点E,∠1=∠2,∠3=62°,求∠BCA的度数.【师生活动】教师引导学生对图形进行分析,找到角与角之间的对应关系,进行等量替换,通过平行线的性质与判定综合应用来解答本题.【答案】解:∵CD⊥AB,FE⊥AB,∴∠BEF=∠BDC=90°.∴FE∥CD.∴∠2=∠BCD.∵∠1=∠2,∴∠1=∠BCD.∴DG∥BC.∴∠BCA=∠3=62°.【归纳】遇到平行线的条件时就要联想到角的相等或互补;遇到角的相等或互补时就要联想到两直线平行;遇到垂直的条件时就要联想到垂直的性质.【问题】3.如图,AD是∠BAC的平分线,∠2=∠3,试说明∠3=∠G.【答案】解:∵AD平分∠BAC,∴∠1=∠2.又∵∠2=∠3,∴∠1=∠3.∴GE∥AD(内错角相等,两直线平行).∴∠2=∠G(两直线平行,同位角相等).∴∠3=∠G.【归纳】平行线的性质与判定的选择:(1)由角的关系得到平行,用的是平行线的判定.(2)由两直线平行得到角的关系,用的是平行线的性质.【问题】4.如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1与∠2之间有什么数量关系?说明理由.【答案】解:∠1+∠2=90°.理由如下:∵BE平分∠ABC,CE平分∠BCD,∴∠1=12∠ABC,∠2=12∠BCD.∵AB∥CD,∴∠ABC+∠BCD=180°.∴∠1+∠2=12∠ABC+12∠BCD=12(∠ABC+∠BCD)=12×180°=90°.【归纳】要确定两个角之间的数量关系,关键是看这两个角属于哪一类角,当角不是由两平行线被第三条直线所截而形成的同位角、内错角或同旁内角时,一般要考虑这两个角与这三类角之间有无倍、分关系.【设计意图】前面几道题目涉及到应用平行线的性质进行相关角度的计算,在解决该类问题时,一般要综合应用平行线的判定和性质,灵活求解.【问题】5.如图,已知BE∥CF,∠1=∠2,请判断直线AB与CD是否平行,并说明理由.【师生活动】学生以组为单位,对图形进行分析,写出解题过程并组内纠错.【答案】解:∵BE∥CF,根据“两直线平行,内错角相等”,得∠EBC=∠BCF.又∵∠1=∠2,∴∠1+∠EBC=∠2+∠BCF.即∠ABC=∠BCD.根据“内错角相等,两直线平行”,得AB∥CD.【问题】6.如图,已知AD∥BC,∠A=∠C,试说明AB和CD的位置关系.【答案】解:AB∥CD.理由如下:∵AD∥BC,∴∠C=∠CDE.∵∠A=∠C,∴∠A=∠CDE.∴AB∥CD(同位角相等,两直线平行).【归纳】在利用平行线的性质或判定时,一定要看清楚直线与角的位置关系,分清同位角、内错角、同旁内角是由哪两条直线被哪条直线所截而成的.【设计意图】问题5和问题6主要应用平行线的性质判断边的位置关系,在解决该类问题时,要分清截线和被截线.【问题】7.如图,是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°,梯形的另外两个角分别是多少度?【师生活动】教师引导学生从梯形的特征去分析,知道两边平行就可以应用平行线的相关知识解决问题.【答案】解:因为梯形上、下两底AB与DC互相平行,根据“两直线平行,同旁内角互补”,可得∠A与∠D互补,∠B与∠C互补.于是∠D=180°-∠A=180°-100°=80°,∠C=180°-∠B=180°-115°=65°.所以梯形的另外两个角分别是80°,65°.【问题】8.如图,MN,EF表示两面互相平行的镜子,一束光线AB照射到镜面MN 上,反射光线为BC,此时∠1=∠2;光线BC经过镜面EF反射后的光线为CD,此时∠3=∠4.试判断AB与CD的位置关系,并说明理由.【答案】解:AB∥CD.理由如下:∵MN∥EF,∴∠2=∠3(两直线平行,内错角相等).∵∠1=∠2,∠2=∠3,∠3=∠4,∴∠1+∠2=∠3+∠4.∵∠1+∠ABC+∠2=180°,∠3+∠BCD+∠4=180°,∴∠ABC=∠BCD.∴AB∥CD(内错角相等,两直线平行).【归纳】实际问题一般要转化为数学问题解决,解决此类问题的关键是利用平行线的性质求有关角的度数.【设计意图】问题7和问题8两题涉及到平行线的性质在实际生活中的应用,解决这类问题的关键是找出平行线,利用平行线的性质求出角的度数.课堂小结板书设计一、应用平行线的性质计算角的度数二、应用平行线的性质判断边的位置关系三、平行线的性质在实际生活中的应用课后任务完成教材第20页练习第2题.。

