高等数学(本科少学时类型)(第三版)上册4

合集下载

同济大学 高等数学(本科少学时)第三版第一章

同济大学 高等数学(本科少学时)第三版第一章

例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
o
X
x 无界
-M
-M
(2)函数的单调性:
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
则称函数 f ( x)在区间I上是单调增加的 ;
y
y f (x)
f (x2 )

1 2
3 x 2 2 x 1
故 D f :[3,1]
2、函数的特性
(1).函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
y M
y M
y=f(x)
o
x
有界 X
x0
阶梯曲线
(3) 狄利克雷函数
y

D(
x)

1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)

高等数学上册教材目录

高等数学上册教材目录

高等数学上册教材目录1. 微积分导论1.1. 实数与数集1.1.1. 实数的概念与性质1.1.2. 数集的分类与运算1.1.3. 上确界与下确界1.2. 极限与连续性1.2.1. 函数极限的定义1.2.2. 极限的性质1.2.3. 无穷小量与无穷大量1.2.4. 连续性的定义与性质2. 函数与极限2.1. 函数的基本概念2.1.1. 函数的定义与表示2.1.2. 函数的图像与性质2.2. 函数的极限2.2.1. 函数极限的计算方法2.2.2. 无穷小量对函数极限的影响2.3. 极限存在与连续性2.3.1. 极限存在的条件2.3.2. 连续函数与间断点3. 导数与微分3.1. 导数的概念与性质3.1.1. 导数的定义3.1.2. 导数的运算法则3.1.3. 高阶导数与导数的应用3.2. 微分的概念与应用3.2.1. 微分的定义与计算3.2.2. 微分中值定理与导数的应用3.3. 函数的凸性与最值3.3.1. 函数的单调性与凸性3.3.2. 最值问题与应用4. 微分中值定理与导数应用4.1. 罗尔中值定理与拉格朗日中值定理4.2. 柯西中值定理与洛必达法则4.3. 震荡定理与不等式的应用4.4. 张贴问题与曲线追踪5. 积分与不定积分5.1. 积分的概念与性质5.1.1. 不定积分的定义5.1.2. 积分运算法则5.2. 牛顿-莱布尼兹公式与变限积分 5.2.1. 牛顿-莱布尼兹公式的应用 5.2.2. 变限积分的计算5.3. 定积分的概念与性质5.3.1. 定积分的定义5.3.2. 定积分的计算方法5.4. 积分中值定理与上积分5.4.1. 积分中值定理的应用5.4.2. 上积分的概念与计算6. 积分应用与定积分计算6.1. 曲线的长度与平面图形的面积6.1.1. 曲线长度的计算6.1.2. 平面图形面积的计算6.2. 旋转体的体积与平面曲线的求弧长6.2.1. 旋转体的体积计算6.2.2. 平面曲线弧长的计算6.3. 曲线的参数方程与极坐标方程6.3.1. 参数方程与极坐标方程的基本概念6.3.2. 参数方程与极坐标方程的应用7. 微分方程初步7.1. 微分方程的基本概念与解的存在唯一性 7.2. 一阶微分方程的解法7.2.1. 可分离变量的微分方程7.2.2. 齐次与一阶线性微分方程7.2.3. 可降阶的高阶微分方程7.3. 二阶线性齐次微分方程7.3.1. 齐次线性微分方程的基本概念7.3.2. 常系数齐次线性微分方程的解法 7.4. 可降阶的高阶线性微分方程7.4.1. 高阶线性微分方程的基本概念7.4.2. 可降阶的高阶线性微分方程的解法8. 多元函数微分学8.1. 二元函数与偏导数8.1.1. 二元函数的概念与性质8.1.2. 偏导数的定义与计算8.2. 多元函数的微分8.2.1. 多元函数的全微分8.2.2. 隐函数与反函数的微分8.2.3. 多元函数的全微分与偏导数8.3. 多元函数的极值与条件极值8.3.1. 多元函数的极值及其判定条件8.3.2. 多元函数的条件极值及其求解9. 重积分9.1. 二重积分的概念与性质9.1.1. 二重积分的定义9.1.2. 二重积分的计算方法9.2. 二重积分的应用9.2.1. 平面图形的质心与重心 9.2.2. 轴对称曲面的体积计算 9.3. 三重积分的概念与性质9.3.1. 三重积分的定义9.3.2. 三重积分的计算方法9.4. 三重积分的应用9.4.1. 空间图形的体积计算9.4.2. 质量和质心的计算10. 曲线积分与曲面积分10.1. 曲线积分的概念与计算10.1.1. 第一类曲线积分10.1.2. 第二类曲线积分10.2. Green公式与环流量10.2.1. Green公式的推导与应用10.2.2. 曲线的环流量计算10.3. 曲面积分的概念与计算10.3.1. 第一类曲面积分10.3.2. 第二类曲面积分10.4. Stokes公式与散度定理10.4.1. Stokes公式的应用10.4.2. 散度定理的应用11. 序列与级数11.1. 数列的极限与收敛性11.1.1. 数列极限的概念与性质11.1.2. 数列收敛性的判定准则11.2. 函数项级数11.2.1. 函数项级数的收敛性判定11.2.2. 常见函数项级数的性质11.3. 幂级数与Taylor展开11.3.1. 幂级数的概念与收敛半径11.3.2. Taylor级数与Maclaurin级数11.4. 函数的一致收敛性11.4.1. 函数列的逐点收敛与一致收敛11.4.2. 一致收敛的判定条件以上为《高等数学上册》教材目录的简要内容概述,各章节内容详细,适合根据教材目录迅速定位所需知识点并展开学习。

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三版课后习题答案选解1

高等数学(本科少学时类型)同济第三、四版课后习题答案选解1第一章函数与极限1.1函数P.17习题1.11..005.0:01.0;05.0:1.0,222,1),,1(<=<=<<-<-∈δεδεεδδδx x U x 1..3.下列函数是否为同一函数?为什么?(1)2()2ln ()ln f x x x x j ==与;(2)()f x =()x x j =;(2)(3)()f x =与()g x x =;(4)()f x =与()sin g x x =;解:(1)否;因为定义域不同;(2)否;因为对应关系不同;(2)否;因为函数的定义域不同;(3)是;因为定义域和对应关系及值域都相同;(4)否;因为对应关系及值域都相同;4.求下列函数的定义域:(1)1y x =(2)2232x y x x =-+;(3)arcsin(3)y x =-;(4)1arctan y x =;(5)ln(1)y x =+;(6)1x y e =;解:(1)要使1y x=有意义,需使20,10x x ¹-³故函数的定义域为[-1,0)[(0,1].(2)要使2232x y x x =-+有意义,需使2320x x -+¹故函数的定义域为(-,-2)(-2,1)[1,+.) (3)要使arcsin(3)y x =-有意义,需使31x -£故函数的定义域为[2,4].(4)要使1arctan y x=有意义,需使30,0x x ->¹故函数的定义域为(-,0)(0,3].¥(5)要使ln(1)y x =+有意义,需使10x +>故函数的定义域为+).(1,-¥(6)要使1xy e =有意义,需使0x ≠故定义域为(,0)(0,)-∞+∞ .5.6.7.8.9.10.下列函数中哪些是偶函数,哪些是奇函数,哪些是非奇函数又非偶函数?(1)22(1)y x x =-;(2)233y x x =-;(3)(1)(1)y x x x =-+;(4)2x xa a y -+=;(5)2x xa a y --=;(6)sin cos 1y x x =-+;解:(1)按运算:偶函数与偶函数的和差积仍是偶函数;也可以按定义判定;(2)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;(3)按运算:奇函数与奇函数的积是偶函数;奇函数与偶函数的积是奇函数;所以是奇函数;也可以按定义判定;(4)定义域对称,()()f x f x -=所以函数是偶函数;(5)定义域对称,()()f x f x -=-所以函数是奇函数;(6)定义域对称,但()();()()f x f x f x f x -¹-¹-所以是非奇非偶函数;11.设下面所考虑的函数都是定义在对称区间(,)l l -内的,证明:(1)两个偶函数的和是偶函数;两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数,两个奇函数的乘积是偶函数,偶函数与奇函数的乘积是奇函数。

