高二数学选修1-1《导数的计算》练习卷

合集下载

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

(常考题)北师大版高中数学选修1-1第四章《导数应用》测试题(包含答案解析)(1)

一、选择题1.已知1a e =,ln33b =,ln 44c =,则a 、b 、c 的大小关系为( )A .b c a <<B .c b a <<C .c a b <<D .a c b <<2.已知()f x 是可导函数,且()()ln f x x x f x '<⋅对于0x ∀>恒成立,则( ) A .()()()283462f f f << B .()()()623428f f f << C .()()()346229f f f <<D .()()()286234f f f <<3.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( ) A .4B .26C .27D .64.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e5.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .6.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b <8.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点9.已知函数()()30f x ax bx c ac =++<,则函数()y f x =的图象可能是( ).A .B .C .D .10.已知实数2343a e =,4565b e =,6787c e =,那么a ,b ,c 大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>11.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=-的图象如图所示,则下列结论中一定成立的是( )A .()f x 有极大值()2f -B .()f x 有极小值()2f -C .()f x 有极大值()1fD .()f x 有极小值()1f12.定义在R 上的函数()f x 满足()()2f x f x '+<,则下列不等式一定成立的是( ) A .(3)2(2)2ef f e +<+ B .(3)2(2)2ef f e +>+ C .(3)2(2)2f e ef +<+D .(3)2(2)2f e ef +>+二、填空题13.已知函数()4,0,0x x e x f x e x x+≤⎧⎪=⎨>⎪⎩,若存在10x ≤,20x >,使得()()12f x f x =,则()12x f x 的取值范围是______.14.已知1a >,若对于任意的1[,)3x ∈+∞,不等式()4ln 3e ln xx x a a -≤-恒成立,则a的最小值为______.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.已知函数()()()2ln f x x x x x a a R =+-∈,若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得()()f x xf x '>成立,则实数a 的取值范围是______________.17.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.18.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________. 19.已知函数()()21ax x xf x x ++=≥,若()0f x '≥恒成立,则a 的取值范围为______. 20.函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减,则实数a 的取值范围为______. 三、解答题21.已知函数()xf x e ax =-.(1)讨论()f x 的单调性;(2)当1a =-,若关于x 的不等式()f x mx ≥在()0,∞+上恒成立,求实数m 的取值范围.22.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知函数()()331f x x ax a R =--∈.(1)当1a =时,求函数()f x 的极大值; (2)讨论函数()f x 的单调性. 24.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32113f xx ax ,0a >. (1)当1a =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积;(2)是否存在实数a ,使得()f x 在[]0,2上的最小值为56?若存在,求出a 的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 构造函数()ln xf x x=,利用导数分析函数()f x 在区间[),e +∞上的单调性,由此可得出a 、b 、c 的大小关系.【详解】 构造函数()ln x f x x =,则()21ln xf x x -'=, 当x e ≥时,()0f x '≤,所以,函数()f x 在区间[),e +∞上为减函数,34e <<,则()()()34>>f e f f ,即a b c >>.故选:B. 【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.2.B解析:B 【分析】构造函数()()ln f x g x x=,利用导数判断出函数()y g x =在区间()1,+∞上为增函数,可得出()()()248g g g <<,进而可得出结论. 【详解】令()()ln f x g x x=,则()()()()2ln ln xf x x f x g x x x '-'=. 当1x >时,由()()ln f x x x f x '<⋅得()0g x '>, 所以函数()()ln f x g x x=在()1,+∞上是增函数, 于是()()()248g g g <<,即()()()248ln 2ln 4ln 8f f f <<,即()()()248ln 22ln 23ln 2f f f <<. 化简得,()()()623428f f f <<, 故选:B.3.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞恒成立因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.4.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象, 再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭, 可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.5.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.7.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围;【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫<⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a ab -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.8.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误.【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误; 对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误.故选:C.【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.9.B解析:B【分析】利用函数()f x 的对称性排除A 选项;然后分0a >和0a <两种情况讨论,利用导数分析函数()f x 的单调性,结合()0f 的符号可得出合适的选项.【详解】()3f x ax bx c =++,则()3f x ax bx c -=--+,()()2f x f x c ∴+-=,所以,函数()f x 的图象关于点()0,c 对称,排除A 选项;()3f x ax bx c =++,则()23f x ax b '=+,当0a >,x →+∞时,()0f x '>,函数()f x 单调递增,又0ac <,()00f c ∴=<,排除D 选项;当0a <,x →+∞时,()0f x '<,函数()f x 单调递减,又0ac <,()00f c ∴=>,排除C 选项.故选:B .【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;(2)从函数的值域,判断图象的上下位置.(3)从函数的单调性,判断图象的变化趋势;(4)从函数的奇偶性,判断图象的对称性;(5)函数的特征点,排除不合要求的图象.10.C解析:C【分析】根据所给实数的表达式进行构造函数,然后利用导数判断出函数的单调性,最后利用函数的单调性进行判断即可.【详解】构造函数'()(2)()(1)x x f x x e f x x e =-⇒=-,当1x >时,'()0,()f x f x <单调递减, 当1x <时,'()0,()f x f x >单调递增. 因为2342()33a e f ==,4564()55b e f ==,6786()77c e f ==,246357<<, 所以642()()()753f f f >>,即c b a >>. 故选:C【点睛】 关键点睛:根据几个实数的特征构造函数,利用导数判断其单调性是解决此类问题的关键. 11.A解析:A【分析】由函数()()1y x f x '=-的图象,可得1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.由此可得函数()f x 的单调性,则答案可求.【详解】解:函数()()1y x f x '=-的图象如图所示,∴1x >时,()0f x '<;21x -<<时,()0f x '<;2x <-时,()0f x '>.∴函数()f x 在(),2-∞-上单调递增,在()2,1-上单调递减,在()1,+∞上单调递减. ∴()f x 有极大值()2f -. 故选:A .【点睛】本题考查根据导函数的相关图象求函数的单调区间,考查数形结合思想,是中档题. 12.A解析:A【分析】设()()2x x F x e f x e =-,求导并利用()()2f x f x '+<可得()F x 在R 上单调递减,根据(2)(3)F F >可得结果.【详解】设()()2x x F x e f x e =-,则[]()()()2()()2x x x x F x e f x e f x e e f x f x '''=+-=+-,因为()()2f x f x '+<,所以()()()20F x e f x f x ''⎡⎤=+-<⎣⎦, 所以()F x 在R 上单调递减,则(2)(3)F F >,即2233(2)2(3)2e f e e f e ->-, 故(3)2(2)2ef f e +<+.故选:A.【点睛】本题考查了构造函数解决导数问题,考查了利用导数研究函数的单调性,利用单调性比较大小,属于中档题.二、填空题13.【分析】由得根据的范围得利用导数得可得令将化为关于的二次函数根据二次函数知识可求得结果【详解】因为所以所以因为所以当时由得由得所以在上递减在上递增所以在处取得最小值所以所以令则所以所以当时取得最小值解析:24,0e ⎡⎤-⎣⎦【分析】由()()12f x f x =得2124x e x e x =-,根据1x 的范围得224x e e x ≤,利用导数得22x e e x ≥,可得224x e e e x ≤≤,令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识可求得结果.【详解】因为()()12f x f x =,所以2124x e x e x +=,所以2124x e x e x =-, 因为10x ≤,所以224x e e x ≤, 当0x >时,()x e f x x =,22(1)()x x x e x e e x f x x x'--==, 由()0f x '>得1x >,由()0f x '<得01x <<,所以()f x 在(0,1)上递减,在(1,)+∞上递增,所以()f x 在1x =处取得最小值e ,所以224x e e e x ≤≤, 所以()12x f x 22224x x e e e x x ⎛⎫=- ⎪⎝⎭222224x x e e e x x ⎛⎫=-⋅ ⎪⎝⎭,令22x e t x =,则4e t e ≤≤, 所以()12x f x 24t et =-()2224t e e =--, 所以当2t e =时,12()x f x 取得最小值24e -,当4t e =时,12()x f x 取得最大值0, 所以12()x f x 的取值范围是24,0e ⎡⎤-⎣⎦.故答案为:24,0e ⎡⎤-⎣⎦【点睛】 关键点点睛:令22x e t x =,将()12x f x 化为关于t 的二次函数,根据二次函数知识求解是解题关键.14.【分析】不等式等价变形利用同构函数的单调性得解【详解】令∴在上单调递增∵∴∴恒成立令只需∴单调递增∴单调递减时的最大值为∴∴的最小值为故答案为:【点睛】不等式等价变形同构函数是解题关键 解析:3e【分析】不等式等价变形()()()4ln 3ln 3ln 3ln x x xe x x a a x x a a e e -≤-⇔-≤-,利用同构函数()lnf x x x =-的单调性得解【详解】()()4ln 3ln 3ln 3ln x x e x x a a x x ae a x -≤-⇔-≤--()()3ln 3ln x x x x ae ae ⇔-≤-令()ln f x x x =-,()111x f x x x-'=-=, ∴()f x 在[)1,+∞上单调递增.∵1a >,1[,)3x ∈+∞, ∴[)3,1,x e x a ∈+∞,∴33x x eae x x a ⇔≤⇔≤恒成立, 令()3x x g x e =,只需max ()a g x ≥,()33xx g x e -'=, ∴1[,1),()0,()3x g x g x ∈'>单调递增, ∴(1,),()0,()x g x g x ∈+∞'<单调递减, 1x ∴=时,()g x 的最大值为3e,∴3a e ≥,∴a 的最小值为3e. 故答案为:3e 【点睛】不等式等价变形,同构函数()ln f x x x =-是解题关键.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22x f x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即 ()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根, 也即()2220x a x a ++++=有2个不相等的实根, 所以()()22420a a ∆=+-+>,即()()2240a a ++->,解得:2a >或2a <-,故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题. 16.【分析】求得导函数后代入不等式则可将不等式化为根据能成立的思想可得利用基本不等式可求得最小值进而得到结果【详解】即为整理得到即使得成立(当且仅当即时取等号)即实数的取值范围为故答案为:【点睛】本题考解析:)+∞ 【分析】 求得导函数后,代入不等式则可将不等式化为12a x x>+,根据能成立的思想可得min 12a x x ⎛⎫>+ ⎪⎝⎭,利用基本不等式可求得最小值,进而得到结果. 【详解】()()()2ln 12f x x x a x x a '=++-+-,()()f x xf x '∴>即为()()()222ln ln 2x x x x a x x x x x a x x a +->++-+-, 整理得到22210x ax -+<,即1,22x ⎡⎤∃∈⎢⎥⎣⎦,使得221122x a x x x +>=+成立,12x x +≥=12x x =,即2x =时取等号),a ∴>,即实数a 的取值范围为)+∞.故答案为:)+∞. 【点睛】 本题考查利用导数解决能成立的问题,关键是能够通过分离变量的方式将问题转化为变量和函数最值之间大小关系的比较问题,进而通过求解函数最值得到结果.17.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0y t x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解.【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x --⎛⎫==-⋅ ⎪⎝⎭ 设0y t x =>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t '=-+-⋅=-+-, ()221110t g t t t t+''=--=-<恒成立, 所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增,当()1,t ∈+∞,()0g t '<,函数单调递减,所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <,故答案为:(),0-∞【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题. 18.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力 解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e =,构造函数4(),2x x h x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4xf x aeg x x '='= 则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩, 由200240m x x =->,解得02x >. 由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x x x x h x h x e e -'=<=在(2,)+∞上单调递减, 所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题. 19.【分析】求函数的导数根据利用参数分离法进行转化然后构造函数转化为求函数的最值即可【详解】解:函数的导数由在上恒成立得在上恒成立即得在上恒成立设则当时恒成立即在上是增函数则当时取得最小值则即实数的取值 解析:(],3-∞【分析】求函数的导数,根据()0f x ',利用参数分离法进行转化,然后构造函数()g x ,转化为求函数的最值即可.【详解】 解:函数的导数2()21f a x x x '=+-, 由()0f x '在1x 上恒成立得2210a x x +-在1x 上恒成立, 即221a x x +, 得322x x a +在1x 上恒成立,设32()2g x x x =+,则2()622(31)g x x x x x '=+=+,当1x 时,()0g x '>恒成立,即()g x 在1x 上是增函数,则当1x =时,()g x 取得最小值()1213g =+=,则3a ,即实数a 的取值范围是(],3-∞,故答案为:(],3-∞【点睛】本题主要考查函数恒成立问题,求函数的导数,利用参数分离法以及构造函数,利用导数研究函数的最值是解决本题的关键.属于中档题.20.【分析】首先求出函数的导数依题意可得在上恒成立参变分离根据余弦函数的性质求出参数的取值范围;【详解】解:因为所以因为函数在上的单调递减所以在上恒成立即在上恒成立因为在上单调递减所以所以即故答案为:【 解析:[2,)+∞【分析】首先求出函数的导数,依题意可得()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立,参变分离,根据余弦函数的性质求出参数的取值范围;【详解】解:因为()2sin f x x ax =-,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以()2cos f x x a '=-,因为函数()2sin f x x ax =-在0,2π⎡⎤⎢⎥⎣⎦上的单调递减, 所以()2cos 0f x x a '=-≤在0,2π⎡⎤⎢⎥⎣⎦上恒成立, 即2cos a x ≥在0,2x π⎡⎤∈⎢⎥⎣⎦上恒成立,因为()2cos g x x =在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()max 02cos02g x g === 所以2a ≥,即[)2,a ∈+∞故答案为:[)2,+∞【点睛】 本题考查根据函数的单调性求参数的取值范围,利用导数研究函数的单调性,属于中档题.三、解答题21.(1)答案见解析;(2)(],1e -∞+.【分析】(1)求得()xf x e a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调性;(2)利用参变量分离法得出1xe m x≤+在()0,∞+上恒成立,利用导数求出函数()1xe g x x=+在()0,∞+上的最小值,由此可求得实数m 的取值范围. 【详解】解:(1)()x f x e ax =-,()x f x e a '∴=-.当0a ≤时,则()0f x '>在(),-∞+∞上恒成立,所以()f x 在(),-∞+∞上单调递增; 当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,函数()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)由题意知xe x mx +≥在()0,∞+上恒成立,即1xe m x ≤+恒成立, 令()1x e g x x =+,其中0x >,则()()21x x e g x x -'=. 当01x <<时,则()0g x '<;当1x >时,则()0g x '>.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增,则()()min 11g x g e ==+. 所以实数m 的取值范围为(],1e -∞+.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.22.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数. 【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,ln x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减; 当0a >时,()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e >时,()(1)0h x h ≥>,所以函数()h x 无零点;若10a e <<时,(1)0h <,()222222240e e h e a e e e ---=-+->->, ()22221220e e h e a e e=++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e >时,函数()g x 无零点; 当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)极大值为1;(2)答案见解析.【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值;(2)求得()233f x x a '=-,分0a ≤、0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调区间.【详解】(1)当1a =时,()331f x x x =--,该函数的定义域为R ,且233f x x , 令()0f x '>,得1x <-或1x >;令()0f x '<,得11x -<<,()f x ∴在(),1-∞-,()1,+∞上递增,在()1,1-上递减,故()f x 的极大值为()11f -=;(2)()()22333f x x a x a '=-=-. ①当0a ≤时,()0f x '≥在R 上恒成立,()f x ∴在R 上单调递增;②当0a >时,令()0f x '>,得x <x >令()0f x '<,得x <所以,函数()f x 在(,-∞,)+∞上单调递增,在(上单调递减. 【点睛】 方法点睛:利用导数求解函数单调区间的基本步骤:(1)求函数()f x 的定义域;(2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.24.(1)220x y --=;(2)2(2,1]e -.【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论.【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -. 【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞.【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可.【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+,()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值.(2)由2ln a x x x x x -->-,得2ln a x x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--, 令()23ln 1h x x x =--,则()21616x h x x x x -'=-=, 由1x >,知2610x ->,即()0h x '>, 所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=,由()a g x <在()1,+∞上恒成立,所以1a ≤.【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.26.(1)89;(2)存在,12a =. 【分析】(1)由1a =,求导()22f x x x '=-,利用导数的几何意义求得曲线()y f x =在点()()1,1f 处的切线方程,再求得切线的x 轴、y 轴上的截距,代入三角形的面积公式求解.(2)求导()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =,然后分022a <<,22a ≥,由()f x 在[]0,2上的最小值为56求解. 【详解】(1)当1a =时,()32113f x x x =-+,()22f x x x '=-, 所以()11f '=-,又()113f =, 所以曲线()y f x =在点()()1,1f 处的切线方程为()113y x -=--, 即3340x y +-=,直线3340x y +-=在x 轴、y 轴上的截距均为43, 所以三角形的面积为14482339S =⨯⨯=. (2)()()222f x x ax x x a '=-=-,令()0f x '=,得0x =或2x a =.当022a <<,即01a <<时,当[]0,2x a ∈时,()0f x '≤,()f x 单调递减;当[]2,2x a ∈时.()0f x '≥,()f x 单调递增.则()()33min 8524136f x f a a a ==-+=,解得12a =, 当22a ≥,即1a ≥时,当[]0,2x ∈时,()0f x '≤,()f x 单调递减,则()()min 8524136f x f a ==-+=,解得17124a =<,舍去. 综上:存在12a =,使得()f x 在[]0,2上的最小值为56. 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得.(2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

人教A版高二数学选修1-1第三章导数综合练习(1) .docx

人教A版高二数学选修1-1第三章导数综合练习(1) .docx

高中数学学习材料马鸣风萧萧*整理制作高二数学选修1-1第三章导数综合练习(1)一、选择题1. 已知函数f(x)在x=1处的导数为1,则 xf x f x 2)1()1(lim 0-+→=( ) A .2 B .1 C . 21 D .41 2. 已知函数f (x )=ax 2+c ,且f ′(1)=2,则a 的值为A.1B.2C.-1D.03. 已知函数f(x)在x=1处的导数为3,则f(x)的解析式可能为( )A .(x-1)3+3(x-1)B .2(x-1)2C .2(x-1)D .x-14. 曲线3x 2-y +6=0在x =-61处的切线的倾斜角是 A.4π B.-4π C.43π D.-43π 5. 函数y =(2x +1)3在x =0处的导数是A.0B.1C.3D.66. 若函数y=x ·2x 且y ’=0,则x 的值为 ( ) A .-2ln 1 B .2ln 1 C .-ln 2 D .ln 2 7.设曲线2x y =在点P 处的切线斜率为3,则点P 的坐标为A .(3,9)B .(-3,9)C .(49,23)D .(49,23-) 8.函数)0,4(2cos π在点x y =处的切线方程是A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x9.曲线y=x 3+x-2在点P 0处的切线平行于直线y=4x-1,则P 0的坐标是A.(0,1)B.(1,0)C.(-1,0)D.(1,4)10.一质点做直线运动,由始点起经过ts 后的距离为s=41t 4-4t 3+16t 2,则速度为零的时刻是 A.4s 末 B.8s 末 C.0s 与8s 末 D.0s,4s,8s 末 x y 12-=11.函数 的导数是A .B .C .D .12.函数A .4x +3B .4x -1C .4x -5D .4x -313.曲线y =x 3的切线中斜率等于1的直线A .不存在B .存在,有且仅有一条C .存在,有且恰有两条D .存在,但条数不确定14.下列命题正确的是( )(A )(lgx )’=1x (B )(lgx )’=ln10x(C )(3x )’=3x (D )(3x )’=3x ·ln3 15.设f (x )为可导函数,且满足0(1)(1)lim 2x f f x x→--=-1,则曲线y =f (x )在点(1, f (1))处的切线的斜率是 (A )2 (B )-1 (C )21 (D )-2 16.若曲线y =f (x )在点(x 0, f (x 0))处的切线方程为2x -y +1=0,则( )(A )f ’(x 0)>0 (B )f ’(x 0)<0 (C )f ’(x 0)=0 (D )f ’(x 0)不存在二、填空题17.函数y =sin x cos x 的导数为 .18曲线13++=x x y 在点(1,3)处的切线方程是_____________________。