10.3平行线的性质-第2课时-平行线的性质与判定课件数学沪科版七年级下册

10.3平行线的性质-第2课时-平行线的性质与判定课件数学沪科版七年级下册
线的关系
判定 性质
角的关系
同位角相等 内错角相等 同旁内角互补
角的关系
E 1
解:∠A=∠APC+∠C.理由如下: 过点 P 作 PE//AB,则∠1+∠A=180°. 因为 AB//CD,所以 PE//CD, 所以∠EPC+∠C=180°,即 ∠1+∠APC+∠C=180°, 所以180°-∠A+∠APC+∠C=180°. 所以∠A=∠APC+ ∠C.
1E (4)
线的关系 两直线平行
,E2 ,…,∠Em-1,∠D之间的关系吗?
A
F1 F2
B E1
E2
Fn-1 C
Em-1 D
∠A+∠F1 +∠F2 +…+∠Fn-1= ∠E1 +∠E2 +…+∠Em-1+ ∠D
例 如图,AB∥CD,猜想∠A、∠P 与∠PCD 之间的关系,并说明理由.
解:如图,过点P作PE ∥ AB. 因为AB∥CD,所以 PE ∥ AB ∥CD. 所以∠EPC=∠PCD,∠APE =∠A. 所以∠APE+∠APC=∠EPC= ∠PCD , 所以∠A+∠APC = ∠PCD.
解:如图,过点 E 作 EF//AB. 所以∠B=∠BEF. 因为AB//CD,所以EF//CD.
A
B
E
F
C
D
所以∠D =∠DEF.
所以∠B+∠D=∠BEF+∠DEF =∠DEB,
即∠B+∠D=∠DEB.
1.如图,AB//CD,分别探究下面四个图中∠P 与∠A,∠C之间的关系.
E
E
∠P+∠A+∠C=360°

