第三节 三角函数的图象与性质
三角函数图像及性质的总结
第三节三角函数的图像与性质复习要求:1,理解正弦函数、余弦函数、正切函数的图像和性质2,理解周期函数、最小正周期的概念3,学会用五点法画图知识点:1.正弦函数、余弦函数、正切函数、余切函数的图像和性质3.函数B x A y ++=)sin(ϕω),(其中00>>ωA最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ;其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。
4.由y =sin x 的图象变换出y =sin(ωx +ϕ)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。
利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。
途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(ϕ>0)或向右(ϕ<0=平移|ϕ|个单位,再将图象上各点的横坐标变为原来的ω1倍(ω>0),便得y =sin(ωx +ϕ)的图象。
途径二:先周期变换(伸缩变换)再平移变换。
先将y =sin x 的图象上各点的横坐标变为原来的ω1倍(ω>0),再沿x 轴向左(ϕ>0)或向右(ϕ<0=平移ωϕ||个单位,便得y =sin(ωx +ϕ)的图象。
5.由y =A sin(ωx +ϕ)的图象求其函数式:给出图象确定解析式y =A sin (ωx +ϕ)的题型,有时从寻找“五点”中的第一零点(-ωϕ,0)作为突破口,要从图象的升降情况找准..第一个零点的位置。
6.对称轴与对称中心: sin y x =的对称轴为2x k ππ=+,对称中心为(,0) k k Z π∈; cos y x =的对称轴为x k π=,对称中心为2(,0)k ππ+; 对于sin()y A x ωφ=+和cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系。
导学案019第三节 三角函数的图象和性质
三角函数的图象和性质考纲要求1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数的性质(如单调性、最大值和最小值以及与x轴交点等),理解正切函数的单调性.考情分析1.三角函数的值域、最值、单调性、周期性等性质是高考考查的重点.2.主要以选择题、填空题的形式考查,也常与三角恒等变换相结合在解答题中考查. 教学过程:基础梳理双基自测1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是 ( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π4,x ∈RB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠-π4,x ∈R C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+π4,k ∈Z ,x ∈R D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠k π+3π4,k ∈Z ,x ∈R 2.函数f (x )=2cos⎝ ⎛⎭⎪⎫x +5π2是( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为2π的非奇非偶函数 D .最小正周期为π的偶函数 3.函数y =|sin x |的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫-π4,π4B.⎝ ⎛⎭⎪⎫π4,3π4C.⎝ ⎛⎭⎪⎫π,3π2D.⎝⎛⎭⎪⎫3π2,2π 4.比较大小,sin ⎝⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10. 5.(教材习题改编)y =2-3cos ⎝⎛⎭⎪⎫x +π4的最大值为________.此时x =________. 典例分析考点一:三角函数的定义域和值域例1:(2012·珠海模拟)函数y =lg(2sin x -1)+1-2cos x的定义域为________ .[例2] (2010·江西高考)函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54]变式1:(2012·嘉兴模拟)函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3⎝ ⎛⎭⎪⎫-π6<x <π6的值域为________.方法总结:1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法 (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =Asin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函 数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.考点二:三角函数的单调性[例3] (2011·新课标全国卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+cos ⎝⎛⎭⎪⎫2x +π4,则( )A .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π4对称B .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递增,其图象关于直线x =π2对称C .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π4对称D .y =f (x )在⎝⎛⎭⎪⎫0,π2单调递减,其图象关于直线x =π2对称变式2.