(典型题)高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

(典型题)高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

一、选择题1.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定2.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( ) A .1-B .0C .1D .23.已知函数()1ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .4.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef >B .(2020)(2021)f ef <C .(2020)(2021)ef f >D .(2020)(2021)ef f <5.已知曲线1C :()xf x xe =在0x =处的切线与曲线2C :()()ln a xg x a x=∈R 在1x =处的切线平行,令()()()h x f x g x =,则()h x 在()0,∞+上( )A .有唯一零点B .有两个零点C .没有零点D .不确定6.已知函数()f x 的导函数是'()f x ,'()f x 的图象如图所示,下列说法正确的是( )A .函数()f x 在(2,1)--上单调递减B .函数()f x 在3x =处取得极大值C .函数()f x 在(1,1)-上单调递减D .函数()f x 共有4个极值点7.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .28.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( ) A .()()()1322f f f +< B .()()()1322f f f +≤ C .()()()1322f f f +≥ D .()()()1322f f f +>9.若曲线()11xmy e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34,1e ⎛⎫⎪⎝⎭B .34,e ⎛⎫-∞ ⎪⎝⎭C .340,e ⎛⎫ ⎪⎝⎭D .341,e ⎛⎫- ⎪⎝⎭10.已知函数()()()0ln 10xe xf x x x ax x -⎧-<⎪=⎨++>⎪⎩,若()f x 的图象上存在关于原点对称的点,则实数a 的取值范围是( ) A .(),1e -∞-B .()1,e -+∞C .[)1,e -+∞D .(],1e -∞-11.已知函数22(1)2,0()log 0x x f x x x ⎧-++≤⎪=⎨>⎪⎩,,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则23423121()x x x x x +⋅+⋅的取值范围是( )A .71(,]42-- B .37[,]24--C .71[,)42--D .313(,]42-- 12.若函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,则实数a 的取值范围是( )A .211[,)22e--+∞ B .21[,)2e-+∞ C .[2-,)+∞ D .211(2,]22e--- 二、填空题13.已知一个母线长33米的圆锥形容器,则当该容器的容积最大时,其高为___________米.14.若函数32()f x x x =-在区间(,3)a a +内存在最大值,则实数a 的取值范围是____________.15.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.16.若函数()()32f x x ax a R =--∈在(),0-∞内有且只有一个零点,则()f x 在[]1,2-上的最小值为______.17.函数2sin y x x =-在[]0,2π上的递增区间是________.18.已知三次函数()y f x =的图象如图所示,则函数()f x 的解析式是_______.19.已知成立, 则实数a 的取值范围是 .20.函数()ln f x x ax =-在()1,+∞上单调递减,则实数a 的取值范围是______.三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.已知函数()3f x x x =-.(1)求曲线()y f x =在点()()1,1f 处的切线方程; (2)求函数()f x 的单调区间. 23.已知函数()()21xf x x ae=-+.(1)讨论()f x 的单调性;(2)若()f x 存在零点,求a 的取值范围. 24.已知函数1()2ln 2f x x x x x=--+. (Ⅰ)求曲线()y f x =在点()()1,1f 处的切线方程; (Ⅱ)设函数()'()g x f x =('()f x 为()f x 的导函数),若方程()g x a =在1,e⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,求实数a 的取值范围.25.为了美化城市环境,提高市民的精神生活,市政府计划在人民广场一块半径为10米的圆形空地进行种植花草绿化改造.规划如图所示,在中央正六边形区域和六个相同的矩形区域种植鲜花,其余地方种植草地.设OAB θ∠=,正六边形的面积为1S ,六个矩形的面积和为2S .(1)用θ分别表示区域面积1S ,2S ; (2)求种植鲜花区域面积的最大值. (参考数据:3tan 41︒≈,23tan 49︒≈)26.已知函数1()(0,1)xxf x a a a a =->≠. (I )若1a >,不等式()2(4)0f x bx f x ++->在x ∈R 上恒成立,求实数b 的取值范围; (II )若3(1)2f =且221()2()xx h x a mf x a=+-在[1,)+∞上的最小值为2-,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增,()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.2.A解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减, ()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.3.A解析:A 【分析】利用导数分析函数ln 1y x x =--的单调性以及函数值符号,由此可得出函数()y f x =的图象. 【详解】对于函数ln 1y x x =--,该函数的定义域为()0,∞+,求导得111x y x x-'=-=. 当01x <<时,0y '<,此时函数ln 1y x x =--单调递减; 当1x >时,0y '>,此时函数ln 1y x x =--单调递增.所以,函数ln 1y x x =--的最小值为min 1ln110y =--=,即对任意的0x >,ln 10x x --≥.所以,函数()y f x =的定义域为()()0,11,+∞,且()0f x >,函数()y f x =的单调递增区间为()0,1,递减区间为()1,+∞. 所以,函数()y f x =的图象如A 选项中函数的图象. 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.4.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()x g x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 5.A解析:A 【分析】先对函数()xf x xe =和()ln a xg x x=求导,根据两曲线在1x =处的切线平行,由导数的几何意义求出a ,得到函数()()()ln xh x f x g x e x ==,对其求导,利用导数的方法判定单调性,确定其在()0,∞+上的最值,即可确定函数零点个数. 【详解】∵()xf x xe =,∴()()1xf x x e '=+,又()ln a x g x x =,∴()2ln a a xg x x -'=, 由题设知,()()01f g '=',即()02ln1101a a e -+=,∴1a =, 则()()()ln ln xx xh x f x g x xe e x x==⋅=, ∴()()ln 1ln xx xx x ee h x e x x x+=='+,0x >, 令()ln 1m x x x =+,0x >,则()ln 1m x x '=+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()0m x '<,即函数()ln 1m x x x =+单调递减; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时,()0m x '>,即函数()ln 1m x x x =+单调递增;∴在()0,∞+上()m x 的最小值为1110m e e ⎛⎫=-> ⎪⎝⎭, ∴()0m x >,则()0h x '>,∴()h x 在()0,∞+上单调递增,且()10h =.()h x 在()0,∞+上有唯一零点,故选:A . 【点睛】 思路点睛:利用导数的方法判定函数零点个数时,一般需要先对函数求导,利用导数的方法判定函数单调性,确定函数极值和最值,即可确定函数零点个数.(有时也需要利用数形结合的方法进行判断)6.C解析:C 【分析】对于选项A ,函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,函数()f x 在(1,1)-上单调递减,故C 正确;对于选项D ,由导函数的图象得函数()f x 共有3个极值点,故D 错误. 【详解】对于选项A ,由导函数的图象得函数()f x 在(2,1)--上单调递增,故A 错误;对于选项B ,由导函数的图象得函数()f x 在(1,3)上单调递增,在(3,)+∞上单调递增,所以3x =不是()f x 的极值点,故B 错误;对于选项C ,由导函数的图象得函数()f x 在(1,1)-上单调递减,故C 正确; 对于选项D ,由导函数的图象得函数()f x 共有3个极值点,3,1x x =-=是极小值点,1x =-是极大值点,故D 错误. 故选:C. 【点睛】结论点睛:(1)函数()f x 的()0f x '>在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递增;函数()f x 的()0f x '<在(,)a b 上恒成立,则函数()f x 在(,)a b 上单调递减.(2)如果函数()f x 的极值点是0x ,则0x 附近左右两边的导数符号相反.7.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-. 设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212ln x kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.8.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.9.C解析:C 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【详解】由(1)1xm y e x x =+<-+,得2(1)xm y e x '=-+,令0y '=,则2(1)x m x e =+,曲线(1)1xmy e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减,∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=.m ∴的取值范围为34(0,)e.故选:C . 【点睛】本题考查了利用导数研究曲线上某点处切线斜率,训练了利用导数研究函数的单调性、零点,考查数学转化思想方法,属中档题.10.C解析:C 【分析】转化条件为当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x --=>,通过导数确定()g x 的取值范围即可得解. 【详解】若()f x 的图象上存在关于原点对称的点, 则当0x >时,()()ln 1x ex x ax ----=++有解,即当0x >时,ln 1x e x x ax =++有解,所以当0x >时,ln 1x e x x a x--=有解,令()ln 1,0x e x x g x x x--=>,则()()()2ln 1ln 1xx e x x e x x g x x -----'=()()()221111xx x e x e x x x ----+==, 当()0,1x ∈时,()0g x '<,()g x 单调递减, 当()1,x ∈+∞时,()0g x '>,()g x 单调递增, 所以()()min 11g x g e ==-,()[)1,g x e ∈-+∞, 所以[)1,a e ∈-+∞. 故选:C. 【点睛】本题考查了函数与方程的综合应用及利用导数研究方程有解问题,考查了运算求解能力与转化化归思想,属于中档题.11.D解析:D 【分析】画出图形,数形结合解答.注意到122x x +=-,2324log log x x -=,化简结论得32312xx -,311,42x ⎛⎤∈ ⎥⎝⎦,构造函数21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦,利用导数判断出函数的单调性即可. 【详解】已知函数图象如下:方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则122x x +=-,2324log log x x -=,所以341x x ⋅=,且311,42x ⎛⎤∈ ⎥⎝⎦, 所以234322312311()2x x x x x x x ⋅=+⋅+-, 令21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦, 则31()1f x x =+'在11,42⎛⎤⎥⎝⎦上恒大于0, 故()f x 在11,42x ⎛⎤∈⎥⎝⎦上单调递增, 所以313(),42f x ⎡⎫∈--⎪⎢⎣⎭, 故选:D . 【点评】本题考查了函数的图像运用,利用数形结合判断函数交点问题,属于中档题.12.A解析:A 【分析】由x a >时,()21f x x =--递减,且无最大值,可得x a 时,()f x 取得最大值M ,且21M a --,求出x a 时,()f x 的导数和单调区间、极大值,讨论2a <-,判断单调性,可得最大值,解不等式判断无解,则2a -,求出最大值,解不等式即可得到所求a 的范围. 【详解】解:由x a >时,()21f x x =--递减,可得()21f x a <--,无最大值,函数(1),()21,x x e x af x x x a⎧-+=⎨-->⎩有最大值,可得x a 时,()f x 取得最大值M ,且21M a --,由()(1)x f x x e =-+的导数为()(2)xf x x e '=-+,可得2x >-时,()0f x '<,()f x 递减;2x <-时,()0f x '>,()f x 递增. 即有()f x 在2x =-处取得极大值,且为最大值2e -.若2a <-,则()f x 在(-∞,]a 递增,可得()()f x f a (1)a a e =-+, 由题意可得(1)21aa e a -+≥--,即得(1)210aa e a +--≤, 令(1))1(2aa e g a a +--=,则()(2)20ag a a e '=+-<,(2)a <-, 则()g a 在(),2-∞-递减,可得2(2)0()3g a g e ->-=-+>,则不等式(1)210aa e a +--≤无实数解.故2a -,此时在2x =-处()f x 取得最大值,为2e --,故221e a ----, 解得21122a e--, 综上可得,a 的范围是211[22e--,)+∞. 故选:A. 【点睛】本题考查了分段函数的最值问题,考查转化思想,以及分类讨论思想方法,注意运用导数,求出单调区间和极值、最值,考查化简整理的运算能力,属于中档题.二、填空题13.【分析】设圆锥的高为米可得出底面圆的半径为求出圆锥形容器的体积关于的表达式利用导数可求得的最大值及其对应的的值【详解】设圆锥形容器的高为米半径为米由勾股定理可得其中圆锥形容器的体积为则令由于可得当时 解析:3【分析】设圆锥的高为h 米,可得出底面圆的半径为r =V 关于h 的表达式,利用导数可求得V 的最大值及其对应的h 的值. 【详解】设圆锥形容器的高为h 米,半径为r 米,由勾股定理可得2227h r +=,2227r h ∴=-,其中0h <<圆锥形容器的体积为()()2231112727333V r h h h h h πππ==-=-,则()29V hπ'=-,令0V '=,由于(h ∈,可得3h =.当03h <<时,0V '>;当3h <<0V '<.所以,当3h =时,圆锥形容器的体积V 取得最大值. 故答案为:3. 【点睛】方法点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.14.【分析】首先利用导数判断函数的单调性再根据函数在开区间内存在最大值可判断极大值点就是最大值点列式求解【详解】由题可知:所以函数在单调递减在单调递增故函数的极大值为所以在开区间内的最大值一定是又所以得 解析:(3,2]--【分析】首先利用导数判断函数的单调性,再根据函数在开区间(),3a a +内存在最大值,可判断极大值点就是最大值点,列式求解. 【详解】由题可知: 2()32(32)f x x x x x '=-=-所以函数()f x 在20,3⎛⎫ ⎪⎝⎭单调递减,在2(,0),,3⎛⎫-∞+∞⎪⎝⎭单调递增,故函数的极大值为 (0)0f =.所以在开区间(,3)a a +内的最大值一定是(0)0,f =又(1)(0)0f f ==, 所以03,31a a a <<+⎧⎨+≤⎩ 得实数a 的取值范围是(3,2].-- 故答案为:(]3,2-- 【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式31a +≤,不要忽略这个不等式.15.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.16.【分析】利用导数分析函数在区间上的单调性根据该函数在区间上有且只有一个零点求得参数的值进而利用导数可求得函数在区间上的最小值【详解】则①当时对任意的恒成立此时函数在区间上单调递增且不合乎题意;②当时 解析:4-【分析】利用导数分析函数()y f x =在区间(),0-∞上的单调性,根据该函数在区间(),0-∞上有且只有一个零点求得参数a 的值,进而利用导数可求得函数()y f x =在区间[]1,2-上的最小值. 【详解】()32f x x ax =--,则()23f x x a '=-.①当0a ≤时,对任意的(),0x ∈-∞,()0f x '>恒成立,此时,函数()y f x =在区间(),0-∞上单调递增,且()()020f x f <=-<,不合乎题意;②当0a >时,令()230f x x a '=-=,可得x =x =当x <()0f x '>,此时函数()y f x =单调递增;当0x <<时,()0f x '<,此时函数()y f x =单调递减.所以,()max20f x f ⎛=== ⎝,解得3a =,()332f x x x ∴=--. ()()()233311f x x x x '=-=-+,当11x -<<时,()0f x '<,此时函数()y f x =单调递减; 当12x <<时,()0f x '>,此时函数()y f x =单调递增.因此,函数()y f x =在1x =处取得极小值,亦即最小值,故()()min 14f x f ==-.故答案为:4-. 【点睛】本题考查利用导数求解函数在区间上的最值,同时也考查了利用导数研究函数的零点,考查计算能力,属于中等题.17.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦. 故答案为:5,33ππ⎡⎤⎢⎥⎣⎦ 【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.18.【分析】待定系数法:设利用图象上点坐标代入与联立求解可得【详解】设由题知:由图象知解得故答案为:【点睛】求函数解析式的四种方法:配凑法换元法待定系数法解方程组法解题时根据具体条件对应方法求解析式 解析:32()232f x x x【分析】待定系数法:设32()f x ax bx cx d =+++,利用图象上点坐标代入,与(0)(1)=0f f ''=联立求解可得. 【详解】设32()f x ax bx cx d =+++,2()32f x ax bx c '=++由题知:(0)2(1)1f f ,== ,由图象知(0)(1)=0f f ''=2++103+20d a b c d c a b c =⎧⎪+=⎪∴⎨=⎪⎪+=⎩ 解得2302a b c d =⎧⎪=-⎪⎨=⎪⎪=⎩32()232f x x x故答案为:32()232f x x x【点睛】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.19.【详解】当时当时时有最小值因为所以考点:函数的单调性 解析:【详解】,当时,,当时,()0,1f x x '>∴=-时,有最小值()1f -.因为()max g x a =, 所以.考点:函数的单调性.20.【分析】求导得到恒成立化简得到计算得到答案【详解】在恒成立即恒成立故故答案为【点睛】本题考查了利用导数计算函数的单调性意在考查学生的计算能力 解析:[1,)+∞【分析】 求导得到1'()0f x a x =-≤恒成立,化简得到1a x≤,计算得到答案. 【详解】1()ln '()0f x x ax f x a x=-∴=-≤在()1,+∞恒成立 即1a x≤恒成立,故1a ≥ 故答案为[1,)+∞【点睛】本题考查了利用导数计算函数的单调性,意在考查学生的计算能力.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间; (2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】(1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x=+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <, 函数()h x 单调递减, 当时()1,∈+∞x ,()'0h x >, 函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=, 从而a 的取值范围是(],1-∞. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)220x y --=;(2)函数()f x 的单调增区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭,单调减区间为33⎛⎫- ⎪ ⎪⎝⎭.【分析】(1)求出()1f 、()1f '的值,利用点斜式可得出所求切线的方程;(2)解方程()0f x '=,列表分析()f x '的符号变化,由此可得出函数()f x 的单调递增区间和递减区间. 【详解】(1)由()3f x x x =-,得()231f x x '=-,所以()12f '=,又()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为:()21y x =-,即220x y --=.(2)令()2310f x x '=-=,得x =, x 、()f x '、()f x 在R 上的情况如下:所以函数()f x 的单调增区间为,3⎛⎫-∞- ⎪ ⎪⎝⎭,3⎛⎫∞ ⎪ ⎪⎝⎭,单调减区间为⎛ ⎝⎭. 【点睛】方法点睛:利用导数求解函数单调区间的基本步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间;解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间. 23.(1)()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)(][),11,-∞-+∞.【分析】(1)先求导并解得()0f x '=的根,再判断根附近导数值的正负,即得单调性; (2)先判断极小值即最小值,再结合()210f a =>可知()min0f x ≤,解不等式即得结果. 【详解】解:(1)()()21xf x x a e '=-+,定义域为R ,由()0f x '=,得21x a =-,当21x a <-时,()0f x '<;当21x a >-时,()0f x '>, 故()f x 在()2,1a -∞-上单调递减,在()21,a -+∞上单调递增;(2)由(1)知()f x 在21x a =-处取得极小值,也是最小值, 则()()221min 11a f x f a e-=-=-,因为()f x 存在零点,且()210f a =>,故只需()21min 10a f x e -=-≤,即2101ae e -≥=,故210a -≥,解得1a ≤-或1a ≥, 所以a 的取值范围为(][),11,-∞-+∞.【点睛】 方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)220x y --=;(2)2(2,1]e -. 【分析】(1)求出()'f x ,计算(1)f '得切线斜率,从而得切线议程;(2)对()g x 求导,确定()g x 的单调性,极值,得()g x 的变化趋势,从而可得结论.【详解】(1)由已知2211()2ln 212ln 1f x x x x x'=+-+=++, 所以(1)2f '=,又(1)0f =,所以切线议程为2(1)y x =-,即220x y --=;(2)由(1)21()2ln 1g x x x=++,定义域为(0,)+∞,33222(1)(1)()x x g x x x x -+'=-=, 所以在(0,1)x ∈时,()0g x '<,()g x 递减,(1,)x ∈+∞时,()0g x '>,()g x 递增, 所以1x =时,()g x 取得极小值也是最小值(1)2g =,211g e e ⎛⎫=- ⎪⎝⎭,x →+∞时,()g x →+∞, 所以方程()g x a =在1,e ⎡⎫+∞⎪⎢⎣⎭上有且仅有两个实根,则实数a 的取值范围是2(2,1]e -. 【点睛】方法点睛:本题考查导数的几何意义,考查用导数研究方程根的分布.根据方程根的个数求参数范围问题,一般方法是数形结合思想,把问题转化为函数图象与直线的交点问题,可利用导数研究出函数的性质,如单调性,极值,确定函数的变化趋势,然后利用函数的图象得出参数范围.25.(1)216003sin S θ=,221200sin cos 12003sin S θθθ=-;(2)()30073-. 【分析】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F ,OAD △为等腰三角形,可得AOF OAB θ∠=∠=即可求出BC 的长,进而可得1S ,求出OBC 的高OE ,AB EF OF OE ==-,26S AB BC =⨯⨯即可求解; (2)将面积之和12S S +用角θ表示出来,在求其求导,利用导数判断单调性即可求最值.【详解】(1)如图:连接BO 、CO 、OD ,过点O 作BC 的垂线,交BC 于点E ,交AD 于点F ,由对称性可知OAD △为等腰三角形,E 、F 分别为BC 、AD 的中点,由AB BC ⊥,OF BC ⊥,可得//AB OF ,所以AOF OAB θ∠=∠=,所以22sin 20sin BC AD AF OA θθ====,所以正六边形的面积2122666400sin OBC SBC S θθ====, 在OBC中,20sin 22OE BC θθ===,所以10cos AB EF OF OE θθ==-=-,所以()26610cos 20sin S AB BC θθθ=⨯⨯=-⨯21200sin cos θθθ=-,综上所述:21S θ=,221200sin cos S θθθ=-.(2)求种植鲜花区域面积的最大值即是求12S S +的最大值.设22121200sin cos y S S θθθθ=+=+-21cos21200sin cos 600sin 22θθθθθ-=-=-600sin 2θθ=+-所以1200cos 22y θθ'=-令0y '=,可得tan 2θ= 当249θ>时,0y '<;当249θ<时,0y '>,所以当249θ=时,y 取得最大值,max 600sin 493003cos 493003y =+- 因为tan 49︒≈,可得22sin 49cos 491sin 49cos 493︒︒︒︒⎧+=⎪⎨=⎪⎩, 解得2sin 4921cos 49⎧=⎪⎪⎨⎪=⎪⎩,所以max 60030077y =⨯+-=-. 【点睛】关键点点睛:本题解题的关键是得出AOF OAB θ∠=∠=,求出2BC AD AF ==,2OE BC =,AB EF OF OE ==-即可将面积1S ,2S 用θ表示出来,利用导数求面积之和的最值.26.(I )()3,5-;(II )2m =【分析】(Ⅰ)判断出()1x x f x a a=-是R 上的单调递增和()f x 为定义域为R 的奇函数,进而转化为()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而可求解 (Ⅱ)利用()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122x x u f x ==-,则()222g u u mu =-+,进而利用导数求最值即可求出m 的值 【详解】 解:(Ⅰ) ()1(0,1)x x f x a a a a =->≠,因为()10f >,所以10a a->,又0a >且1a ≠,所以1a >,所以,()1x x f x a a =-是R 上的单调递增, 又()f x 是定义域为R 的函数,满足()()f x f x -=-,所以,()f x 为定义域为R 的奇函数,所以,()()()()2224044f x bx f x f x bx f x x bx x ++->⇒+>-⇔+>- 即240x bx x +-+>在x ∈R 上恒成立,所以()21160b ∆=--<,即35b -<<,所以实数b 的取值范围为()3,5-.(Ⅱ)因为()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122x x u f x ==-,则()222g u u mu =-+, 因为()122x x f x =-在R 上为增函数,且1≥x ,所以()312u f ≥=, 因为()()221222x xh x mf x =+-在[)1,+∞上的最小值为2-, 所以()222g u u mu =-+在3,2⎡⎫+∞⎪⎢⎣⎭上的最小值为2-,因为()()222222g u u mu u m m =-+=-+-的对称轴为u m = 所以当32m ≥时, ()()2min 22g u g m m ==-=-,解得2m =或2m =-(舍去),当32m <时, ()min 3173224g u g m ⎛⎫==-=- ⎪⎝⎭,解得253122m =>, 综上可知:2m =【点睛】关键点睛:解题关键:(Ⅰ)利用函数的奇偶性和单调性得到 ()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而转化求解即可; (Ⅱ)求出a ,构造函数()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 然后令()122x x u f x ==-,构造出()222g u u mu =-+,进而求解。

高二数学选修1-1《导数的计算》练习卷

高二数学选修1-1《导数的计算》练习卷

高二数学选修1-1《导数的计算》练习卷知识点:1、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=;()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-;()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 2、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 3、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.同步练习:1、已知()2f x x =,则()3f '等于( )A .0B .2xC .6D .92、()0f x =的导数是( )A .0B .1C .不存在D .不确定3、y = )A .23xB .213xC .12- D4、曲线n y x =在2x =处的导数是12,则n 等于( )A .1B .2C .3D .45、若()f x =()1f '等于( )A .0B .13-C .3D .136、2y x =的斜率等于2的切线方程是( )A .210x y -+=B .210x y -+=或210x y --=C .210x y --=D .20x y -=7、在曲线2y x =上的切线的倾斜角为4π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭8、已知()53sin f x x x -=+,则()f x '等于( )A .653cos x x ---B .63cos x x -+C .653cos x x --+D .63cos x x --9、函数())0f x x =>的导数是( )AB .CD 10、函数2cos y x -=的导数是( )A .2cos sin x x -B .4sin 2cos x x -C .22cos x -D .22sin x -11、设()sin y f x =是可导函数,则x y '等于( )A .()sin f x 'B .()sin cos f x x '⋅C .()sin sin f x x '⋅D .()cos cos f x x '⋅12、函数()22423y x x =-+的导数是( )A .()2823x x -+B .()2216x -+C .()()282361x x x -+-D .()()242361x x x -+-13、22sin 35cos y x x =+的导数是( )A .22sin 35sin x x -B .2sin 610sin x x x -C .23sin 610sin x x x +D .23sin 610sin x x x -14、曲线34y x x =-在点()1,3--处的切线方程是( )A .74y x =+B .72y x =+C .4y x =-D .2y x =-15、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,,()()1n n f x f x +'=,n ∈N ,则()2005f x =( )A .sin xB .sin x -C .cos xD .cos x -16、点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π⎡⎤⎢⎥⎣⎦ B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦17、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________.18、正弦曲线sin y x =上切线斜率等于12的点是___________. 19、函数lg y x =在点()1,0处的切线方程是__________________________.20、半径为r 的圆的面积()2S r r π=,周长()2C r r π=,若将r 看成()0,+∞上的变量,则()22r r ππ'=①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看成()0,+∞上的变量,请你写出类似于①的式子:______________________②,②式可用语言叙述为____________________________________________.21、函数()()211y x x =+-在1x =处的导数等于___________.22、函数sin cos 2cos x x y x -=在点03x π=处的导数等于______________. 23、函数x y x e =-上某点的切线平行于x 轴,则这点的坐标为__________.24、在曲线323610y x x x =++-的切线中,斜率最小的切线方程是____________.25、曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x 等于__________.26、求下列函数的导数.()113y x =;()2y =;()331y x=;()4y =;()5()()22332y x x =+-; ()62311y x x x x ⎛⎫=++ ⎪⎝⎭;()72sin x y x =.27、求曲线y =在点18,4⎛⎫ ⎪⎝⎭处的切线方程.。

(好题)高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(4)

(好题)高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(4)