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

《平行线的性质和判定及其综合运用》教案 (公开课)2022年人教版数学

第2课时平行线的性质与判定及其综合运用一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,表达民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决方法〔一〕重点平行线的性质公理及平行线性质定理的推导.〔二〕难点平行线性质与判定的区别及推导过程.〔三〕解决方法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排1课时五、教具学具准备投影仪、三角板、自制投影片.六、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习稳固,完成新授.3.通过学生讨论,完成课堂小结.七、教学步骤〔一〕明确目标掌握和运用平行线的性质,进行推理和计算,进一步培养学生的逻辑推理能力.〔二〕整体感知以情境创设导入新课,以教师引导,学生讨论归纳新知,以变式练习稳固新知.〔三〕教学过程创设情境,复习导入师:上节课我们学习了平行线的判定,回忆所学内容看下面的问题〔出示投影片1〕.1.如图1,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.2.如图2,〔1〕,那么与有什么关系?为什么?〔2〕,那么与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又效劳于生活.探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线的平行线,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形〔见图4〕,当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位角相等.提出问题:是不是每一对同位角都相等呢?请同学们任画一条直线,使它截平行线与,得同位角、,利用量角器量一下;与有什么关系?学生活动:学生按老师的要求画出图形,并进行度量,答复出不管怎样画截线,所得的同位角都相等.根据学生的答复,教师肯定结论.师:两条直线被第三条直线所截,如果这两条直线平行,那么同位角相等.我们把平行线的这个性质作为公理.[板书]两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.【教法说明】在教师提出问题的条件下,学生自己动手,实际操作,进行度量,在有了大量感性认识的根底上,动脑分析总结出结论,不仅充分发挥学生主体作用,而且培养了学生分析问题的能力.提出问题:请同学们观察图5的图形,两条平行线被第三条直线所截,同位角是相等的,那么内错角、同旁内角有什么关系呢?学生活动:学生观察分析思考,会很容易地答出内错角相等,同分内角互补.师:教师继续提问,你能论述为什么内错角相等,同旁内角互补吗?同学们可以讨论一下.学生活动:学生们思考,并相互讨论后,有的同学举手答复.【教法说明】在前面复习引入的第2题的根底上,通过学生的观察、分析、讨论,此时学生已能够进行推理,在这里教师不必包办代替,要充分调动学生的主动性和积极性,进而培养学生分析问题的能力,在学生有成就感的同时也鼓励了学生的学习兴趣.教师根据学生答复,给予肯定或指正的同时板书.[板书]∵〔〕,∴〔两条直线平行,同位角相等〕.∵〔对项角相等〕,∴〔等量代换〕.师:由此我们又得到了平行线有怎样的性质呢?学生活动:同学们积极举手答复以下问题.教师根据学生表达,板书:[板书]两条平行经被第三条直线所截,内错角相等.简单说成:西直线平行,内错角相等.师:下面清同学们自己推导同分内角是互补的,并归纳总结出平行线的第三条性质.请一名同学到黑板上板演,其他同学在练习本上完成.师生共同订正推导过程和第三条性质,形成正确板书.[板书]∵〔〕,∴〔两直线平行,同位角相等〕.∵〔邻补角定义〕,∴〔等量代换〕.即:两条平行线被第三条直线所截,同旁内角互补.简单说成,两直线平行,同旁内角互补.师:我们知道了平行线的性质,在今后我们经常要用到它们去解决、论述一些问题,所需要知道的条件是两条直线平行,才有同位角相等,内错角相等,同旁内角互补,即它们的符号语言分别为:∵〔见图6〕,∴〔两直线平行,同位角相等〕.∵〔〕,∴〔两直线平行,内错角相等〕.∵〔〕,∴.〔两直线平行,同旁内角互补〕〔板书在三条性质对应位置上.〕尝试反响,稳固练习师:我们知道了平行线的性质,看复习引入的第3题,谁能解决这个问题呢?学生活动:学生给出答案,并很快地说出理由.练习〔出示投影片2〕:如图7,平行线、被直线所截:图7〔1〕从,可以知道是多少度?为什么?〔2〕从,可以知道是多少度?为什么?〔3〕从,可以知道是多少度,为什么?【教法说明】练习目的是稳固平行线的三条性质.变式训练,培养能力完成练习〔出示投影片3〕.如图8是梯形有上底的一局部,量得,,梯形另外两个角各是多少度?图8学生活动:在教师不给任何提示的情况下,让学生思考,可以相互之间讨论并试着在练习本上写出解题过程.【教法说明】学生在小学阶段对于梯形的两底平行就已熟知,所以学生能够想到利用平行线的同旁内角互补来找和的大小.这里学生能够自己解题,教师防止包办代替,可以培养学生积极主动的学习意识,学会思考问题,分析问题.学生板演教师指正,在几何里我们每一步结论的得出都要有理有据,标准学生的解题思路和格式,培养学生严谨的学习态度,修改学生的板演过程,可形成下面的板书.[板书]解:∵〔梯形定义〕,∴,〔两直线平行,同旁内角互补〕.∴.∴.变式练习〔出示投影片4〕1.如图9,直线经过点,,,.〔1〕等于多少度?为什么?〔2〕等于多少度?为什么?〔3〕、各等于多少度?2.如图10,、、、在一条直线上,.〔1〕时,、各等于多少度?为什么?〔2〕时,、各等于多少度?为什么?学生活动:学生独立完成,把理由写成推理格式.【教学说明】题目中的为什么,可以用语言表达,为了培养学生的逻辑推理能力,最好用推理格式说明.另外第2题在求得一个角后,另一个角的解法不惟一.对学生中出现的不同解法给予肯定,假设学生未想到用邻补角求解,教师应启发诱导学生,从而培养学生的解题能力.〔四〕总结、扩展〔出示投影片1第1题和投影片5〕完成并比较.如图11,〔1〕∵〔〕,∴〔〕.〔2〕∵〔〕,∴〔〕.〔3〕∵〔〕,∴〔〕.学生活动:学生答复上述题目的同时,进行观察比较.师:它们有什么不同,同学们可以相互讨论一下.〔出示投影6〕学生活动:学生积极讨论,并能够说出前面是平行线的判定,后面是平行线的性质,由角的关系得到两条直线平行的结论是平行线的判定,反过来,由直线平行,得到角相等或互补的结论是平行线的性质.【教法说明】通过有形的具体实例,使学生在有充足的感性认识的根底上上升到理性认识,总结出平行线性质与判定的不同.稳固练习〔出示投影片7〕1.如图12,是上的一点,是上的一点,,,.〔1〕和平行吗?为什么?图12〔2〕是多少度?为什么?学生活动:学生思考、口答.【教法说明】这个题目是为了稳固学生对平行线性质与判定的联系与区别的掌握.知道什么条件时用判定,什么条件时用性质、真正理解、掌握并应用于解决问题.八、布置作业〔一〕必做题课本第99~100页A组第11、12题.〔二〕选做题课本第101页B组第2、3题.作业答案A组11.〔1〕两直线平行,内错角相等.〔2〕同位角相等,两直线平行.两直线平行,同旁内角互补.〔3〕两直线平行,同位角相等.对顶角相等.12.〔1〕∵〔〕,∴〔内错角相等,两直线平行〕.〔2〕∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,同位角相等〕.B组2.∵〔〕,∴〔两直线平行,同位角相等〕,〔两直线平行,内错角相等〕.∵〔〕,∴〔两直线平行,同位角相等〕,〔同上〕.又∵〔已证〕,∴.∴.又∵〔平角定义〕,∴.3.平行线的判定与平行线的性质,它们的题设和结论正好相反.4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