课程标准

课程标准

《高等数学》课程标准《高等数学》课程是本科非数学类各理科专业的重要专业基础课,在大学教育及高素质人才的培养过程中占有十分重要的地位。

随着时代的发展、科学的进步、经济的腾飞,数学科学已与自然科学、社会科学并列为三大基础科学,数学地位的巨大变化必将影响到高等数学课程在整个高等教育中的地位与作用。

同时,《高等数学》课程还担负着培养学生严谨的思维、求实的作风、创新的意识等任务。

因此,《高等数学》不仅要向学生传授数学知识,更要注重培养学生的数学修养。

但是,不同学科和专业对高等数学知识的需求不同,同时,为了满足我校学生将来考研的需要,根据专业需求的特点和考研《数学一》至《数学三》的要求,将《高等数学》课程划分为如下三个层次。

《高等数学I》(第一层次)一、课程说明:《高等数学I》由微积分、线性代数和概率论与数理统计三部分构成,本课程是物理教育专业和计算机等专业的一门必修的基础课程,也可供将来考研时需要考《数学一》的其它专业同学选修。

课程总学时为276学时,分四个学期行课,其中,第一学期78学时,4学分,第二学期90学时,5学分,第三学期54个学时,3学分,第四学期54个学时,3学分,共15学分。

1.参考专业:物理教育和计算机等专业。

2.课程类别:专业基础课3.参考教材与参考书目教材:1 《高等数学》第六版,同济大学高等数学教研室编,高等教育出版社,2007年。

2 居余马等编著,线性代数(第2版),北京,清华大学出版社,2002年9月第2版3 盛骤等,概率论与数理统计(第二版),北京:高等教育出版社,1989。

参考书目:1 四川大学数学系高等数学教研室编,高等数学(第一、二、三、四册),北京,高等教育出版社,1997。

2 同济大学应用数学系编,线性代数(第4版)北京,高等教育出版社,2003年7月。

3 高世泽,概率统计引论,重庆:重庆大学出版社,2000年。

4.课程教学方法与手段以教师讲授为主,学生自学为辅的教学方式进行教学,课堂上的教学以启发式的方式进行讲授,学生作适当的课内练习。

高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 於崇华 著)

高等数学 高等教育出版社 第三版 上册 课后答案(童裕孙 金路 张万国 於崇华 著)

1 x2 2. (1) 3 ln 3 ; (2) 2 x arcsin x ; x ln 3 1 x2
x
1 e x ln x x 2 shx (3) e x arcsin x ; (4) arccos x(2 x chx) ; x 1 x2 1 x2
1 1 n(n 1) ; (4)6; (5) ; (6) 。 2 2 2 x
4. (1)
m n2 m2 ; (2)1; (3) sin x ; (4) ; (5) x ; n 2
3 1 (7) ; (8) 。 (6) 1 ; 5 2
5. lim f ( x) , lim f ( x )
1 x x (2) y log a ,0 x 1; 11. (1) y arcsin , 2 x 2 ; 3 2 1 x x (3) y log a ( x x 2 1) , x ; (4) y cos , 0 x 2 。 4
3. (1)3; (2)2; (3)1; (4)0; (5)
4. (1){a n bn } 必发散;{a n bn } 不一定发散; (2){a n bn } 和 {a n bn } 均不一定发 散。
2 5.提示: a n
1 3 3 5 (2n 1)(2n 1) 1 1 2 。 2 2 2n 1 2n 1 2 4 ( 2 n)
§ 3 微分运算
1. (1) (sin 2 x 2 x cos 2 x)dx ; (2)
dx (1 x 2 )
3 2
ln x 2 2x
3 2
dx ;
(3)
; (4) e 2 x (3 x 2 2 x 3 )dx ;