一、选择题1.已知函数()()ln 1xxf x x e e -=-++,则使不等式()()12f x f x +<成立的x 的取值范围是( ) A .()(),11,-∞-+∞B .()2,1--C .()1,1,3⎛⎫-∞-+∞ ⎪⎝⎭D .()(),21,-∞-⋃+∞2.已知函数()2()xxf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<3.设函数()ln 2e f x x mx n x =--+.若不等式()0f x ≤对()0,x ∈+∞恒成立,则nm 的最大值为( ) A .4e B .2eC .eD .2e4.函数()cos f x x x =⋅的导函数为()f x ',则()f x 与()f x '在一个坐标系中的图象为( )A .B .C .D .5.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π6.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( )A .[)1,+∞B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞7.已知函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,则实数a 的取值范围为( ) A .34a ≤-B .1a ≤-C .1a ≤D .01a ≤≤8.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .59.已知函数()()22,02ln ,0x x f x a x x x x -⎧<⎪=⎨++>⎪⎩,若恰有3个互不相同的实数1x ,2x ,3x ,使得()()()1232221232f x f x f x x x x ===,则实数a 的取值范围为( ) A .1a e>-B .10a e-<< C .0a ≥ D .0a ≥或1a e=-10.设函数()x f x e x =-,直线y ax b =+是曲线()y f x =的切线,则+a b 的最大值是( ) A .11e-B .1C .1e -D .22e -11.已知定义域为R 的函数 f x () 的导函数为'f x () ,且满足'24f x f x ()﹣()> ,若 01f =()﹣ ,则不等式22x f x e +()> 的解集为( )A .∞(0,+)B .1+∞(﹣,)C .0∞(﹣,)D .1(﹣,﹣)∞ 12.若函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,则a 的取值范围为( ) A .21,e ⎛⎫--⎪⎝⎭B .2{1},e ⎡⎫-⋃-+∞⎪⎢⎣⎭ C .2,e ⎡⎫-+∞⎪⎢⎣⎭D .2{1},0e ⎡⎫-⋃-⎪⎢⎣⎭二、填空题13.已知函数1()ln (0)a x f x x a x x a e=++-<,若()0f x ≥在[)2,x ∈+∞上恒成立,则实数a 的取值范围为___________.14.对于函数22,0()12,02x x e x f x x x x ⎧⋅≤⎪=⎨-+>⎪⎩有下列命题: ①在该函数图象上一点(﹣2,f (﹣2))处的切线的斜率为22e -; ②函数f (x )的最小值为2e-;③该函数图象与x 轴有4个交点;④函数f (x )在(﹣∞,﹣1]上为减函数,在(0,1]上也为减函数. 其中正确命题的序号是_____.15.若函数()22ln 2f x x x a =++-在()1,e 上有零点,则实数a 的取值范围为______.16.已知a R ∈,对于任意的实数[]1,2x ∈,不等式()110xx e a x a e ⎛⎫+---≤ ⎪⎝⎭恒成立,则实数a 的取值范围是________________.17.定义在R 上的函数()f x 满足:()()22f x f x x -+=,且当0x ≤时,()2f x x '<,则不等式()()25510f x x x f +-+≥的解集为______.18.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____.19.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()ln f x x x e =--. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()xe f x mx ⋅在(0,)+∞上恒成立,求实数m 的取值范围.22.已知函数32()392f x x x x =-++-.(1)求函数()y f x =的图象在点()()1,1f 处的切线方程; (2)求()f x 的单调区间.23.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)24.已知函数()ex af x x =+,其中a R ∈,e 是自然对数的底数. (1)当1a =-时,求函数()f x 在区间[)0,+∞上的零点个数; (2)若()2f x >对任意的实数x 恒成立,求a 的取值范围. 25.已知曲线3211()33f x x ax bx =+++在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值.(1)求函数()f x 的解析式;(2)求函数()f x 在[]0,3上的极值和最小值. 26.已知函数()11f x x=-. (1)求曲线()y f x =在点()()1,1f 处的切线方程;(2)设函数()()ln g x f x t x =+,当1t ≤时,求()g x 零点的个数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先判断函数的奇偶性和单调性,从而可得关于x 的不等式,求出其解后可得正确的选项. 【详解】()f x 的定义域为()(),11,-∞-+∞,且()()()ln 1x x f x x e e f x --=--++=,又当1x >时,()()ln 1xxf x x e e -=-++,()11001x x f x e e e x e-'=+->+->-,故()f x 在()1,+∞为增函数, 故()()12f x f x +<即为11211112121x xx x x x ⎧<+<⎪+-+⎨⎪-⎩或或,解得2x <-或1x >,故选:D. 【点睛】方法点睛:解函数不等式,往往需要考虑函数的奇偶性和单调性,前者依据定义,后者可利用导数,注意定义域的要求.2.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx x x f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符; 如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.3.D解析:D 【分析】 由题意可得ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,根据它们的图象,结合的导数的几何意义,以及射线的性质,即可得到所求的最大值. 【详解】由不等式()0f x ≤对()0,x ∈+∞恒成立, 即为ln 20e x mx n x --+≤,即ln 22e n x m x x m ⎛⎫-≤- ⎪⎝⎭对()0,x ∈+∞恒成立,设()ln e g x x x =-,由()210eg x x x'=+>, 可得()g x 在()0,∞+上递增,且()0g e =,当0x →时,()g x →-∞;x →+∞,()g x →+∞, 作出()y g x =的图象,再设()2,02n h x m x x m ⎛⎫=-> ⎪⎝⎭,可得()h x 表示过,02n m ⎛⎫⎪⎝⎭,斜率为2m 的一条射线(不含端点), 要求nm 的最大值,且满足不等式恒成立,可得2n m的最大值, 由于点,02n m ⎛⎫⎪⎝⎭在x 轴上移动, 只需找到合适的0m >,且()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,如图所示:此时2n e m =,即nm 的最大值为2e . 故选:D 【点睛】关键点点睛:本题考查不等式恒成立问题的解法,解题的关键是将问题转化为()ln e g x x x =-切于点,02n m ⎛⎫⎪⎝⎭,注意运用转化思想和数形结合思想,考查了导数的应用,求切线的斜率与单调性,考查了运算能力和推理能力.4.A解析:A 【分析】分析函数()f x 、()f x '的奇偶性,以及2f π⎛⎫' ⎪⎝⎭、()f π'的符号,利用排除法可得出合适的选项. 【详解】函数()cos f x x x =的定义域为R ,()()()cos cos f x x x x x f x -=--=-=-, 即函数()cos f x x x =为奇函数,()cos sin f x x x x '=-,函数()f x '的定义域为R ,()()()()cos sin cos sin f x x x x x x x f x ''-=-+-=-=,函数()f x '为偶函数,排除B 、C 选项;22f ππ⎛⎫'=- ⎪⎝⎭,()1f π'=-,则()02f f ππ⎛⎫<< ⎪⎝⎭''.对于D 选项,图中的偶函数为()f x ',由02f π⎛⎫'< ⎪⎝⎭,()0f π'<与题图不符,D 选项错误, 故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.5.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=,底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r r ππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S r ππ-'=<可得02r <<,所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.6.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7.B解析:B 【分析】由函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,知'0y ≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,分离参数,求最值得答案. 【详解】 因为函数21ln 22y x a x x =--在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增, 所以22'20a x x ay x x x--=--=≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以222(1)1a x x x ≤-=--在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,所以1a ≤-, 故选:B. 【点睛】方法点睛:该题考查的是有关根据函数在给定区间上单调增求你参数的取值范围的问题,解题方法如下:(1)利用函数在给定区间上单调递增,得到其导数大于等于零在给定区间上恒成立; (2)求导;(3)分离参数,求最小值,得结果.8.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+ 即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+,则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x--+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.9.D解析:D 【分析】根据题意,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,得到函数()()2f xg x x =与直线2y =共有三个不同的交点;根据导数的方法,分别判断0x <和0x >时,函数的单调性,以及最值,结合题中条件,即可得出结果. 【详解】因为()()22,02ln ,0xx f x a x x x x -⎧<⎪=⎨++>⎪⎩,令()()221,02ln 2,0x x f x x g x x x a x x ⎧<⎪⎪⋅==⎨⎪++>⎪⎩,由题意,函数()()2f x g x x=与直线2y =共有三个不同的交点; 当0x <时,()212x g x x =⋅,则()()()()222232222ln 222ln 22222x x x x x x x x xx g x xx x '-⋅⋅+⋅+'==-=-⋅⋅⋅, 由()3ln 2202x x g x x +'=-=⋅解得222log ln 2x e =-=-; 所以()2,2log x e ∈-∞-时,()0g x '<,即函数()212x g x x =⋅单调递减; ()22log ,0x e ∈-时,()0g x '>,即函数()212x g x x=⋅单调递增; 所以()()()()222222min 2log 2212log 2422log 4log ee e g x g e e e -=-==<<⋅-,又2121122122g -⎛⎫-==> ⎪⎝⎭⎛⎫⋅- ⎪⎝⎭,()()271128724927g --==>⋅-, 所以()212x g x x=⋅与直线2y =有且仅有两个不同的交点; 当0x >时,()ln 2xg x a x =++,则()21ln x g x x -'=, 由()21ln 0xg x x-'==得x e =, 所以当()0,x e ∈时,()0g x '>,则函数()ln 2xg x a x=++单调递增; 当(),x e ∈+∞时,()0g x '<,则函数()ln 2xg x a x=++单调递减; 所以()()max 12g x g e a e==++, 又当1≥x 时,()ln 22xg x a a x=++≥+;当01x <<时,()2g x a <+; 当x e ≥时,()ln 22xg x a a x=++>+, 所以为使()ln 2xg x a x=++与直线2y =只有一个交点, 只需122a e ++=或22a +≥,即1a e=-或0a ≥. 故选:D.【点睛】本题主要考查由方程根的个数求参数,转化为函数交点个数问题求解即可,属于常考题型.10.C解析:C 【分析】先设切点写出曲线的切线方程,得出a 、b 的值,再利用构造函数利用导数求+a b 的最大值即可. 【详解】解:由题得()1x f x e '=-,设切点(t ,())f t ,则()t t f t e =-,()1tf t e '=-;则切线方程为:()(1)()t ty e t e x t --=--, 即(1)(1)tty e x e t =-+-,又因为y ax b =+, 所以1t a e =-,(1)tb e t =-, 则12t t a b e te +=-+-,令()12ttg t e te =-+-,则()(1)tg t t e '=-,则有1t >,()0g t '<;1t <,()0g t '>,即()g t 在(),1-∞上递增,在()1,+∞上递减, 所以1t =时,()g t 取最大值(1)121g e e e =-+-=-, 即+a b 的最大值为1e -. 故选:C. 【点睛】本题考查了利用导数求曲线的切线方程和研究函数的最值,属于中档题.11.A解析:A 【解析】 设()()22xf x F x e+=,则()()()224xf x f x F x e'--'=,∵f (x )−2f ′(x )−4>0,∴F ′(x )>0,即函数F (x )在定义域上单调递增, ∵f (0)=−1,∴F (0)=1,∴不等式f (x )+2>e 2x 等价为不等式()221e xf x +>等价为F (x )>F (0),解得x >0,故不等式的解集为(0,+∞), 本题选择A 选项.12.B解析:B 【分析】先对函数求导,可得当10x -<<时,()0f x '<;当0x >时,()0f x '>,从而得min ()(0)1f x f a ==--,而x →+∞时,()f x →+∞,所以要函数()(1)x f x x e a =--在(1,)-+∞上只有一个零点,只要满足10a --=或20a e--,从而可求出a 的取值范围 【详解】()x f x xe '=,当10x -<<时,()0f x '<;当0x >时,()0f x '>.从而min ()(0)1f x f a ==--,又2(1)f a e-=--,且x →+∞时,()f x →+∞, ∴10a --=或20a e --, 即1a =-或2a e-. 故选:B 【点睛】此题考查由导数解决函数零点问题,考查转化思想和计算能力,属于中档题二、填空题13.【分析】根据不等式恒成立得到在上恒成立令函数对其求导判定其在区间上的单调性得到在上恒成立再令利用导数的方法求出其最大值即可得出结果【详解】由在上恒成立得:在上恒成立易知当时令函数则在上恒成立则单调递 解析:[,0)e -【分析】根据不等式恒成立,得到ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,令函数()ln (01)g t t t t =-<<,对其求导,判定其在区间[2,)+∞上的单调性,得到ln x a x≥-在[2,)x ∈+∞上恒成立,再令()(2)ln xF x x x=-≥,利用导数的方法求出其最大值,即可得出结果. 【详解】由()0f x ≥在[2,)x ∈+∞上恒成立,得:ln ln a a x x x x e e ---≥-在[2,)x ∈+∞上恒成立,易知当[2,)x ∈+∞,0a <时,01a x <<,01x e -<<,令函数()ln (01)g t t t t =-<<,则1()10g t t'=->在()0,1t ∈上恒成立,则()g t 单调递增,故有a x x e -≥,则log ln xx xa ex-≥=-在[2,)x ∈+∞上恒成立, 令()(2)ln x F x x x=-≥,则21ln ()(ln )x F x x '-=,由()0F x '=得x e =,所以()2x e ∈,时,()0F x '>,则()F x 单调递增;,)[x e ∈+∞时,()0F x '<,则()F x 单调递减;故max ()()F x F e e ==-,则a e ≥-,所以0e a -≤<. 故答案为:[,0)e -. 【点睛】 方法点睛:由不等式恒成立(或能成立)求参数时,一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.14.①②④【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③【详解】x≤0时f(x)=2xe xf′(x)=2(1+x )ex 故f′(﹣2)=①正确;且f(解析:①②④ 【分析】求出导数代入-2可得判断①;利用函数的单调性求出极值可判断②④;分别求函数等于零的根可判断③. 【详解】x ≤0时,f (x )=2xe x ,f ′(x )=2(1+x )e x ,故f ′(﹣2)=22e-,①正确; 且f (x )在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增,故x ≤0时,f (x )有最小值f (﹣1)=2e-, x >0时,f (x )=2122x x -+在(0,1)上单调递减,在(1,+∞)上单调递增,故x >0时,f (x )有最小值f (1)=122e->- 故f (x )有最小值2e-,②④正确;令20x x e ⋅=得0x =,令21202x x -+=得22x =,故该函数图象与x 轴有3个交点,③错误; 故答案为:①②④ 【点睛】本题考查导数的几何意义,考查利用导数判断函数的单调性、求函数的最值一定注意定义域.15.【分析】令得构造函数并求值域可得答案【详解】由则令因为在上都递减所以在上是单调递减函数且可得故答案为:【点睛】方法点睛:本题考查由函数零点求参数问题解答时要先将函数的零点问题转化为方程有根的问题进而解析:21e a -<<【分析】 令0f x 得222ln a x x =--,构造函数2()22ln (0)g x x x x =-->并求值域可得答案. 【详解】由()22ln 20f x x x a =++-=,则222ln a x x =--,令2()22ln (0)g x x x x =-->,因为222ln ,y x y x =-=-在()1,e 上都递减,所以()g x 在()1,e 上是单调递减函数,且()()(1)g e g x g <<, 可得21e a -<<. 故答案为:21e a -<<. 【点睛】方法点睛:本题考查由函数零点求参数问题,解答时要先将函数的零点问题转化为方程有根的问题,进而分离参数,再运用函数思想将问题转化为研究函数图象的性质和最大最小值的问题,考查了分析问题解决问题的能力.16.【分析】当时证明出由题意可得出可得出结合函数的单调性可求得实数的取值范围【详解】当时先证明出构造函数则则函数在区间上单调递增所以所以函数在区间上单调递增当时所以由可得所以当时即令则所以函数在区间上单解析:11,e e ⎡⎤+⎢⎥⎣⎦【分析】当[]1,2x ∈时,证明出11xx e x e +>-,由题意可得出11xxx a e e-≤≤+,可得出()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭,结合函数的单调性可求得实数a 的取值范围. 【详解】当[]1,2x ∈时,先证明出11xx e x e +>-,构造函数()11xxf x e x e =+-+, 则()11xx f x e e'=--,则函数()f x '在区间[]1,2上单调递增, 所以,()()1110f x f e e''≥=-->,所以,函数()f x 在区间[]1,2上单调递增, 当[]1,2x ∈时,()()110f x f e e ≥=+>,所以,11x x e x e+>-. 由()110xx e a x a e ⎛⎫+---≤ ⎪⎝⎭,可得11xx x a e e -≤≤+,所以,()max min11xx x a e e ⎛⎫-≤≤+⎪⎝⎭. 当[]1,2x ∈时,011x ≤-≤,即()max 11x -=, 令()1xx g x e e =+,则()10xxg x e e'=->,所以,函数()g x 在区间[]1,2上单调递增, 当[]1,2x ∈时,()()min 11g x g e e ==+,所以,11a e e≤≤+. 因此,实数a 的取值范围是11,e e⎡⎤+⎢⎥⎣⎦. 故答案为:11,e e ⎡⎤+⎢⎥⎣⎦. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.17.【分析】令问题转化为根据函数的单调性求出不等式的解集即可【详解】因为所以令则所以为奇函数又因为当时所以在上单调递减即在上单调递减而不等式所以所以故答案为:【点睛】构造辅助函数是高中数学中一种常用的方解析:5,2⎛⎤-∞ ⎥⎝⎦ 【分析】令()()2g x f x x =-,问题转化为()()5g x x g -≥,根据函数的单调性求出不等式的解集即可. 【详解】因为()()22f x f x x -+=,所以()()()220f x x f x x ---+-=,令()()2g x f x x =-,则()()0g x g x -+=,所以()g x 为奇函数.又因为当0x ≤时,()()20g x f x x ''=-<, 所以()g x 在(],0-∞上单调递减, 即()g x 在R 上单调递减.而不等式()()()()()()()2225510555f x f x x f x x f x x g x g x +≥-+⇔-≥---⇔≥-,所以5x x ≤-,所以52x ≤. 故答案为:5,2⎛⎤-∞ ⎥⎝⎦【点睛】构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.18.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以解析:2 【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解. 【详解】因为定义在R 上的函数()f x 关于y 轴对称, 所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->, 所以()g x 在[)0,+∞单调递增, 不等式()()0xx xe f e eax axf ax -+->恒成立,即()()xxxe f eeaxf ax ax ->-,即()()x g e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x-'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增, 所以()()min 1h x h e ==, 所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立, 综上所述:正整数a 的最大值为2, 故答案为:2 【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.19.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最解析:2【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解. 【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩,(1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x≤,设2()x e g x x =,可得22(21)()x e x g x x-'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫==⎪⎝⎭,即2m e ≤; (2)当0x ≤时,由()f x mx ≥,可得24x mx +≥, 当0x =时显然成立; 当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号, 所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -, 故答案为:[4,2]e -. 【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)(1,e e -⎤-∞-⎦.【分析】(1)解不等式()0f x '>与()0f x '<即可得单调区间; (2)先分离参数再利用导数研究函数最值即可得结果. 【详解】(1)依题意11(0,),()1x x f x x x'-∈+∞=-=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<,故函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)因为0x >,故不等式化为(ln )x x x e e m x --⋅,令(ln )()xx x e e h x x--⋅=,故min [()]m h x ,因为2(1)(ln 1)()xx x x e h x e x ---+'=,令11()ln 1,()1x x x x e x x xϕϕ'-=--+=-=,由(1)可知,当(0,1)x ∈时,()0x ϕ'>,当(1,)x ∈+∞时,()0x ϕ'<,又221130,(1)20,()0e e e e e ϕϕϕ⎛⎫=--<=->=⎪⎝⎭, 所以()ϕx 在(0,1)上存在唯一零点0x ,在(1,)+∞上存在唯一零点x e =,当00x x <<时,()0()0x h x ϕ'<<,,当01x x <<时,()0()0x h x ϕ'>>,,当1x e <<时,()0()0x h x ϕ'><,,当x e >时,()0,()0x h x ϕ'<>,所以函数()h x 在()00,x 和(1,)e 上为减函数,在()0,1x 和(,)e +∞上为增函数, 所以min [()]h x 是()0h x 与()h e 中的较小者,而1()e h e e -=-,因为()000ln 10x x x e ϕ=--+=,故010x e x e +-=, 故()()000100ln x x e x x e e h x ee x x ---=⋅=-=-,故1e m e --,综上所述,实数m 的取值范围为(1,e e -⎤-∞-⎦.【点晴】参变分离利用导数求解函数最值是解参数范围的关键.22.(1)1230x y --=;(2)单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【分析】(1)求出导函数()'f x ,然后计算导数得斜率,从而得切线方程;(2)由()0f x '>得增区间,()0f x '<得减区间. 【详解】解:(1)∵32()392f x x x x =-++-,∴2()369f x x x '=-++, ∴()112f '=. 又∵()19f =,∴函数()y f x =的图象在点()()1,1f 处的切线方程为912(1)y x -=-, 即1230x y --=.(2)由(1),得2()3693(1)(3)f x x x x x '=-++=-+-,令()0f x '=,解得1x =-或3x =; 当()0f x '<时,1x <-或3x >;当()0f x '>时,13x .∴()f x 的单调递减区间为(,1)-∞-和(3,)+∞,单调递增区间为()1,3-.【点睛】关键点点睛:本题考查导数的几何意义,考查求函数的单调区间.解题方法是求出导函数()'f x ,计算0()f x '得切线斜率,由点斜式写出切线方程并整理成一般式.而求单调区间只要解不等式()0f x '>即得增区间,解不等式()0f x '<即得减区间.23.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=. 【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ;(2)利用导数可求得结果.【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠=所以100cos ,AC θ=由于22,BOC BAC θ∠=∠=则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增, 当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减, 所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.24.(1)有1个零点;(2)(,)e +∞.【分析】(1)求导得到函数的单调性,再利用零点存在性定理得解;(2)分离参变量,不等式恒成立转化为求函数的最值得解.【详解】(1)当1a =-时,()1e x f x x =-, 则()110e xf x =+>', ∴()f x 在[)0,+∞上单调递增,又(0)10f =-<,1(1)10ef =->, 故0(0,1)x ∃∈,使得()00f x =,∴函数()f x 在区间[0,)+∞上有1个零点;(2)若()2f x >对任意的实数x 恒成立,即e (2)x a x >-恒成立,令()e (2)x g x x =-,则()e (1)x g x x '=-,令()0g x '>,得1x <;令()0g x '<,得1x >.∴()g x 在(,1)-∞上递增,在(1,)+∞上递减,∴max [()](1)e g x g ==,∴a 的取值范围为(e,)+∞.【点睛】方法点睛:不等式恒成立问题解决思路:一般参变量分离、转化为最值问题.25.(1)3211()8333f x x x x -=++;(2)极大值为(2)7f =,无极小值;最小值为1(0)3f =. 【分析】 (1)求出导数,根据题意有(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩,解出,a b 代入解析式即可; (2)根据导数求出函数的单调区间,判定函数在区间[]0,3上的单调性,根据极值定义求出函数的极值,比较端点函数值即可解出最小值.【详解】解:(1)函数()f x 求导得2()2f x x ax b '=++因为函数()f x 在点()()1,1f 处的切线斜率为3,且2x =时()y f x =有极值所以(1)123(2)440f a b f a b =++=⎧⎨=++=''⎩解得38a b =-⎧⎨=⎩所以函数()f x 的解析式为3211()8333f x x x x -=++ (2)由(1)可知2()68(2)(4)f x x x x x '=-+=--所以当2x <或4x >时,()0,()f x f x '>单调递增;当24x <<时,()0f x '<,()f x 单调递减,则函数()f x 在[]0,3上有极大值为(2)7f =,无极小值 又因为119(0),(3),33f f == 所以(0)(3)f f < 则函数()f x 在[]0,3上的最小值为1(0)3f =. 【点睛】求函数的极值或极值点的步骤:(1)求导数()'f x ,不要忘记函数()f x 的定义域;(2)求方程()0f x '=的根;(3)检查在方程的根的左右两侧()'f x 的符号,确定极值点或函数的极值.26.(1)10x y +-=;(2)答案见解析.【分析】(1)求出()1f 和()1f '的值,结合点斜式可得出曲线()y f x =在点()()1,1f 处的切线方程;(2)求得()21tx g x x-'=,分0t ≤、01t <<、1t =三种情况讨论,由导数分析函数()g x 的单调性与极值,进而可得出实数t 在不同取值下函数()g x 零点的个数.【详解】(1)因为()11f x x =-,所以()21f x x'=-,所以()10f =,()11f '=-. 所以曲线()y f x =在点()()1,1f 处的切线方程是()1y x =--,即10x y +-=; (2)因为()()ln g x f x t x =+,所以()()1ln 10g x t x x x =+->, 所以()2211t tx g x x x x-'=-+=. ①当0t ≤时,()0g x '≤,所以()g x 在()0,∞+上单调递减.因为()10g =,所以()g x 有且仅有一个零点;②当01t <<时,令()0g x '>,得1x t>,令()0g x '<,得1x t <. 所以()g x 在10,t ⎛⎫ ⎪⎝⎭上单调递减,在1,t ⎛⎫+∞ ⎪⎝⎭上单调递增.因为()10g =,所以()g x 在10,t ⎛⎫ ⎪⎝⎭上有且仅有一个零点. 因为()110g g t ⎛⎫<= ⎪⎝⎭,即1ln 10t t t +-<,则111ln 1t t t <-<,所以,11t e t >, 则()1110t t g e e =>, 所以01,x t ⎛⎫∃∈+∞ ⎪⎝⎭,使得()00g x =,所以()g x 在1,t ⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点. 所以当01t <<时,()g x 有两个零点;③当1t =时,()21x g x x-'=. 令()0g x '>,得1x >,令()0g x '<,得1x <.所以()g x 在()0,1上单调递减,在()1,+∞上单调递增.所以当1x =时,()g x 取得最小值,且()10g =,所以()g x 有且仅有一个零点. 综上所述,当0t ≤或1t =时,()g x 有且仅有一个零点;当01t <<时,()g x 有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.。

(易错题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(2)

(易错题)高中数学选修1-1第四章《导数应用》检测题(包含答案解析)(2)

一、选择题1.已知函数()22ln 3f x x ax x =+-在2x =处取得极小值,则()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值为( ) A .52-B .92ln 32-C .1-D .2ln 24-2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞4.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞ B .()(),11,-∞-+∞C .()(),10,1-∞-⋃ D .()()1,01,-⋃+∞5.函数3()1218f x x x =-+在区间[]3,3-上的最大值为( )A .34B .16C .24D .176.若函数32()x x x f x e e e a =---存在零点,则实数a 的取值范围为( ) A .[2,)-+∞B .[,)e C .2[,)e -+∞ D .[1,)-+∞7.已知函数()ln f x x ax =-,其中[)1+x ∈∞,,若不等式()0f x ≤恒成立,则实数a 的取值范围为( ) A .[)1,+∞ B .1,1e⎛⎤-∞- ⎥⎦⎝C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞8.已知函数4213(),42f x x x mx n =-++其中m ,n 为正整数,若函数()f x 有极大值,则m 的值为( ) A .1B .2C .3D .49.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e10.对于R 上可导的任意函数()f x ,若当2x ≠时满足()02f x x '≤-,则必有( )A .()()()1322f f f +<B .()()()1322f f f +≤C .()()()1322f f f +≥D .()()()1322f f f +>11.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 12.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()xf xg x e =的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.请写出一个使得函数()2()2xf x x ax e =++既有极大值又有极小值的实数a 的值___________.18.已知函数()2cos sin 2f x x x =+,则()f x 的最大值是__________. 19.函数()31443f x x x =-+的极大值为______. 20.已知函数()f x 是定义在区间()0,∞+)上的可导函数,若对()0,x ∀∈+∞()()20xf x f x '+>恒成立,则不等式()()()202020202019201920192020x f x f x ++<+的解集为______.三、解答题21.已知函数()22xk f x e x x =--,k ∈R . (1)当0k =时,求函数() f x 的最小值;(2)若() f x 在[)1,+∞上单调递增,求实数k 的取值范围.22.在①()14f -=-,()10f '=;②()10f =,()01f '=;③()f x 在()()1,1f --处的切线方程为84y x =+,这三个条件中任选一个,补充在下面问题中求解. 已知函数()32f x x ax bx =++,且______.(1)求a 、b 的值; (2)求函数()f x 的极小值. 23.已知函数()3213 1.3f x x x x =+-- (1)求函数()f x 的极值;(2)求函数()f x 在区间[]5,4-上的最大值与最小值.24.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.25.已知函数()ln af x x x x=--. (1)当2a =-时,求函数()f x 的极值;(2)若()2f x x x >-在()1,+∞上恒成立,求实数a 的取值范围.26.已知函数32()24,1f x x ax x =-+=是函数()f x 的一个极值点.(1)求函数()f x 的单调递增区间;(2)当[1,2]x ∈-,求函数()f x 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由()20f '=求出a 的值,然后利用导数可求得函数()f x 在1,32⎡⎤⎢⎥⎣⎦的最大值.【详解】()22ln 3f x x ax x =+-,则()223f x ax x=+-', 由题意可得()2420f a '=-=,解得12a =,则()212ln 32f x x x x =+-, ()22323x x f x x x x-+'=+-=,令()0f x '=,可得1x =或2x =,列表如下:所以,函数()f x 的极大值为()12f =-,极小值为()22ln 24f =-, 又1112ln 228f ⎛⎫=-- ⎪⎝⎭,()932ln 32f =-,()()()95312ln 32ln 322ln 31022f f -=-+=-=->,则()()13f f <,所以,()()max 932ln 32f x f ==-. 故选:B. 【点睛】思路点睛:利用导数求函数()y f x =在[],a b 上的最大值和最小值的步骤如下: (1)求函数()y f x =在(),a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值()f a 、f b 比较,其中最大的一个是最大值,最小的一个是最小值.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=-则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.4.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】 构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数,由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.5.A解析:A 【分析】对函数求导,求出函数()y f x =的极值点,分析函数的单调性,再将极值与端点函数值比较大小,找出其中最大的作为函数()y f x =的最大值. 【详解】()31218f x x x =-+,则()2312f x x '=-,令'0f x,解得2x =±,列表如下:所以,函数y f x =的极大值为234f -=,极小值为22f =,又()327f -=,()39f =,因此,函数()y f x =在区间[]3,3-上的最大值为34, 故选:A . 【点睛】方法点睛:本题考查利用导数求函数在定区间上的最值,解题时严格按照导数求最值的基本步骤进行,考查计算能力,属于中等题.6.D解析:D【分析】由题意得32x x x a e e e =--,令32()x xx g x e e e =--,求()g x 的取值范围可得答案.【详解】 由32()0xx x f x ee e a =---=,则32x x x a e e e =--,令32()xxx g x e ee =--,则()()()3223()3211213xxx x x x x x x g x e ee e e e e e e '=--=+-=--,当()0g x '>得0x >,()g x 单调递增,当()0g x '<得0x <,()g x 单调递减, 所以min()(0)1g x g ≥=-,()2215()124x x x x xg x e e e e e ⎡⎤⎛⎫=--=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当x 趋向于正无穷大时,()g x 也趋向于正无穷大, 所以函数()f x 存在零点,则1a ≥-. 故选:D. 【点睛】方法点睛:本题考查函数零点问题.解题方法是把零点个数转化为方程解的个数,再转化为函数图象交点个数,由图象观察所需条件求得结论.考查了分析问题、解决问题的能力.7.C解析:C 【分析】不等式()0f x ≤恒成立等价于ln xa x ≥在[)1,+∞上恒成立,则maxln x a x ⎛⎫≥ ⎪⎝⎭,运用导数求出函数ln xx在[)1,+∞上的最大值. 【详解】解:当[)1+x ∈∞,时,不等式()0f x ≤恒成立等价于ln xa x≥在[)1,+∞上恒成立, 令ln ()xg x x=,则21ln ()x g x x -'=当0x e <<时,()0g x '>;当x e >时,()0g x '<;所以max 1()()g x g e e==,所以1a e ≥故选:C. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.8.A解析:A 【分析】对()f x 进行求导得3()3f x x x m '=-+,构造新函数3()3,h x x x m x R =-+∈,利用导数研究函数()h x 的单调性,结合题意,可知函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,求解不等式且结合m ,n 为正整数,即可得出结果.【详解】 由题可知,4213()42f x x x mx n =-++()x R ∈, 则3()3f x x x m '=-+,设3()3,h x x x m x R =-+∈,则2()33h x x '=-,令2()330h x x '=-=,解得:121,1x x =-=,则当1x <-或1x >时,()0h x '>;当11x -<<时,()0h x '<,所以()h x 在区间()(),1,1,-∞-+∞上单调递增;在区间()1,1-上单调递减, 又因为函数()f x 有极大值,则()()1010h h ⎧->⎪⎨<⎪⎩,即()()120120h m h m ⎧-=+>⎪⎨=-<⎪⎩,解得:22m -<<,而m ,n 为正整数,所以m 的值为1.故选:A. 【点睛】关键点点睛:本题考查利用导数研究函数的单调性和极值,从而求参数值,构造新函数且利用导数求出单调区间是解题的关键,考查转化思想和运用能力.9.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.10.B解析:B 【分析】根据()02f x x '≤-,得到2x >时,()f x 单调非递增函数,2x <时,()f x 单调非递减函数求解. 【详解】因为()02f x x '≤-, 所以当20x ->,即2x >时,()0f x '≤,则()f x 单调非递增函数,所以()()32f f ≤;当20x -<,即2x <时,()0f x '≥,()f x 单调非递减函数, 所以()()12f f ≤;由不等式的性质得:()()()1322f f f +≤. 故选:B 【点睛】本题主要考查导数与函数的单调性以及不等式的基本性质,属于中档题.11.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x 123a--=,x 2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴12,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;12.A解析:A 【分析】 由()xx f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解.【详解】 由()xx f x ax ee -=+-在R 上单调递减,可得:导函数()0xx f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x xa e e -≤,+2x x e e -≥=2a ≤故选:A 【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--. 【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值.【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x '---=+-=∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率,因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立,设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】由题意可得:有2个不相等的实根也即有2个不相等的实根利用即可求解【详解】由题意可得:有2个不相等的实根也即有2个不相等的实根所以即解得:或故答案为:【点睛】本题主要考查了极值和导数的关系属于 解析:()(),22,-∞-+∞【分析】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,利用0∆>即可求解.【详解】由题意可得:()20()22xf x x a x a e '⎡⎤=++++⎣=⎦有2个不相等的实根,也即()2220x a x a ++++=有2个不相等的实根,所以()()22420a a ∆=+-+>, 即()()2240a a ++->, 解得:2a >或2a <-, 故答案为:()(),22,-∞-+∞【点睛】本题主要考查了极值和导数的关系,属于中档题.18.【分析】求导后利用导数的正负求得函数的单调区间利用单调性求得函数的最大值【详解】由题意知是周期为的偶函数当时得的减区间为当时的增区间为所以当时取最大值故答案为:【点睛】本题主要考查利用导数求函数的最解析:2【分析】求导后利用导数的正负求得函数的单调区间,利用单调性求得函数的最大值. 【详解】2()2sin 2cos22sin 2(12sin )2(2sin 1)(sin 1)f x x x x x x x '=-+=-+-=--+由题意知()f x 是周期为2π的偶函数, 当()0f x '≤时,得()f x 的减区间为52,2()66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦, 当()0f x '≥时,()f x 的增区间为5132,2()66Z k k k ππππ⎡⎤++⎢⎥∈⎣⎦,所以当2()6x k k Z ππ=+∈时,()f x 取最大值2.【点睛】本题主要考查利用导数求函数的最值,意在考查学生的数学运算的学科素养,属中档题.19.【分析】求函数导数解得的根判断导函数在两侧区间的符号即可求解【详解】由解得或时当时是的极大值点函数的极大值为故答案为:【点睛】本题主要考查了基本初等函数的求导公式二次函数的图象以及函数极大值点的定义 解析:283【分析】求函数导数,解得()0f x '=的根,判断导函数在2x =±两侧区间的符号,即可求解. 【详解】()31443f x x x =-+,2()4,f x x '∴=-由()0f x '=解得2x =±,2x ∴<-或2x >时,()0f x '>,当22x -<<时,()0f x '<, 2x ∴=-是()f x 的极大值点,∴函数的极大值为128(2)(8)8433f -=⨯-++=, 故答案为:283【点睛】本题主要考查了基本初等函数的求导公式,二次函数的图象,以及函数极大值点的定义及其求法,属于中档题.20.【分析】令求的导数根据条件可知从而判断单调递增将不等式化为即可求解【详解】令因为的定义域为所以函数的定义域也为则所以函数在上单调递增又可以化为即所以所以故不等式的解集为故答案为:【点睛】本题考查利用 解析:()2020,1--【分析】令()2()g x x f x =,求()g x 的导数'()g x ,根据条件可知'()0g x >,从而判断()g x 单调递增,将不等式化为()()20202019g x g +<即可求解. 【详解】令()2()g x x f x =,因为()f x 的定义域为()0,∞+,所以函数()g x 的定义域也为()0,∞+,则()()()()()2220g x xf x x f x x f x xf x '''=+=+>⎡⎤⎣⎦,所以函数()g x 在()0,∞+上单调递增, 又()()()202020202019201920192020x f x f x ++<+可以化为()()()222020202020192019x f x f ++<,即()()20202019g x g +<,所以020202019x <+<, 所以20201x -<<-, 故不等式的解集为()2020,1--. 故答案为:()2020,1--. 【点睛】本题考查利用函数的单调性解不等式,构造函数求导是解题的关键,属于中档题.三、解答题21.(1)1;(2)1k e ≤-. 【分析】(1)求出()'fx ,在定义域内,分别令()'0f x >求得x 的范围,可得函数()f x 增区间,()'0f x <求得x 的范围,可得函数()f x 的减区间;(2)() f x 在[1,)+∞上单调递增,等价于()'0f x ≥ 在[1,)+∞上恒成立,即1x e k x-≤在[1,)+∞恒成立,利用导数求出1x e x -的最小值即可得答案. 【详解】(1)当0k =时, ()()',1 xx e x e f fx x =-∴=-,令'0fx,则100x e x -=⇒=,当0x >时,10x e ->,()f x 在()0,∞+上递增, 当0x <时,10x e -<,()f x 在(),0-∞上递减,()()min 01f x f ∴==;(2)因为() f x 在[1,)+∞上单调递增,所以()'0fx ≥ 在[1,)+∞上恒成立, 因为()'1xf x e kx =--,所以10x e kx --≥在[1,)+∞恒成立,即1x e k x-≤在[1,)+∞恒成立,令()1x e g x x-=,则()min k g x ≤在[1,)+∞上恒成立,()()'211x e x g x x-+=,当[1,)x ∈+∞时,()'0g x >恒成立, ()g x ∴在[1,)+∞上单调递增,()()1min1111e g x g e -∴===-,1k e ∴≤-.【点睛】方法点睛:不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.22.选①或②或③,(1)2a =-,1b =;(2)0. 【分析】(1)求出()232f x x ax b '=++,根据所选条件可得出关于a 、b 的方程组,即可解得a 、b 的值;(2)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极小值. 【详解】(1)方案一:选择①,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()1141320f a b f a b ⎧-=-+-=-⎪⎨=++='⎪⎩,解得21a b =-⎧⎨=⎩;方案二:选择②,()32f x x ax bx =++,则()232f x x ax b '=++,由已知可得()()11001f a b f b ⎧=++=⎪⎨=='⎪⎩,解得21a b =-⎧⎨=⎩;方案三:选择③,()32f x x ax bx =++,则()232f x x ax b '=++,因为函数()f x 在()()1,1f --处的切线方程为84y x =+,所以,()()1328114f a b f a b ⎧-=-+=⎪⎨-=-+-=-'⎪⎩,解得21a b =-⎧⎨=⎩;(2)由(1)得()322f x x x x =-+,()2341f x x x '∴=-+,由()0f x '=得:113x =,21x =,列表如下:所以,函数f x 的极小值为10f =. 【点睛】思路点睛:求函数()f x 的极值的步骤: (1)求函数()f x 的定义域; (2)求导()f x ';(3)解方程()00f x '=,当()00f x '=; (4)利用导数分析函数()f x 的单调性; (5)将极值点代入函数解析式计算即可. 23.(1)答案见解析;(2)最大值是733,最小值是83-.【分析】(1)求得导函数,并计算()0f x '=的根,列表判断极值即可得结果; (2)根据(1)的极值再比较()853f -=-,()7343f =的大小即可得最值.【详解】解:(1)函数()321313f x x x x =+--的定义域为R . ()()()22331f x x x x x '=+-=+-.令()0f x '=,解得3x =-,或1x =.当x 变化时,()f x ',()f x 的变化情况如下表所示.因此,当3x =-时,函数f x 有极大值,并且极大值为38f -=, 当1x =时,函数()f x 有极小值,并且极小值为()318f =-. (2)由(1)知,函数()f x 在区间[]5,4-上, 极大值为()38f -=,极小值为()318f =-. 又由于()853f -=-,()7343f =, 所以函数()f x 在区间[]5,4-上的最大值是733,最小值是83-.【点晴】方法点晴:求极值的方法步骤:1、求函数定义域;2、求导函数并解方程()0f x '=的根;3、列表判断极值.24.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x-, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴[g (x )]max =g (e)=112e <, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3, 则11()ax f x a x x'-=-=. ①当0<1a <e 时,f (x )在(0,1a )上单调递减,在(1a,e ]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e ]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去), 所以,此时f (x )无最小值.综上,存在实数a =e 2,使得当x ∈(0,e ]时f (x )有最小值3. 【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.25.(1)极小值为3ln 2-,无极大值;(2)(],1-∞. 【分析】(1)对函数求导,因式分解求得()0f x '=的根,列表判断单调性与极值;(2)将()2f x x x >-转化为3ln a x x x <-在()1,+∞上恒成立,令新的函数()g x ,然后求导以及二次求导以后判断单调性与极值,求出()g x 的最小值即可. 【详解】解:(1) 由2a =-,得()2ln f x x x x=+-,定义域为()0,∞+, ()()()2222212121x x x x f x x x x x-+--'=--==, 令()0f x '=,得2x =(或1x =-舍去),列表:所以f x 的极小值为23ln 2=-f ,无极大值. (2)由2ln a x x x x x -->-,得2ln ax x x<-, 问题转化为3ln a x x x <-在()1,+∞上恒成立,记()()3ln ,1,g x x x x x =-∈+∞,即min ()a g x <在()1,+∞上恒成立,则()()2231ln 3ln 1g x x x x x '=-+=--,令()23ln 1h x x x =--,则()21616x h x x x x-'=-=,由1x >,知2610x ->,即()0h x '>,所以()h x 在()1,+∞上单调递增,()()120h x h >=>,即()0g x '>,所以()g x 在()1,+∞上单调递增,()()11g x g >=, 由()a g x <在()1,+∞上恒成立,所以1a ≤. 【点睛】方法点睛:导函数中两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题,注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 26.(1)(,0)-∞和(1,)+∞;(2)1-. 【分析】(1)由极值点求出参数3a =,再代入,解不等式()0f x '>求递增区间 (2)求()f x 在[1,2]-上的极值,与端点值比较得出最小值. 【详解】(1)由题意2()62f x x ax '=-()01f '=,则3a =32()234,()6(1)f x x x f x x x '=-+=-,当(,0)x ∈-∞时,()0f x '>;当(0,1)x ∈时,()0f x '<;当(1,)x ∈+∞时,()0f x '>. 所以,函数()f x 的单调递增区间为(,0)-∞和(1,)+∞ (2)当[1,2]x ∈-时,(),()f x f x '的变化情况如下表当1,(1)2343x f ==-+=.所以当[1,2]x ∈-时,函数()f x 的最小值为1-.【点睛】用导数法求最值方法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值;。