5.3.1 平行线的性质(第2课时)平行线的性质和判定的综合运七年级数学下册同步备课系列(人教版)

又∵∠A=100°,∠C=110°(已知),
∴∠ 1 = 80 °,∠ 2 = 70 °(等量代换).
∴∠AEC=∠1+∠2= 80 °+ 70 ° = 150 °.
当堂巩固
1. 填空:如图,
A
(1)∠1=∠2 时,AB∥CD.
1
(2)∠3= ∠5 或∠4 时,AD∥BC. B
D
5 2
3 C
4 F
解:过点C作CF∥AB,
A
则 _∠__B_=_∠__1( 两直线平行,内错角相等 )
C
又∵AB∥DE,AB∥CF,
D
∴___C_F__∥__D_E___(平行于同一直线的两条直线互相平行 )
∴∠E=∠__2__( 两直线平行,内错角相等 )
∴∠B+∠E=∠1+∠2
即∠B+∠E=∠BCE.
B 1F 2
感受中考
2.(3分)(2021•包头8/26)如图,直线l1∥l2,直线l3交l1于点A,交l2于点B, 过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于( )
A.80°
B.70°
C.60°
D.50°
【 分 析 】 由 题 意 得 , ∠ 2=60° , 由 平 角 的 定 义 可 得 ∠5=70°,再根据平行线的性质即可求解.
c 图1
b
c
a 图2
3. 运用平行线的性质填一填
图形
同a 位 角b
1 2 c
内 错 角
a 3
b
2
c
同 旁
a
内 角
b
42 c
已知 a//b
结果 ∠1 = ∠2

015第二章相交线与平行线3平行线的性质——第2课时平行线的性质(二)