高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案

高等数学·(同济大学本科少学时类型)(第三版)上册·第二章·导数与微分·答案

第二章 导数与微分第一节 导数概念教材习题2--1答案(上册P91)1. 解:(1) 21110(1)(1)1022t g t g h V t t ⎛⎫⎛⎫+∆-+∆-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=1102g g t --⋅∆.(2) 10,dhgt dt=-∴'111lim(10)10,t tt t V h gt g ==→==-=-(3) 2200001110(1)(1)1022t g t t gt h V t t ⎛⎫⎛⎫+-+-- ⎪ ⎪∆⎝⎭⎝⎭==∆∆=01102gt g t --⋅∆.(4) 10,dhgt dt=-∴000lim(10)10.t t t t t t dh V gt gt dt==→==-=-2.解:2100(1)(1)10()201010lim lim x x x dy f x f x x dxx x=-∆→∆→-+∆--∆-⋅∆+-==∆∆ =0lim (1020)20.x x ∆→⋅∆-=-3.解:[]000()()lim lim lim .x x x a x x b ax b dy y a xa dx x xx ∆→∆→∆→+∆+-+∆∆====∆∆∆ 4.解:可导.令0()lim ,x f x a x →=0000()()(0)lim ()lim lim lim 00,x x x x f x f x f f x x x a x x→→→→====⋅='00()(0)()(0)limlim .0x x f x f f x f a x x→→-∴===- 5.解:(1)'34.y x =(2) '21'332.3y x x -⎛⎫== ⎪⎝⎭(3) ' 1.60.61.6.y x x ==(4) ''13'221.2y x x --⎛⎫===- ⎪⎝⎭(5) ()'''23212.y x x x --⎛⎫===- ⎪⎝⎭(6) ('1611''5516.5y x x x ⎛⎫=== ⎪⎝⎭(7) ''15'661.6y x x -⎛⎫=== ⎪⎝⎭ 6.解:物体在t 时刻的运动速度为:'()()2(/),v t h t t m s ==(2)224(/)v ms ∴=⋅= 7.证:'00()()cos()cos (cos )limlim x x f x x f x x x xx x x∆→∆→+∆-+∆-===∆∆00sin2lim sin()limsin .22x x x x x x x∆→∆→∆∆-+=-∆# 则''1()sin ,()sin,662f x x f ππ=-=-=-'()sin 33f ππ=-= 8.证:''00()(0)()(0)(0)limlim (0),00x x f x f f x f f f x x →→---==-=---- (()())f x f x -=注: ''2(0)=0(0)=0.f f ∴,即#9.解:(1)y sin ,x = ∴0lim sin sin 00,x x →==所以y sin x =在0x =处连续.'00sin 0sin y (0)limlim ,0x x x x x x→→-==- '00sin sin y (0)lim lim 1,x x x x x x +++→→∴==='00sin sin y (0)lim lim 1,x x x x x x-+-→→-===-故'sin y (0)limx xx→=不存在,即y sin x =在0x =处不可导. (2)1sin0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴01lim sin0(0),x x y x→==所以函数在0x =处连续. '001sin 01y (0)lim limsin ,0x x x x x x →→-==- 该极限不存在, ∴1sin 0y 0x x xx ⎧≠⎪=⎨⎪=⎩在0x =处不可导.(3)21sin 0y ,00x x xx ⎧≠⎪=⎨⎪=⎩∴201lim sin 0(0),x x y x →==所以函数在0x =处连续. 2'001sin 01y (0)lim lim sin 0,0x x x x x x x→→-===- 极限存在,∴1sin 0y 00x x xx ⎧≠⎪=⎨⎪=⎩在0x =处可导.10.解:()''sin cos ,y x x == ''2321cos,cos 1,32x x y y ππππ====-==-∴s i ny x =在23x π=处的切线斜率为1,2-在x π=处的切线斜率为-1. 11.解:抛物线2y x =上的两点为(1,1),(3,9),过此两点的直线的斜率为:914,31k -==- 而()''22,yxx ==令24,x =得 2.x =∴抛物线2y x =上过点(2,4)的切线平行于此割线.12.解:显然点1(,)32π在曲线cos y x =上.'33sin 2x x yxππ===-=- ∴c o sy x =在点1(,)32π处切线的斜率为 在点1(,)32π处法线的斜率为:3∴cos y x =在点1(,)32π处切线的方程为:1--223y x π=(). cos y x =在点1(,)32π处的法线方程为:1--233y x π=().13.解:设该物体在0t 时刻的角速度为0t ω.则0'0000()()lim ().t t t t t t tθθωθ∆→+∆-==∆ 14.解:该物体在t 时刻的变化速度为;'0()()()lim().t T t t T t V t T t t∆→+∆-==∆15.证:设00(,)x y 为双曲线2xy a =上任一点,则200,a y x = 过点00(,)x y 的切线斜率为:22'2(),x x a a xx ==-∴过点00(,)x y 的切线方程为: 20020(),a y y x x x -=--∴切线与两坐标轴所构成的三角形面积为:22001222.2a S x a x =⋅= 第二节 函数的和、积、商的求导法则教材习题2-2答案(上册P99) 1.解:(1)'2'2''34(3)(2)56.y x x x x-=-+=+(2)3'2'2'225()(2(22(24.2y x x x xx x =++=++=+ (3)()()'5'3357'4223(1)(1)523.2x x x x y x x x x --+-+==--(4)2'441,8 4.y x x y x =-+∴=-2.解:(1)'2'001()()().2v t h t v t gt v gt ==-=- (2)当物体达到最高点时速度为0,令()0,v t =即000.v v gt t g-=⇒=∴物体达到最高点的时刻为:.v g3.解:当0x =时,0,y =故所求的切线及法线均过原点.因为'2cos 2,y x x =+则切线斜率为'(0)2,y =法线斜率为1.2-所以切线及法线方程分别为:12,.2y x y x ==-4.解:令0y =即10x x -=得曲线1y x x =-与横轴的交点为(-1,0)和(1,0). '211,y x=+ 则点(-1,0)处切线的斜率为'(1)2,y -=点(1,0)处切线的斜率为'(1)2,y =∴过(-1,0)和(1,0)两点的切线方程分别为: 2(1),2(1).y x y x =+=- 5.解:设曲线32y x x =+-上点00(,)x y 处的切线与直线41y x =-平行. '231,y x =+ 则'200()31,y x x =+∴20031411x x +=⇒=-或,故曲线32y x x =+-上点(-1,-4)或(1,0)与直线41y x =-平行.6.证:(1) ()()()''''222cos sin sin cos cos 1cot csc sin sin sin x x x x x x x x x x -⎛⎫===-=- ⎪⎝⎭. (2) ()()'''2sin 1cos csc csc cot .sin sin sin sin x x x x x x x x x ⎛⎫==-=-=-⋅ ⎪⋅⎝⎭7.解:(1) ()''22'2cos (cos )2cos sin .y x x x x x x xx =+=-(2)'''sin ).ρϕϕϕ==(3)()()''''2tan tan 2(sec )tan sec 2sec tan .y x x x x x x x x x x =+-=+-(4)()()''22'42cos cos 12cos (sin )x x x xx y x x x x-==-+ (5)'''3(sin )13cos .u v v v =-=- (6)()''10'9(10)1010ln10.x x y x x=+=+(7)()''22'2(31)(31)(54).x x x y exx e x x e x x =+++++=++(8)()'''(cos sin )(cos sin )(cos sin cos ).x xxy ex x x e x x x e x x x x x =+++=++(9)'()()()()()().y x b x c x c x a x a x b =--+--+-- (10)'2cot )cos (1csc )cot )sin .y x x x x x x x x =-++-8.解:(1)()()()()()()()()()'''22211111112.1111x x x x x x x y x x x x -+-+-+---⎛⎫==== ⎪+⎝⎭+++,(2)()()()2'''1sin (1cos )1cos (1sin )1cos t t t t st ++-++=+ ()()22cos (1cos )sin (1sin )cos sin 1.1cos 1cos t t t t t t t t +++++==++(3)()()()()''222'2222csc (1)1csc csc cot (1)2csc 2211x x x xx x x x xy x x +-+-+-==++()2222csc cot (1)21x x x x x ⎡⎤-++⎣⎦=+.(4)()()()''22'232sin sin cos 2sin .x x x xx x xy x x --==(5)()()()()''533543'2233(2)22(5).22v v v v v v u vv----==--(6)()((()'''2cot 11cot 1x xy +-+==,()221csc cot .11x x+==-++(7)()()()'2'222221121.111x x x y x x x x x x +++⎛⎫==-=-⎪++⎝⎭++++,(8)'''y ==-,11== .(9)()''''2(tan csc )tan (csc )tan +sec csc cot .y x x x x x x x x x x x =-=-=+(10)()()'''2sin (1tan )(1tan )sin sin 1tan 1tan x x x x x x x x y x x +-+⎛⎫==- ⎪+⎝⎭+,()()22s i n c o s (1t a n )s i n s e c.1t a n x x x x x x x x ++-=+9.解:(1) ''(cos sin )cos2,y x x x == ''641cos 2,cos 20.624x x y y ππππ==∴=⋅==⋅=(2)'11(sin cos )sin cos ,22d d ρϕϕϕϕϕϕϕ=+=+41sin cos ).244442d d πϕρππππϕ=∴=+=+(3)()f t ==()()()()()'''21111()11tt t tf t t t -----∴==-- 故'41(4).18f =∴==-(4) ()()()''2'22532()3,5555x x x f x x x -⎛⎫=-+=+ ⎪--⎝⎭ ''317(0),(2).2515f f ∴== 第三节 反函数和复合函数的求导法则教材习题2-3答案(上册P107) 1.解:[][]'''''''()()(),(3)(3)(3)7(5)7.F x fg x g x F f g g f =∴===-[][]'''''''()()(),(3)(3)(3)2(5)248.G x g f x f x G gff g =∴==-=-⋅=- 2. 解: (1)()2''2'242()2(arctan ).11x xy x x x ===++(2)'''')arctan )y x x x x ==+=(3)''2arcsin (arcsin )y x x ==(4)'arcsin(ln )y x =(5) ()'2'224212.1(1)22x xy x x x -=-=+--+(6)'''1e y ex===+(7)''y ====(8) 'ar cc ar cc .y osx osx ==(9) ()''22221111.1111111x x x y x x x x x -+⎛⎫⎪--⎝⎭===-+++⎛⎫⎛⎫++ ⎪ ⎪--⎝⎭⎝⎭(10)()()'''2arcsin arccos arc s arcsin (arccos )x x co x x y x -=-=. (11) ()()'''22ln ln 2ln .y x x x x x x x =+=+(12) ()()()()()()'''221ln 1ln 1ln 1ln 2.1ln 1ln x x x x yx x x -+-+-==-++ 3.解: (1)()''445(31)3115(31).y x x x =++=+(2)''3()3.x xy e x e --=-=-(3) ''cos()()cos().s A t t A t ωϕωϕωωϕ=++=+(4) ''112()().n n b b nb by n a a a x x x x--⎛⎫=++=-+ ⎪⎝⎭(5) 22'2'()2.x x y e x xe --=-=-(6) ''cos tan .cos x y x x==- (7) ''cos(2)(2)2cos(2)ln 2.xx xxy == (8) 'sin 'sin 2ln 2(sin )2cos ln 2.x x y x x ==(9) ''22sec (sec )2sec tan .y x x x x ==(10) '2'221111sc()sc .y c c x x x x=-=(11) ''1t y +⎛⎫ ⎪== (12) 2ln(1),ln x x y a ++= 2''22(1)21.(1)ln (1)ln x x x y x x a x x a +++∴==++++4.解(1) '2'22'tan sec ()sec 1tan 22222s .tan tan 2tan 2tan 2222x x x x x y c cx x x x x ⎛⎫+ ⎪⎝⎭=====(2)''x y +===(3) 2'22'2'tan y x x ====-(4) ''y ==(5) ()'''2cos(2)cos(2)2cos(2)sin(2)(2).s a t t a t t t ωϕωϕωϕωϕωϕ=++=-+++2s i n 2(2)a t ωωϕ=-+ (6) '''(ln ln )(ln )1.ln ln ln ln ln ln ln ln x x s x x x x x x===⋅⋅⋅ (7) ()'''22sin 2sin 22cos 2sin 2.x x x x x x x y x x --==(8) ()'''sin()cos()()t ty e t et t ααωϕωϕωϕ--=++++[]i n ()c o s ()c o s ()i n ().tt tes t e t e t st ααααωϕωωϕωωϕαωϕ---=-+++=+-+(9) '22''22x x y ⎛⎫== ⎪⎝⎭(10) ''ln ln 2ln 12ln 2()2ln 2.ln ln xxxxx x y x x-==⋅⋅(11) '22'4'224sec tan (tan )tan (tan )sec (1tan tan ).y x x x x x x x x =-+=-+(12) '22''tan sec sec 2x x xx y ⎛⎫ ⎪⎫===⎪⎭ 5.