(2012·金华模拟)若函数f (x )=(1+tan x )cos x,0≤x <π2,则f (x )的最大、最小值分别为 ( ) A.2和1 B .2和1 C .2和 2 D .2和 3方法总结:求形如y =Asin(ωx +φ)或y =Acos(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y =sin x(x ∈R),y =cos x(x ∈R)的单调区间对应的不等式方向相同(反).考点三:三角函数的周期性和奇偶性[例4] (2010·湖北高考)函数f (x )=3sin ⎝ ⎛⎭⎪⎫x 2-π4,x ∈R 的最小正周期为 ( )A.π2B .πC .2πD .4π[例5] (2010·陕西高考)函数f(x)=2sin xcos x 是 ( ) A .最小正周期为2π的奇函数 B .最小正周期为2π的偶函数 C .最小正周期为π的奇函数 D .最小正周期为π的偶函数变式3.(2012·义乌模拟)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2B .y =cos ⎝ ⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2变式4.(2012·黄冈模拟)我们把正切函数在整个定义域内的图象看作一组“平行曲线”,而“平行曲线”具有性质:任意两条平行直线与两条相邻的“平行曲线”相交,被截得的线段相等.已知函数f (x )=tan(ωx +π3)(ω>0)图象中的两条相邻“平行曲线”与直线y =2 012相 交于A ,B 两点,且|AB |=3π,则f (π)=( ) A .2+ 3 B .- 3 C. 3 D.3- 2方法总结:1.判断函数的奇偶性,首先要看函数的定义域是否关于原点对称,若定义域关于原点对称,再判断f(-x)与f(x)的关系,进而确定其奇偶性.2.求三角函数周期的方法: (1)利用周期函数的定义.(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|. (3)利用图象.[考题范例](2011·北京高考)已知函数f (x )=4cos x sin ⎝⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.[规范解题](1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1= 3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝⎛⎭⎪⎫2x +π6, (5分) 所以f (x )的最小正周期为π.(6分) (2)因为-π6≤x ≤π4, 所以-π6≤2x +π6≤2π3. (8分) 于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; (10分) 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1. (12分)一种方法在由图象求三角函数解析式时,若最大值为M ,最小值为m ,则A =M -m 2,k =M +m 2,ω由周期T 确定,即由2πω=T 求出,φ由特殊点确定.一个区别由y =sin x 的图象变换到y =A sin (ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 两个注意作正弦型函数y =A sin(ωx +φ)的图象时应注意: (1)首先要确定函数的定义域;(2)对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就可根据周期性作出整个函数的图象.本节检测1.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数 D .最小正周期为π2的偶函数 2.函数y =2sin x -1的定义域为( )A.⎣⎢⎡⎦⎥⎤π6,5π6B.⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z)C.⎝ ⎛⎭⎪⎫2k π+π6,2k π+5π6(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π+π6,k π+5π6(k ∈Z)3.若函数y =2cos ωx 在区间[0,2π3]上递减,且有最小值1,则ω的值可以是( )A .2 B.12 C .3 D.134.(2011·天津高考)已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( ) A .f (x )在区间[-2π,0]上是增函数 B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数5.函数y =1-tan x 的定义域是________. 6.已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π2上的最大值和最小值.自我反思9.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的图象的一条对称轴是直线x =π8. (1)求φ;(2)求函数y =f (x )的单调递增区间.10.已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.。
三角函数图像与性质
三角函数图像与性质
三角函数是基本的初等函数之一,它以角度为自变量,以任意角度的终边与单位圆或其比值的交点坐标为因变量。
接下来看看常见三角函数的图像和性质。
三角函数的图像
三角函数的性质
1.正弦函数
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA,即sinA=∠A的对边/斜边。
正弦值在[2kπ-π/2,2kπ+π/2](k∈Z)随角度增大(减小)而增大(减小),在[2kπ+π/2,2kπ+3π/2](k∈Z)随角度增大(减小)而减小(增大)。
图像:波形曲线
值域:[-1,1]
定义域:R
2.余弦函数
在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为
cosa=AC/AB。
余弦函数:f(x)=cosx(x∈R)。
余弦值在[2kπ-π,2kπ](k∈Z)随角度增大(减小)而增大(减小),在[2kπ,2kπ+π](k∈Z)随角度增大(减小)而减小(增大)。