015第二章相交线与平行线3平行线的性质——第2课时平行线的性质(二)

2. 如图2-3-31,∠A=2∠ABC,BD平分∠ABC,且AD∥BC, 请运用所学知识,求∠ADB的度数.
解:因为AD∥BC, 所以∠A+∠ABC=180°. 因为∠A=2∠ABC, 所以∠ABC=60°. 因为BD平分∠ABC, 所以∠ABD=∠DBC= ∠ABC=30°. 又因为AD∥BC,所以∠ADB=∠DBC=30°.
8. 如图2-3-43,已知AD∥BC,∠1=∠2,求证: ∠3+∠4=180°.
证明:因为AD∥BC, 所以∠1=∠3. 因为∠1=∠2, 所以∠2=∠3. 所以BE∥DF. 所以∠3+∠4=180°.
能力提升
9. 已知:如图2-3-44,AB∥CD,∠B=∠D,点F在AD上, EF交BC的延长线于点E. 求证:∠E=∠DFE.
课堂讲练
新知1 两直线平行,同旁内角互补
典型例题
【例1】已知:如图2-3-28, AB∥CD,AD∥BC. 求证:∠A=∠C.
证明:因为AB∥CD, 所以∠A+∠D=180°. 因为AD∥BC, 所以∠C+∠D=180°. 所以∠A=∠C.
【例2】如图2-3-30,已知AC∥ED,ED∥GF, ∠BDF=90°.若∠ABD=150°,求∠GFD的度数. 解:因为AC∥ED, 所以∠ABD+∠BDE=180°. 因为∠ABD=150°, 所以∠BDE=30°. 因为∠BDF=90°,所以∠EDF=60°. 因为ED∥GF, 所以∠EDF+∠F=180°. 所以∠GFD=120°.
第二章 相(二)
课前预习
1. 如图2-3-23,直线 l1∥l2,∠1=20°,则 ∠2+∠3=____2_0_0_°___.
2. 如图2-3-24,在四边形ABCD中, AD∥BC,∠A=110°,则∠B=__7_0_°_.

七年级下册数学5.3.平行线的性质 课件(2课时)

七年级下册数学5.3.平行线的性质 课件(2课时)

B
C
D
创设情景 明确目标 想一想: 平行线的三种判定方法分别是
先知道什么……、 后知道什么? 同位角相等 内错角相等 同旁内角互补
两直线平行
反过来,如果两条直线平行,同位角、 内错角、同旁内角各有什么关系呢?
学 习 目 标
1
掌握平行线的性质并会熟练运用;
2 能够综合运用平行线的性质与判定进行
推理。
合作探究
达成目标
探究点一:平行线的性质
探究:画两条平行线a//b,然后画一条截线c与a、
b相交,标出如图的角. 任选一组同位角、内错角或 同旁内角,度量这些角,把结果填入下表:
c

度数 角 度数 ∠5 ∠6 ∠7 ∠8
6 5 7 8
∠1
∠2
∠3
∠4
2
1
3 4
a
b
合作探究
达成目标
观察与猜想:
各对同位角、内错角、同旁内角的度数 之间有什么关系?说出你的猜想: 猜想: 相等 两条平行线被第三条直线所截,同位角____, 互补 相等 内错角_____,同旁内角_____。
3.真假命题:
达成目标
真命题: 如果题设成立,那么结论一定成立,这样 的命题,叫做真命题.
假命题: 如果题设成立,结论不成立,这样的命题 都是错误的命题,叫做假命题.
4.定理: 定理是根据公理或已知的定理推导出来 的真命题。这些真命题都是最基本的和常 用的,所以被人们选作定理。
合作探究
达成目标
探究点二:证明
学 习 目 标
1
了解命题的结构和概念;
2 会判断一个命题的真假; 3 会将命题改写为“如果……那么……”
的形式;