(典型题)高中数学选修1-1第四章《导数应用》测试卷(答案解析)

(典型题)高中数学选修1-1第四章《导数应用》测试卷(答案解析)

一、选择题1.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞2.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞3.已知函数()2sin x m f x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 4.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A.4B .C .D .65.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b < 7.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( )A .(2020)(2021)f ef >B .(2020)(2021)f ef <C .(2020)(2021)ef f >D .(2020)(2021)ef f <8.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .59.对于正数k ,定义函数:()()()(),,f x f x k g x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 210.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .1326-C .1326+ D .2311.函数()212x f x x -=+的值域是( ) A .30,⎡⎤⎢⎥⎣⎦B .3⎛⎫∞ ⎪ ⎪⎝⎭,+C .()0,3D .)3,⎡+∞⎣12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.函数21f x x x 的极大值为_________.18.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.19.函数2sin y x x =-在[]0,2π上的递增区间是________.20.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.三、解答题21.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 22.已知函数()xax f x e =. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 23.已知函数32()691f x x x x =-++. (1)求曲线()y f x =在点()0,1处的切线方程.(2)证明:()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.26.已知函数321()23f x x x ax =-++,21()42g x x =-. (1)若函数()f x 在()0,∞+上存在单调递增区间,求实数a 的取值范围;(2)设()()()G x f x g x =-.若02a <<,()G x 在[]1,3上的最小值为13-,求()G x 在[]1,3上取得最大值时,对应的x 值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.2.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.A【分析】()0f x =有两解变形为2sin m xxe e =有两解, 设2sin ()xxg xe =,利用导数确定函数的单调性、极值,结合()g x 的大致图象可得结论. 【详解】 由()22sin x mf x e x +=-得2sin m xxe e =,设2sin ()xxg x e=,则2(cos sin )()x x g x -'=, 易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫= ⎪⎝⎭,如图是()g x 的大致图象, 由2sin mx e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-.故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2sin m xe =2sin ()x g x =my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.4.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围; 【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫< ⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a a b -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.7.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()x g x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 8.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x--+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.9.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111x f x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.10.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =---则函数y 在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.11.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域.【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x1=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--.【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值. 【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】 由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率, 因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立, 设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.19.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦. 故答案为:5,33ππ⎡⎤⎢⎥⎣⎦【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.20.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10a e≤≤ 【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21xf ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解. 【详解】因为()321f x x x =++,所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21xf f ax e a =-+≤x R ∀∈成立,所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤,x R ∀∈恒成立,当20x +>时,转化为2xe a x ≤+恒成立,令()2xg x ex =+,()()()212x x e g x x +'=+,当21x -<<-时,()0g x '<,()g x 单调递减, 当1x >-时,()0g x '>,()g x 单调递增, 所以当1x =-时,()g x 求得最小值min 1()(1)g x g e=-=, 所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.三、解答题21.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 22.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间;(2)由0g x,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围 【详解】解:(1)当1a =时,()xxf x e =,定义域为R , 所以()1xxf x e -'=. 当1x <时,0f x,函数()f x 单调递增;当1x >时,0f x,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增; 在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x xx a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点. ②若ln 1a <,即0a e <<, 当ln x a <时,0g x,函数()g x 单调递增; 当ln 1a x <<时,0g x ,函数()g x 单调递减;当1x >时,0g x,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>, 又因为()2220ag e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意. (Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>, 又因为()2220g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>, 若函数()g x 只有1个零点,需()1102a e g =->, 解得2ea e <<.③若ln 1a >,即a e >,当1x <时,0g x,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减; 当ln x a >时,0g x,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a =>所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题 23.(1)91y x =+;(2)证明见解析. 【分析】(1)求出函数在0x =处的导数后可得切线方程.(2)设函数()1ln g x x x =+-,利用导数可证明在1(,)2+∞上有()()1,1f x g x ≥≥,但等号不同时成立,结合余弦函数的性质可证明()()1ln 2cos x x f x x +->在1()2,x ∈+∞恒成立.【详解】(1)解:2()3129f x x x -'=+,则()09f =,故曲线()y f x =在点()0,1处的切线方程为91y x =+. (2)证明:当1(,1)(3,)2x ∈⋃+∞时,()0f x '>, 则()f x 在1(,1),(3,)2+∞上单调递增;当()1,3x ∈时,()0f x '<,则()f x 在()1,3上单调递减. 因为133()(3)128f f =>=, 所以()f x 在1(,)2+∞上的最小值为()31f =.设函数()1ln g x x x =+-.则1()(0)x g x x x -'=>. 当1(,1)2x ∈时,()0g x '<,则()g x 在1(,1)2上单调递减;当(1,)x ∈+∞时,()0g x '>,则()g x 在(1,)+∞上单调递增. 故()()12g x g ≥=.从而()()1ln 2x x f x +-≥,但由于()1f x ≥与()2g x ≥的取等条件不同, 所以()()1ln 2x x f x +->.因为2cos 2x ≤,所以()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 【点睛】方法点睛:对于不等式的恒成立的问题,如果该不等式中含有三角函数,那么可以利用三角函数的有界性把前者转化为与三角函数无关的不等式,这样便于问题的讨论与处理. 24.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围. 【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==,因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-.(Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x af x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立. (4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立. 综上所述,1a <. 【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.26.(1)12a >-;(2)最大值点为36+.36x +=. 【分析】(1)根据()f x 在()0,∞+上存在单调递增区间,由()2220f x x x a =-++>'在()0,∞+上有解求解.(2)由()0G x '=得1x =2x =,根据02a <<,易得10x <,213x <<,则()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G ,然后由()()143143G G a -=-+,分14403a -+<,14403a -+≥确定最小值进而求得a 即可 【详解】(1)∵()f x 在()0,∞+上存在单调递增区间, ∴()2220f x x x a =-++>'在()0,∞+上有解,即()max 0f x '>在()0,∞+上成立, 而()f x '的最大值为()112f a '=+, ∴120a +>, 解得:12a >-. (2)3211()()()2432G x f x g x x x ax =-=-+++, ∴()22G x x x a '=-++,由()0G x '=得:112x =,212x +=,则()G x 在()1,x -∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又∵当02a <<时,10x <,213x <<,∴()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G , 而()()143143G G a -=-+, 1︒当14403a -+<,即706a <<时,()113623G a =-=-,得136a =,此时,最大值点236x +=; 2︒ 当14403a -+≥,即726a ≤<时,()2511263G a =+=-,得94a =-(舍).综上()G x 在[]1,3 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得; (2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。

北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习

北师大版高中数学选修1-1导数的概念及其几何意义导数的概念同步练习

高中数学学习材料金戈铁骑整理制作导数的概念及其几何意义 导数的概念 同步练习 一,选择题:1.已知函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是( )A 、 2B 、 4C 、 2D 、 -22.一个物体的运动方程为21s t t =-+ 其中S 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )A 、 7米/秒B 、6米/秒C 、 5米/秒D 、 8米/秒 4.32()32f x ax x =++,若(1)4f '-=,则a 的值等于( )A .319B .316C .313D .310 5.如果()f x 为偶函数,且导数()f x 存在,则()0f '的值为 ( )A .2B .1C .0D .-16、根据导数的定义,)(1'x f 等于( ) A. 01010)()(lim1x x x f x f x --→ B.x x f x f x ∆-→∆)()(lim 010 C.x x f x x f x ∆-∆+→∆)()(lim 110 D.x x f x x f x ∆-∆+→)()(lim 1101 7、 物体作直线运动的方程为)(t s s =,则10)4('=s 表示的意义是( )(A )经过4s 后物体向前走了10m (B )物体在前4s 内的平均速度为10m/s(C )物体在第4s 内向前走了10m (D )物体在第4s 时的瞬时速度为10m/s8、某人拉动一个物体前进,他所做的功W (J )是时间t (s )的函数t t t t W W 166)(23+-==,则他在时刻s t 2=时的功率为( )(A )4s J / (B )16s J / (C )5s J / (D )8s J /9、一辆汽车从停止时开始加速行驶,并且在5秒内速度)/(s m v 与时间t (s )的关系近似表示为t t t f v 10)(2+-==,则汽车在时刻1=t 秒时的加速度为( )(A )9s m / (B )92/s m (C )82/s m (D )72/s m10、 若函数x x x f +-=2)(的图像上一点)2,1(--及邻近一点)2,1(y x ∆+-∆+-,则=∆∆xy ( ) (A )3 (B )2)(3x x ∆-∆ (C )2)(3x ∆- (D )x ∆-311、若函数)(x f 对于任意x ,有3'4)(x x f =,1)1(-=f ,则此函数为( )(A )1)(4+=x x f (B )2)(4-=x x f(C )1)(4-=x x f (D )2)(4+=x x f12、已知函数63)(23-+=x ax x f ,若4)1('=-f ,则实数a 的值为( )(A )319 (B )316 (C )313 (D )310 二,填空题: 13、一质点运动方程为2t s =,则质点在4=t 时的瞬时速度为 。

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

[原创]数学选修1-1《导数及其应用》单元测试卷(含答案).doc

高二数学选修1-1《导数及其应用》单元测试卷班级: 姓名: 座号: 成绩:一、选择题(共7个小题,每小题6分)1、一个物体的运动方程为21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是 ( )A .5米/秒B .6米/秒C .7米/秒D .8米/秒2、函数()3f x x x =+的单调递增区间是 ( )A .()0,+∞B .(),1-∞C .(),-∞+∞D .()1,+∞3、已知()3232f x ax x =++且()14f '-=,则实数a 的值等于 ( )A .193B .163C .133D .1034、函数()()22f x x π=的导数是 ( )A .()4f x x π'=B .()24f x x π'=C .()28f x x π'=D .()16f x x π'=5、“函数()00f x '=”是“可导函数()f x 在点0x x =处取到极值”的 条件。

( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要6、已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .47、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=,,()()1n n f x f x +'=,n ∈N ,则()2005f x = ( )A .sin xB .sin x -C .cos xD .cos x -二、填空题(共3个小题,每小题6分)8、曲线31y x x =++在点()1,3处的切线方程是 .9、已知直线10x y --=与抛物线2y ax =相切,则a = .10、三次函数()3f x ax x =+在(),-∞+∞内是增函数,则a 的取值范围是 .三、解答题(共2个小题,每题20分)11、已知函数()32f x x ax bx c =+++,当1x =-时,取得极大值7;当3x =时,取得极小值.试求a 、b 、c 的值及这个极小值.12、设函数3()3(0)f x x ax b a =-+>.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.高二数学选修1-1《导数及其应用》单元测试卷参考答案1-5 ACDCB 6-7 AC 8. 410x y --= 9. 1410. 0a > 11、解:()32f x x ax bx c =+++,∴()232f x x ax b '=++由题意知,1-和3是方程2320x ax b ++=的两个实数根 ∴2133133a b ⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,解得:39a b =-⎧⎨=-⎩()17f -=∴()()()()3211319157f c c -=--⨯--⨯-+=+=∴2c =∴极小值()32333393225f =-⨯-⨯+=-12、(Ⅰ)()'233f x x a =-,∵曲线()y f x =在点(2,())f x 处与直线8y =相切,∴()()()'203404,24.86828f a a b a b f ⎧=-=⎧=⎧⎪⎪⇒⇒⎨⎨⎨=-+==⎪⎩⎪⎩⎩(Ⅱ)∵3()3(0)f x x ax b a =-+>,由()'0f x x =⇒=当(,x ∈-∞时,()'0f x >,函数()f x 单调递增,当(x ∈时,()'0f x <,函数()f x 单调递减,当)x ∈+∞时,()'0f x >,函数()f x 单调递增,∴此时x =()f x 的极大值点,x =()f x 的极小值点.知识改变命运。

高中数学选修1-1《导数及其应用》测试题

高中数学选修1-1《导数及其应用》测试题
3、 3x y 2 0 4、 -1
5、 13, 4
6、 (-1,-4) ,( 1, 0) 7 、 0, 1 2
二、选择题 8、A 9、 D 10、 A 11、 B 12、 A
三、解答题
y x2
13、解::( 1)由
y
x2
,求得交点 A ( - 2 , 0), B ( 3,5)
;递减区间是
.
3、曲线 y= x3- 3x2+ 1 在点 (1, - 1) 处的切线方程为 ____________________.
7、函数 y x sin x, x 0, 的值域是 2
12.函数 y 2x sin x 的单调递增区间为(

A. ( , ) B . (0, ) C . (2k
三、解答题
1/4
高中数学选修 1-1 《导数及其应用》测试题
13(12 分)、已知抛物线 y =x2 - 4 与直线 y = x + 2,求: (1)两曲线的交点; ( 2)抛物线在交点处的切线方程
15.(14 分)已知 f ( x) ax 4 bx 2 c 的图象经过点 (0,1) ,且在 x 1 处的切线方程是 y x 2 ,请解
, 2k 2
)( k Z) D . (2k ,2k
2
1、已知函数 f (x) x3 bx2 cx d 的图象过点 P( 0, 2),且在点
M (- 1, f (- 1))处的切线方程为 6 x y 7 0 .
)( k Z )
(I) 求函数 y f (x) 的解析式;
(II) 求函数 y f ( x) 的单调区间.
求函数 f x 的单调区间;
3、已知 x 2 是函数 f ( x) (x2 ax 2a 3)ex 的一个极值点. 求实数 a 的值;

苏教版高中数学选修1-1导数的运算测试.docx

苏教版高中数学选修1-1导数的运算测试.docx

导数的运算测试一、选择题(每小题5分,共50分)1.下列结论正确的是 ( )A.若y=sinx ,则y ’=-cosxB. 若y= cosx ,则y ’=-sinxC. 若y=x 1 ,则y ’=-21xD. 若y=x ,则y ’=x 21 2.已知f(x)=x 3,则f ’(2)= ( )A.0B.3x 2C.8D.123.已知f(x)=x 3的切线的斜率等于1,则其切线方程有 ( )A.1个B.2个C.多于两个D.不能确定4.若对于任意x ,有f ’(x)= 4x 3 ,f(1)= -1,则此函数值为 ( )A. f(x)=x 4B. f(x)=x 4-2C. f(x)=x 4+1D. f(x)=x 4+25.曲线y=3x 上的一点P(0,0)的切线的方程为 ( )A.y=-xB.x=0C.y=0D. 不存在6.y=2x 3+3x +cosx ,则y ’= ( )A. 6x 2+x -2/3-sinxB. 2x 2+31x -2/3-sinxC. 6x 2+31x -2/3+sinxD. 6x 2+31x -2/3-sinx 7.f(x)= sin α-cosx ,则f ’(α)= ( )A. sin αB. cos αC. sin α+ cosx αD. 2sin α8.下列求导数运算正确的是 ( ) A.(x+x 1)’=1+21xB.(log 2x)’=2ln 1xC.(3n )’=3x log 3e )D.(x 2cosx)’=-2xsinx 9. 函数f(x)=x 3-3x 2+1是减函数的区间是 ( )A.[)+∞,2B.(]2,∞-C. (]0,∞-D.[0,2]10.y=sinx(cosx +1)的导数是 ( )A. cos2x -cosxB. cos2x+sinxC. cos2x +cosxD. cos2x -sinx二、填空题(每小题5分,共20分)11.质点运动方程是s=t 2(1+ sint),则当x=2π时,瞬时速度为____________。

苏教版高中数学选修1-1高二《导数》测试试卷(1)

苏教版高中数学选修1-1高二《导数》测试试卷(1)

高中数学学习材料(灿若寒星 精心整理制作)高二数学《导数》测试试卷(1)(时间45分钟)班级 姓名一、填空题:(每题5分,共40分)1、若函数12)(2-=x x f 的图象上一点(1,1)及邻近一点(1+△x,1+△y ),则xy ∆∆==_________________ 2、 曲线0x y e x ==在在处的切线方程为3、与直线2240x y y x --==平行且与曲线相切的直线方程为_____________4、物体的运动方程是321253s t t =-+-,则物体在t=3时的瞬时速度为5、求21()ln 2f x x x =-的单调增区间是__________________ 6、已知抛物线2y x bx c =++在点(1,2)处的切线方程为1y x =+,则b c ==,7、如果函数32()5(,)f x ax x x =-+--∞+∞在上单调递增,则a 的取值范围为8、曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 二、简答题:(共60分)9、求下列直线的方程:(本小题20分)(1)曲线123++=x x y 在P(-1,1)处的切线;(2)曲线2x y =过点P(3,5) 的切线。

10、求下列函数的最大值、最小值:(本小题20分)(1)3223125[0,3]y x x x x =--+∈,;[](2)sin ,0,2y x x x π=+∈11、已知32()(0)f x ax bx cx a =++≠,在1x =±时取得极值,且(1)1f =-。

(1)试求函数)(x f 的表达式;(2)试判断1±=x 是函数的极小值还是极大值,并说明理由。

(本小题20分)选做题:函数223)(a bx ax x x f +--=,在1=x 时有极值10,则a 、b 值为____________________。

高中数学 3.3 计算导数同步精练 北师大版高二选修1-1数学试题

高中数学 3.3 计算导数同步精练 北师大版高二选修1-1数学试题

高中数学 3.3 计算导数同步精练 北师大版选修1-11.若f (x )=(tan x )′+(cot x )′,则f ⎝ ⎛⎭⎪⎫π6等于( ) A.34 B.14C.163D .-832.下列给出的四个命题中,正确的命题是( )①若函数f (x )=x ,则f ′(0)=0;②若函数f (x )=2x 2+1的图像上的点(1,3)的邻近一点是(1+Δx,3+Δy ),则Δy Δx=4+2Δx ;③瞬时速度是动点位移函数s (t )对时间t 的导数;④曲线y =x 3在点(0,0)处没有切线.A .①② B.②③C.①②③ D.②③④3.下列结论正确的个数为( )①若y =ln 2,则y ′=12;②若f (x )=1x 2,则f ′(3)=-227;③若y =4x ,则y ′=4x ln 4;④若y =log 5x ,则y ′=1x ln 5. A .4 B .1C .2 D .34.若曲线y =1x在点P 处的切线的斜率为-4,则点P 的坐标是( ) A.⎝ ⎛⎭⎪⎫12,2B.⎝ ⎛⎭⎪⎫-12,-2或⎝ ⎛⎭⎪⎫12,2C.⎝ ⎛⎭⎪⎫-12,-2D.⎝ ⎛⎭⎪⎫12,-2 5.已知f (x )=x a,若f ′(-1)=-4,则a 的值等于( )A .4B .-4C .5D .-56.物体运动的图像(时间x ,位移y)如下图所示,则导函数的图像为( )7.若f (x )=sin x ,则f ′(2π)=__________.8.已知直线y =kx 是曲线y =ln x 的切线,则k =__________.9.将石块投入平静的水面,使它产生同心圆波纹,若最外一圈波纹半径R 以4 m/s 的波速增加,求在3 s 末被扰动的水面面积的增长率.10.已知两条曲线f (x )=sin x ,g (x )=cos x ,是否存在这两条曲线的一个公共点,使在这一点处的两条曲线的切线互相垂直?并说明理由.参考答案1. 解析:∵f (x )=(tan x )′+(cot x )′=1cos 2x -1sin 2x, ∴f ⎝ ⎛⎭⎪⎫π6=1cos 2π6-1sin 2π6=1⎝ ⎛⎭⎪⎫322-1⎝ ⎛⎭⎪⎫122=-83. 答案:D2. 解析:①中f ′(x )=(x 12)′=12x,当x =0时无意义; ④中y ′=(x 3)′=3x 2,f ′(0)=0,有切线.答案:B3. 解析:在①中,(ln 2)′=0,②③④都对.答案:D4. 答案:B5. 解析:由f (x )=x a ,可得f ′(x )=axa -1,∴f ′(-1)=a (-1)a -1=-4,∴a =4.答案:A6. 答案:D7. 解析:∵f (x )=sin x ,∴f ′(x )=cos x .∴f ′(2π)=cos 2π=1.答案:18. 解析:y ′=(ln x )′=1x ,则1x=k . ∴x =1k .∴y =k ×1k=1. ∴曲线y =ln x 过点⎝ ⎛⎭⎪⎫1k ,1,即1=ln 1k .∴k =1e . 答案:1e9. 解:设被扰动水面面积为S ,时间为t (t ≥0),∴S =πR 2=π(4t )2=16πt 2,∴S ′=(16πt 2)′=32πt ,∴当t =3时,水面面积的增长率为96π.10. 解:假设存在公共点P (x 0,y 0).所以两条曲线在P (x 0,y 0)处的斜率分别为 k 1=f ′(x 0)=cos x 0,k 2=g ′(x 0)=-sin x 0.因为两条曲线的切线互相垂直,所以cos x 0·()-sin x 0=-1,即-sin x 0·cos x 0=-1.所以sin 2x 0=2.因为sin 2x ∈[-1,1],所以假设不成立.故不存在这两条曲线的一个公共点,使在这一点处的两条曲线的切线互相垂直.。

人教新课标版数学高二选修1-1检测 3.2导数的计算

人教新课标版数学高二选修1-1检测 3.2导数的计算

一、选择题1.(2013·普宁高二检测)设函数f(x)=x ln x,若f′(x0)=2,则x0=() A.e2B.eC.ln 22D.ln 2【解析】∵f′(x)=ln x+1,∴f′(x0)=ln x0+1=2.∴ln x0=1,x0=e.【答案】 B2.(2013·广元高二检测)曲线y=x e x+2x+1在点(0,1)处的切线方程为() A.x+3y-3=0 B.3x-y+1=0C.3x+y-1=0 D.x-3y+3=0【解析】y′=e x+x e x+2,∴y′|x=0=3=k.∴曲线在点(0,1)处的切线方程为y-1=3x,即3x-y+1=0.【答案】 B3.设曲线y=ax2在(1,a)处的切线与直线2x-y-6=0平行,则a等于()A.1 B.1 2C.-12D.-1【解析】y′=2ax,∴在点(1,a)处切线的斜率k=y′|x=1=2a. 由题意可得2a=2,∴a=1.故选A.【答案】 A4.函数y=x1-cos x的导数是()A.1-cos x-sin x1-cos xB.1-cos x-x sin x(1-cos x)2C.1-cos x-sin x(1-cos x)2D.1-cos x+x sin x(1-cos x)2【解析】 y ′=x ′(1-cos x )-x (1-cos x )′(1-cos x )2=1-cos x -x sin x (1-cos x )2.【答案】 B5.设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]【解析】 f ′(x )=x 2sin θ+3x cos θ, ∴f ′(1)=sin θ+3cos θ=2sin(θ+π3), ∵θ∈[0,5π12],∴sin(θ+π3)∈[22,1], ∴f ′(1)∈[2,2]. 【答案】 D 二、填空题6.设函数f (x )=x 3-2x 2+x +5,则f ′(1)=________.【解析】 ∵f ′(x )=3x 2-4x +1,∴f ′(1)=3×12-4×1+1=0. 【答案】 07.(2013·张家港高二检测)设函数f (x )=(x -a )(x -b )(x -c ),(a ,b ,c 是两两不等的常数),则a f ′(a )+b f ′(b )+cf ′(c )=________. 【解析】 ∵f ′(x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a ),代入即得 a f ′(a )+b f ′(b )+c f ′(c )=a (a -b )(a -c )+b (b -c )(b -a )+c(c -a )(c -b ) =-a (b -c )-b (c -a )-c (a -b )(a -b )(b -c )(c -a )=-ab +ac -bc +ab -ac +bc(a -b )(b -c )(c -a )=0.【答案】 08.(2013·重庆高二检测)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.【解析】 ∵f ′(1)=n +1,∴y =x n +1在点(1,1)处的切线方程为y =(n +1)(x -1)+1.令y =0,得x n =nn +1, ∴a n =lg n -lg(n +1),∴a 1+a 2+…+a 99=lg 1-lg 100=-2. 【答案】 -2 三、解答题9.求下列函数的导数. (1)y =x -sin x 2·cos x2; (2)y =1x·cos x . 【解】 (1)∵y =x -sin x 2·cos x 2=x -12sin x , ∴y ′=1-12cos x .(2)y ′=⎝ ⎛⎭⎪⎫1x ·cos x ′=⎝ ⎛⎭⎪⎫1x ′cos x +1x(cos x )′=-cos x 2x 3-1x sin x =-cos x +2x sin x 2x x . 10.已知函数f (x )=a ln x x +1+bx,曲线y =f (x )在点(1,f (1))处的切线方程为x +2y -3=0,求a ,b 的值.【解】 (1)f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x(x +1)2-bx 2.由于直线x +2y -3=0的斜率为-12,且过点(1,1),故⎩⎪⎨⎪⎧f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得⎩⎨⎧a =1,b =1.所以a =1,b =1.11.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)求证曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.【解】 (1)7x -4y -12=0可化为y =74x -3. 当x =2时,y =12.又f ′(x )=a +bx 2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)【证明】 设点P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2可知曲线y =f (x )在点P (x 0,y 0)处的切线方程为y -y 0=(1+3x 20)(x -x 0),即y -(x 0-3x 0)=(1+3x 20)(x-x 0).令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为(0,-6x 0).令y=x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12·⎪⎪⎪⎪⎪⎪-6x 0·|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 围成的三角形的面积为定值,此定值为6.。