图像:波形曲线
值域:[-1,1]
定义域:R
3.正切函数
在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是
tanB=b/a,即tanB=AC/BC。
正切值在[kπ-π/2,kπ+π/2](k∈Z)随角度增大(减小)而增大(减小)。
图像:右图平面直角坐标系反映
定义域:{x|x≠(π/2)+kπ,k∈Z}
值域:实数集R。
初三三角函数的图像与性质
初三三角函数的图像与性质三角函数是初中数学中重要的概念之一,它在数学、物理、工程等领域中有广泛的应用。
理解三角函数的图像与性质对于解题和应用都具有重要意义。
本文将从图像的周期性、对称性以及性质的变化等方面进行探讨。
1. 正弦函数的图像与性质正弦函数表示为y = sinx,其中x为自变量,y为函数值。
正弦函数的图像是一条连续的波浪线,其特点如下:1.1 周期性正弦函数具有周期性,即在一个周期内,函数值会以波浪形态无限次重复。
它的一个周期为2π,所以正弦函数的图像在0到2π之间会完成一个完整的波浪。
1.2 对称性正弦函数具有轴对称性,即y = sinx在关于原点对称。
这意味着当自变量x的值变为负数时,函数值不变,即sin(-x) = -sinx。
1.3 取值范围正弦函数的取值范围在-1到1之间,即-1 ≤ sinx ≤ 1。
当自变量x为0、π、2π等整数倍的π时,正弦函数取得最大值1或最小值-1。
2. 余弦函数的图像与性质余弦函数表示为y = cosx,其图像与正弦函数有相似之处,但也有一些不同的特点:2.1 周期性余弦函数同样具有周期性,其一个周期也为2π,因此在0到2π之间会完成一个波浪的周期。
与正弦函数不同的是,余弦函数在自变量取得奇数个π倍数时,图像会经过坐标轴。
2.2 对称性余弦函数也具有轴对称性,即y = cosx在关于y轴对称。
这意味着当自变量x的值变为负数时,函数值仍然相等,即cos(-x) = cosx。
2.3 取值范围余弦函数的取值范围也在-1到1之间,即-1 ≤ cosx ≤ 1。
当自变量x 为0、π/2、π等奇数个π倍数时,余弦函数取得最大值1或最小值-1。
3. 正切函数的图像与性质正切函数表示为y = tanx,其图像和性质与正弦函数和余弦函数有明显的不同:3.1 周期性正切函数具有周期性,其一个周期为π,即tan(x+π) = tanx。
在0到π之间,正切函数会呈现一种连续且无穷增大或无穷减小的趋势。
三角函数的图像与性质
三角函数的图像与性质三角函数是数学中重要的概念之一,它们不仅在几何学和三角学中起着重要作用,还在物理学、工程学等领域有广泛的应用。
本文将探讨三角函数的图像和性质,帮助读者更好地理解和应用三角函数。
一、正弦函数的图像与性质正弦函数是最基本的三角函数之一,记为y = sin(x)。
它的图像是一条连续的曲线,在坐标系中呈现周期性变化。
正弦函数的性质如下:1. 周期性:正弦函数的周期是2π,即在一个周期内,y = sin(x)的值在0到2π之间循环变化。
2. 奇偶性:正弦函数是奇函数,即满足y = sin(-x) = -sin(x)。
这意味着正弦函数在原点对称。
3. 取值范围:正弦函数的值域在[-1, 1]之间,即-1 ≤ sin(x) ≤ 1。
当x = 0时,sin(x) = 0,当x = π/2时,sin(x) = 1,当x = -π/2时,sin(x) = -1。
4. 单调性:在一个周期内,正弦函数先递增后递减。
当x = π/2 +2kπ(k为整数)时,取得极大值1;当x = -π/2 + 2kπ(k为整数)时,取得极小值-1。
二、余弦函数的图像与性质余弦函数是与正弦函数密切相关的三角函数,记为y = cos(x)。
它的图像也是一条连续的曲线,具有周期性变化。
余弦函数的性质如下:1. 周期性:余弦函数的周期同样为2π,即在一个周期内,y = cos(x)的值在0到2π之间循环变化。
2. 奇偶性:余弦函数是偶函数,即满足y = cos(-x) = cos(x)。
这意味着余弦函数关于y轴对称。
3. 取值范围:余弦函数的值域同样在[-1, 1]之间,即-1 ≤ cos(x) ≤ 1。
当x = 0时,cos(x) = 1,当x = π/2时,cos(x) = 0,当x = π时,cos(x) = -1。
4. 单调性:在一个周期内,余弦函数先递减后递增。
当x = 2kπ(k为整数)时,取得极大值1;当x = π + 2kπ(k为整数)时,取得极小值-1。
数学精华课件:三角函数的图象和性质
课堂互动讲练
跟踪训练
5π π π (2)由于区间[- , )的长度为 , 12 12 2 为半个周期. 5π π 又 f(x)在- , 分别取到函数的最 12 12 3 3 3 3 小值 -1,最大值 +1,所以函数 2 2 5π π 3 3 f(x)在区间[-12,12 )上的值域为[ 2 - 3 3 1, 2 +1).
对称性
π 对称轴l: x=kπ+ (k∈Z) 2
对称轴l: x= kπ(k∈Z)
基础知识梳理
正弦函数、余弦函数的对称中心是 正弦函数、余弦函数与x轴的交点,所以 函数y=Asin(ωx+φ)+B的对称中心就是 该函数与x轴的交点,这种说法对吗? 【思考· 提示】 不正确,应是函数y= Asin(ωx+φ)+B与直线y=B的交点.
三基能力强化
2.(2009年高考福建卷改编)函数f(x) =sinxcosx的最小值是________.
1 1 解析:f(x)=sinxcosx=2sin2x≥-2. 1 答案:-2
三基能力强化
3.(2010 年绍兴质检)关于函数 y=1+ cos2x 的图象, 下面说法正确的是________. ①关于 x 轴对称 ②关于原点对称 π π ③关于点( , 0)对称 ④关于直线 x= 对称 4 2
课堂互动讲练
考点二 三角函数的单调性
1.准确记忆三角函数的单调区间是求 复合三角函数单调区间的基础. 2.形如 y=Asin(ωx+φ)(A>0,ω>0)的 函数的单调区间, 基本思路是把 ωx+φ 看作 π π 一 个 整 体 , 由 - 2 + 2kπ≤ωx + φ≤ 2 + π 2kπ(k∈Z)求得函数的增区间, 2+2kπ≤ωx 由 3π +φ≤ 2 +2kπ(k∈Z)求得函数的减区间.