(完整版)《平行线的判定与性质的综合运用》教学课件

(完整版)《平行线的判定与性质的综合运用》教学课件

6.如图,AB,CD,EF,MN均为直线,∠2=∠3=70°, ∠GPC=80°,GH平分∠MGB,求∠1的度数.
解:∵∠2=∠3=70°(已知), ∴AB∥CD(内错角相等,两直线平行), ∴∠BGP=∠GPC(两直线平行,内错角相等), ∵∠GPC=80°(已知), ∴∠BGP=80°(等量代换), ∴∠BGM=180°-∠BGP=100°(平角的定 义),
(完整版)《平行线的判定与性质的综合运用》教学课件
平行线的性质
第2课时 平行线的判定与性质的综合运用
导入新课
讲授新课
当堂练习
课堂小结
三、平行线的基本性质3
思考:类似地,已知两直线平行,能否得到同旁内角
之间的数量关系? 如图,已知a//b,那么2与4有什么关系呢?为什么?
解: ∵a//b (已知),
A.80° B.65° C.60°
D.55°
3.如图,BD⊥AB,BD⊥CD,则∠a的度 数是( A ) A.50° B.40° C.60° D.45°
4.已知AB∥DE,试问∠B,∠E,∠BCE有什么关系.请
完成填空:
A 解:过点C作CF∥AB, 则_∠__B__=_∠__1__ ( 两直线平行,内错角相等 ). C
B
1
F
2
又∵AB∥DE,AB∥CF,
D
E
∴__C_F__∥__D_E____(平行于同一直线的两条直线平行 ).
∴∠E=∠__2__(两直线平行,内错角相等).
∴∠B+∠E=∠1+∠2(等式的性质),
即∠B+∠E=∠BCE.
5.已知:如图,AD⊥BC于D,EG⊥BC与G, ∠E=∠3,试问:AD是∠BAC的平分线吗?若是, 请说明理由.

新北师大版七年级数学下册第二章《 平行线的性质(第2课时)》公开课课件.ppt

新北师大版七年级数学下册第二章《 平行线的性质(第2课时)》公开课课件.ppt

4.已知,如图,∠1=∠ACB,∠2=∠3, FH⊥AB于H.问CD与AB有什么关系? 【解析】CD⊥AB. 理由如下: 因为∠1=∠ACB, 所以DE∥BC, 所以∠2=∠DCB, 又因为∠2=∠3,所以∠3=∠DCB,故CD∥FH, 因为FH⊥AB,所以CD⊥AB.
1.(2012·连云港中考) 如 图, 将三角尺 的直角顶点放在直线a上,a∥b,∠1=50°, ∠2=60°,则∠3的度数为( ) (A)50° (B)60° (C)70° (D)80° 【解析】选C.依题意,∠3=180°-∠1-∠2=180°-50°- 60°=70°.
2.如图,AB∥CD,EF∥GH,∠1=55°,则 下列结论中,错误的是( ) (A)∠2=125° (B)∠3=55° (C)∠4=125° (D)∠5=55° 【解析】选C.因为AB∥CD,EF∥GH,∠1=55°, 所以∠5=55°,所以∠4=55°,∠3=55°,∠2=125°,故C项错误.
【规律总结】 平行线的性质与判定的区别与联系
1.区别:(1)性质:根据两条直线平行,证角的相等或互补. (2)判定:根据两角相等或互补,证两条直线平行. 2.联系:它们都是以两条直线被第三条直线所截为前提;它们的 条件和结论是互逆的. 3.总结:已知平行用性质,要证平行用判定.
【跟踪训练】
1.(2012·衡阳中考)如图,直线a⊥直线c,
【解析】因为∠1+∠2=240°,∠1=∠2, 所以∠2=120°,又b∥c,所以∠3=180°-120°=60°. 答案:60°
5.如图,已知AC∥DE,∠D=70°,CD平分∠ACE,求∠E的度数.
【解析】因为CD平分∠ACE(已知), 所以∠ACD=∠ECD=1 ∠ACE(角平分线的性质).