(好题)高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(1)

(好题)高中数学选修1-1第四章《导数应用》测试卷(有答案解析)(1)

一、选择题1.已知函数32()22sin 524x f x x x π⎛⎫=++++ ⎪⎝⎭,且()22(34)12f t t f t -+-+<,则实数t 的取值范围是( ) A .(1,4) B .(,1)(4,)-∞⋃+∞ C .(4,1)-D .(,4)(1,)-∞-+∞2.函数()ln f x x x =-与()ln x g x xe x x =--的最小值分别为,a b ,则 ( ) A .a b = B .a b >C .a b <D .,a b 的大小不能确定3.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞4.若函数11()ln x x f x x x e e m --+=-+++有零点,则实数m 的取值范围是( ) A .(,3]-∞-B .(,1]-∞-C .[1,)-+∞D .[3,)+∞5.在数学的研究性学习中,常利用函数的图象研究函数的性质,也利用函数的解析式研究函数的性质,下列函数的解析式(其中 2.71828e =⋅⋅⋅为自然对数的底数)与所给图象最契合的是( )A .22sin 1xy x =+B .221xy x =+C .x x x x e e y e e ---=+D .x xx xe e y e e --+=-6.已知函数()sin f x x x =+,若存在[0,]x π∈使不等式(sin )(cos )f x x f m x ≤-成立,则整数m 的最小值为( )A .1-B .0C .1D .27.设函数()f x 为偶函数,且当0x ≥时,()cos x f x e x =-,则不等式(21)(2)0f x f x --->的解集为( )A .(1,1)-B .(,3)-∞-C .(3,)-+∞D .(1,)(,1)+∞⋃-∞-8.某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812863y x x =-+-,则该生产厂家获取的最大年利润为( )A .300万元B .252万元C .200万元D .128万元9.函数()f x 是定义在区间()0,∞+上的可导函数,其导函数()f x ',且满足()()20xf x f x '+>,则不等式()()()202020202222020x f x f x ++<+的解集为( )A .{}2018x x <-B .{}20202018x x -<<-C .{}2018x x >-D .{}20200x x -<<10.函数3()3f x x x =-在[0,]m 上最大值为2,最小值为0,则实数m 取值范围为( )A .[1B .[1,)+∞C .(1D .(1,)+∞11.若函数()xx f x ax e e -=+-在R 上单调递减,则实数a 的取值范围为( )A .2a ≤B .1a ≤C .1a ≥D .2a ≥12.已知函数()()()22ln 0f x a e x x a =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( )A .eB .1e 2- C .1 D .2e e - 二、填空题13.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.14.若函数()231xf x e x mx =+-+在(],3-∞上单调递减,则实数m 的取值范围为______.15.已知定义在R 上的函数()f x 关于y 轴对称,其导函数为()f x '. 当0x ≥时,()()1xf x f x '>-. 若对任意x ∈R ,不等式()()0x x x e f e e ax axf ax -+->恒成立,则正整数a 的最大值为_____. 16.已知函数()3x f x e -=,()1ln 22xg x =+,若()()f m g n =成立,则n m -的最小值为______.17.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.18.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________19.若函数()()20xf x ae xa =-≠仅有1个零点,则实数a 的取值范围是______.20.已知函数22(0)()4(0)x e x f x x x ⎧>=⎨+≤⎩,若x R ∀∈,()f x mx ≥,则实数m 的取值范围是________. 三、解答题21.已知函数()2ln 2f x x x =-,函数()212g x x a x=--+. (1)求函数()f x 的单调区间;(2)若对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立,求实数a 的取值范围. 22.函数()xg x xe =,()22a h x x ax =+,()()()f x g x h x =- (1)求函数()g x 在0x =处切线方程; (2)讨论函数()f x 的单调性.23.“既要金山银山,又要绿水青山”.滨江风景区在一个直径AB 为100米的半圆形花园中设计一条观光线路(如图所示).在点A 与圆弧上的一点C (不同于A ,B 两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点C 到点B 设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设BAC θ∠= (弧度),将绿化带总长度表示为θ的函数()S θ;(2)试确定θ的值,使得绿化带总长度最大.(弧度公式:l r α=⋅,其中α为弧所对的圆心角)24.设函数(),02alnxf x x a =->. (1)求()f x 的单调区间;(2)求证:当1,ax e ∈⎡⎤⎣⎦时,()22aaf x e ≤-25.已知函数1()(0,1)xx f x a a a a=->≠.(I )若1a >,不等式()2(4)0f x bx f x ++->在x ∈R 上恒成立,求实数b 的取值范围; (II )若3(1)2f =且221()2()xx h x a mf x a=+-在[1,)+∞上的最小值为2-,求m 的值. 26.已知函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,其中e 2.71828=是自然对数的底数.(1)求实数a 的取值范围; (2)求证:(i )11x a-<;(ii )212x x ->.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先利用二倍角公式和诱导公式化简函数,构造()()6g x f x =-为R 上单调递增的奇函数,再转化不等式为()22(34)g t t g t -<-,利用单调性解不等式即得结果. 【详解】解:33()26cos 2sin 62f x x x x x x x π⎛⎫=++-+=+++⎪⎝⎭令3()()62sin g x f x x x x =-=++,则2()32cos 0g x x x '=++>,()()g x g x -=-, 故()g x 在R 上单调递增,且()g x 为奇函数.不等式()22(34)12f t t f t -+-+<,即()226(34)60f t t f t --+-+-<, 即()22(34)0g t t g t -+-+<,则()22(34)g t t g t -<- 故2234t t t -<-,即2540t t -+<,所以14t <<. 故选:A. 【点睛】 方法点睛:利用函数奇偶性和单调性解不等式问题:(1)()f x 是奇函数,图像关于原点中心对称,利用奇函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可;(2)()f x 是偶函数,图像关于y 轴对称,利用偶函数性质将不等式()()12f g x f g x ⎡⎤⎡⎤<⎣⎦⎣⎦形式,再利用单调性得到()1g x 和()2g x 的大小关系,再解不等式即可.2.A解析:A 【分析】根据函数的单调性分别求出函数()f x ,()g x 的最小值,比较a ,b 即可. 【详解】()f x 的定义域是()0,∞+,11()1x f x x x'-=-=, 令()0f x '<,解得:01x <<,令()0f x '>,解得:1x >,()f x 在(0,1)递减,在(1,)+∞递增, ()f x 的最小值是()1f 1=,故1a =,()x g x xe lnx x =--,定义域(0,)+∞,()()()11111x xx g x x e xe x x+=+--=-',令()1xh x xe =-,则()()10xh x x e '=+>,(0,)x ∈+∞则可得()h x 在(0,)+∞上单调递增,且()010h =-<,()110h e =->, 故存在0(0,1)x ∈使得()0h x =即001x x e=,即000x lnx +=,当0(0,)x x ∈时,()0h x <,()0g x '<,函数()g x 单调递减,当()0x x ∈+∞,时,()0g x '>,函数()g x 单调递增, 故当0x x =时,函数取得最小值0000000()11xg x x e lnx x lnx x =--=--=,即1b =,所以a b = 故选:A . 【点睛】关键点睛:题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,解答本题的关键是由()()()11111xx x g x x e xe x x+=+--=-',得出当0(0,)x x ∈时,函数()g x 单调递减,当()0x x ∈+∞,时,函数()g x 单调递增,根据000x lnx +=,求出最小值,属于中档题.3.B解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.4.A解析:A 【分析】设11()ln e e x x g x x x --+=-++,则函数11()ln x x f x x x e e m --+=-+++有零点转化为函数()g x 的图象与直线y m =-有交点,利用导数判断函数()g x 的单调性,即可求出.【详解】设11()ln e e x x g x x x --+=-++,定义域为()0,∞+,则111()1e e x x g x x--+'=-+-,易知()'g x 为单调递增函数,且(1)0,g '= 所以当(0,1)x ∈时,()0g x '<,()g x 递减; 当(1,)x ∈+∞时, ()0g x '>, ()g x 递增,所以 ()(1)3,g x g ≥= 所以3m -≥,即3m ≤-.故选:A . 【点睛】本题主要考查根据函数有零点求参数的取值范围,意在考查学生的转化能力,属于基础题.5.B解析:B 【分析】分析合选项中函数值符号、单调性、奇偶性,并与题中的函数图象作比较,由此可得出合适的选项. 【详解】对于A 选项,当2x ππ<<时,22sin 01xy x =<+,与题中函数图象不符; 对于B 选项,设()221xf x x =+,该函数的定义域为R , ()()()222211xxf x f x x x --==-=-+-+,函数()221x f x x =+为奇函数, 当0x >时,()2201xf x x =>+,()()()()()22222222142111x x x f x xx+--'==++,由()0f x '>,可得11x -<<;由()0f x '<,可得1x <-或1x >.所以,函数()f x 的单调递减区间为(),1-∞-、()1,+∞,单调递增区间为()1,1-, 与题中函数图象相符;对于C 选项,()()()2222212121111x x x xx x x x x x x x x x x e e e e e e e y e e e e e e e e -----+---=+====-++++,所以,函数x xx xe e y e e ---=+为R 上的增函数,与题中函数图象不符;对于D 选项,对于函数x xx xe e y e e--+=-,0x x e e --≠,可得0x ≠,该函数的定义域为{}0x x ≠,与题中函数图象不符. 故选:B. 【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象.6.A解析:A 【分析】先对()f x 求导可得()1cos 0f x x '=+≥,()f x 单调递增,原不等式可化为存在[0,]x π∈ 使得sin cos x x m x ≤-有解,即sin cos m x x x ≥+对于[0,]x π∈有解,只需()min m g x ≥,利用导数判断()g x 的单调性求最小值即可. 【详解】由()sin f x x x =+可得()1cos 0f x x '=+≥, 所以()sin f x x x =+在[0,]x π∈单调递增,所以不等式(sin )(cos )f x x f m x ≤-成立等价于sin cos x x m x ≤-, 所以sin cos m x x x ≥+对于[0,]x π∈有解, 令()sin cos g x x x x =+,只需()min m g x ≥, 则()sin cos sin cos g x x x x x x x '=+-=, 当02x π≤≤时,()cos 0g x x x '=≥,()g x 在0,2π⎡⎤⎢⎥⎣⎦单调递增, 当2x ππ<≤时,()cos 0g x x x '=<,()g x 在,2ππ⎡⎤⎢⎥⎣⎦单调递减,()0cos01g ==,()sin cos 1g ππππ=+=-,所以()()min 1g x g π==-, 所以1m ≥-, 整数m 的最小值为1-, 故选:A. 【点睛】方法点睛:若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()max g x λ≤或()()min g x x D λ≥∈,求()g x 的最值即可.7.D解析:D【分析】利用导数判断函数在[)0,+∞的单调性,然后根据奇偶性判断()f x 在(],0-∞的单调性,再利用单调性与奇偶性结合求解不等式. 【详解】当0x ≥时,()cos x f x e x =-,所以()sin xf x e x '=+,因为0x ≥,所以1x e ≥,即()1sin 0f x x '≥+≥,所以函数()f x 在[)0,+∞上单调递增,又因为函数()f x 为R 上的偶函数,所以函数()f x 在(],0-∞上单调递减,在[)0,+∞上单调递增,则不等式(21)(2)0f x f x --->,等价于212x x ->-,所以1x <-或1x >.故选:D. 【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f ”,转化为解不等式(组)的问题,若()f x 为偶函数,则()()()f x f x f x -==. 8.C解析:C 【分析】求得函数的导数,得到函数的单调性,进而求解函数的最大值,即可得到答案. 【详解】由题意,函数31812863y x x =-+-,所以281y x '=-+,当09x <<时,0y '>,函数()f x 为单调递增函数; 当9x >时,0y '<,函数()f x 为单调递减函数,所以当9x =时,y 有最大值,此时最大值为200万元,故选C. 【点睛】本题主要考查了利用导数研究函数的单调性与最值问题,其中解答中熟记函数的导数在函数中的应用,准确判定函数的单调性是解答的关键,着重考查了推理与计算能力,属于基础题.9.B解析:B 【分析】构造新函数()()2g x x f x =,求导后可证明()g x 在()0,∞+上单调递增,而不等式()()()202020202222020x f x f x ++<+可等价于()()20202+<g x g ,故2020020202x x +>⎧⎨+<⎩,解之即可. 【详解】令()()2g x x f x =,则()()()()()222g x xf x x f x x f x xf x ⎡⎤=+='+'⎣'⎦, ∵定义域为()0,∞+,且()()20xf x f x '+>,()0g x '∴>,()g x 在()0,∞+上单调递增,不等式()()()202020202222020x f x f x ++<+等价于()()20202+<g x g ,2020020202x x +>⎧∴⎨+<⎩, 解得20202018-<<-x 故选:B 【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.10.A解析:A 【分析】求导得()3(1)(1)f x x x =+-',从而知函数()f x 的单调性,再结合(0)0f =,f (1)2=,即可得解 【详解】.3()3f x x x =-,2()333(1)(1)f x x x x ∴=-=+-',令()0f x '=,则1x =或1-(舍负),当01x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减. 函数()f x 在[0,]m 上最大值为2,最小值为0,且(0)(3)0f f ==,f (1)2=,13m ∴≤≤故选:A. 【点睛】本题考查利用导数研究函数的最值问题,理解原函数的单调性与导函数的正负性之间的联系是解题的关键,考查学生的逻辑推理能力和运算能力,属于基础题.11.A解析:A【分析】由()x x f x ax ee -=+-在R 上单调递减,可得:导函数()0x xf x a e e -'=--≤在R 上恒成立,参变分离后,求最值即可的解. 【详解】由()x x f x ax e e -=+-在R 上单调递减,可得:导函数()0x x f x a e e -'=--≤在R 上恒成立,因为0x e >,参变分离可得:min (+)x x a e e -≤,+2x x e e -≥=2a ≤故选:A【点睛】本题考查了利用函数单调性求参数范围,考查了恒成立思想和基本不等式的应用,属于中档题.12.D解析:D【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a .【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >, 所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦, 因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-, 所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭, 解得2e a e =-, 故选:D .【点睛】本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单解析:(,]e -∞【分析】 首先求函数的导数2(1)()()x x e kx f x x '--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值.【详解】 ∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x '---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-, 当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞,∴()h x 在x =1处,取得极小值,∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解, 设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞,∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<, 综上k e ≤故答案为:(,]e -∞.【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.14.【分析】根据函数在上单调递减由恒成立求解【详解】因为函数在上单调递减所以恒成立;令在上单调递增所以实数的取值范围为故答案为:【点睛】方法点睛:恒成立问题的解法:(1)若在区间D 上有最值则;;(2)若解析:)336,e ⎡++∞⎣【分析】根据函数()231x f x e x mx =+-+在(],3-∞上单调递减,由()0f x '≤,(],3x ∈-∞恒成立求解.【详解】()320x f x e x m '=+-≤,因为函数()231x f x e x mx =+-+在(],3-∞上单调递减, 所以32x e x m +≤,(],3x ∈-∞恒成立;令32x y e x =+在(],3-∞上单调递增,3max 36y e =+,所以实数m 的取值范围为)336,e ⎡++∞⎣.故答案为:)336,e ⎡++∞⎣【点睛】方法点睛:恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.15.2【分析】令利用可得在单调递增不等式恒成立等价于即当时分离参数可得可求出正整数的最大值为2再检验当时对于不等式恒成立即可求解【详解】因为定义在上的函数关于轴对称所以函数为上的偶函数令则因为当时即所以 解析:2【分析】令()()g x xf x x =-,利用()()1xf x f x '>-可得()g x 在[)0,+∞单调递增,不等式()()0x x x e f e e ax axf ax -+->恒成立等价于()()x g e g ax >,即e x ax >,当0x >时,分离参数可得()xe a h x x<=,可求出正整数a 的最大值为2,再检验当2a =时,对于0x <,不等式恒成立,即可求解.【详解】因为定义在R 上的函数()f x 关于y 轴对称,所以函数()f x 为R 上的偶函数,令()()g x xf x x =-,则()()()1g x f x xf x ''=+-,因为当0x ≥时,()()1xf x f x '>-,即()()()10g x f x xf x ''=+->,所以()g x 在[)0,+∞单调递增,不等式()()0x x x e f ee ax axf ax -+->恒成立, 即()()x x x e f e e axf ax ax ->-,即()()xg e g ax >,所以e x ax >,当0x >时,()xe a h x x <=,则()()21x e x h x x -'=, 可得()h x 在()0,1单调递减,在()1,+∞单调递增,所以()()min 1h x h e ==,所以a e <,此时最大的正整数a 为2,2a =对于0x <时,e x ax >恒成立,综上所述:正整数a 的最大值为2,故答案为:2【点睛】关键点点睛:本题的关键点是构造函数()()g x xf x x =-,利用导数判断出()g x 在[)0,+∞单调递增,不等式恒成立即()()x g e g ax >,利用单调性可得e x ax >,再分类参数求最值.16.【分析】根据得到mn 的关系利用消元法转化为关于t 的函数构造函数求函数的导数利用导数研究函数的最值即可得到结论【详解】解:不妨设∴()∴即故()令()所以在上是增函数且当时当时即当时取得极小值同时也是解析:ln21-【分析】根据()()f m g n t ==得到m ,n 的关系,利用消元法转化为关于t 的函数,构造函数,求函数的导数,利用导数研究函数的最值即可得到结论.【详解】解:不妨设()()f m g n t ==, ∴31ln 22m n e t -=+=,(0t >) ∴3ln m t -=,即3ln m t =+,122t n e -=⋅,故1223ln t n m e t --=⋅--(0t >),令()1223ln t h t e t -=⋅--(0t >),()1212t h t e t-'=⋅-,()1221''20t h t e t -=⋅+> 所以()h t '在()0,∞+上是增函数,且102h ⎛⎫'=⎪⎝⎭, 当12t >时,()0h t '>, 当102t <<时,()0h t '<, 即当12t =时,()h t 取得极小值同时也是最小值, 此时1123ln ln 2122h ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭,即n m -的最小值为ln21-, 故答案为:ln21-.【点睛】本题考查利用导数求函数的最小值,考查化归转化思想与运算能力,是中档题.17.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<,所以当2x <时()0f x '>,()f x 单调递增,当2x >时()0f x '<,()f x 单调递减,又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <,当x 与()f x 同号时,()0xf x >,所以()0xf x >的解集为:()(),01,3-∞⋃,故答案为:()(),01,3-∞⋃【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.18.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单 解析:12x x ⎧⎫≥⎨⎬⎩⎭ 【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()x g x f x e =,则()()xg x f x e --=-, 因为2()()0x f x e f x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x x g x f x e f x e f x f x e '''=+=+,当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减; 则()g x 在()0,∞+上单调递增;又不等式21()(1)x f x e f x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-, 所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.19.(或)【分析】令分离常数构造函数利用导数研究的单调性和极值结合与有一个交点求得的取值范围【详解】解:方程可化为令有当时;当或时所以函数的增区间为减区间为可得处取得极小值0处取得极大值画出的图象和直线 解析:24a e >(或24(,)e+∞) 【分析】 令()0f x = 分离常数2x x a e=,构造函数2()x x g x e =,利用导数研究()g x 的单调性和极值,结合y a = 与()g x 有一个交点,求得a 的取值范围.【详解】解:方程()0f x = 可化为2x x a e=,令2()x x g x e =,有 (2)()xx x g x e -'=, 当02x <<时,()0g x '>;当0x <或2x >时,()0g x '<,所以函数()g x 的增区间为(0,2),减区间为(,0)-∞,(2,)+∞,可得0x = 处()g x 取得极小值 0,2x = 处取得极大值24e, 画出()y g x = 的图象和直线y a =,可得当24a e>时,()y g x = 和y a = 的图象有 1 个交点. 故答案为:24,e ⎛⎫+∞⎪⎝⎭. 【点睛】 本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.20.【分析】由函数的解析式分类讨论利用分离参数结合导数和基本不等式即可求解【详解】由题意函数(1)当时由可得即设可得当时单调递减;当时单调递增所以即;(2)当时由可得当时显然成立;当时可得因为当且仅当时 解析:[4,2]e -【分析】由函数的解析式,分类讨论,利用分离参数,结合导数和基本不等式,即可求解.【详解】由题意,函数22,0,()4,0,x e x f x x x ⎧>=⎨+≤⎩, (1)当0x >时,由()f x mx ≥,可得2xe mx ≥,即2xe m x ≤, 设2()x e g x x =,可得22(21)()x e x g x x -'=, 当102x <<时,()0g x '<,()g x 单调递减;当12x >时,()0g x '>,()g x 单调递增, 所以min 1()22g x g e ⎛⎫==⎪⎝⎭,即2m e ≤; (2)当0x ≤时,由()f x mx ≥,可得24x mx +≥,当0x =时显然成立;当0x <时,可得4m x x ≥+,因为444x x x x ⎛⎫+=--+≤- ⎪-⎝⎭,当且仅当1x =-时取等号,所以4m ≥-.综上可得,实数m 的取值范围是[4,2]e -,故答案为:[4,2]e -.【点睛】本题主要考查了函数的恒成立问题的求解,以及分段函数的性质的应用,其中解答中根据分段函数的分段条件,合理分类讨论,利用分离参数,结合导数和基本不等式求解是解答的关键,着重考查了转化思想,分类讨论思想,以及推理与运算能力.三、解答题21.(1)单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞⎪⎝⎭;(2)(],1-∞. 【分析】(1)求导,判断导函数正负,进而判断函数单调区间;(2)()()f x g x ≥恒成立,可转化为不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,设()1ln h x x x=+,求导,判断单调性并求得最小值,()min a h x ≤. 【详解】 (1)函数()2ln 2f x x x =-的定义域为0,,则()()()21212114'4x x x f x x x x x-+-=-==, 由题意120x +>,得 当10,2⎛⎫∈ ⎪⎝⎭x 时,()()'0,f x f x >递增, 当1,2⎛⎫∈+∞ ⎪⎝⎭x 时,令()()'0,f x f x <递减, 所以()f x 的单调递增区间是10,2⎛⎫ ⎪⎝⎭,单调递减区间是1,2⎛⎫+∞ ⎪⎝⎭; (2)对任意1,2x ⎡⎫∈+∞⎪⎢⎣⎭,函数()()f x g x ≥恒成立, 即不等式1ln a x x ≤+对于1,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立, 令()1ln h x x x =+, 则()22111'x h x x x x-=-=, 当1,12x ⎡⎫∈⎪⎢⎣⎭时,()'0h x <,函数()h x 单调递减,当时()1,∈+∞x ,()'0h x >,函数()h x 单调递增,所以当1x =时,()h x 有最小值()1ln111h =+=,从而a 的取值范围是(],1-∞.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22.(1)y x =;(2)答案见解析.【分析】(1)求出()g x '、()0k g '=,再求出切点坐标可得答案;(2)求出()f x ',讨论0a ≤、0a >的范围,利用导数可得函数的单调性,注意0a >时,再分ln 1a =-、ln 1a <-、ln 1a >-讨论函数()f x 的单调性.【详解】(1)()()1x x xg x e xe x e '=+=+,()00g =. ()01k g '==,直线方程为y x =.(2)()()()()11x x x f x e xe a x x e a '=+-+=+-, 当0a ≤时,0x e a ->,由()0f x '>得1x >-,由()0f x '<得1x <-,即函数()f x 在()1,-+∞上递增,函数()f x 在(),1-∞-上递减;当0a >时,令()0f x '=得1x =-或ln x a =.①当ln 1a =-,即1a e -=时,在R 上()0f x '>,从而函数()f x 在R 上递增; ②当ln 1a <-,即10a e 时,由()0f x '>得1x >-或ln x a <,由()0f x '<得ln 1a x <<-,函数()f x 在()1,-+∞和(),ln a -∞上递增;函数()f x 在()ln ,1a -上递减; ③当ln 1a >-,即1a e ->时,由()0f x '>得ln x a >或1x <-时,由()0f x '<得1ln x a -<<,函数()f x 在()1,ln a -上递减,函数()f x 在()ln ,a +∞和(),1-∞-上递增; 综上,当0a ≤时,()f x 递增区间是()1,-+∞上,递减区间是(),1-∞-上;当10a e 时,()f x 递增区间是(),ln a -∞,()1,-+∞,递减区间是()ln ,1a -; 当1a e -=时,()f x 递增区间为(,)-∞+∞;当1a e ->时,()f x 递增区间是(),1-∞-,()ln ,a +∞,递减区间是()1,ln a -.【点睛】本题考查了导数的几何意义、函数的单调性,对参数进行分类讨论是解题的关键,考查学生分类讨论思想、分析问题解决问题的能力.23.(1)()200cos 100,0,2S πθθθθ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭;(2)6πθ=. 【分析】(1)在直角三角形ABC 中,求出AC ,在扇形COB 中利用弧长公式求出弧BC 的长度,则可得函数()S θ;(2)利用导数可求得结果.【详解】(1)如图,连接,BC OC ,在直角三角形ABC 中,100,,AB BAC θ=∠=所以100cos ,AC θ=由于22,BOC BAC θ∠=∠= 则弧BC 的长为250100,l r αθθ=⋅=⋅=()22100cos 100200cos 100,0,2S AC l πθθθθθθ⎛⎫⎛⎫∴=+=⨯+=+∈ ⎪ ⎪⎝⎭⎝⎭(2)由(1)可知()200sin 100S θθ'=-+, 令()0,S θ'= 得1sin 2θ=,因为(0,)2πθ∈所以6πθ=,当0,,()0,()6S S πθθθ'⎛⎫∈> ⎪⎝⎭单调递增,当,,()0,()62S S ππθθθ'⎛⎫∈< ⎪⎝⎭单调递减,所以当6πθ=时,使得绿化带总长度()S θ最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键. 24.(1)单调递增区间为,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭;(2)证明见解析.【分析】(1)对()f x 求导,分别由()'0f x >和()'0f x <可求得单调递增和单调递减区间; (2)由题意只需证明()2max2aa f x e ≤-即可,讨论当12a ≤,即02a <≤,()f x 在1,a e ⎡⎤⎣⎦上单调递增,()()max a f x f e =;当2a >时先证明12aa e a >>>,可得()()max a f x f e =或()()max 11f x f ==,比较即可求证.【详解】(1)由题意得:()1,02af x x x'=->, 由()'0f x >,得2a x >, 由()'0f x <,得02a x <<,所以()f x 的单调递增区间为,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为0,2a ⎛⎫ ⎪⎝⎭.(2)若12a ≤,即02a <≤,由(1)知()f x 在1,a e ⎡⎤⎣⎦上单调递增, 所以()()22max 22aaaa a f x f e e e ==-≤-成立;若12a>,即2a >,设()a g a e a =-, 则当2a >时,()'10ag a e =->, 所以()()2220g a g e >=->,所以2aa e a >>,从而1,2aa e ∈⎡⎤⎣⎦. 结合(1)可知,()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,2aae ⎛⎤⎥⎝⎦上单调递增,下面比较()22aaa f e e =-和()11f =的大小,设()22aa h a e =-,当2a >时,()'0,ah a e a =->所以()()2221h a h e >=->,即()()1af ef >,而()()2max2aaa f x f e e ==-,所以当1,ax e ∈⎡⎤⎣⎦时,()22aaf x e ≤-综上所述:当1,ax e ∈⎡⎤⎣⎦时,()22aaf x e ≤-.【点睛】方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性. 25.(I )()3,5-;(II )2m = 【分析】(Ⅰ)判断出()1xx f x a a=-是R 上的单调递增和()f x 为定义域为R 的奇函数,进而转化为()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而可求解(Ⅱ)利用()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222xx x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122xxu f x ==-,则()222g u u mu =-+,进而利用导数求最值即可求出m 的值 【详解】解:(Ⅰ) ()1(0,1)xx f x a a a a =->≠,因为()10f >,所以10a a->,又0a >且1a ≠,所以1a >,所以,()1x xf x a a =-是R 上的单调递增, 又()f x 是定义域为R 的函数,满足()()f x f x -=-,所以,()f x 为定义域为R 的奇函数,所以,()()()()2224044f x bx f x f x bx f x x bx x ++->⇒+>-⇔+>-即240x bx x +-+>在x ∈R 上恒成立, 所以()21160b ∆=--<,即35b -<<, 所以实数b 的取值范围为()3,5-. (Ⅱ)因为()312f =,所以132a a -=,解得2a =或12a =-(舍去), 所以()222111122222222222x x x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 令()122xx u f x ==-,则()222g u u mu =-+, 因为()122xx f x =-在R上为增函数,且1≥x ,所以()312u f ≥=, 因为()()221222xx h x mf x =+-在[)1,+∞上的最小值为2-, 所以()222g u u mu =-+在3,2⎡⎫+∞⎪⎢⎣⎭上的最小值为2-,因为()()222222g u u mu u m m =-+=-+-的对称轴为u m = 所以当32m ≥时, ()()2min 22g u g m m ==-=-,解得2m =或2m =-(舍去), 当32m <时, ()min 3173224g u g m ⎛⎫==-=- ⎪⎝⎭,解得253122m =>, 综上可知:2m = 【点睛】关键点睛:解题关键:(Ⅰ)利用函数的奇偶性和单调性得到()()()()22404f x bx f x f x bx f x ++->⇒+>-,进而转化求解即可;(Ⅱ)求出a ,构造函数()222111122222222222xx x x x x x x h x m m ⎛⎫⎛⎫⎛⎫=+--=---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后令()122xxu f x ==-,构造出()222g u u mu =-+,进而求解 26.(1)10,a e ⎛⎫∈ ⎪⎝⎭;(2)(i )证明见解析;(ii )证明见解析. 【分析】(1)函数()ln f x x ax =-有两个不同的零点,等价于ln xa x=在(0,)+∞上有两个不同的实根,记ln ()xg x x=,对函数求导判断单调性,可得实数a 的取值范围; (2)(i )将()1212,x x x x <代入方程并参变分离,利用分析法可知,需证明111ln 20x x x e -+>,构造()ln 2,(1,)h x x x x e x e =-+∈,求导判断单调性与最值即可证明不等式成立; (ii )设()()()21ln 11x x x x x ϕ-=->+,对函数求导判断单调性可得:()()21ln 011x x x x ->>>+,由1122ln ln x ax x ax =⎧⎨=⎩,两式作差可得2121ln x x a x x =-,利用证得的不等式进行放缩,可得不等式成立. 【详解】(1)函数()ln f x x ax =-有两个不同的零点()1212,x x x x <,变量分离得ln x a x=在(0,)+∞上有两个不同的实根,记ln ()xg x x =,则21ln ()x g x x -'=当(0,)x e ∈时,()0,()'>g x g x 单调递增; 当(,)x e ∈+∞时,()0,()g x g x '<单调递减. 且0x →时,()g x →-∞;x →+∞时,()0g x → 故10,a e ⎛⎫∈ ⎪⎝⎭.(2)(i )因为12,x x 是ln x ax =的两根,由(1)可知121x e x <<<,且1122ln ln x ax x ax =⎧⎨=⎩(只涉及变量1x ,故只用11ln x ax =),所以11ln x a x =要证21111111120ln 20x ax ax x e x x x e <⇔->⇔-+>⇔-+> 构造函数()ln 2,(1,)h x x x x e x e =-+∈,则()ln 10h x x '=-<,()h x 在()1,e 上递减 所以()()0>=h x h e ,原不等式成立. (ii )解析1:放缩设()()()21ln 11x x x x x ϕ-=->+,则()()()()222114011x x x x x x ϕ-'=-=>++恒成立, ()x ϕ∴在()1,+∞单调递增,()()10x ϕϕ>=,即()()21ln 011x x x x ->>>+ 由1122ln ln x ax x ax =⎧⎨=⎩,可得221211221212112121lnln ln 121x x x x x x a x x x x x x x x x x ⎛⎫- ⎪-⎝⎭==>⋅=---++,从而212x x a >-,则21112x x x a a->->,要证明:212x x ->,只需证a>11ae a⇔>⇔<,证毕! 解析2:对数平均不等式 由对数平均不等式2112211ln ln 2x x x x a x x -+=<-,所以122x x a+>,由(i)可知1x <,所以212x x a >->,从而21x x -=,即212x x -=,只需> 下同解法1. 【点睛】方法点睛:本题考查导数研究函数的单调性与零点问题,考查导数证明不等式,设函数()y f x =在[],a b 上连续,在(),a b 上可导,则:1.若()0f x '>,则()y f x =在[],a b 上单调递增;2.若()0f x '<,则()y f x =在[],a b 上单调递减.。