解:'22'''''()()f x g x y +===6.解:(1)2'22'2()()()2().dy d f x f x x x f x dx dx ===⋅ (2)2222((sin )(cos ))(sin )(cos )dy d d d f x f x f x f x dx dx dx dx=+=+ ()()'''2'2(sin )2sin sin (cos )2cos cos f x x x f x x x =+'2'2sin 2(sin )(cos ).x f x f x ⎡⎤=-⎣⎦7.解:222''()()()2'2222()(),2x a x a x a D D D x a y x ee D ------⎛⎫⎛⎫⎛⎫-==-=⎪⎪ ⎪⎪⎪⎝⎭⎭⎭令'()0,y x=即2()200.x a D x a x a --=⇒-=⇒=8.解:011()(),kt T t T T e T -=-+ ∴物体温度的变化速度为:'01()()(),kt v T t T T e k -==--即10().kt v k T T e -=-9.解:0(),kt m t m e -= ∴函数的变化率为:0().kt dm t km e dt-=- 10.解:当0x =时,(0) 1.y = '2'22,(0)2,xy e x y =+=∴ 过(0,1)点的法线方程的斜率为12-,法线方程:11(0),2y x -=--即220.x y +-=原点到法线的距离为:d ==第四节 高阶导数教材习题2-4答案(上册P112) 1. 解:(1)'''2114,4.y x y x x=+∴=- (2)'21'21''21(21)2,4.x x x y ex e y e ---=-=∴=(3)'''cos sin ,2sin cos .y x x x y x x x =-∴=--(4)'''cos sin ,2s .t t t y e t e t y e co t ---=-∴=- (5)2'''y y =∴=(6)13521'2''32221324,44,48.24y x xx y x x x y x x ------=++∴=--=++(7)()2'''22222(1),.11x x y y x x -+=∴=--- (8)'2''2sec ,2sec tan .y x y x x =∴= (9)()()23'''233336(21),.11x x x y y xx--=∴=++(10)'''22arctan 1,2(arctan ).1xy x x y x x=+∴=++ (11)22'''cos cos 2sin 2-sin 2ln ,2cos 2ln .x x x y x x y x x x x x =+∴=--- (12)2'''23(22),.x x x xe e e x x y y x x --+=∴= (13)222'2''22,2(32).x x x y e x e y xe x =+∴=+ (14)'''y y =∴=2.解: '5''4'''3'''36(10),30(10),120(10)(2)12012.y x y x y x y =+=+=+∴=⨯3.解:'2''''''22()()()()()(),()().()()()dy f x d y d dy d f x f x f x f x f x dx f x dx dx dx dx f x f x -=∴=== 4.解:由物体运动的规律sin s A t ω=得:物体运动的速度为:cos dsv A t dtωω==和加速度222sin .d sa A t dtωω==-下验证2220.d s s dtω+=左边=22sin sin 0A t A t ωωωω-+⋅==右边.5.解:由12x x y c e c e λλ-=+得: '''221212,,x x x x y c e c e y c e c e λλλλλλλλ--=-=+所以,左边=''2y y λ-=(2212x x c e c e λλλλ-+)212()x x c e c e λλλ--+=0=右边. 6.解:(1) ()()()00(1)21!.n n n yx n n n =++⋅⋅⋅+=-⋅⋅⋅⋅=(2) ()()'''2''sin sin 2,sin 22cos 2,y x x y x x ====''''(2c o s 2)4s i n 2,y x x ==-所以,一般地得: ()12sin 2+.2n n y x π-⎡⎤=⎢⎥⎣⎦(n-1) (3) ()()''''2312222221,,,11111x y y y x x x x x +-⋅⎛⎫==-+∴==-= ⎪+++⎝⎭++ ()'''4223,1y x ⋅⋅=-+所以,一般地得: ()()()12!1.1nn n n y x +⋅=-+(4) ()()()'11112'''11111,(1)1,m m m y x x y x mm m --⎡⎤=+=+=-+⎢⎥⎣⎦ 所以,一般地得:()1()111(1)(1)1.nn m yn x m m m-=-⋅⋅⋅-++ (5)由莱布尼兹公式得:()()()()1()01'l n (l n )(l n )00n n n n n n y x x c x x c x x -==⋅+⋅++⋅⋅⋅+()()1(l n )(l n ),n n x x n x -=⋅+'''''''231112(ln ),(ln ),(ln ),x x x x x x x ⎛⎫===-= ⎪⎝⎭一般地得:()()()11!(ln )(1).n n nn x x --=-()()()()()()()()112()11!2!ln (ln )(ln )(1)(1)n n n n n n nn n n ny x x x x n x x x ------∴==⋅+=-+-()12!(1)(2).nn n n x --=-≥()()1ln 1,(1)=.2!(1)(2)n n n x n y n n x -+=⎧⎪∴⎨--≥⎪⎩第五节 隐函数的导数以及由参数方程所确定的函数的导数教材习题2-5答案(上册P122)1.解:(1)方程2290y xy -+=两边分别对x 求导得: 2220,d y d y yy x d x d x --=解得: .dy y dx y x=- (2) 方程3330x y axy +-=两边分别对x 求导得:2222333()0.dy dy dy ay x x y a y x dx dx dx y ax-+-+=⇒=-(3) 方程x y xy e +=两边分别对x 求导得:(1).x y x yx ydy dy dy e y y x e dx dx dx x e +++-+=+⇒=- (4) 方程1y y xe =-两边分别对x 求导得:.1y y y ydy dy dy e e xe dx dx dx xe=--⇒=-+ 2.解: 方程222333x y a +=两边分别对x 求导得: 1133.dyx y dx-=- ∴曲线上点44⎛⎫ ⎪ ⎪⎝⎭处的切线斜率为: 1.dydx ⎝⎭=-该点的切线方程为: 1(),44y x -=--即0.2x y +-= 该点的法线方程为: (),44y x -=-0.x y -= 3.解:(1) 方程sin()y x y =+两边分别对x 求导得:cos(),1cos()dy x y dx x y +=-+ 所以22cos()()1os()d y d x y dx dx c x y +=-+[][]2s i n ()(1)1o s ()c o s ()s i n ()(1),1c o s ()d y d yx y c x y x y x y d x d x x y -++-+-+++=-+把cos()1cos()dy x y dx x y +=-+代入即得[]232sin().os()1d y x y dx c x y +=+- (2) 方程221x y -=两边分别对x 求导得:,dy xdx y=所以222(),dyy xd y d dy d x dx dx dx dx dx y y -⎛⎫=== ⎪⎝⎭将dy x dx y=代入即得2222233()1.xy x d y y x ydx y y y---=== 4.解:(1)方程1xx y x ⎛⎫= ⎪+⎝⎭两边取以e 为底的对数得:ln ln ,1x y x x =+ 两边分别对x 求导得:'''111ln ln .11111xx x x x x y x y y x x x x x x +⎛⎫⎛⎫⎛⎫=+⇒=+ ⎪ ⎪⎪+++++⎝⎭⎝⎭⎝⎭(2)方程()cot 2tan 2xy x =两边取以e 为底的对数得:ln cotln tan 2,2xy x = 两边分别对x 求导'22cot112csc ln tan 22sec 222tan 2xx y x x y x=-+⇒cot2'2(tan 2)(csc ln tan 28cot csc 4).222x x x xy x x ⇒=-- (3)方程y =e 为底的对数得:211ln ln(5)ln(2)55y x x ⎡⎤=--+⎢⎥⎣⎦, 两边分别对x 求导整理得:2'426252531010.25(2)x x y x ++=-+(x-5(4)方程y =两边取以e 为底的对数 得:1l nl n (2)4l n (3)5l n (1)2y x x x =++--+,两边分别对x 求导整理得:4'5)145.(1)2(2)31x y x x x x ⎡⎤-=--⎢⎥++-+⎣⎦5.解:(1)由2223332,3,.22dyx at dx dy dy bt bt dt at bt dt dt dx at a y btdt⎧=⇒==⇒===⎨=⎩ (2)由(1sin )1sin cos ,cos sin cos x dx dyy d d θθθθθθθθθθθθ=-⎧⇒=--=-⎨=⎩cos sin .1sin cos dy dy d dx dx d θθθθθθθθ-⇒==--6.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒=+=-⇒⎨=⎩)() sin +cos cos sin dydy t tdt dx dx t t dt==-. 所以,33sin +cos 2cos sin t t dy t t dxt tππ====--7.解:(1)当 4t π=时,曲线上对应的点为2⎛⎫ ⎪ ⎪⎝⎭,2sin 24sin ,cos dydy t dt t dx dxt dt-===-44s i n 24t dy dxππ=∴=-=-⎫⎪⎪⎝⎭的切线斜率. 则切线方程为:0(),2y x -=--即20,y +-=法线方程为0(42y x -=-410.y --=(2) 当 0t =时,曲线上对应的点为()2,1,2,22t tt dydy e e dt dx dx e dt---===-12t dy dx =∴=-为过点()2,1的切线斜率. 则切线方程为: 11(2),2y x -=-- 即240,x y +-=法线方程为12(2),y x -=-即230.x y --=8.解:(1)由2,1,21t x dx dy t dt dt y t⎧=⎪⇒==-⎨⎪=-⎩1,dy dy dt dx dx t dt⇒==- 222311111()()().d y d d y d d y d t d dx dx dx dx dt dx dx dt t t t t dt⇒===-== (2)由cos sin ,cos ,sin x a t dx dya tb t y b tdt dt =⎧⇒=-=⎨=⎩cos cot ,sin dy b t b t dx a t a ⇒==-- 22231()()(cot ).sin d y d dy d dy dt d b bt dx dx dx dx dt dx dx dt a a t dt⇒===-=- 9.解:(1)由sin (sin +cos ,cos sin ,cos t t ttx e t dx dy e t t e t t dt dt y e t ⎧=⇒==-⇒⎨=⎩)() 22cos sin sin +cos dydy t t d y d dy d dy dtdt dx dx t t dx dx dx dt dx dxdt-⎛⎫⎛⎫==⇒== ⎪ ⎪⎝⎭⎝⎭cos sin 1sin +cos d dy dt d t t dxdt dx dx dt t t dt-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 23212,(cos sin )(sin +cos )(cos sin )t t t t e t t e t t --==++则 左边222()d y x y dx =+=2322(sin cos ),(cos sin )cos sin t t t t e e t e t e t t t t --+=++ 右边=cos sin 22()2(sin cos )sin +cos cos sin t tt dy t t e x y e t e t dx t t t t---=-=+, 左边=右边第六节 变化率问题举例及相关变化率教材习题2-6答案(上册P130)1. 解:速度函数是位置函数的导数.由于32() 1.5,s f t t t t ==+-所以速度2()33 1.dsv t t t dt==+-当()5v t =时,即233151(0).t t t t +-=⇒=> 2.解:由题意得: 3sin ,x θ=则33cos 3cos1.5(/).3dx dx m rad d d πθπθθθ==⇒==3.解:设细棒AB 上任意一点M 处的坐标为,x 质量为(),m m x =则2(0),m kx k =>为比例系数因为当2l =时8,m =即2822k k =⋅⇒=,所以22(0).m x k =>为比例系数故细棒AB 上任意一点M 处的密度为4(/).dmx g cm dx = 4.解:由21000(1)50(1)(040),4040t dV tV t dt =-⇒=--≤≤所以 5550(1)43.75(/m i n )40t dV L dt ==--=-(负号表示容器内的水在减少), 101050(1)37.5(/min)40t dV L dt ==--=-, 202050(1)25(/min)40t dV L dt ==--=- . 5.解:(1)由()2(sin cos ),sin cos sin cos W dF W F d μμθμθμθθθμθθ-=⇒=++ (2)令0,dF d θ=即 ()2(s i n c o s )0t a n t a n .s i n c o s W a r c μθμθθμθμμθθ-=⇒=⇒=+ 6.解:由2.c dv cpv c v p dp p=⇒=⇒=- 7.解:由22111.()fq dp f p f p q q f dq q f =+⇒=⇒=--- 8.解:由2150.020.040.04.t dm dmm t t dt dt==-⇒=-⇒=-9.解:(1) 由2'()420 1.50.002() 1.50.004C x x x C x x =++⇒=+得:'(100)1.90,C =(101)(100) 1.C C -≈(2) 由23'2()200030.010.0002()30.020.0006C x x x x C x x x =+++⇒=++得:'(100)11,C =(101)(100)11.07C C -≈10.解: 由3432D V π⎛⎫= ⎪⎝⎭=36D V π= (其中V 为雪球体积, D 为雪球直径),两边对间t 求导得:22dV D dDdt dtπ=,当1,10dV D dt ==时, dD dt =211.450dV dt D ππ=11.解:设飞机与雷达站的距离为S ,则经过时间t 后,S =,则6dS dt =,又两者相距4km时的时间1000t =,则t dS dt =.12.解:解:记12:00整时0.t =设经过时间t 后两船相距S ,则S =则dSdt=,经过4个小时即16:00时472013t dS dt==13.解:设圆锥形容器中溶液的深度为h ,溶液表面的半径为r ,则h ,r 都是时间t 的函数。