平行线的性质(第二课时)课件

平行线的性质(第二课时)课件
解 ∵∠1=500( 已知 ) ∠1+∠DED'=1800( 平角的定义 )
∴∠DED'=1300 ∴∠D'EF=∠DEF=650
∵AD∥CBD( 已知 )
∴∠DEF+∠EFC=1800( 两直线平行,内错角互补 ) ∴∠EFC=来自800-650=1150A
如图,若AB//CD,求∠B、 ∠D与∠BED的关系。
E
解: 过点E作EF//AB.
C
∴∠B=∠BEF (两直线平行,内错角相等 )
B F
D
∵AB∥CD( 已知 ) AB∥EF( 辅助线 )
∴EF∥CD( 平行于同一直线的两条直线也平行 )
∴∠D=∠DEF( 两直线平行,内错角相等
)
∴∠B+∠D=∠BEF+∠DEF=∠BED( 等式的性质 )
平行线的性质:
G
F B
A
E
D
解 ∵AG∥CF( 已知 )
C
∴∠A=∠BEF( 两直线平行,同位角相等 )
∵AB∥CD( 已知 )
∴∠C=∠BEF( 两直线平行,同位角相等 )
∴∠A=∠C=400( 等量代换
)
5、如图,将一张长方形纸片ABCD沿EF折叠,点D,C分别落 在点D′,C′处,若∠1=50°,求∠EFC的度数
为( A )
A.115° C.60°
B.65° D.25°
2.如图,已知∠1=70° ,如果CD∥BE,那么∠B 的度数为( C )
A.70° B .100° C.110° D.120°
3. 下列图形中,由AB‖CD ,能得到∠1=∠2的
是( B )
4.如图,已知AG‖CF,AB‖CD,∠A=40°,求∠C的度数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两直线平行,;
两直线平行,;
我还知道了一个新的判定两直线平行的条件:平行于直线的两条直线也互相。除此之外,我还学会了
2.请同学们一起完成课本54页A组B组习题
四、自我反思
我的收获:
存在不足:
解决方法:
五、教学后记
(A)只能求出其余3个角的度数(B)只能求出其余5个角的度数
(C)只能求出其余6个角的度数(D)只能求出其余7个角的度数
5.*如图,∠1=∠2,则下列结论一定成立的是()
A AB∥CDB AD∥BC
C∠B=∠DD∠3=∠4
三、检查反馈
1.请同学们谈一谈,今天的收获有哪些?
通过这节数学课,我知道了平行线有三个重要性质:两直线平行,;
1. .如右图,下列条件中,不能判断直线l1∥l2的是()
A、∠1=∠3 B、∠2=∠3
C、∠4=∠5 D、∠2+∠4=1与原来的方向相同,这两次拐弯的角度可能是()
A、第一次向右拐50°,第二次向左拐130°
B、第一次向左拐30°,第二次向右拐30°
长凝镇初级中学七年级数学学科导学案
课题
平行线第2课时
课型
新授课
课时
1
主备人
王倩
审核人
冯小强
学习目标
理解掌握:理解平行线的判定定理和性质定理
学会运用:学会运用平行线的性质定理和判定定理,进一步体会演绎推理的步骤与书写格式
学习过程
学法指导
一、预习导航
1、复习平行线的判定定理和已经学习过的平行线的性质定理
平行线的判定定理:
同位角相等,两直线平行
内错角相等,两直线平行
同旁内角互补,两直线平行
已经学习过的平行线的性质定理:
两直线平行,同位角相等
两直线平行,内错角相等
二、自主学习,合作探究
1.在课本上完成一起探究
2.归纳总结平行线的新判定方法:
如果两条直线平行于同一条直线,那么这两条直线也.
三、巩固练习,自主反馈
C、第一次向右拐50°,第二次向右拐130°
D、第一次向左拐50°,第二次向左拐130°
3.下面各语句中,正确的是()
A、两条直线被第三条直线所截,同位角相等
B、垂直于同一条直线的两条直线平行
C、若a∥b,c∥d,则a∥d
D、同旁内角互补,两直线平行
4.*若两条平行直线被第三条直线所截得的8个角中有一个角的度数已知,则()
相关文档
最新文档