人教新课标版数学高二数学选修1-1练习3-2导数的计算

人教新课标版数学高二数学选修1-1练习3-2导数的计算

技能演练1.已知f (x )=e xcos x ,则f ′(π2)的值为( )A .e πB .-e πC .-e π2 D .以上均不对 答案 C2.函数f (x )=sin xx 的导数是( ) A.x sin x +cos x x 2 B.x cos x +sin xx 2 C.x sin x -cos x x 2 D.x cos x -sin x x 2答案 D3.曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( ) A .y =-x +2 B .y =5x -4 C .y =-5x +6D .y =x -1 解析 y ′=3x 2-8x ,∴y ′|x =1=-5. ∴切线方程为y -1=-5(x -1),∴y =-5x +6. 答案 C4.已知点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则α的取值范围是( )A .[0,π2]B .[π2,3π4]C .[3π4,π]D .[0,π2)∪[3π4,π)解析 ∵y ′=3x 2-1≥-1.∴tan α=3x 2-1≥-1,∴α∈[0,π2)∪[3π4,π). 答案 D5.抛物线y =x 2上的点到直线x -y -2=0的最短距离为( ) A. 2 B.78 2C .2 2D .以上答案都不对 解析 ∵y =x 2,∴y ′=2x .∵抛物线y =x 2的切线与直线x -y -2=0平行的只有一条,且k =1,∴y ′=2x =1,∴x =12.∴切点为(12,14).该点到直线的距离为d =⎪⎪⎪⎪⎪⎪12-14-22=728.答案 B6.已知f (x )=x 2+2sin x ,则f ′(0)=________. 解析 f ′(x )=2x +2cos x , ∴f ′(0)=2×0+2cos0=2. 答案 27.已知曲线f (x )=x 3+x -2在P 点处的切线平行直线y =4x -1,则P 点的坐标为________.解析 f ′(x )=3x 2+1,直线y =4x -1的斜率为4,f ′(x 0)=3x 20+1=4,∴x 0=1,或x 0=-1.当x 0=1时,f (x 0)=0, 当x 0=-1时,f (x 0)=-4, ∴P 点坐标为(1,0)或(-1,-4). 答案 (1,0)或(-1,-4)8.已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 f ′(x )=2x +2f ′(1), ∴f ′(1)=2+2f ′(1),∴f ′(1)=-2. ∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 -49.在曲线y =1x (x <0)上求一点P ,使P 到直线x +2y -4=0的距离最小.分析 把直线x +2y -4=0平行移动,当与曲线y =1x (x <0) 相切时,切点即为所求.解 由题意知,平行于直线x +2y -4=0与y =1x (x <0)相切的切点即为所求.设切点P (x 0,y 0),由y ′=-1x 2,得 k =y ′|x =x 0=-1x 20,又x +2y -4=0的斜率为-12.∴-1x 20=-12,∴x 0=2,或x 0=- 2.∵x <0,∴x 0=-2,y 0=-12=-22.∴P (-2,-22)为所求.10.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图像过点P (0,1),在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图像过点P (0,1),∴e =1. 又f (x )为偶函数,∴f (-x )=f (x ),即ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e . ∴b =0,d =0. ∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2, ∴可得切点为(1,-1). ∴a +c +1=-1.① ∵f ′(x )=4ax 3+2cx , ∴f ′(1)=4a +2c . ∴4a +2c =1.②由①②得a =52,c =-92. ∴f (x )=52x 4-92x 2+1.感悟高考1. (2010·辽宁)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4) B .[π4,π2) C .(π2,3π4]D .[3π4,π)解析 y ′=-4e x e 2x +2e x +1=-4e x +2+1e x , ∵e x+1e x ≥2,∴-1≤y ′<0,即-1≤tan α<0,∴α∈[3π4,π). 答案 D。

(好题)高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

(好题)高中数学选修1-1第四章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数23()2ln (0)xf x x x a a=-+>,若函数()f x 在[]1,2上单调递减,则a 的取值范围是( ) A .2,5⎡⎫+∞⎪⎢⎣⎭B .20,5⎛⎤ ⎥⎝⎦C .(0,1]D .[1,)+∞2.已知函数244()ln -⎫⎛=++ ⎪⎝⎭x f x k x k x ,[1,)∈+∞k ,曲线()y f x =上总存在两点()11,M x y ,()22,N x y 使曲线()y f x =在M 、N 两点处的切线互相平行,则12+x x 的取值范围为( ) A .[4,)+∞ B .(4,)+∞C .16,5⎡⎫+∞⎪⎢⎣⎭D .16,5⎛⎫+∞⎪⎝⎭3.已知函数()2sin x mf x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 4.已知函数()()()22210,0x ax x x f x e ax e x ⎧-+<⎪=⎨-+-≥⎪⎩有两个零点,则实数a 的取值范围是( ) A .(),e +∞B .()2e ,+∞C .()20,eD .()0,e5.已知函数()13log xf x e x =-,给出下列两个命题:命题:p 若01x ≥,则()03f x ≥;命题[)0:1,q x ∃∈+∞,()03f x =.则下列叙述错误的是( )A .p 是假命题B .p 的否命题是:若01x <,则()03f x <C .[):1,q x ⌝∀∈+∞,()3f x ≠D .q ⌝是真命题6.已知函数22(1)2,0()log 0x x f x x x ⎧-++≤⎪=⎨>⎪⎩,,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则23423121()x x x x x +⋅+⋅的取值范围是( ) A .71(,]42-- B .37[,]24--C .71[,)42--D .313(,]42-- 7.设()f x 是定义在R 上的偶函数,()f x '为其导函数,()20f =,当0x >时,有()()'>xf x f x 恒成立,则不等式()0xf x <的解集为( )A .()2,2-B .()(),20,2-∞-C .()()2,00,2-D .()()2,02,-+∞8.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞9.已知函数()221,02,0k x f x x x k x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且只有四个不同的零点,则实数k 的取值范围为( ) A .k 0<B .0k >C .27k <D .27k >10.已知函数()()()2122x x f x m e m R =+++∈有两个极值点,则实数m 的取值范围为( )A .10e ⎡⎤-⎢⎥⎣⎦, B .111e ⎛⎫---⎪⎝⎭, C .1e ⎛⎫-∞- ⎪⎝⎭,D .()0+∞,11.设函数()f x 的定义域为R ,其导函数是()f x ',若()()()20,01'+<=f x f x f ,则不等式()2xf x e ->的解集是( ) A .()0,1B .()1,+∞C .()0,∞+D .(),0-∞12.已知函数()()()22ln 0f x a e x xa =->,1,1D e ⎡⎤=⎢⎥⎣⎦若所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,则a =( ) A .eB .1e 2- C .1 D .2e e - 二、填空题13.已知一个母线长___________米.14.已知函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,且当2x ≠,其导数()f x '满足()()2xf x f x ''<,若()30f =,则不等式()0xf x >的解集为__________.15.已知函数()f x 定义在R 上的函数,若2()()0x f x e f x --=,当0x ≤时,()()0f x f x '+<,则不等式21()(1)x f x e f x -≥-的解集为__________16.已知函数()(0)x f x ae a =>与2()2(0)g x x m m =->的图象在第一象限有公共点,且在该点处的切线相同,当实数m 变化时,实数a 的取值范围为______________.17.已知函数f (x )=2,(,0],(0,)x x x e x +∈-∞⎧⎨∈+∞⎩,若存在x 1,x 2(x 2>x 1)满足f (x 1)=f(x 2),则x 2﹣2x 1的取值范围为_____.18.若函数()ln f x ax x =-在区间()0,1上是减函数,则实数a 的取值范围是________.19.使“函数()xe f x x=在区间(0,m ]上单调递减”成立的一个m 值是_____.20.已知随机变量X 的分布列为:随机变量X 的数学期望为E X ,则满足E X k <的最大正整数k 的值是_____. (参考数据:ln 20.6931≈,ln3 1.0986≈,ln5 1.6094≈)三、解答题21.已知函数()ln f x x x e =--. (1)求函数()f x 的单调区间;(2)若关于x 的不等式()xe f x mx ⋅在(0,)+∞上恒成立,求实数m 的取值范围.22.已知函数()21x f x ae x =-+. (1)讨论()f x 的单调性;(2)函数()()ln g x f x x x =+,当0a >时,讨论()g x 零点的个数. 23.已知函数()ln(1)f x x a =++,()x a g x e -=,a R ∈.(1)若0a =,曲线()y f x =在点()()00,x f x 处的切线也是曲线()y g x =的切线,证明:()0001ln 1x x x ++=; (2)若()()1g x f x -≥,求a 的取值范围. 24.已知函数()x ax f x e=. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 25.已知函数()1ln =--f x x x . (1)证明:()f x 存在唯一的零点; (2)当0x >时,证明:ln x e x x >>.26.设函数1()ln ,f x a x a x=+∈R .(Ⅰ)设l 是()y f x =图象的一条切线,求证:当0a =时,l 与坐标轴围成的三角形的面积与切点无关;(Ⅱ)若函数()()g x f x x =-在定义域上单调递减,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求出()'f x 由()0f x '≤得314x a x ≤-,令1()4g x x x=-,判断出()g x 的单调性并利用单调性可得()g x 的最小值可得答案. 【详解】31()4(0)f x x x a x'=-+>,因为函数()f x 在[]1,2上单调递减, 所以3140x a x -+≤,即314x a x≤-, 令1()4g x x x =-,由于114,y x y x ==-在[]1,2都是增函数, 所以1()4g x x x=-在[]1,2单调递增,所以()(1)3g x g ≤=, 所以33a ≤,又0a >,解得1a ≥. 故选:D. 【点睛】本题考查了利用函数的单调性求参数的范围问题,关键点是令1()4g x x x=-并求出最小值,考查了学生分析问题、解决问题的能力.2.B解析:B 【分析】求得()f x 的导数()f x ',由题意可得121()()(f x f x x '=',20x >,且12)x x ≠,化为121244()()x x k x x k +=+,因此12164x x k k+>+对[1k ∈,)+∞都成立,令4()g k k k=+,[1k ∈,)+∞,根据对勾函数的性质求出最值即可得出.【详解】解:函数244()()x f x k lnx k x-=++,导数2414()()1f x k k x x '=+--.由题意可得121()()(f x f x x '=',20x >,且12)x x ≠. 即有221122444411k k k k x x x x ++--=--, 化为121244()()x x k x x k+=+,而21212()2x x x x +<, 2121244()()()2x xx x k k +∴+<+,化为12164x x k k+>+对[1k ∈,)+∞都成立, 令4()g k k k=+,[1,)∈+∞k ,则()g k 在[)1,2上单调减,在[2,)+∞上单调递增, 所以()()min 22442g k g ==+= ∴6164414k k=+, 124x x ∴+>,即12x x +的取值范围是()4,+∞.故选:B . 【点睛】方法点晴:本题利用导数几何意义,函数的单调性与最值问题的等价转化方法、基本不等式的性质.3.A解析:A 【分析】()0f x =有两解变形为m e =设()g x =单调性、极值,结合()g x 的大致图象可得结论. 【详解】由()2sin x m f x x +=-得m e =()g x =sin )()xx x g x e-'=, 易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫= ⎪⎝⎭,如图是()g x 的大致图象, 由2sin mxx e e =有两解得34411m e e e ππ≤<,所以344m ππ-≤<-. 故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2m x xe e =,问题转化为2()xx g x e=的图象与直线my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.4.B解析:B 【分析】分离变量,利用导函数应用得到函数在0x <无零点,则0x >有两个零点,利用函数最值得到参数范围 【详解】当0x =时,()201e f =--,∴0x =不是函数()f x 的零点.当0x <时,由()0f x =,得221x a x -=,设()221x h x x -=,()()3210x h x x-'=<,则()h x 在(),0-∞上单调递减,且()0h x <.所以0x <时无零点当0x >时,()0f x =等价于2x e e a x +=,令()2x e e g x x +=,()22x x xe e e g x x--'=, 得()g x 在()0,2上单调递减,在()2,+∞上单调递增,()2min (2)g x g e ==,()2g x e ≥.因为()f x 有2个零点,所以2a e >. 故选:B. 【点睛】分离变量法,利用导数求函数的单调性,极值是解题关键.5.D解析:D 【分析】分析函数()13logxf x e x=-为增函数,若1x≥,求出[)1,x∈+∞时函数的值域,结合命题间的基本关系即可得答案.【详解】由函数的解析式可得函数的定义域为:()0,∞+,且导函数()1ln3xf x ex'+=>,则函数单调递增,结合()1131log1ef e=-=,可得当1≥x时,函数的值域为[),e+∞.据此可知p是假命题,q是真命题,q⌝是假命题.结合全称命题与特称命题的关系可得:p的否命题是:若1x<,则()03f x<.[):1,q x⌝∀∈+∞,()3f x≠故选:D【点睛】本题通过考查函数的单调性和极值来考查命题间的基本关系,属于中档型综合题.6.D解析:D【分析】画出图形,数形结合解答.注意到122x x+=-,2324log logx x-=,化简结论得32312xx-,311,42x⎛⎤∈ ⎥⎝⎦,构造函数21()2f x xx=-,11,42x⎛⎤∈ ⎥⎝⎦,利用导数判断出函数的单调性即可.【详解】已知函数图象如下:方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则122x x +=-,2324log log x x -=,所以341x x ⋅=,且311,42x ⎛⎤∈⎥⎝⎦, 所以234322312311()2x x x x x x x ⋅=+⋅+-, 令21()2f x x x =-,11,42x ⎛⎤∈ ⎥⎝⎦, 则31()1f x x =+'在11,42⎛⎤ ⎥⎝⎦上恒大于0, 故()f x 在11,42x ⎛⎤∈⎥⎝⎦上单调递增, 所以313(),42f x ⎡⎫∈--⎪⎢⎣⎭, 故选:D . 【点评】本题考查了函数的图像运用,利用数形结合判断函数交点问题,属于中档题.7.B解析:B 【分析】 构造函数()()f xg x x=,易知()g x 在()0,∞+上单调递增,由()f x 是定义在R 上的偶函数可推出()g x 是定义在()(),00,-∞⋃+∞上的奇函数,故()g x 在(),0-∞上也单调递增,且()()220g g =-=.而不等式()0xf x <的解可等价于即()0g x <的解,从而得解. 【详解】解:设()()f x g x x =,0x ≠,则()()()'2xf x f x g x x -'=, ∵当0x >时,有()()'xf x f x >恒成立,∴当0x >时,()0g x '>,()g x 在()0,∞+上单调递增,∵()f x 是定义在R 上的偶函数, ∴()()()()f x f x g x g x x x--===---,即()g x 是定义在()(),00,-∞⋃+∞上的奇函数, ∴()g x 在(),0-∞上也单调递增. 又()20f =,∴()()2202f g ==,∴()20g -=. 不等式()0xf x <的解可等价于即()0g x <的解, ∴02x <<或2x <-,∴不等式的解集为()(),20,2-∞-.故选:B . 【点睛】本题主要考查函数奇偶性的应用,考查函数的单调性,利用了构造思想,导函数的运用,属于中档题.8.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.9.D解析:D 【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)kg x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可. 【详解】解:依题意,222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩, 当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)kg x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x -'=,0x >,令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<, 故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增, 要使()g x 在(0,)+∞上有且仅有两个不同的零点, 则1233132()()0min k g x g k k k k==+-<,解得27k >.故选:D . 【点睛】本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.10.B解析:B 【分析】求导()()1xf x x m e '=++,将问题转化为()()1xf x x m e '=++有两个不同的零点,也即是关于x 的方程1x xm e --=有两个不同的解,构造函数()xx g x e =,求导()1x xg x e-'=,分析导函数取得正负的区间,从而得函数()g x 的单调性和最值,从而可得选项.【详解】函数()f x 的定义域为R ,()()'1x fx x m e =++,因为函数()f x 有两个极值点,所以()()1xf x x m e '=++有两个不同的零点, 故关于x 的方程1xxm e --=有两个不同的解, 令()xx g x e =,则()1x xg x e-'=,当(,1)x ∈-∞时,()0g x '>,当(1,+)x ∈∞时,()0g x '<,所以函数()g x 在区间(,1)-∞上单调递增,在区间(1,+∞)上单调递减,又当x →-∞时,()g x →-∞;当x →+∞时,()0g x →,且0,()0x g x >>()11g e=,故101m e <--<, 即111m e--<<-. 故选:B.【点睛】 本题考查运用导函数研究函数的单调性、最值、极值,关键在于构造合适的函数,参变分离的方法的运用,属于中档题.11.D解析:D【分析】构造新函数2()()x g x e f x =,求导后可推出()g x 在R 上单调递减,而2()x f x e ->可等价于20()1(0)x e f x e f >=,即()(0)g x g >,故而得解.【详解】令2()()x g x e f x =,则2()[2()()]x g x e f x f x ''=+,2()()0f x f x +'<,()0g x '∴<,即()g x 在R 上单调递减,(0)1f =,2()x f x e -∴>可等价于20()1(0)x e f x e f >=,即()(0)g x g >,0x ∴<,∴不等式的解集为(,0)-∞.故选:D .【点睛】本题考查利用导数研究函数的单调性、解不等式,构造新函数是解题的关键,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.12.D解析:D【分析】求得导函数()'f x ,确定()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的单调性,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域,从而可得题中平面区域面积,解之可得a .【详解】解:()()2222a e x f x a e x x -⎛⎫'=-= ⎪⎝⎭,因为1,1x e ⎡⎤∈⎢⎥⎣⎦,0a >,所以()0f x '>,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增, 则()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的值域为()22,a e e a ⎡⎤+⎣⎦, 因为所有点()(),s f t (s ,t D ∈)所构成的平面区域面积为2e 1-,所以()221211a e e e e ⎛⎫---=- ⎪⎝⎭, 解得2e a e =-, 故选:D .【点睛】 本题考查用导数求函数的值域,解题方法是求出导函数,用导数确定函数的单调性,求得值域区间,然后可计算出题设平面区域面积,得出结论.二、填空题13.【分析】设圆锥的高为米可得出底面圆的半径为求出圆锥形容器的体积关于的表达式利用导数可求得的最大值及其对应的的值【详解】设圆锥形容器的高为米半径为米由勾股定理可得其中圆锥形容器的体积为则令由于可得当时 解析:3【分析】设圆锥的高为h 米,可得出底面圆的半径为r =V 关于h 的表达式,利用导数可求得V 的最大值及其对应的h 的值.【详解】设圆锥形容器的高为h 米,半径为r 米,由勾股定理可得2227h r +=,2227r h ∴=-,其中0h << 圆锥形容器的体积为()()2231112727333V r h h h h h πππ==-=-,则()29V hπ'=-,令0V '=,由于(h ∈,可得3h =.当03h <<时,0V '>;当3h <<0V '<.所以,当3h =时,圆锥形容器的体积V 取得最大值.故答案为:3.【点睛】方法点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.14.【分析】由可得对称轴是由可得从而得出判断的单调区间再结合即可得不等式的解集【详解】因为函数对定义域内内的任意都有所以对称轴是因为满足即所以当时单调递增当时单调递减又因为所以时时时当与同号时所以的解集 解析:()(),01,3-∞⋃【分析】由()()4f x f x =-,可得()f x 对称轴是2x =,由()()2xf x f x ''<可得()()20x f x '-<,从而得出判断()f x 的单调区间,再结合()30f =,即可得不等式()0xf x >的解集.【详解】因为函数()f x 对定义域内R 内的任意x 都有()()4f x f x =-,所以()f x 对称轴是2x =,因为()f x '满足()()2xf x f x ''<,即()()20x f x '-<,所以当2x <时()0f x '>,()f x 单调递增,当2x >时()0f x '<,()f x 单调递减,又因为()()130f f ==,所以1x <时,()0f x <,13,x <<时,()0f x >,3x >时,()0f x <, 当x 与()f x 同号时,()0xf x >,所以()0xf x >的解集为:()(),01,3-∞⋃,故答案为:()(),01,3-∞⋃【点睛】本题主要考查了函数的对称性和单调性,导数的符号决定原函数的单调性,根据单调性解不等式,属于中档题.15.【分析】令根据题中条件得到为偶函数;对其求导根据题中条件判定在上单调递减;则在上单调递增;化所求不等式为求解即可得出结果【详解】令则因为所以即所以函数为偶函数;又当时所以即函数在上单调递减;则在上单 解析:12x x ⎧⎫≥⎨⎬⎩⎭ 【分析】令()()xg x f x e =,根据题中条件,得到()g x 为偶函数;对其求导,根据题中条件,判定()g x 在(),0-∞上单调递减;则()g x 在()0,∞+上单调递增;化所求不等式为1x x ≥-,求解,即可得出结果.【详解】令()()x g x f x e =,则()()xg x f x e --=-, 因为2()()0x f x e f x --=,所以()()x x f x e f x e -=-,即()()g x g x =-,所以函数()g x 为偶函数;又()[]()()()()x x xg x f x e f x e f x f x e '''=+=+, 当0x ≤时,()()0f x f x '+<,所以()[]()()0xg x f x f x e ''=+<,即函数()g x 在(),0-∞上单调递减; 则()g x 在()0,∞+上单调递增;又不等式21()(1)x f x e f x -≥-可化为1()(1)x x f x e f x e -≥-,即()()1g x g x ≥-, 所以只需1x x ≥-,则()221x x ≥-,解得12x ≥. 故答案为:12x x ⎧⎫≥⎨⎬⎩⎭. 【点睛】本题主要考查由函数单调性与奇偶性解不等式,考查导数的方法判定函数单调性,涉及绝对值不等式的解法,属于常考题型.16.【分析】设切点为根据已知得求出得构造函数求出的范围即可【详解】设切点为则整理得由解得由上可知令则因为所以在上单调递减所以即故答案为:【点睛】本题考查导数的几何意义利用导数求参数的范围考查计算求解能力 解析:280,a e ⎛⎫∈ ⎪⎝⎭【分析】设切点为()00,A x y ,根据已知得0000()(),()()f x g x f x g x ='=',求出02x >,得04x x a e =,构造函数4(),2x x h x x e =>,求出()h x 的范围即可. 【详解】 设切点为()00,A x y ,(),()4xf x aeg x x '='= 则0020024x x ae x m ae x ⎧=-⎪⎨=⎪⎩,整理得20004200x x m x m ⎧=-⎪>⎨⎪>⎩, 由200240m x x =->,解得02x >. 由上可知004x x a e =,令4()xx h x e =,则4(1)()x x h x e -'=. 因为2x >,所以4(1)4()0,()x x x x h x h x e e -'=<=在(2,)+∞上单调递减,所以280()h x e <<,即280,a e ⎛⎫∈ ⎪⎝⎭. 故答案为:280,e ⎛⎫ ⎪⎝⎭. 【点睛】本题考查导数的几何意义、利用导数求参数的范围,考查计算求解能力,属于中档题. 17.ln22)【分析】用表示出得出关于的函数根据的范围判断函数单调性得出值域即可【详解】显然由题意可知故由可得故设则在上单调递减又故答案为:【点睛】本题主要考查利用导数研究函数的单调性和最值意在考查学生 解析:[ln 2,2)【分析】用2x 表示出1x ,得出212x x -关于2x 的函数2()g x ,根据2x 的范围,判断函数单调性得出值域即可.【详解】显然10x ,20x >,由题意可知212x x e +=,故212x x e =-,2212224x x x x e ∴-=-+,由2121x x e +=>可得110x -<,故2120x e -<-,202x ln ∴<,设()24(02)x g x x e x ln =-+<,则()120x g x e '=-<,()g x ∴在(0,2]ln 上单调递减,又(0)2g =,(2)2g ln ln =,2()2ln g x ∴<.故答案为:[2ln ,2).【点睛】本题主要考查利用导数研究函数的单调性和最值,意在考查学生对这些知识的理解掌握水平.18.【分析】求出函数的导数问题转化为在区间恒成立求出的范围即可【详解】若函数区间上为减函数则在区间恒成立即因为所以所以故答案为:【点睛】本题主要考查了利用导数研究函数的单调性函数的单调性的性质属于中档题解析:(],1-∞【分析】 求出函数的导数,问题转化为10a x -在区间(0,1)恒成立,求出a 的范围即可. 【详解】 ()f x ax lnx =-,(0)x >,1()f x a x∴'=-, 若函数()f x ax lnx =-区间(0,1)上为减函数, 则10a x -在区间(0,1)恒成立, 即1()min a x, 因为(0,1)x ∈,所以min11x ⎛⎫> ⎪⎝⎭, 所以1a ≤.故答案为:(-∞,1].【点睛】本题主要考查了利用导数研究函数的单调性,函数的单调性的性质,属于中档题. 19.;【分析】首先有且根据导函数得到的单调区间及对应的单调性使函数在区间(0m 上单调递减成立即(0m 包含于的单调递减区间即可得到一个m 值【详解】由题意知:且∴当且时即单调递减当时即单调递增故要使在区间( 解析:12; 【分析】首先有2(1)()xx e f x x-'=且0x ≠,根据导函数得到()f x 的单调区间及对应的单调性,使“函数()xe f x x=在区间(0,m ]上单调递减”成立,即(0,m ]包含于()f x 的单调递减区间,即可得到一个m 值【详解】由题意,知:2(1)()xx e f x x-'=且0x ≠ ∴当0x ≠且1x <时,()0f x '<,即()f x 单调递减当1x >时,()0f x '> ,即()f x 单调递增故,要使()f x 在区间(0,m ]上单调递减,则01m <<即可∴12m =符合要求 故答案为:12 【点睛】本题考查了根据命题的真假求参数范围,结合导函数研究函数的单调区间,由命题中函数单调的成立条件确定区间的包含关系,进而求参数范围20.【分析】根据期望的定义先得到将不等式化为构造函数利用导数的方法判断其单调性计算即可得出结果【详解】由题意所以可化为即其中显然成立;两边同时取以为底的对数得令则当时即函数单调递增;当时即函数单调递减; 解析:4【分析】根据期望的定义,先得到()31k E X kek -=-++,将不等式()E X k <化为ln 3k k >,构造函数()ln ,03k f k k k =->,利用导数的方法判断其单调性,计算()4f ,()5f ,即可得出结果.【详解】由题意,()()333111kk k E X e k e ke k ---⎛⎫=++-=-++ ⎪⎝⎭, 所以()E X k <可化为310k ke --+<,即3k k e >,其中0k >显然成立;两边同时取以e 为底的对数,得ln 3k k >, 令()ln ,03k f k k k =->,则()11333k f k k k-'=-=, 当()0,3k ∈时,()303k f k k -'=>,即函数()ln 3k f k k =-单调递增; 当()3,k ∈+∞时,()303k f k k -'=<,即函数()ln 3k f k k =-单调递减; 因此()()max 33ln 3ln 3103f k f ==-=->, 又()444ln 42ln 2 1.3862 1.3333033f =-≈-=->, ()55ln 5 1.6094 1.666603f =-≈-<, 因此满足ln 3k k >的最大正整数k 的值是4, 即满足()E X k <的最大正整数k 的值是4.故答案为:4.【点睛】本题主要考查导数的方法研究不等式能成立的问题,涉及离散型随机变量的期望,属于常考题型.三、解答题21.(1)函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)(1,e e -⎤-∞-⎦. 【分析】(1)解不等式()0f x '>与()0f x '<即可得单调区间;(2)先分离参数再利用导数研究函数最值即可得结果.【详解】(1)依题意11(0,),()1x x f x x x'-∈+∞=-=, 令()0f x '>,解得1x >,令()0f x '<,解得01x <<, 故函数()f x 的单调递增区间为(1,)+∞,递减区间为(0,1);(2)因为0x >,故不等式化为(ln )x x x e e m x --⋅,令(ln )()xx x e e h x x--⋅=,故min [()]m h x ,因为2(1)(ln 1)()x x x x e h x e x---+'=, 令11()ln 1,()1x x x x e x x xϕϕ'-=--+=-=,由(1)可知,当(0,1)x ∈时,()0x ϕ'>,当(1,)x ∈+∞时,()0x ϕ'<,又221130,(1)20,()0e e e e e ϕϕϕ⎛⎫=--<=->= ⎪⎝⎭, 所以()ϕx 在(0,1)上存在唯一零点0x ,在(1,)+∞上存在唯一零点x e =,当00x x <<时,()0()0x h x ϕ'<<,,当01x x <<时,()0()0x h x ϕ'>>,,当1x e <<时,()0()0x h x ϕ'><,,当x e >时,()0,()0x h x ϕ'<>, 所以函数()h x 在()00,x 和(1,)e 上为减函数,在()0,1x 和(,)e +∞上为增函数,所以min [()]h x 是()0h x 与()h e 中的较小者,而1()e h e e-=-, 因为()000ln 10x x x e ϕ=--+=,故010x e x e +-=,故()()00001000ln x x e x x e e h x e e x x ---=⋅=-=-,故1e m e --, 综上所述,实数m 的取值范围为(1,e e-⎤-∞-⎦.【点晴】 参变分离利用导数求解函数最值是解参数范围的关键.22.(1)答案见解析;(2)答案见解析.【分析】(1)讨论0a ≤,0a >两种情况,确定()'f x 的正负,利用导数求()f x 的单调性;(2)设()()g x h x x=,利用导数得出()h x 的单调性,进而得出最小值,讨论最小值大于、小于、等于0的情况结合零点存在性定理确定()h x 的零点个数,即()g x 零点的个数.【详解】解:(1)函数()f x 的定义域为R ,()2x f x ae '=-.①当0a ≤时,()0f x '<,所以()f x 在R 上单调递减;②当0a >时,令()0f x '=得2lnx a =. 若2,lnx a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<; 若2ln ,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '>; 所以()f x 在2,lna ⎛⎫-∞ ⎪⎝⎭单调递减,在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. 综上所述,当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在2,ln a ⎛⎫-∞ ⎪⎝⎭单调递减;()f x 在2ln ,a ⎛⎫+∞ ⎪⎝⎭单调递增. (2)()ln 21x g x ae x x x =+-+ 设函数()1()ln 2x g x ae h x x x x x==++- ()2221(1)(1)11()x x ae x ae x h x x x x x +--'=+-= 因为0a >,所以()0h x '=得1x =.当(0,1)x ∈时,()0h x '<,()h x 在(0,1)上单调递减.当(1,)x ∈+∞时,()0h x '>,()h x 在(1,)+∞上单调递增.所以当1x =时,()h x 取最小值,最小值为(1)1h ae =-. 若1a e =时,(1)0h =,所以函数()h x 只有1个零点; 若1a e>时,()(1)0h x h ≥>,所以函数()h x 无零点; 若10a e <<时,(1)0h <,()222222240e e h e a e e e---=-+->->, ()22221220e e h e a e e =++->,故()2(1)0h h e -<,()2(1)0h h e <; 所以函数()h x 在()21,e -和()21,e 各有一个零点,所以函数()h x 有两个零点. 综上所述,当1a e =时,函数()g x 只有1个零点;当1a e>时,函数()g x 无零点;当10a e<<时,函数()g x 有两个零点 【点睛】 方法点睛:研究含参函数()g x 的零点问题,即方程()0g x =的实根问题,通常选择参变分离,得到()a g x 的形式,后借助数形结合(几何法)思想求解;若无法参变分离,则整体含参讨论函数()g x 的单调性、极值符号,由数形结合可知函数()g x 的图象与x 轴的交点情况即函数()g x 的零点情况.23.(1)证明见解析;(2)(,0]-∞.【分析】(1)求出导函数()'f x ,()'g x ,求出()f x 在00(,())x f x 切线方程,利用切线斜率求得()y g x =的切点坐标,得切线方程,由两条切线方程是相同的,可证结论;(2)令()()()ln(1)x a h x g x f x e x a -=-=-+-,求得()h x ',确定单调性,最小值,由最小值不小于1可得a 的范围.【详解】(1)若0a =,则()ln(1)f x x =+,()x g x e =. 所以1()1f x x '=+,()xg x e '=, 曲线()y f x =在点()()00,x f x 处的切线方程为()()0001ln 11y x x x x =-+++, 令01()1x g x e x '==+,则01ln 1x x =+, 曲线()y g x =在点0011ln ,11x x ⎛⎫ ⎪++⎝⎭处的切线方程为()00011ln 111y x x x x ⎡⎤=+++⎣⎦++, 由题意知()()()000000111ln 1ln 1111x x x x x x x x ⎡⎤-++=+++⎣⎦+++, 整理可得()000ln 111x x x +=+,00x =显然不满足, 因此()0001ln 1x x x ++=. (2)令()()()ln(1)x a h x g x f x e x a -=-=-+- 若0a >,0(0)01a h e a e -=-<-=,不符合条件;若0a =,()ln(1)x h x e x =-+,1()1x h x e x '=-+, 当(1,0)x ∈-时,()0h x '<,()h x 单调递减,当(0,)x ∈+∞时,()0h x '>,()h x 单调递增,所以()(0)1h x h ≥=,符合条件;若0a <,则()ln(1)ln(1)1x a x h x e x a e x -=-+->-+≥,符合条件.所以a 的取值范围是(,0]-∞.【点睛】思路点睛:本题考查导数的几何意义,考查用导数研究不等式恒成立问题.求切线方程时要注意是函数图象在某点处的切线,还是过某点的切线,由导数得斜率得切线方程,若不知切点时一般需设出切点坐标,写出切线方程,代入所过点的坐标求出切点,再得切线方程,不能弄错.24.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间; (2)由0g x ,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围【详解】解:(1)当1a =时,()x x f x e =,定义域为R , 所以()1xx f x e -'=. 当1x <时,0f x ,函数()f x 单调递增; 当1x >时,0f x ,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x x x a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x 时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x 恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点.②若ln 1a <,即0a e <<,当ln x a <时,0g x ,函数()g x 单调递增;当ln 1a x <<时,0g x,函数()g x 单调递减; 当1x >时,0g x ,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>,又因为()2220a g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>,又因为()2220g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>,若函数()g x 只有1个零点,需()1102a e g =->, 解得2e a e <<. ③若ln 1a >,即a e >, 当1x <时,0g x ,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减;当ln x a >时,0g x ,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a => 所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x 求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题25.(1)证明见解析;(2)证明见解析.【分析】(1)对()f x 求导,利用导数判断()f x 的单调性,求出()f x 的极值或最值,即可求证;(2)构造函数()x g x e x =-,求导利用单调性证明()0xg x e x =->,再由(1)可知()1ln 0f x x x =--≥即1ln x x ≥+可得ln x x >,进而可证明0x >时, ln x e x x >>.【详解】(1)()1ln =--f x x x 的定义域为()0,∞+,1()1f x x'=- 当01x <<时,1()10f x x '=-<,当1x >时,1()10'=->f x x, 所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以1x =时()f x 最小为(1)11ln10f =--=,所以()f x 存在唯一的零点1x =,(2)令()x g x e x =-,则()1x g x e '=-,当0x >时,()10xg x e '=->, ()x g x e x =-在()0,∞+单调递增,所以()()0001g x g e >=-=,即10x e x ->>,即0x e x ->,所以x e x >,由(1)知()1ln =--f x x x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 最小为(1)11ln10f =--=,所以()1ln 0f x x x =--≥即1ln x x ≥+,所以ln x x >,综上所述:当0x >时,ln x e x x >>.【点睛】方法点睛:判断函数零点个数的方法(1)直接法:令()0f x =,如果能求出解,那么有几个不同的解就有几个零点;(2)利用函数的零点存在性定理:利用函数的零点存在性定理时,不仅要求函数的图象在区间[],a b 上是连续不断的曲线,并且()()0f a f b ⋅<,还必须结合函数的图象与性质,(如单调性、奇偶性)才能确定函数有多少个零点;(3)图象法:画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数,()h x 和()g x 的形式,根据()()()0f x h x g x =⇔=,则函数()f x 的零点个数就是函数()y h x =和()y g x =的图象交点个数;(4)利用函数的性质:若能确定函数的单调性,则其零点个数不难得到,若所考查的函数是周期函数,则需要求出在一个周期内的零点个数,根据周期性则可以得出函数的零点个数.26.(Ⅰ)证明见解析;(Ⅱ)(,2]-∞.【分析】(Ⅰ)设切点为001(,)P x x ,求出切线方程并计算l 与坐标轴围成的三角形的面积为2,故可得相应的结论.(Ⅱ)由题设可得()0g x '≤,利用参变分离可得a 的取值范围.【详解】(Ⅰ)当0a =时,1(),0f x x x =>,21()f x x'=-, 设()f x 图象上任意一点001(,)P x x ,切线l 斜率为0201()k f x x =-'=. 过点001(,)P x x 的切线方程为020011()y x x x x -=--. 令0x =,解得02y x =;令0y =,解得02x x =. 切线与坐标轴围成的三角形面积为0012|||2|22S x x =⋅=. 所以l 与坐标轴围成的三角形的面积与切点无关.(Ⅱ)由题意,函数()g x 的定义域为(0,)+∞.因为()g x 在(0,)+∞上单调递减, 所以21()10a g x x x '=--≤在(0,)+∞上恒成立, 即当(0,)x ∈+∞,1a x x ≤+恒成立, 所以min 1()a x x ≤+因为当(0,)x ∈+∞,12x x+≥,当且仅当1x =时取等号. 所以当1x =时,min 1()2x x +=所以2a ≤.所以a 的取值范围为(,2]-∞.【点睛】结论点睛:一般地,若()f x 在区间(),a b 上可导,且()()()00f x f x ''><,则()f x 在(),a b 上为单调增(减)函数;反之,若()f x 在区间(),a b 上可导且为单调增(减)函数,则()()()00f x f x ''≥≤.。