第3节三角函数的图象与性质.pptx
的形式后,方可利用周期 公式来求
考点三 三角函数的性质(多维探究)
考点三 三角函数的性质(多维探究)
考点三 三角函数的性质(多维探究)
命题角度2 三角函数的单调性
x的系数必须变 形为正,不然由
整理得出的结论 看看一样吗?当 然也可以由
易理解 得y=出sin正t与确结论 y=-sint单 调增减区 间对调
考点一 三角函数的定义域Y=anx的图 像考点一 三角函数的定义域
考点一 三角函数的定义域
考点一 三角函数的定义域
考点一 三角函数的定义域
y
y=sin
1x
0
π
y=cos x
x 2π
-1
考点一 三角函数的定义域
考点二 三角函数的值域(最值)
此类题,一般先化为 y=Asin(ωx+φ)+h
第3节三角函数的图象与 性质.pptx
2020/8/16
第3节 三角函数的图象与性质
01 诊断自测
02
考点一
三角函数的 定义域
例1 训 练1
03
考点二
三角函数的值域 (最值)
例2 练2
训
三角函数的性 例3-
04 考点三 质
1例3-2 训
(多维探究) 练例33-
3
诊断自测
1.思考辨析(在括号内打“√”或“×”) (1)余弦函数y=cos x的对称轴是y轴.( ) (2)正切函数y=tan x在定义域内是增函数.( ) (3)已知y=ksin x+1,x∈R,则y的最大值为k 只+解(是14.)(析其y=中si(的)n1|)x一余|是条弦偶.函函数数y=.c(os x的) 对称轴有无穷多条,y轴 (2)正切函数y=tan x在每一个区间(k∈Z)上都是增函 数,但在定义域内不 是单调函数,故不是增函数. (3)当k>0时,ymax=k+1;当k<0时,ymax=-k+1. 答案 (1)× (2)× (3)× (4)√
第3节 三角函数的图象与性质
y A cosx B
最小正周期: T 2
单调区间:
当ω>0时
令: 2k x 2k 解出x的范围得递增区间
令: 2k x 2k 解出x的范围得递减区间
当ω<0时,原函数变为: y A cos x B
令: 2k x 2k 解出x的范围得递减区间
令: 2k x 2k 解出x的范围得递增区间
2
2
当ω<0时,原函数变为: y A sin x B
令: 2k x 2k 解出x的范围得递减区间
2
2
令: 2k x 3 2k 解出x的范围得递增区间
2
2
对称性(最值):
对称轴: 令x = k 解出x得对称轴为直线x=? 2
对称中心: 令x =k 解出x得对称中心为(x,B)
返回
第3节 三角函数的图象与性质
1.用五点法作正弦函数和余弦函数的简图❶
返回
在正弦函数 y=sin x,x∈[0,2π]的图象上,五个关键点是: (0,0),π2,1,(π,0),32π,-1,(2π,0).
在余弦函数 y=cos x,x∈[0,2π]的图象上,五个关键点是: y
(0,1),π2,0,(π,-1),32π,0,(2π,1).1o
3.函数y=lg(sin 2x)+ 9-x2的定义域为_-__3_,__-__π_2_∪___0_,__π2_.
返回
变式训练:
1.函数y
1 tan x
1的定义域为_x_|x≠__π4_+_k_π_,_且_x_≠_π2_+__kπ_,__k∈_Z__。
2.函数 y=lg(2sin x-1)+ cos x-12的定义域为____________.
f 0 1
k 2
三角函数的图像和性质教学课件
图像变化
当角度增加时,余 弦函数的值会减小, 图像会向中心靠拢; 当角度减小时,余 弦函数的值会增加, 图像会向外扩展。
图像周期
余弦函数的图像具 有周期性,周期为 360度。在一个周 期内,图像会重复 出现。
正切函数的图像
图像形状
01 正切函数的图像在直角坐标系中呈现出周期性和无界性,其形状类似于波浪线。
调性。
PART 04
三角函数的应用
在几何学中的应用
三角函数在几何学中有着广泛的应用, 例如在计算角度、长度、面积等方面。
三角函数可以帮助我们理解几何图形的 性质,例如在研究圆、椭圆、抛物线等 方面。
三角函数还可以用于解决一些几何问题, 例如在计算最短路径、最大面积等方面。
在物理学中 的应用
交流电
三角函数的基本性质
周期性
三角函数(如正弦函数和 余弦函数)具有明显的周 期性,这意味着它们的图 像会重复出现。
振幅和相位
振幅和相位是描述三角函 数的重要参数。振幅决定 了图像的最高点和最低点, 而相位决定了图像在垂直 方向上的位置。
奇偶性
三角函数中的正弦函数和 余弦函数具有不同的奇偶 性。正弦函数是奇函数, 而余弦函数是偶函数。
图像变化规律
02 正切函数的图像随着角度的变化而呈现周期性的变化,其变化规律是每隔180度重复一次。
图像与x轴交点
03 正切函数的图像与x轴的交点是无穷多个,且分布不均,主要集中在x轴的两侧。
其他三角函数的图像
正切函数图像在直角坐标系中呈现 出周期性和无界性,是三角函数中 较为特殊的一种。
余切函数图像与正切函数图像互为 反函数,在直角坐标系中呈现出对 称性和周期性。
工程学
在工程学中,三角函数可以用于解决各种实际问题,如结 构工程中的应力分析、机械工程中的振动分析等。
三角函数的图像和性质
当0<A<1时,图像在y轴方向压缩。
02
周期变换
ω表示周期变换的系数,周期T=2π/|ω|。当ω>1时,周期减小,图像
在x轴方向压缩;当0<ω<1时,周期增大,图像在x轴方向拉伸。
03
相位变换
φ表示相位变换的角度,当φ>0时,图像左移;当φ<0时,图像右移。
正弦型曲线应用举例
振动问题
在物理学中,正弦函数常用来描述简谐振动,如弹簧振子 、单摆等。通过正弦函数的振幅、周期和相位等参数,可 以描述振动的幅度、频率和初始状态。
三角函数的图像和性 质
汇报人:XX 2024-01-28
contents
目录
• 三角函数基本概念 • 正弦函数图像与性质 • 余弦函数图像与性质 • 正切函数图像与性质 • 三角函数复合与变换 • 三角函数在解决实际问题中的应用
01
三角函数基本概念
角度与弧度制
角度制
01
将圆周分为360等份,每份称为1度,用度(°)作为单位来度量
角的大小。
弧度制
02
以弧长等于半径所对应的圆心角为1弧度,用符号rad表示,是
国际通用的角度度量单位。
角度与弧度的换算
03
1° = (π/180)rad,1rad = (180/π)°。
三角函数定义及关系
正弦函数
sinθ = y/r,表示单位圆上任意 一点P(x,y)与x轴正方向形成的 角θ的正弦值。
光学
在光的反射、折射等现象中,三角函数可以 帮助计算入射角、折射角等角度问题。
在工程问题中的应用
1 2
建筑设计
在建筑设计中,三角函数可以帮助计算建筑物的 角度、高度、距离等参数,确保设计的准确性和 安全性。
第三节 三角函数的图象与性质
题点(一) 求单调区间
[逐点例析]
[例 1] (1)函数 y=log12cos32π-2x的单调递增区间是 A.kπ-π4,kπ+π4 (k∈Z )
()
B.kπ-π4,kπ (k∈Z )
C.kπ-kπ+π4,kπ+34π (k∈Z )
D.kπ+π4,kπ+34π (k∈Z )
(2)函数 y=|tan x|的单调递增区间为________,单调递减区间为_______.
2.三角函数值域或最值的3种求法 形如y=asin x+k或y=acos x+k的三角函数,直接利用sin
直接法 x,cos x的值域求出 形如y=asin x+bcos x+k的三角函数,化为y=Asin(ωx+φ)+