高等数学系列教材目录

高等数学系列教材目录

高等数学系列教材目录第一册:微积分基础1.数集与函数1.1 数集的表示与运算1.2 函数的定义与性质1.3 常用函数及其图像2.极限与连续2.1 数列与极限2.2 函数的极限2.3 连续函数与间断点3.导数与微分3.1 导数的定义与计算3.2 微分的概念与应用3.3 高阶导数与高阶微分4.一元函数的应用4.1 函数的单调性与极值4.2 函数的凹凸性与拐点4.3 泰勒公式及其应用第二册:多元函数微积分1.二元函数与偏导数1.1 二元函数的定义与性质1.2 偏导数与全微分1.3 隐函数与参数方程求导2.多元函数的极值与条件极值2.1 多元函数的极值2.2 隐函数极值与参数方程极值2.3 条件极值与拉格朗日乘子法3.重积分3.1 二重积分的计算3.2 三重积分的计算3.3 积分次序与坐标变换4.曲线与曲面积分4.1 曲线积分的计算4.2 曲面积分的计算4.3 斯托克斯定理与高斯公式第三册:级数与常微分方程1.级数的收敛性与性质1.1 数项级数的概念与性质1.2 正项级数的审敛法1.3 交错级数与绝对收敛2.幂级数与函数展开2.1 幂级数的收敛域与收敛半径 2.2 幂级数的运算与逐项求导2.3 函数的泰勒级数展开3.常微分方程基础3.1 微分方程的基本概念3.2 一阶线性微分方程3.3 高阶线性微分方程4.常微分方程应用4.1 古典物理问题的建模与求解 4.2 生物、经济与工程领域的应用4.3 相图与稳定性分析第四册:向量与解析几何1.向量代数基础1.1 向量的定义与运算1.2 向量的线性相关性与线性无关性1.3 向量的内积与外积2.空间直线与平面2.1 三维空间的点、直线与平面2.2 直线的方向向量与法向量2.3 空间直线与平面的位置关系3.空间曲线与曲面3.1 曲面的参数方程与一阶偏导数 3.2 流形与曲率3.3 空间曲线、曲面与切线法向第五册:数学分析基础1.度量空间与拓扑1.1 度量空间的定义与性质1.2 拓扑空间的概念与特征1.3 开集、闭集与连通性2.泛函分析2.1 功能空间与泛函空间2.2 线性算子与线性泛函2.3 无穷维空间与紧性理论3.微分流形3.1 流形的定义与性质3.2 曲线与曲面的切空间3.3 切向量场与流形上的积分4.测度论基础4.1 测度空间的定义与测度函数4.2 测度的可测性与测度的完备性4.3 测度函数与积分运算这是《高等数学系列教材》的目录,详细介绍了每一册的章节内容。