北师大版数学高二-选修1-1测评13 计算导数

北师大版数学高二-选修1-1测评13 计算导数

学业分层测评(十三)(建议用时:45分钟)[学业达标]一、选择题1.给出下列结论:①若y=1x3,则y′=-3x4;②若y=3x,则y′=133x;③若f(x)=sin α,则f′(x)=cos α;④若f(x)=3x,则f′(1)=3.其中,正确的个数是()A.1个B.2个C.3个D.4个【解析】对于②y=3x,y′=13x13-1=13x-23=133x2,故②错;对于③f(x)=sin α,为常数函数,∴f′(x)=0,故③错;①④都正确.【答案】 B2.曲线f(x)=e x在点A(0,1)处的切线斜率为()【导学号:63470066】A.1 B.2C.e D.1 e【解析】∵f(x)=e x,∴f′(x)=e x,∴f′(0)=1.即曲线f(x)=e x在点(0,1)处的切线的斜率为1.【答案】 A3.已知曲线y=x3在点(a,b)处的切线与直线x+3y+1=0垂直,则a的值是()A.-1 B.±1C .1D .±3【解析】 由y =x 3知y ′=3x 2, ∴切线斜率k =y ′|x =a =3a 2. 又切线与直线x +3y +1=0垂直, ∴3a 2·⎝ ⎛⎭⎪⎫-13=-1, ∴即a 2=1,a =±1,故选B. 【答案】 B4.已知f (x )=log a x (a >1)的导函数是f ′(x ),记A =f ′(2),B =f (3)-f (2),C =f ′(3),则( )A .A >B >C B .A >C >B C .B >A >CD .C >B >A【解析】 记M (2,f (2)),N (3,f (3)),则由于B =f (3)-f (2)=f (3)-f (2)3-2表示直线MN 的斜率,A =f ′(2)表示函数f (x )=log a x 在点M 处的切线的斜率,C =f ′(3)表示函数f (x )=log a x 在点N 处的切线的斜率.由f (x )的图像易得A >B >C .【答案】 A5.已知直线y =kx 是曲线y =e x 的切线,则实数k 的值为( ) A.1e B .-1e C .-eD .e【解析】 y ′=e x ,设切点为(x 0,y 0),则 ⎩⎪⎨⎪⎧y 0=kx 0y 0=ex 0k =ex 0∴e x 0=e x 0·x 0,∴x 0=1,∴k =e.【答案】 D 二、填空题6.若f (x )=cos 2π3,则f ′(x )=________. 【解析】 f (x )=-12,∴f ′(x )=0. 【答案】 07.(2016·安庆高二检测)曲线y =cos x 在点⎝ ⎛⎭⎪⎫π4,22处的切线的倾斜角为________.【导学号:63470067】【解析】 y ′=-sin x ,∴k =-sin π4=-22. 设倾斜角为α,则tan α=-22,α=135°. 【答案】 135°8.设直线y =12x +b 是曲线f (x )=ln x (x >0)的一条切线,则实数b 的值为________.【解析】 f ′(x )=(ln x )′=1x ,设切点坐标为(x 0,y 0),由题意得1x 0=12,则x 0=2,y 0=ln 2,代入切线方程y =12x +b ,得b =ln 2-1.【答案】 ln 2-1 三、解答题9.求与曲线y =3x 2在点P (8,4)处的切线垂直,且过点(4,8)的直线方程. 【解】 ∵y =3x 2,∴y ′=(3x2)′=(x 23)′=23x -13.∴k =f ′(8)=23·8-13=13.即曲线在点P (8,4)处的切线的斜率为13.∴适合条件的直线的斜率为-3.从而适合条件的直线方程为y -8=-3(x -4). 即3x +y -20=0. 10.若曲线f (x )=x -12在点(a ,a -12)处的切线与两个坐标轴围成的三角形的面积为18,求a 的值.【解】 对函数f (x )=x -12求导得f ′(x )=-12x -32(x >0),则曲线f (x )=x -12在点(a ,a -12)处的切线l 的斜率k =f ′(a )=-12a -32,由点斜式得切线的方程为y -a -12=-12a -32(x -a ),易求得直线l 与x 轴,y 轴的截距分别为3a ,32a -12,所以直线l 与两个坐标轴围成的三角形面积S =12×3a ×32a -12=94a 12=18,解得a =64.[能力提升]1.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),……,f n +1(x )=f ′n (x ),n ∈N ,则f 2 016(x )等于( )A .sin xB .-sin xC .cos xD .-cos x【解析】 f 1(x )=cos x ,f 2(x )=-sin x , f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x , f 6(x )=-sin x ,f 7(x )=-cos x ,f 8(x )=sin x ,…, 故f n (x )以4为周期,∴f 2 016(x )=f 504×4(x )=f 0(x )=sin x . 【答案】 A2.(2016·青岛高二检测)曲线y =⎝ ⎛⎭⎪⎫12x在x =0处的切线方程是( )A .x +y ln 2-ln 2=0B .x ln 2+y -1=0C .x -y +1=0D .x +y -1=0【解析】 y ′=⎝ ⎛⎭⎪⎫12x ln 12=-ln 2·⎝ ⎛⎭⎪⎫12x,y ′|x =0=-ln 2,即切线的斜率为-ln 2.又切点为(0,1),所以切线方程为y -1=-ln 2×(x -0),即x ln 2+y -1=0.选B.【答案】 B3.曲线y =e x 在点(2,e 2)处的切线与坐标轴围成的三角形的面积为________. 【解析】 y ′=e x ,∴y ′|x =2=e 2.∴切线方程为y -e 2=e 2(x -2),x =0时,y =-e 2;y =0时,x =1. ∴S △=12×1×e 2=e 22. 【答案】 e 224.已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.【解】 不存在.理由如下:由于y =sin x ,y =cos x ,设两条曲线的一个公共点为P (x 0,y 0),所以两条曲线在P (x 0,y 0)处的切线斜率分别为k 1=cos x 0,k 2=-sin x 0. 若使两条切线互相垂直,必须有cos x 0·(-sin x 0)=-1,即cos x 0·sin x 0=1,也就是sin 2x 0=2,这是不可能的,所以两条曲线不存在公共点,使在这一点处两条曲线的切线互相垂直.。

(典型题)高中数学选修1-1第四章《导数应用》测试题(有答案解析)(1)

(典型题)高中数学选修1-1第四章《导数应用》测试题(有答案解析)(1)