化一法 k的形式,确定ωx+φ的范围,根据正弦函数单调性写出函数 的值域(最值) 形如y=asin2x+bsin x+k的三角函数,可先设sin x=t,化为 关于t的二次函数求值域(最值);形如y=asin xcos x+b(sin
[解析]
(1)y=log
1 2
cosπ3-2x=log
1 2
(-sin 2x),
由-sin 2x>0 得 sin 2x<0,即 2kπ-π<2x<2kπ,k∈Z ,
即 kπ-π2<x<kπ,k∈Z ,
设 t=-sin 2x,则 y=log 1 t 为减函数, 2
要求
y=log
1 2
cosπ3-2x的递增区间,
二、“基本技能”运用好 1.y=|tan x|·cos x0≤x<32π,x≠π2的图象是
答案:D
()
2.已知函数 f(x)=cosωx+π4 (ω>0)的最小正周期为 π,则 ω=________. 答案:2
高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质
第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。
三角函数的图像与性质
第三节 三角函数的图像与性质[最新考纲] 1.能画出y =sin x ,y =cos x ,y =tan x 的图像,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值、图像与x轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]图像的五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0), ⎛⎭⎪⎫3π2,-1,(2π,0).余弦函数y =cos x ,x ∈[0,2π]图像的五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦函数、余弦函数、正切函数的图像与性质 函数 y =sin x y =cos x y =tan x图像定义域 R R ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z值域[-1,1][-1,1]R1.正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.2.正切曲线相邻两对称中心之间的距离是半个周期.3.对于函数y =Asin(ωx+φ),其对称轴一定经过图像的最高点或最低点,对称中心的横坐标一定是函数的零点.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y =sin x 的图像关于点(k π,0)(k ∈Z )中心对称. ( ) (2)正切函数y =tan x 在定义域内是增函数. ( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1. ( ) (4)y =sin |x |与y =|sin x |都是周期函数.( )二、教材改编1.函数y =tan 2x 的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈ZB.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π2+π8,k ∈ZC.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠k π+π8,k ∈ZD.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π4,k ∈Z2.函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π4的最小正周期是________. 3.y =sin ⎝⎛⎭⎪⎫2x -π4的单调减区间是________.4.y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________. ⊙考点1 三角函数的定义域和值域1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图像来求解.2.求三角函数最值或值域的常用方法(1)直接法:直接利用sin x 和cos x 的值域求解.(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域.(3)换元法:把sin x ,cos x ,sin x cos x 或sin x ±cos x 换成t ,转化为二次函数求解.1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x ≠π6 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12 C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6k ∈Z2.(2019·全国卷Ⅰ)函数f (x )=sin ⎝⎛⎭⎪⎫2x +3π2-3cos x 的最小值为________.3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.4.函数y =sin x -cos x +sin x cos x 的值域为________. 求解三角函数的值域(最值)常见的几种类型(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin 3x +b sin 2x +c sin x +d ,类似于(2)进行换元,然后用导数法求最值. ⊙考点2 三角函数的单调性(1)形如y =A sin(ωx +φ)的函数的单调性问题,一般是将ωx +φ看成一个整体,再结合图像利用y =sin x 的单调性求解.(2)如果函数中自变量的系数为负值,要根据诱导公式把自变量系数化为正值,再确定其单调性.求三角函数的单调性(1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k ∈Z ) (2)(2019·大连模拟)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.根据函数的单调性求参数(1)(2019·西安模拟)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则ω的取值范围是( )A .(0,2]B.⎝ ⎛⎦⎥⎤0,12C.⎣⎢⎡⎦⎥⎤12,34 D.⎣⎢⎡⎦⎥⎤12,54 (2)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[0,a ] 是减函数,则a 的最大值是( )A.π4B.π2C.3π4D .π已知单调区间求参数范围的三种方法 子集法求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解反子集法由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解周期性法由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解1.