高等数学第3版(张卓奎 王金金)第四章习题解答

高等数学第3版(张卓奎 王金金)第四章习题解答
解: 。
(17) ;


(18) ;
解:

(19) ;
解: 。(20)
解: 。
习题4-3
计算下列各题
1. ;
解:

2. ;
解:

3 ;
解: 。
4. ;
解:

5. ;
解:

6. ;
解:

7. ;
解:

8. .
解:

9. ;


1. ;
解:令 ,则
11. ;
解:令 ,
12. 已知 ,求 .
解:已知 ,两边求导,得 ,于是
5.已知某物体沿直线作变速运动,在 时刻的加速度为 ,求启动后 时刻行驶的路程及 时所走的路程。
解设物体沿直线运动方程为 ,运动速度为 ,由题设 ,所以 。再由 则 故
习题 4-2
1.选择题
(1) 设 ,则 (C).
(A) (B) (C) (D)
(2) 若 是 的一个原函数,则 (A).
(A) (B) (C) (D)

习题4-4
用分部积分法求下列不定积分
1. ;
解: 。
2. ;
解: 。
3. ;
解:

4. ;
解:

5. ;
解:

6. ;
解:

7. ;
解: 。
8.0. ;
解:


11. ;
解:
移项便得 。
12. ;
解:

13. ;
解: 。
14. ;
解: 。

大一经典高数复习资料经典经典全面复习

大一经典高数复习资料经典经典全面复习

高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<o第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U ο内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】3x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim ,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性 ○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln limlimlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导 ∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩x (,0)-∞ 0 (0,1)1 (1,2)2 (2,)+∞y ' - 0 + + 0 - y '' + + - - y 1 (1,3) 54.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈o,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈o,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= x1- ()1,1-1 (]1,3()f x ' 0+- ()f x极小值Z极大值]4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b baa f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰ 【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx t t t dt t dt t x t =-====+−−−−−−→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)如:不定积分公式21arctan 1dx x C x =++⎰的证明。