一、选择题1.已知函数()()2ex x f x x =∈R ,若关于方程()()210f x tf x t -+-=恰好有4个不相等的实根,则实数t 的取值范围为( )A .()24,22,e e ⎛⎫⋃⎪⎝⎭ B .24,1e ⎛⎫⎪⎝⎭C .24,e e ⎛⎫⎪⎝⎭D .241,1e ⎛⎫+ ⎪⎝⎭2.已知函数()2()x xf x x e e x-=⋅-+,若()()()f x f y f x y <<+,则( )A .0xy >B .0xy <C .0x y +>D .0x y +<3.函数2()2ln 1f x ax x =--有两个不同零点,则a 的取值范围为( ) A .(,e)-∞B .(0,e)C .(0,1)D .(,1)-∞4.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( ) A .(2020)(2021)f ef > B .(2020)(2021)f ef < C .(2020)(2021)ef f >D .(2020)(2021)ef f <5.现有橡皮泥制作的底面半径为4,高为3的圆锥一个.若将它重新制作成一个底面半径为r ,高为h 的圆柱(橡皮泥没有浪费),则该圆柱表面积的最小值为( )A .20πB .24πC .28πD .32π6.已知函数()ln f x x =,若对任意的12,(0,)x x ∈+∞,都有()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦恒成立,则实数k 的最大值是( ) A .1-B .0C .1D .27.某企业拟建造一个容器(不计厚度,长度单位:米),该容器的底部为圆柱形,高为l ,底面半径为r ,上部为半径为r 的半球形,按照设计要求容器的体积为283π立方米.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3万元,半球形部分每平方米建造费用为4万元,则该容器的建造费用最小时,半径r 的值为( )A.1B C D .28.设函数()y f x =在区间(,)a b 上的导函数为()f x ',记()f x '在区间(,)a b 上的导函数为()f x ''.若函数()f x 在区间(,)a b 上为“凸函数”,则在区间(,)a b 上有()0f x ''<恒成立.已知2()(2)(1)e x kxf x e e e +=-++在(0,3)上为“凸函数”,则实数k 的取值范围是( ) A .(,1)-∞ B .(,)e -∞C .(1,)+∞D .(,)e +∞9.对任意0,2x π⎛⎫∈ ⎪⎝⎭,不等式()()sin cos x f x x f x ⋅⋅'<恒成立,则下列不等式错误的是( )A.34f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭B .()2cos113f f π⎛⎫⋅⎪⎝⎭> C.()14f f π⎛⎫⋅⎪⎝⎭D.426f f ππ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭< 10.设函数()'f x 是奇函数()()f x x R ∈的导函数,(2)0f -=,当0x >时,()()03xf x f x '+>,则使得()0f x >成立的x 的取值范围是( ) A .(,2)(0,2)-∞-⋃ B .(,2)(2,2)-∞--C .(2,0)(2,)-+∞ D .(0,2)(2,)⋃+∞11.已知函数()221,02,0k x f x x x k x ⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪-≥⎩,若函数()()()g x f x f x =-+有且只有四个不同的零点,则实数k 的取值范围为( ) A .k 0<B .0k >C .27k <D .27k >12.已知函数()2x f x =,2()g x x ax =+(其中a R ∈).对于不相等的实数12,x x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-.现有如下命题:(1)对于任意不相等的实数12,x x ,都有0m >;(2)对于任意的a 及任意不相等的实数12,x x ,都有0n >;(3)对于任意的a ,存在不相等的实数12,x x ,使得m n =;(4)对于任意的a ,存在不相等的实数12,x x ,使得m n =-.其中真命题的个数有( ) A .3个B .2个C .1个D .0个二、填空题13.已知函数2()ln 3mf x x x x x=+-+.若函数()f x 在[1,2]上单调递减,则实数m 的最小值为________.14.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.15.已知函数()x f x e alnx =-+2在[]1,4上单调递增,则a 的取值范围是__.16.已知正项等比数列{}n a 的前n 项和为n S ,若361,,S S 成等差数列,则9326S S S -的最大值为________17.已知函数()()()3ln 06x f x a x x x a =-->,当0x >时,()0f x '≥(()f x '为函数()f x 的导函数),则实数a 的取值范围为______.18.若存在两个正实数x ,y 使等式()()ln ln 0x m y x y x +--=成立,(其中2.71828e =)则实数m 的取值范围是________.19.已知函数18ln ,y a x x e e ⎛⎫⎡⎤=+∈ ⎪⎢⎥⎣⎦⎝⎭的图象上存在点P ,函数22y x =--的图象上存在点Q ,且P ,Q 关于x 轴对称,则a 的取值范围为________.20.若函数()()20xf x ae xa =-≠仅有1个零点,则实数a 的取值范围是______.三、解答题21.已知函数()()23x f x m e x =-+,且()03f '=.(1)求()f x 的解析式;(2)设()22g x x ax a =+-,若对任意2x ≥,()()f x g x ≥,求实数a 的取值范围.22.如图一边长为10cm 的正方形硬纸板,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体手工作品.所得作品的体积V (单位:cm 2)是关于截去的小正方形的边长x (单位:cm )的函数.(1)写出体积V 关于x 的函数表达式()f x .(2)截去的小正方形的边长为多少时,作品的体积最大?最大体积是多少? 23.设函数()(1)ln(1)f x x x x =-++ (1)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,求t 的取值范围; (2)证明:当0m n >>时,(1)(1)n mm n +<+.24.已知函数()()22646x x e f x x x -=++.(1)求函数()f x 的单调区间,并求()f x 的最值; (2)已知[)0,1a ∈,()()()2322202x e a x x g x x x-++=>.①证明:()g x 有最小值;②设()g x 的最小值为()h a ,求函数()h a 的值域. 25.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 26.已知f (x )=ax -ln x ,x ∈(0,e ],g (x )=ln xx,x ∈(0,e ],其中e 是自然常数,a R ∈. (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使()f x 的最小值是3?若存在,求出a 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】求得()f x 的导数,可得单调区间和极值,作出()f x 的图象,将方程()()210f x tf x t -+-=因式分解为()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,则()1f x =或()1f x t =-,从而()1f x t =-有3个实数根,即函数()y f x =与1y t =-有3个交点,数形结合即可得到1t -的取值范围,从而得解; 【详解】解:函数2()x x f x e=的导数为22()xx x f x e -'=, 当02x <<时,()0f x '>,()f x 递增;当2x >或0x <时,()0f x '<,()f x 递减, 可得()f x 在0x =处取得极小值0, 在2x =处取得极大值241e <, 作出()y f x =的图象如下所示,因为()()210fx tf x t -+-=恰好有4个不相等的实根,所以()()()110f x f x t ⎡⎤⎡⎤---=⎣⎦⎣⎦,解得()1f x =或()1f x t =-,当()1f x =时,有1个实数解,所以()1f x t =-应有3个实数根,即函数()y f x =与1y t =-有3个交点, 所以2401t e <-<,即2411t e<<+ 故选:D 【点睛】本题考查方程的根的个数问题解法,考查数形结合思想方法,以及导数的运用:求单调区间和极值,考查运算能力.2.A解析:A 【分析】先判断函数的奇偶性和单调性,再分析得解. 【详解】由题得函数的定义域为R.()22())()(x x x x f x x e e x e e x x f x --=-+=-=-⋅-+,所以函数是偶函数.当0x >时,1()()2xx xx f x e xe xe x e-'=-+++, 因为0x >,所以()0f x '>,所以函数()f x 在(0,)+∞上单调递增,因为函数是偶函数,所以函数()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. 如果0,0x y >>,则0x y +>,因为()()()f x f y f x y <<+,所以x y x y <<+,与已知相符;如果0,0x y <<,则0x y +<,所以x y x y >>+,与已知相符; 如果0,0x y ><,因为()()f x f y <,所以0y x y <+<, 所以()()f y f x y >+,与已知矛盾;如果0,0x y <>,因为()()f x f y <,所以0y x y >+>, 所以()()f y f x y >+,与已知矛盾;当,x y 之中有一个为零时,不妨设0y =,()()f x y f x += ,()()()f x f y f x <<,显然不成立.故选:A 【点睛】方法点睛:对于函数的问题,要灵活利用函数的奇偶性和单调性分析函数的问题,利用函数的图象和性质分析函数的问题.3.C解析:C 【分析】先令()0f x =,分离参数得到22ln 1x a x +=,令()22ln 1x g x x +=根据函数有两个不同零点,可得y a =与()22ln 1x g x x +=的图象有两个不同交点,对()g x 求导,判定其单调性,得出最值,画出大致图象,结合图象,即可得出结果. 【详解】因为函数2()2ln 1f x ax x =--有两个不同零点, 所以方程22ln 10ax x --=有两不同实根,即22ln 1x a x +=有两个不同的零点, 令()22ln 1x g x x +=,0x >,则得y a =与()22ln 1x g x x+=的图象有两个不同交点, 因为()()24322ln 124ln x x xx x g x x x ⋅-+⋅-'==,由()0g x '=可得1x =, 当()0,1x ∈时,()0g x '>,则()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,则()g x 单调递减; 所以()()max 11g x g ==, 又由()22ln 10x g x x +=>可得x >()22ln 10x g x x+=<可得0x <<, 画出()22ln 1x g x x +=的大致图象如下:由图像可得,当01a <<时,y a =与()22ln 1x g x x +=的图象有两个不同交点, 即原函数有两个不同零点. 故选:C. 【点睛】 思路点睛:利用导数的方法研究函数零点个数(方程根的个数)求参数问题时,一般需要先分离参数,根据分离后的结果,构造新的函数,利用导数的方法研究函数单调性,确定函数最值,利用数形结合的方法求解.4.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()xg x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立, 所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()xf x F x e =. 5.B解析:B 【分析】利用体积相等可得出216r h ,再将圆柱表面积表示出来将216h r =代入求导即可得最值. 【详解】由题意可得圆柱和圆锥的体积相等,底面半径为4,高为3的圆锥为2143163ππ⨯⨯⨯=, 底面半径为r ,高为h 的圆柱2r h π, 所以216r h ππ=,可得216r h ,即216h r =圆柱的表面积为:2222163222222S r rh r rr r rππππππ=+=+=+, 322324324r S r r rππππ-'=-=, 令324320r S r ππ-'=>可得2r >,令324320r S rππ-'=<可得02r <<, 所以2r 时,表面积最小为23222242S πππ=⨯+=, 故选:B 【点睛】关键点点睛:本题解题的关键是利用体积相等得出h 和r 的关系,再将圆柱表面积用r 表示利用导数求最值.6.B解析:B 【分析】首先代入函数,变形为1221ln1x kx x x >-,再通过换元设12x t x =(1t >),则ln 1k t t >-,利用参变分离转化为(1)ln k t t <-,设()()1ln g t t t =-(1t >),转化为求函数()g t 的最小值. 【详解】 设12x x >,因为()()()()2221212122f x f x x x k x x x -->+⎡⎤⎣⎦,变形为()()()()121212212ln ln x x x x x x kx x x -+->+,即12212lnx kx x x x >-, 等价于1221ln1x k x x x >-,因为120x x >>,令12x t x =(1t >),则ln 1k t t >-,即(1)ln k t t <-.设()()1ln g t t t =-(1t >),则min ()k g t <.当1t >时1()ln 10g t t t'=+->恒成立,故()g t 在()1,+∞上单调递增,()(1)0g t g >=. 所以0k ≤,k 的最大值为0. 故选:B . 【点睛】关键点点睛:本题的关键是将条件变形为12212lnx kx x x x >-,并进一步变形为1221ln1x k x x x >-,再通过换元,参变分离后转化为求函数的最值.7.C解析:C 【分析】根据体积公式用r 表示出l ,得出费用关于r 的函数,利用导数求出函数的极小值点即可. 【详解】解:由题意知2323142282333V r l r r l r πππππ=+⨯=+=, 故33322222282282282333333V r r r l r r r r r πππππ---===-=, 由0l >可知r <. ∴ 建造费用()3222221282562344611723r y rl r r r r r r rπππππππ-=+⨯+⨯⨯=⨯+=+,(0r <<,则()3221445614r y r r rπππ-'=-=.当(r ∈时,0y '<,r ∈时,0y '>.当r =.故选:C . 【点睛】本题考查数学建模能力,利用导数求解最值问题,考查运算能力,是中档题.8.A解析:A 【分析】首先根据题中所给的函数解析式,对其求导,再求二阶导,根据题中所给的条件,得到则有''()0f x <在(0,3)上恒成立,构造函数()xe e g x x=,利用导数求得其最小值,得到结果.【详解】因为2()(2)(1)e x kx f x e e e +=-++,所以11(2)'()(2)(1)1e e xx k e x kx f x e e e e e +++=-=-+++, (1)''()1ex e x k e x f x e kx e e +=-=-+,要使2()(2)(1)e x kxf x e e e +=-++在(0,3)上为“凸函数”, 则有''()0f x <在(0,3)上恒成立,即0e x kx e -<,即xe e k x<在(0,3)上恒成立,令()x e e g x x =,1122()'()x e x e x e e ee x e ex e x x e g x x x --⋅-⋅⋅-==, 所以()g x 在(0,)e 上单调递减,在(,1)e 上单调递增,所以min ()()1ee e g x g e e===,所以k 的取值范围是(,1)-∞,故选:A. 【点睛】思路点睛:该题属于新定义问题,在解题的过程中,注意: (1)细读题文,理解题中所给的信息,明确凸函数的定义;(2)根据定义,对所给的函数求导,再求二阶导,令二阶导小于零在给定区间上恒成立; (3)构造新函数,利用导数研究函数的单调性,求得最值,得到所求的结果.9.D解析:D 【分析】构造函数()()cos g x f x x =,对其求导后利用已知条件得到()g x 的单调性,将选项中的角代入函数()g x 中,利用单调性化简,并判断正误,由此得出选项. 【详解】解:构造函数()()cos g x f x x =,则()()()cos sin g x x f x x f x ='⋅⋅'-, ∵()()sin cos x f x x f x ⋅⋅'<,∴()()()cos sin 0g x x f x x f x =⋅-⋅''>, 即()g x 在0,2x π⎛⎫∈ ⎪⎝⎭上为增函数,由43g g <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即cos cos 4433f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即12423f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,故A 正确;()13g g 由<π⎛⎫⎪⎝⎭,即()1cos1cos 33f f ππ⎛⎫ ⎪⎝⎭<,即()2cos113f f π⎛⎫⋅ ⎪⎝⎭>,故B 正确;()14g g π⎛⎫⎪⎝⎭由<,即()cos 1cos144f f <ππ⎛⎫ ⎪⎝⎭,即()1cos124f f π⎛⎫⎪⎝⎭<,故C 正确;由64g g ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭<,即cos cos 6644f fππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,即2624f f <ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,即264f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<, 故错误的是D .故选D .【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有()f x ,也含有其导数()f x '的不等式,根据不等式的结构,构造出相应的函数.如已知是()()0xf x f x -<',可构造()()f x g x x=,可得()()()20xf x f x g x x'-='<.10.C解析:C 【分析】通过令3()()g x x f x =可知问题转化为解不等式()0>g x ,利用当0x >时32()3()0x f x x f x '+>及奇函数与偶函数的积函数仍为奇函数可知()g x 在(,0)-∞递减、在(0,)+∞上单调递增,进而可得结论.【详解】解:令3()()g x x f x =,则问题转化为解不等式()0>g x , 当0x >时,()3()0xf x f x '+>,∴当0x >时,233()()0x f x x f x +'>,∴当0x >时()0g x '>,即函数()g x 在(0,)+∞上单调递增,又(2)0f -=,()()f x x R ∈是奇函数,()()()()()()()333g x x f x x f x x f x g x ∴-=--=--== 故()g x 为偶函数,f ∴(2)0=,g (2)0=,且()g x 在(,0)-∞上单调递减, ∴当0x >时,()0>g x 的解集为(2,)+∞,当0x <时,()0(2)g x g >=-的解集为(2,0)-,∴使得f ()0x >成立的x 的取值范围是(2-,0)(2⋃,)+∞,故选C . 【点睛】本题考查利用导数研究函数的单调性,考查运算求解能力,构造新函数是解决本题的关键,注意解题方法的积累,属于中档题.11.D解析:D 【分析】表示出函数()g x ,分0k =,k 0<及0k =讨论,易知当0k =及k 0<时均不合题意,而观察解析式可知,问题可化为22()(0)kg x x k x x=+->有且仅有两个不同的零点,故利用导数研究函数()g x 在(0,)+∞上的最小值小于0即可. 【详解】解:依题意,222,0()4,02,0kx k x x g x k x k x k x x ⎧+->⎪⎪=-=⎨⎪⎪--<⎩, 当0k =时,原函数有且只有一个零点,不合题意,故0k ≠;观察解析式,易知函数()g x 为偶函数,则函数()g x 有且仅有四个不同的零点,可转化为22()(0)kg x x k x x=+->有且仅有两个不同的零点, 当k 0<时,函数()g x 在(0,)+∞上递增,最多一个零点,不合题意;当0k >时,322()()x k g x x -'=,0x >,令()0g x '>,解得13x k >,令()0g x '<,解得130x k <<, 故函数()g x 在13(0,)k 上递减,在13(k ,)+∞上递增, 要使()g x 在(0,)+∞上有且仅有两个不同的零点, 则1233132()()0min k g x g k k k k==+-<,解得27k >.故选:D . 【点睛】本题考查函数零点与方程根的关系以及利用导数研究函数的单调性,最值等,考查分类讨论思想以及运算求解能力,属于中档题.12.B解析:B 【分析】运用指数函数的单调性,即可判断(1);由二次函数的单调性,即可判断(2); 通过函数2()2x h x x ax =+-,求出导数判断单调性,即可判断(3); 通过函数2()2x h x x ax =++,求出导数判断单调性,即可判断(4).解:对于(1),由于21>,由指数函数的单调性可得()f x 在R 上递增,即有0m >,则(1)正确;对于(2),由二次函数的单调性可得()g x 在(,)2a -∞-递减,在(2a-,)+∞递增,则0n >不恒成立,则(2)错误;对于(3),由m n =,可得1212()()()()f x f x g x g x -=-,即为1122()()()()g x f x g x f x -=-,考查函数2()2x h x x ax =+-,()222x h x x a ln '=+-, 当a →-∞,()h x '小于0,()h x 单调递减,则(3)错误;对于(4),由m n =-,可得1212()()[()()]f x f x g x g x -=--,考查函数2()2x h x x ax =++,()222x h x x a ln '=++,对于任意的a ,()h x '不恒大于0或小于0,则(4)正确. 故选:B . 【点睛】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键,属于中档题.二、填空题13.6【分析】求导函数令恒成立变量分离转化为求新函数的最大值【详解】可得令若函数在上单调递减即当时单调增所以函数在上单调递增所以故答案为:6【点睛】关键点睛:变量分离转化为不等式恒成立问题进而求又一函数解析:6 【分析】求导函数()f x ',令()0f x '≤恒成立,变量分离转化为求新函数的最大值. 【详解】21()23mf x x x x'=+--,()0f x '≤,可得3223m x x x ≥-+, 令()3223g x x x x =-+,若函数()f x 在[1,2]上单调递减,即()max m g x ≥ 当[1,2]x ∈时,()2661g x x x '=-+单调增,()()266110g x x x g ''=-+≥>,所以函数()g x 在[1,2]上单调递增()()max 26g x g ==,所以6m ≥.故答案为:6关键点睛:变量分离,转化为不等式恒成立问题,进而求又一函数的最值.14.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率,因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立,设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭.【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.15.【分析】由函数在区间上单调递增即在上恒成立即在上恒成立设利用导数求得的单调性与最小值即可求解【详解】由题意函数则因为函数在区间上单调递增即在上恒成立即在上恒成立设则所以当时所以为单调递增函数所以函数 解析:a e ≤【分析】由函数()f x 在区间[]1,4上单调递增,即()0xaf x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,利用导数求得()g x 的单调性与最小值,即可求解. 【详解】由题意,函数()2xf x e alnx =-+,则()xa f x e x '=-, 因为函数()f x 在区间[]1,4上单调递增,即()0xa f x e x'=-≥在[]1,4上恒成立,即x a xe ≤在[]1,4上恒成立,设()xg x xe =,则()(1)x x xe xe e g x x ='=++,所以当[]1,4x ∈时,()(1)0xg x e x '=+≥,所以()g x 为单调递增函数,所以函数()xg x xe =的最小值为()1g e =,所以a e ≤.【点睛】本题主要考查了利用函数的单调性求参数问题,其中解答中把函数的转化为不等式的恒成立问题,利用导数求得新函数的单调性与最值是解答的关键,着重考查了推理与运算能力,属于基础题.16.【分析】设正项等比数列的公比为由等比数列前n 项和公式结合等差数列的性质可得由等比数列的性质可得进而可得令结合导数即可得的最大值即可得解【详解】设正项等比数列的公比为因为成等差数列当时不合题意;当时即解析:3-【分析】设正项等比数列{}n a 的公比为q ,由等比数列前n 项和公式结合等差数列的性质可得()12311qa q -=-,由等比数列的性质可得932663S S S S q -=,进而可得()393233611q q S S S q --=+,令30t q =>,()()11t tt t f -=+,结合导数即可得()f t 的最大值,即可得解.【详解】设正项等比数列{}n a 的公比为q ,0q >,因为361,,S S 成等差数列,当1q =时,362S S =,不合题意; 当1q ≠时,3621S S =+即()()3611112111a q a q qq=----+⋅,化简得()12311qaq -=-,又()33465139698qS S a a a q a a a S =++⋅⋅⋅+=++⋅⋅⋅+=-,所以()()()()()3932236666612333333611111111q q S S S q q S S S q q q q q a qq q q---=====-+-⋅---, 设30t q =>,()()11t tt t f -=+,则()()()()()()22221212111t t t t t t f t t t -+----+'==++, 令()0f t '=可得110t =<,210t =>, 所以()f t在()1上单调递增,在)1,+∞上单调递减,所以())max1213f t f ⎡⎤===-⎣⎦所以9326S S S -的最大值为3-.故答案为:3-. 【点睛】本题考查了等比数列、等差数列的综合应用,考查了换元法及利用导数求函数最值的应用,属于中档题.17.【分析】转化条件得设求导后求出函数的最小值令即可得解【详解】由题意得由于时故设则由于所以当时单调递减;当时单调递增于是所以即故实数的取值范围是故答案为:【点睛】本题考查了利用导数解决不等式恒成立问题 解析:(]0,e【分析】转化条件得()min 0f x '≥,设()()g x f x '=,求导后求出函数()g x 的最小值()min g x ,令()min 0g x ≥即可得解. 【详解】由题意得()2ln 2x f x a x '=-.由于0x >时,()0f x '≥,故()min 0f x '≥.设()()g x f x '=,则()(2x x x a g x xx+-'==.由于0x >,所以当(x ∈时,()0g x '<,()g x 单调递减;当)x ∈+∞时,()0g x '>,()g x 单调递增.于是()()()min min 1ln 022a af xg x ga a '===-=-≥, 所以ln 1a ≤即0a e <≤,故实数a 的取值范围是(]0,e . 故答案为:(]0,e 【点睛】本题考查了利用导数解决不等式恒成立问题,考查了推理能力,属于中档题.18.【分析】由条件转化为换元令由导数确定函数的值域即可求解【详解】设且设那么恒成立所以是单调递减函数当时当时函数单调递增当函数单调递减所以在时取得最大值即解得:故答案为:【点睛】本题主要考查了利用导数研 解析:(),0-∞【分析】 由条件转化为11ln y y m x x ⎛⎫=-⋅ ⎪⎝⎭,换元0yt x=>,令()()1ln g t t t =-,由导数确定函数的值域即可求解. 【详解】()()ln ln x m x y y x =--,()()ln ln 11ln x y y x y y m x x x--⎛⎫==-⋅ ⎪⎝⎭ 设0yt x=>且1t ≠, 设()()1ln g t t t =-,那么()()11ln 1ln 1g t t t t t t'=-+-⋅=-+-,()221110t g t t t t+''=--=-<恒成立,所以()g t '是单调递减函数,当1t =时,()10g '=,当()0,1t ∈时,()0g t '>,函数单调递增, 当()1,t ∈+∞,()0g t '<,函数单调递减, 所以()g t 在1t =时,取得最大值,()10g =,即10m<, 解得:0m <,故答案为:(),0-∞ 【点睛】本题主要考查了利用导数研究函数的单调性、最值,考查了变形运算能力,属于中档题.19.【分析】设代入解析式得到两个方程联立可得让取值域即可【详解】设则所以联立可得即对于有解令由可得:;由可得:所以在单调递减在上单调递增所以所以值域为即可得的取值范围为故答案为:【点睛】本题主要考查了利解析:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦【分析】设()00,Q x y 、()00,P x y -代入解析式,得到两个方程联立可得2008ln 2a x x =-+,2000()8ln 2h x x x =-+,1,x e e ⎡⎤∈⎢⎥⎣⎦,让a 取0()h x 值域即可.【详解】设()00,Q x y 、则()00,P x y -所以2002y x =--,008ln y a x -=+,联立可得2008ln 2a x x =-+ 即2008ln 2a x x =-+对于1,x e e⎡⎤∈⎢⎥⎣⎦有解,令2000()8ln 2h x x x =-+,200000288()2x h x x x x -'=-=,由0()0h x '>可得:2x e <<;由0()0h x '<可得:12x e<<, 所以0()h x 在1,2e⎡⎤⎢⎥⎣⎦单调递减,在[]2,e 上单调递增,20min ()(2)28ln 2268ln 2h x h ==-+=-,2211118ln 210h e e e e ⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,()()228ln 26h e e e e =-+=-,所以0max 21()10h x e=+, 所以0()h x 值域为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦, 即可得a 的取值范围为2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦,故答案为:2168ln 2,10e ⎡⎤-+⎢⎥⎣⎦. 【点睛】本题主要考查了利用导数解决存在性问题,涉及求函数的值域,属于中档题.20.(或)【分析】令分离常数构造函数利用导数研究的单调性和极值结合与有一个交点求得的取值范围【详解】解:方程可化为令有当时;当或时所以函数的增区间为减区间为可得处取得极小值0处取得极大值画出的图象和直线解析:24a e >(或24(,)e +∞) 【分析】令()0f x = 分离常数2x x a e=,构造函数2()x x g x e =,利用导数研究()g x 的单调性和极值,结合y a = 与()g x 有一个交点,求得a 的取值范围.【详解】解:方程()0f x = 可化为2x x a e=,令2()x x g x e =,有(2)()xx x g x e -'=, 当02x <<时,()0g x '>;当0x <或2x >时,()0g x '<, 所以函数()g x 的增区间为(0,2),减区间为(,0)-∞,(2,)+∞, 可得0x = 处()g x 取得极小值 0,2x = 处取得极大值24e , 画出()y g x = 的图象和直线y a =,可得当24a e >时,()y g x = 和y a = 的图象有 1 个交点.故答案为:24,e ⎛⎫+∞ ⎪⎝⎭. 【点睛】本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.三、解答题21.(1)()23x f x e x +=;(2)(3,3e ⎤-∞⎦.【分析】(1)求得()f x ',利用()03f '=求出m 的值,即可得出函数()f x 的解析式; (2)分2x =、2x >两种情况讨论,在2x =时可得出a R ∈;在2x >时,由参变量分离法得出32x e a x ≤-,利用导数求出函数()32x e h x x =-在区间()2,+∞上的最小值,综合可得出实数a 的取值范围. 【详解】(1)()()23x f x m e x =-+,()()32x f x m e x '∴=-+,则()033f m '=-=,解得6m =,因此,()23xf x e x +=;(2)①当2x =时,则()()223xf x e x xg x =+≥=成立,此时a R ∈;②当2x >时,由题意得32xe a x ≤-恒成立,令()32xe h x x =-,其中2x >,得()min a h x ≤,以下只需求()min h x .()()()2332x e x h x x -'=-,当23x <<时,()0h x '<,()h x 单调递减;当3x >时,()0h x '>,()h x 单调递增. 所以()()3min 33h x h e ==,所以33a e ≤.综上所述,实数a 的取值范围是(3,3e ⎤-∞⎦.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.22.(1)()()2102V f x x x ==-⋅,()0,5x ∈;(2)小正方形的边长为53cm 时,作品的体积最大,最大体积是200027cm 3. 【分析】(1)根据长方体的体积公式可得答案; (2)利用导数求()f x 单调区间及极值可得答案. 【详解】(1)由题意可得()()2102V f x x x ==-⋅,()0,5x ∈.(2)()()()()24320254355f x x x x x '=-+=--,令()0f x '=得53x =,5x =,∴53x =时,()f x 的最大值为52000327f ⎛⎫= ⎪⎝⎭,截去的小正方形的边长为53cm 时,作品的体积最大,最大体积是()3200027cm . 【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性. 23.(1)11ln 2,022⎡⎫-+⎪⎢⎣⎭;(2)证明见解析. 【分析】(1)方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦上有两个实数解,等价于函数()f x 在区间1,12⎡⎤-⎢⎥⎣⎦上的图像与直线y t =有两个交点,所以利用导数求出()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,再比较出(1)f 和12f ⎛⎫ ⎪⎝⎭的大小即可得答案; (2)由0m n >>,要证(1)(1)n mm n +<+,只需证ln(1)ln(1)n m m n +<+,只需证ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x +=>,然后利用导数证明()g x 是减函数即可 【详解】解:(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当102x -≤<时,()()0,f x f x '>单调递增, 当01x <≤时,()()0,f x f x '<单调递减, 则()f x 在1,02⎡⎤-⎢⎥⎣⎦上单调递增,在(]0,1上单调递减,又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, 135(1)()ln 20,222∴--=-<f f 1(1)2f f ⎛⎫∴< ⎪⎝⎭∴ 当11ln 2,022⎡⎫∈-+⎪⎢⎣⎭t 时,方程()f x t =有两解. (2)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+,只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n ++<. 设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)xx x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减, 又()00=f ,∴ (1)ln(1)0x x x -++<, 即()g x 是减函数,而m n >.∴ ()()g m g n <,故原不等式成立. 【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,考查数学转化思想,解题的关键是把(1)(1)n mm n +<+,转化为ln(1)ln(1)m n m n++<,再构造函数,再利用导数判断此函数为减函数即可,属于中档题24.(1)单调递减区间为(),0-∞,单调递增区间为()0,+∞,最小值为1-,无最大值;(2)①证明见解析;②31627e ⎛⎤⎥⎝⎦,.【分析】(1)对()f x 求导,由()0f x '>可得单调递增区间,由()0f x '<可得单调递减区间,比较极值即可得最值; 【详解】(1)()f x 的定义域为R()()()()()()()2322222446262424646x x xx e x x x e x x e f x xx xx ⎡⎤-++--+⎣⎦==++++'当(),0x ∈-∞时,()0f x '<,()f x 在(),0-∞单调递减, 当()0,+x ∈∞时,()0f x '>,()f x 在()0,+∞单调递增, 所以()f x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞,()()min 01f x f ==-,()f x 最小值为()()min 01f x f ==-,无最大值.(2)①()()()()()()()22244242646464626=22462x x x e a x x x x x x x e g a f x a x x x x x x -+++++++⎡⎤-==++⎡⎤⎢⎥⎣⎦++⎣⎦'令()()x f x a ϕ=+,()0,+x ∈∞ ,由(1)知,()x ϕ单调递增,()010a ϕ=-<,()30a ϕ=≥ 所以存在唯一的(]00,3x ∈,使得()00x ϕ=,即()0020026046xx e a x x -+=++当00x x <<时,()0x ϕ<,()g x 单调递减; 当0x x >时,()0x ϕ>,()g x 单调递增 故()()()00200min 032000222246x x e a x x e g x g x x x x -++===++, 所以()g x 有最小值得证②令()020046x e h a x x =++,()00,3x ∈,()()22222204646xxx x e ex x x x '++⎡⎤=>⎢⎥++⎣⎦++,所以()h a 单增, 所以,由()00,3x ∈,得()0033222001= < =6040646343627x e e e e h a x x =≤+⨯++++⨯+因为246xe x x ++单调递增,对任意31627e λ⎛⎤∈ ⎥⎝⎦,,存在唯一的()00,3x ∈,()[)00,1a f x =-∈,使得()h a λ=,所以()h a 的值域为31627e ⎛⎤ ⎥⎝⎦,综上:当[)0, 1a ∈,函数()g x 最小值为()h a ,函数()h a 的值域为31627e ⎛⎤⎥⎝⎦,【点睛】利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.25.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 26.(1)当01x <<时,()f x 单调递减;当1x e <≤时,()f x 单调递增;最小值1;(2)证明见解析;(3)存在,2a e =. 【分析】(1)根据f (x )=x -ln x ,求导得11()1x f x x x'-=-=,分别令f ′(x )<0,f ′(x )>0求解单调性和极值.(2)要证 f (x )>g (x )+12,即证[f (x )]min -[g (x )]max >12,由(1)知f (x )在(0,e ]上的最小值为1,再利用导数法求得[g (x )]max 即可.(3)假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e ])有最小值3,求导11()ax f x a x x'-=-=,分0<1a <e ,1a ≥e 讨论求解.【详解】(1)因为f (x )=x -ln x , 所以11()1x f x x x'-=-=, 所以当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x ≤e 时,f ′(x )>0时,此时f (x )单调递增. ∴f (x )的极小值为f (1)=1. (2)∵f (x )的极小值为1,∴f (x )在(0,e ]上的最小值为1,即[f (x )]min =1. 又g ′(x )=21ln x x -, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g(x)]max=g(e)=112e<,∴[f(x)]min-[g(x)]max>12,∴在(1)的条件下,f(x)>g(x)+12.(3)假设存在正实数a,使f(x)=ax-ln x(x∈(0,e])有最小值3,则11 ()axf x ax x'-=-=.①当0<1a<e时,f(x)在(0,1a)上单调递减,在(1a,e]上单调递增,[f(x)]min=f(1a)=1+ln a=3,a=e2,满足条件;②当1a≥e时,f(x)在(0,e]上单调递减,[f(x)]min=f(e)=a e-1=3,a=4e(舍去),所以,此时f(x)无最小值.综上,存在实数a=e2,使得当x∈(0,e]时f(x)有最小值3.【点睛】方法点睛:不等式问题.(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修1-1《导数的计
算》练习卷
知识点:
1、基本初等函数的导数公式:
()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=;
()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-;
()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;
()7若()log a f x x =,则()1ln f x x a '=
;()8若()ln f x x =,则()1f x x
'=. 2、导数运算法则: ()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;
()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦
; ()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦
. 3、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =.
复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是
x u x y y u '''=⋅.
同步练习:
1、已知()2f x x =,则()3f '等于( )
A .0
B .2x
C .6
D .9
2、()0f x =的导数是( )
A .0
B .1
C .不存在
D .不确定
3
、y = )
A .23x
B .213x
C .12- D
4、曲线n y x =在2x =处的导数是12,则n 等于( )
A .1
B .2
C .3
D .4
5、若()f x =()1f '等于( )
A .0
B .13-
C .3
D .13
6、2y x =的斜率等于2的切线方程是( )
A .210x y -+=
B .210x y -+=或210x y --=
C .210x y --=
D .20x y -=
7、在曲线2y x =上的切线的倾斜角为4
π的点是( ) A .()0,0 B .()2,4 C .11,416⎛⎫ ⎪⎝⎭ D .11,24⎛⎫ ⎪⎝⎭
8、已知()53sin f x x x -=+,则()f x '等于( )
A .653cos x x ---
B .63cos x x -+
C .653cos x x --+
D .63cos x x --
9、函数())0f x x =>的导数是( )
A
B .
C
D 10、函数2cos y x -=的导数是( )
A .2cos sin x x -
B .4sin 2cos x x -
C .22cos x -
D .22sin x -
11、设()sin y f x =是可导函数,则x y '等于( )
A .()sin f x '
B .()sin cos f x x '⋅
C .()sin sin f x x '⋅
D .()cos cos f x x '⋅
12、函数()2
2423y x x =-+的导数是( ) A .()2823x x -+ B .()2
216x -+ C .()()282361x x x -+- D .()()242361x x x -+-
13、22sin 35cos y x x =+的导数是( )
A .22sin35sin x x -
B .2sin 610sin x x x -
C .23sin 610sin x x x +
D .23sin 610sin x x x -
14、曲线34y x x =-在点()1,3--处的切线方程是( )
A .74y x =+
B .72y x =+
C .4y x =-
D .2y x =-
15、设()0sin f x x =,()()10f x f x '=,()()21f x f x '=, ,()()1n n f x f x +'=,n ∈N ,则()2005f x =( )
A .sin x
B .sin x -
C .cos x
D .cos x -
16、点P 在曲线323
y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π⎡⎤⎢⎥⎣⎦ B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .3,4ππ⎡⎫⎪⎢⎣⎭ D .3,24ππ⎛⎤ ⎥⎝⎦
17、已知a 为实数,()()()24f x x x a =--,且()10f '-=,则a =___________.
18、正弦曲线sin y x =上切线斜率等于12
的点是___________. 19、函数lg y x =在点()1,0处的切线方程是__________________________.
20、半径为r 的圆的面积()2S r r π=,周长()2C r r π=,若将r 看成()0,+∞上的变量,则()22r r ππ'=①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看成()0,+∞上的变量,请你写出类似于①的式子:______________________②,②式可用语言叙述为____________________
________________________.
21、函数()()2
11y x x =+-在1x =处的导数等于___________.
22、函数sin cos 2cos x x y x -=在点03x π=处的导数等于______________. 23、函数x y x e =-上某点的切线平行于x 轴,则这点的坐标为__________.
24、在曲线323610y x x x =++-的切线中,斜率最小的切线方程是____________.
25、曲线21y x =-与31y x =+在0x x =处的切线互相垂直,则0x 等于__________.
26、求下列函数的导数.
()113y x =;()2y =()331y x
=;()4y =()5()()22332y x x =+-; ()62311y x x x x ⎛⎫=++ ⎪⎝⎭
;()72sin x y x =.
27、求曲线
y =在点18,4⎛⎫ ⎪⎝⎭处的切线方程.。

相关文档
最新文档