若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,3上单调递增,在区间⎣⎢⎡⎦⎥⎤3,2上单调递减,则ω=________.2.函数f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3的单调减区间为________.⊙考点3 三角函数的周期性、奇偶性、对称性求解三角函数y =sin(ωx +φ)(ω>0)的周期性、奇偶性、对称性问题,其实质都是根据y =sin x 的对应性质,利用整体代换的思想求解.三角函数的周期性(1)(2019·全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |(2)若函数f (x )=2tan ⎝ ⎛⎭⎪⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.公式莫忘绝对值,对称抓住“心”与“轴” (1)公式法求周期①函数f (x )=A sin(ωx +φ)的周期T =2π|ω|;②函数f (x )=A cos(ωx +φ)的周期T =2π|ω|;③函数f (x )=A tan(ωx +φ)的周期T =π|ω|.(2)对称性求周期①两对称轴距离的最小值等于T2;②两对称中心距离的最小值等于T2;③对称中心到对称轴距离的最小值等于T4.(3)特征点法求周期①两个最大值点之差的最小值等于T ; ②两个最小值点之差的最小值等于T ; ③最大值点与最小值点之差的最小值等于T2.特征点法求周期实质上就是由图像的对称性求周期,因为最值点与函数图像的对称轴相对应.(说明:此处的T 均为最小正周期)三角函数的奇偶性已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3+φ,φ∈(0,π). (1)若f (x )为偶函数,则φ=________; (2)若f (x )为奇函数,则φ=________.若f (x )=A sin(ωx +φ)(A ,ω≠0),则①f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z );②f (x )为奇函数的充要条件是φ=k π(k ∈Z ).三角函数的对称性(1)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为4π,则该函数的图像( )A .关于点⎝ ⎛⎭⎪⎫π3,0对称B .关于点⎝⎛⎭⎪⎫5π3,0对称C .关于直线x =π3对称D .关于直线x =5π3对称(2)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图像关于直线x =π3对称,则φ的值为________.三角函数图像的对称轴和对称中心的求解方法若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称轴,则只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)(ω≠0)图像的对称中心的横坐标,则只需令ωx +φ=k π(k ∈Z ),求x .1.设函数f (x )=cos ⎝⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图像关于直线x =8π3对称C .f (x +π)的一个零点为x =π6D .f (x )在⎝ ⎛⎭⎪⎫π2,π上单调递减 2.(2019·成都模拟)已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且任意x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3成立,则f (x )图像的一个对称中心坐标是( )A.⎝ ⎛⎭⎪⎫-2π3,0 B.⎝ ⎛⎭⎪⎫-π3,0C.⎝ ⎛⎭⎪⎫2π3,0D.⎝⎛⎭⎪⎫5π3,0[过关题组练]1.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2]B .[0,π]C .[π,3π2]D .[3π2,2π]2.当x ∈[0,2π],则y =tan x +-cos x 的定义域为( )A.⎣⎢⎡⎭⎪⎫0,π2B.⎝⎛⎦⎥⎤π2,πC.⎣⎢⎡⎭⎪⎫π,3π2 D .⎝⎛⎦⎥⎤3π2,2π3.函数f (x )=12cos 2x +3sin x cos x .则下列表述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫-π3,-π6上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π6,π3上单调递增C .f (x )在⎝ ⎛⎭⎪⎫-π6,0上单调递减D .f (x )在⎝⎛⎭⎪⎫0,π6上单调递增4.已知函数f (x )=cos 2x +sin 2⎝ ⎛⎭⎪⎫x +π6,则( )A .f (x )的最小正周期为πB .f (x )的最小正周期为2πC .f (x )的最大值为12D .f (x )的最小值为-125. 已知函数f (x )=(x -a )k,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB ) B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )6. (2020·无锡期末)在函数①y =cos|2x |;②y =|cos 2x |;③y =cos ⎝ ⎛⎭⎪⎫2x +π6;④y =tan 2x 中,最小正周期为π的所有函数的序号为 .7. 已知函数f (x )=2sin(ωx -π6)+1(x ∈R )的图象的一条对称轴为x =π,其中ω为常数,且ω∈(1,2),则函数f (x )的最小正周期为 .8. 已知函数f (x )=sin ωx +3cos ωx (x ∈R ),又f (α)=2,f (β)=2,且|α-β|的最小值是π2,则正数ω的值为( )A .1B .2C .3D .49. 已知函数f (x )=2cos 2⎝ ⎛⎭⎪⎫x -π6+2sin ⎝ ⎛⎭⎪⎫x -π4·sin ⎝ ⎛⎭⎪⎫x +π4.求函数f (x )的最小正周期和图象的对称中心.10. 已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. (1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32.(1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.。
三角函数的图象和性质
三角函数定义域、值域的求解策略 (1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图 象来求解. (2)求解三角函数的值域(最值),首先把三角函数化为 y=Asin(ωx+φ)+k 的形式,再求最值(值域),或 用换元法(令 t=sinx,或 t=sinx±cosx)化为关于 t 的二次函数求值域(最值). (3)换元法的应用:把 sinx 或 cosx 看作一个整体,转化为二次函数,求给定区间上的值域(最值)问题.此 时注意所换元的取值范围.