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

高等数学Ⅱ答案。同济大学应用数学系本科少学时类型第三版

习题7-11. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v 解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c习题7-21. 在空间直角坐标系中, 指出下列各点在哪个卦限?A (1, −2, 3);B (2, 3, −4);C (2, −3, −4);D (−2, −3, 1).解A 在第四卦限, B 在第五卦限, C 在第八卦限, D 在第三卦限.2. 在坐标面上和坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A (3,4, 0); B (0, 4, 3); C (3, 0, 0); D (0, −1, 0).解在xOy 面上, 的点的坐标为(x , y , 0); 在yOz 面上, 的点的坐标为(0, y , z ); 在zOx 面上, 的点的坐标为(x , 0, z ).在x 轴上, 的点的坐标为(x , 0, 0); 在y 轴上, 的点的坐标为(0, y , 0), 在z 轴上, 的点的坐标为(0, 0, z ).A 在xOy 面上,B 在yOz 面上,C 在x 轴上,D 在y 轴上.3. 求点(a , b , c )关于(1)各坐标面; (2)各坐标轴; (3)坐标原点的对称点的坐标. 解 (1)点(a , b , c )关于xOy 面的对称点为(a , b , −c ); 点(a , b , c )关于yOz 面的对称点为(−a, b, c); 点(a, b, c)关于zOx面的对称点为(a, −b, c).(2)点(a, b, c)关于x轴的对称点为(a, −b, −c); 点(a, b, c)关于y轴的对称点为(−a, b, −c); 点(a, b, c)关于z轴的对称点为(−a, −b, c).(3)点(a, b, c)关于坐标原点的对称点为(−a, −b, −c).4.自点P0(x, y, z)分别作各坐标面和各坐标轴的垂线, 写出各垂足的坐标.解在xOy面、yOz面和zOx面上, 垂足的坐标分别为(x0, y, 0)、(0, y, z)和(x, 0, z).在x轴、y轴和z轴上, 垂足的坐标分别为(x0, 0, 0), (0, y, 0)和(0, 0, z).5.过点P0(x, y, z)分别作平行于z轴的直线和平行于xOy面的平面, 问在它们上面的点的坐标各有什么特点?解在所作的平行于z轴的直线上, 点的坐标为(x0, y, z); 在所作的平行于xOy面的平面上,点的坐标为(x, y, z).6. 一边长为a的立方体放置在xOy面上, 其底面的中心在坐标原点, 底面的顶点在x轴和y 轴上, 求它各顶点的坐标.7.已知两点M1(0, 1, 2)和M2(1, −1, 0). 试用坐标表示式表示向量及11.在yOz面上, 求与三点A(3, 1, 2)、B(4, −2, −2)和C(0, 5, 1)等距离12. 试证明以三点A(4, 1, 9)、B(10, −1, 6)、C(2, 4, 3)为顶点的三角形是等腰三角直角三角形.14. 求点M(4, −3, 5)到各坐标轴的距离.17. 设已知两点和计算向量的模、方向余弦和方向角.18. 设向量的方向余弦分别满足(1)cosα=0; (2)cosβ=1; (3)cosα=cosβ=0, 问这些向量与坐标轴或坐标面的关系如何?20.设向量r的模是4, 它与轴u的夹角是60°, 求r在轴u上的投影.21. 设m=3i+5j+8k, n=2i-4j-7k, p=5i+j-4k,求向量a=4m+3n-p在x轴上的投影及在y轴上的分向量.解:a=4(3i+5j+8k)+3(2i-4j-7k)-(5i+j-4k)=13i+7j+15k在x轴上的投影a x=13,在y轴上分向量为7j.习题7-31.设a=3i−j−2k, b=i+2j−k, 求(1)a⋅b及a×b; (2)(−2a)⋅3b及a×2b; (3)a、b夹角的余弦.解(1)a⋅b=3×1+(−1)×2+(−2)×(−1)=3,(2)(−2a)⋅3b =−6a⋅b = −6×3=−18,a×2b=2(a×b)=2(5i+j+7k)=10i+2j+14k .2. 设a、b、c为单位向量, 且满足a+b+c=0, 求a⋅b+b⋅c+c⋅a .解因为a+b+c=0, 所以(a+b+c)⋅(a+b+c)=0,即a⋅a+b⋅b+c⋅c+2a⋅b+2a⋅c+2c⋅a=0,于是3.已知M1(1, −1, 2)、M2(3, 3, 1)和M3(3, 1, 3). 求与、同时垂直的单位向量.4. 设质量为100kg 的物体从点M 1(3, 1, 8)沿直线称动到点M 2(1, 4, 2), 计算重力所作的功(长度单位为m , 重力方向为z 轴负方向).5.在杠杆上支点O 的一侧与点O 的距离为x 1的点P 1处, 有一与成角θ的力F 1作用着; 在O 的另一侧与点O 的距离为x 2的点P 2处, 有一与成角θ的力F 1作用着. 问θ1、θ2、x 1、x 2、|F 1|、|F 2|符合怎样的条件才能使杠杆保持平衡?解:因为有固定转轴的物体的平衡条件是力矩的代数和为零, 再注意到对力矩正负的 规定可得, 使杠杆保持平衡的条件为6.求向量a =(4, −3, 4)在向量b =(2, 2, 1)上的投影. 解:7. 设a =(3, 5, −2), b =(2, 1, 4), 问λ与μ有怎样的关系, 能使得λa +μb 与z 轴垂直?解λa +μb =(3λ+2μ, 5λ+μ, −2λ+4μ), λa +μb 与z 轴垂⇔λa +μb ⊥k⇔(3λ+2μ, 5λ+μ, −2λ+4μ)⋅(0, 0, 1)=0,即−2λ+4μ=0, 所以λ=2μ . 当λ=2μ 时, λa +μb 与z 轴垂直. 试用向量证明直径所对的圆周角是直角. 8. 试用向量证明直径所对的圆周角是直角. 证明设AB 是圆O 的直径, C 点在圆周上, 则.9. 设已知向量a =2i −3j +k , b =i −j +3k 和c =i −2j , 计算: (1)(a ⋅b )c −(a ⋅c )b ; (2)(a +b )×(b +c ); (3)(a ×b )⋅c .解 (1)a ⋅b =2×1+(−3)×(−1)+1×3=8, a ⋅c =2×1+(−3)×(−2)=8,(a ⋅b )c −(a ⋅c )b =8c −8b =8(c −b )=8[(i −2j )−(i −j +3k )]=−8j −24k . (2)a +b =3i −4j +4k , b +c =2i −3j +3k,11.(1)解: xy z xyzi j ka b a a a b b b ⨯=r r r r r=-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k r r r ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅r r u r ()()()()x y z xy z xyza a ab b b C C C = 若,,C a b r r u r共面,则有 a b ⨯r r 后与 C u r 是垂直的. 从而C 0a b ⨯⋅=r r u r () 反之亦成立. (2) C xy z x y z xyza a a ab b b b C C C ⨯⋅=r r u r Q()ax y z x y z x y z b bbb C C C Ca a a⨯⋅=r u r r()bx y zx y zx y zC C CC a a a ab b b⨯⋅=u r r r()由行列式性质可得:x y z x y z x y zx y z x y z x y zx y z x y z x y za a ab b b C C Cb b b C C C a a aC C C a a a b b b==故C a?ba b b C C a⨯⋅=⨯⋅=⨯⋅r r u r r u r r u r r rQ()()()习题7-43. 求过点(3, 0, −1)且与平面3x−7y+5z−12=0平行的平面方程.解所求平面的法线向量为n=(3, −7, 5), 所求平面的方程为3(x−3)−7(y−0)+5(z+1)=0, 即3x−7y+5z−4=0.4.求过点M(2, 9, −6)且与连接坐标原点及点M的线段OM垂直的平面方程.解所求平面的法线向量为n=(2, 9, −6), 所求平面的方程为2(x−2)+9(y−9)−6(z−6)=0, 即2x+9y−6z−121=0.5.求过(1, 1, −1)、(−2, −2, 2)、(1, −1, 2)三点的平面方程.解n1=(1, −1, 2)−(1, 1,−1)=(0, −2, 3), n1=(1, −1, 2)−(−2, −2, 2)=(3, 1, 0), 所求平面的法线向量为所求平面的方程为−3(x −1)+9(y −1)+6(z +1)=0, 即x −3y −2z =0.6. 指出下列各平面的特殊位置, 并画出各平面: (1)x =0;解x =0是yOz 平面. (2)3y −1=0;解 3y −1=0是垂直于y 轴的平面, 它通过y 轴上的点 (0 ,1/3 ,0). (3)2x −3y −6=0;解 2x −3y −6=0是平行于z 轴的平面, 它在x 轴、y 轴上的截距分别是3和−2. (4) x −3y =0解x −3y =0是通过z 轴的平面, 它在xOy 面上的投影的斜率为33. (5)y +z =1;解y +z =1是平行于x 轴的平面, 它在y 轴、z 轴上的截距均为1. (6)x −2z =0;解x −2z =0是通过y 轴的平面. (7)6x +5−z =0.解 6x +5−z =0是通过原点的平面.求平面2x −2y +z +5=0与各坐标面的夹角的余弦. 解此平面的法线向量为n =(2, −2, 1).此平面与yOz 面的夹角的余弦为8.一平面过点(1, 0, −1)且平行于向量a =(2, 1, 1)和b =(1, −1, 0), 试求这平面方程.解所求平面的法线向量可取为9.求三平面x +3y +z =1, 2x −y −z =0, −x +2y +2z =3的交点.解解线性方程组分别按下列条件求平面方程: (1)平行于zOx 面且经过点(2, −5, 3);解所求平面的法线向量为j =(0, 1, 0), 于是所求的平面为 0⋅(x −2)−5(y +5)+0⋅(z −3)=0, 即y =−5. (2)通过z 轴和点(−3, 1, −2);解所求平面可设为Ax+By=0.因为点(−3, 1, −2)在此平面上, 所以−3A+B=0,将B=3A代入所设方程得Ax+3Ay=0,所以所求的平面的方程为x+3y=0,(3)平行于x轴且经过两点(4, 0, −2)和(5, 1, 7).解所求平面的法线向量可设为n=(0, b, c). 因为点(4, 0, −2)和(5, 1, 7)都在所求平面上, 所以向量n1=(5, 1, 7)−(4, 0, −2)=(1, 1, 9)与n是垂直的, 即b+9c=0, b=−9c ,于是n=(0, −9c, c)=−c(0, 9, −1).所求平面的方程为9(y−0)−(z+2)=0, 即9y−z−2=0.10.求点(1, 2, 1)到平面x+2y+2z−10=0的距离.解点(1, 2, 1)到平面x+2y+2z−10=0的距离为习题7-51.求过点(4, −1, 3)且平行于直线的直线方程.解所求直线的方向向量为s=(2, 1, 5), 所求的直线方程为2.求过两点M1(3, −2, 1)和M2(−1, 0, 2)的直线方程.解所求直线的方向向量为s=(−1, 0, 2)−(3, −2, 1)=(−4, 2, 1), 所求的直线方程为10. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 11. 求过点(1, 2, 1)而与两直线平行的平面的方程. 解直线的方向向量为12. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-13. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2221332(13)(1)(2)222d =-+-++-=习题7-6 5.6. 指出下列方程所表示的是什么曲面,并画出其图形:(1)(2)(4)221 49x y-+=;(5)22194x z +=; (6)20y z -=; 解:(1)(2)(4)母线平行于z 轴的双曲柱面,如图7-8.图7-8(5)母线平行于y 轴的椭圆柱面,如图7-9. (6)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-107. 画出下列各曲面所围成的立体图形: (1)x =0, y =0, z =0, x =2, y =1, 3x +4y +2z −12=0;(1)(2)习题8-11. 已知f (x , y )=x 2+y 2-xy tan xy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy +(x y )x +y +x -y =(x + y )xy +(x y )2x . 4. 求下列各函数的定义域:2(1)ln(21);z y x =-+(2)z =(4)u =+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>-> (4){(,,)|0,0,0}.D x y z x y z =>>>22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:22001(2)lim ;x y x y →→+ ()yx e lim 2x ln 32y 0y 1x ++→→)((2)xy xy y x 42lim 00+-→→ 解:(2)原式=+∞. (3)原式0ln 2.=(2)原式0014x y →→==- 6.证明:当(x ,y )→(0,0)函数f (x ,y )=yx y x -+lim 不存在极限.解令y kx =则0011lim limx x y y x yx kx k x yx kx k→→→→+++==---,不同的路径极限不同,故极限不存在。