第3讲 三角函数的图象和性质
1.能画出 y=sinx,y=cosx,y=tanx 的图象,了解三角函数的周期性. 2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象 与 x 轴的交点等),理解正切函数在区间-π2,2π内的单调性.
板块一 知识梳理·自主学习
考点 1 周期函数和最小正周期
递增;π 在 2
+2kπ,32π+2kπ]
,k∈Z 上 ,k∈Z 上
在 [(2k-1)π,2kπ] k∈Z 上递增;
,在-π2
+kπ,
在 [2kπ,(2k+1)π],k∈Z 上递增
π2+kπ,
递减
k∈Z 上递减
-xπ2=+π22+kπ2(kkπ∈Z(k)∈时Z),时y,miny=max-=11;x=
[必备知识]
考点 2 正弦函数、余弦函数、正切函数的图象和性质
函数
y=sinx
y=cosx
y=tanx
图象
定义 域
值域
x∈R [-1,1]
x∈R [-1,1]
{ x|x∈R 且 x≠π2+kπ,k∈Z } R
续表 函数
单调性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
栏目索引
(1)求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中ω>0)的函数的单调区间时,要 视“ωx+φ”为一个整体,通过解不等式求解.如果ω<0,那么一定要先借助 诱导公式将ω转化为正数,防止把单调性弄错. (2)求函数的单调区间应遵循简单化原则,将解析式进行简化,并注意复合函 数单调性规律“同增异减”. (3)求三角函数的最小正周期时,一般地,经过恒等变形把三角函数化为“y= Asin(ωx+φ)”或“y=Acos(ωx+φ)”或“y=Atan(ωx+φ)”的形式,再利用周期 公式即可. (4)求含有绝对值的三角函数的单调区间及周期时,通常要画出图象,结合图 象求解.
栏目索引
课标版
第三节
文数
三角函ห้องสมุดไป่ตู้的图象与性质
栏目索引
教材研读
三角函数的图象与性质
函数 性质 定义域 ① R ② R ③ y=sin x y=cos x y=tan x
x x≠kπ+ 2 ,k∈Z
c
图象
④
⑤ [-1,1]
R
值域
[-1,1]
栏目索引
对称性
对称轴:⑥ x=kπ+ 2 (k∈Z) 对称中心: ⑦ (kπ,0)(k∈Z)
D.y=sin x+cos x
答案 B
函数,故选B.
2 x 2 x y=cos =-sin 2x,∴y=cos 是最小正周期为π的奇 2 2 cc
栏目索引
3.函数y=tan 3x的定义域为 ( ) 3 x | x 3 k , k Z x | x k , k Z A. B. 2 6
4
5 ,k∈Z. ≤x≤2kπ+ 解得2kπ+ 4 4 5 , k Z. 所以定义域为 x | 2k x 2k
4
4
4
4
栏目索引
1-2 函数y=sin x-cos x+sin xcos x的值域为
.
答案
1 2,1 2
递减,则ω为何值?
, 上 0, 解析 ∵函数f(x)=sin ωx(ω>0)在区间 上单调递增,在区间 3 3 2 2 3 cc 单调递减,∴T= > ,且 ω = +2kπ( k∈Z),∴0<ω<6,且ω= +6k(k∈Z),∴ω 3 2 ω 3 2 3 ,经检验,满足题意. = 2
4
4
cc
5 由图象可知,在[0,2π]内,当 ≤x≤ 时,sin x-cos x≥0,又正弦、余弦函数
5 的周期是2π,所以原函数的定义域为 , k Z . x | 2k x 2k
4 4
栏目索引
解法二:利用三角函数线,画出满足条件的终边范围(如图中阴影部分所示).
解析 设t=sin x-cos x,则- 2 ≤t≤ 2 ,t2=sin2x+cos2x-2sin xcos x,则sin xcos
1 t2 x = , 2 t2 1 1 ∴y=- +t+ =- (t-1)2+1. 2 2 2
1 当t=1时,ymax=1;当t=- 2 时,ymin=- - 2 .
∴函数的定义域为 x 2 k x
栏目索引
又∵y=3-sin x-2cos2x=3-sin x-2(1-sin2x)
1 7 =2 sin x + , 4 8 1 7 ∴当sin x= 时,ymin= , 4 8 1 当sin x=- 或sin x=1时,ymax=2. 2
栏目索引
, 上单调递减,求ω的取值范围. ω x 2-3 若函数f(x)=sin (0< ω <1) 在 2 4
解析
5 ω 当 π, 2 <x<π时,由0<ω<1得 4 < 4 <ωx+ 4 <ωπ+ 4 <4 2 π+
3 7 (k∈Z); 2 k , 2 k 4 4
3 2 k ,2 k (k∈Z). 单调增区间为
(2)周期T= = .
4
4
| 2 | 2 2 x 2 x 把函数y=tan 变为 y =-tan . 3 3
cc ∵函数在 上是减函数 , ∴排除 B, 故选A. ,
栏目索引
的最大值为 5.函数y=3-2cos x
答案
3 5; +2kπ(k∈Z) 4
4
,此时x=
.
解析 函数y=3-2cos =π+2kπ(k∈Z),即x cc 3+2=5,此时x+ x 的最大值为 4 4
.
7 2 时 , 函数 y =3-sin x -2cos x的最小值是 6 6
,最大值是
答案
x 2 k x 2 k , k Z (1) 3
(2) ,3 3 2
解析
cc sin x 0, 1 cos x 0, (1)要使函数有意义,则有 2
3 2
由2kπ+ ≤x- ≤2kπ+ ,k∈Z,
2 4 3 7 得2kπ+ ≤x≤2kπ+ ,k∈Z; 4 4
cc
由- +2kπ≤x- ≤ +2kπ,k∈Z,
2 4 4 2
+2kπ≤x≤ 3 π+2kπ,k∈Z, 得-
4
栏目索引
故函数y=2sin x 的单调减区间为 4
1 2,1 ∴函数的值域为 . 2
cc
2
栏目索引
三角函数的单调性与周期性
典例2 求下列函数的单调区间及周期.
(1)y=2sin x ;
4 2 x (2)y=tan . 3
解析
(1)周期T=2π.
3 +2kπ(k∈Z). 4
=
栏目索引
考点突破
三角函数的定义域与值域
1 2 cos x 的定义域为 典例1 (1)函数y=lg sin x+
; ;
(2)函数f(x)=3sin 2 x 在区间 0, 2 上的值域为 6
(3)当x∈ ,
栏目索引
sin x cos x 的定义域为 . 1-1 函数y=
答案
5 x | 2 k x 2 k , k Z 4 4
解析
要使函数有意义,必须使sin x-cos x≥0.
解法一:利用图象,在同一坐标系中画出[0,2π]上y=sin x和y=cos x的图象,如 图所示.
所以定义域为 x | 2k
4
x 2k
5 , k Z . 4
解法三:sin x-cos x= 2 sin ≥ 0, 将 x 视为一个整体,由正弦函数y=sin x
x的图象和性质可知2kπ≤x- ≤π+2kπ,k∈Z.
D. x | x
2 x A.y=sin
2 x C.y=sin 2
答案
2 x D.y=cos 2
2 x B.y=cos
A ∵函数的周期为π,∴排除C、D.
4 2
A.
2
)
B.π
C.2π
D.4π
答案 B
2 cc ∵ω=2>0,∴最小正周期T= =π,故选B. ω
2.(2015四川,5,5分)下列函数中,最小正周期为π的奇函数是 ( A.y=sin 2x 2
)
B.y=cos 2x 2
C.y=sin 2x+cos 2x
[2kπ-π,2kπ](k∈Z) ;
;
单调减区间:
[2kπ,2kπ+π](k∈Z)
单调减区间:
kπ- 2 ,kπ+ 2
c
(k∈Z)
2kπ+ 2 ,2kπ+ 2
c 3
(k∈Z)
奇偶性
奇函数
偶函数
奇函数
栏目索引
1.(2014陕西,2,5分)函数f(x)=cos 2 x 的最小正周期是 ( 4
(3) ;2
7 8
栏目索引
sin x 0, 2 k x 2 k , 即 (k∈Z), 1 解得 cos x , 2 k x 2 k 2 3 3
∴2kπ<x≤ +2kπ,k∈Z.
3
2k , k Z . 3 1 5 ,1 , 0, 2 x (2)当x∈ 时 ,2 x ∈ ,sin , ∈ 6 2 6 6 6 2 3 2 x 故3sin ,3 , ∈ 6 2 3 0, ∴函数f(x)在区间 上的值域是 ,3 . 2 2 1 7 ,1 . , (3)∵x∈ , ∴ sin x ∈ 2 6 6