《高等数学》(自命题)考试大纲

《高等数学》(自命题)考试大纲

广东技术师范学院硕士研究生入学考试《高等数学》(自命题)考试大纲I、考试性质《高等数学》(自命题)是广东技术师范学院为攻读系统理论专业硕士学位研究生所设置的一门基础课考试科目。

它的评价标准是高等学校本科毕业生(含同学学历)应知应会的基本知识和技能的掌握情况、高等数学基础理论分析及实际应用能力水平,以及高等数学思想及方法的理解程度。

II、考查目标要求考生比较系统地理解高等数学的基本概念、基本理论、基本方法,具备综合运用高等数学知识分析问题和解决问题的能力,并注重考核与系统理论专业相关的高等数学知识。

第三、第四方向不考证明题,并且难度依第一和第二方向、第三方向、第四方向而难度有所降低。

III、使用专业:系统理论。

IV、考试形式和试卷结构1、答卷形式:闭卷、笔试,满分为150分。

2、答题时间:180分钟。

3、考试题目分为难、中、易三个等级,每份试卷中不同难度试题的分配比例是3 :4 :3 。

基本概念和基础知识约占 35%,需要灵活地运用所学知识来解决问题的试题约占35%,需要综合几个知识点来解决问题的试题约占 30%。

题目的形式包括选择题、计算题、证明题、分析论述题、综合应用题等。

题型不是关键,最关键的是对基本概念、基本理论、基本方法的正确理解和应用,尤其是对知识点的掌握程度。

因为,针对任一个知识点都可以产生多个不同类型的试题。

V、考试内容和考试要求一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求:1、理解函数的概念,掌握函数的表示法,并会建立常见应用问题中的函数关系。

高等数学(III)教学大纲

高等数学(III)教学大纲

《高等数学(III)》教学大纲1. 课程代码:221160002. 学时、学分:48+80学时,3+4学分(注本课程分两个学期讲授)3. 适用专业:生物、地理、心理、管理、教育、经济等专业4.课程说明:本课程是为生物、地理、心理、管理、教育、经济等专业培养高级专业人才在本科一年级开设的必修基础理论课。

通过本课程的学习,要使学生获得:函数的极限与连续有关概念、一元微积分学、无穷级数、多元函数微积分学、常微分方程等方面的基本概念、基本理论和基本运算技能,并简单介绍空间解析几何,为学习后继课程和进一步获得数学知识奠定必要的数学基础。

本课程以讲授为主,无需预修其它高等数学内容。

在课程的教学过程中,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,培养学生具有比较熟练的运算能力和综合运用所学知识去分析实际问题和解决实际问题的能力。

5.建议选用教材:首选教材:吴赣昌主编, 微积分(经济类), 中国人民大学出版社, 2007备用教材:赵树嫄主编,微积分(修订本),中国人民大学出版社,2004.6. 课程教学内容与要求I.篇章目录第一章函数第二章极限与连续第三章导数与微分第四章中值定理导数的应用第五章不定积分第六章定积分第七章无穷极数第八章多元函数第九章微分方程与差分方程简介II. 第一学期教学内容与要求(16×3=48学时)第一章函数(10学时)理解集合的概念,熟练掌握集合的运算规律。

理解邻域的概念。

理解函数的概念,理解函数的几种常用表示法。

会建立简单实际问题;扣的函数关系式。

理解函数的基本性质(有界性、单调性、奇偶性和周期性)。

了解反函数的概念.理解复合函数的概念。

熟练掌握基本初等函数的性质及其图形。

掌握函数图形的简单组合与变换。

第二章极限与连续(15学时)了解数列极限,了解函数极限的概念,了解左极限与右极限的关系,知道用数学分析的语言陈述数列和函数极限,不要求理解运用。

高等数学(本科少学时类型)

高等数学(本科少学时类型)

高等数学(本科少学时类型)第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞=【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >,∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立,∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<,∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立,∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>,∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立,∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f 1-为无穷大 【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x )1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的; (∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第一节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110 则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0limb a x q x p x m n m n m n >=< ()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311lim lim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点 倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★)(定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦【题型示例】求值:93lim23--→x x x【求解示例】36x →==第一节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★)第一个重要极限:1sin lim0=→xxx ∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x eee e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第一节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★) 1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1U U U U U U U e +-2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第二节 函数的连续性 ○函数连续的定义(★) ()()()00lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第五节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】 1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续; 2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0f g C ξξ--=(10<<ξ)4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分 第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x 1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--'第二节 函数的和(差)、积与商的求导法则 ○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则 ○反函数的求导法则(★) 【题型示例】求函数()x f 1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D 上单调、可导,且()0≠'x f ;∴()()11f x f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+ ⎝⎛⎫⎪ ⎝⎭解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx--'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数【求解示例】()1111y x x -'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦ ……()1(1)(1)(1)n n n y n x --=-⋅-⋅+!第一节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★)【题型示例】试求:方程y e x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由y e x y +=两边对x 求导即()y y x e '''=+化简得1y y e y ''=+⋅ ∴ee y -=-='11111∴切线方程:()e x ey +--=-1111 法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''=2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第二节 变化率问题举例及相关变化率(不作要求)第三节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★)【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立 【证明示例】 1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导; 2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ==即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,x e e x >⋅ 【证明示例】 1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立, 又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-, 化简得x e e x >⋅,即证得:当1x >时,x e e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +<【证明示例】 1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x '=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立, 化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈,∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=,即证得:当1x >时,x e e x >⋅ 第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件A .属于两大基本不定型(0,0∞∞)且满足条件, 则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln limlimlim111lim 0x x L x x x x xx x x x x xxx a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母)【题型示例】求值:011lim sin x x x →⎛⎫- ⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解: ()()()()00002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法) 【题型示例】求值:0lim x x x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0lim ln lim ln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x x x x L x x yy x x x x y x x y xx x y x y x x x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法)【题型示例】求值:tan 01lim xx x →⎛⎫ ⎪⎝⎭【求解示例】()()tan 0020002220011,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim lim lim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x x x x x x x x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫- ⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得 ○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式)⑶取对数获得乘积式(通过对数运算将指数提前)第一节 泰勒中值定理(不作要求) 第二节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★)【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞;单调递减区间为()1,2【题型示例】证明:当0x >时,1x e x >+ 【证明示例】 1.(构建辅助函数)设()1x x e x ϕ=--,(0x >) 2.()10x x e ϕ'=->,(0x >) ∴()()00x ϕϕ>=3.既证:当0x >时,1x e x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】 1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩-(1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2) 单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸; ⑷函数2313y x x =+-的拐点坐标为()1,3第一节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈ 则函数()f x 在闭区间[],a b 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =; 【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= 3.(三行表)4.又∵()()()12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====-第一节 函数图形的描绘(不作要求) 第二节 曲率(不作要求)第三节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★) ()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求221dx a x +⎰ 【求解示例】222211111arctan 11x x dx dx d C a x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求 【求解示例】()()121212x x C=+=+= ○第二类换元法(去根式)(★★) (()dx x f dy ⋅'=的正向应用) ⑴对于一次根式(0,a b R ≠∈):t =,于是2t bx a-=, 则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<), 于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式)【求解示例】2221t x t dx tdttdt dt t C C t =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第一节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=)⑶使用分部积分公式:udv uv vdu =-⎰⎰ ⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果);b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰ 【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰ 【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x x x x x x x x x x x x e xdx e d x e x xd e e x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2x x e xdx e x x C ⋅=-+⎰第一节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a==⑵则设有理函数()()P x Q x 的分拆和式为: ()()()()()()122k l P x P x P x Q x x a x px q =+-++ 其中()()()()1122...k k k P x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第一节 积分表的使用(不作要求) 第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x 则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间) ○定积分的性质(★★★) ⑴()()bba af x dx f u du =⎰⎰ ⑵()0aa f x dx =⎰⑶()()bba a kf x dx k f x dx =⎡⎤⎣⎦⎰⎰ ⑷(线性性质)()()()()1212b b baa a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0b af x dx >⎰; (推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baa f x dx g x dx ≤⎰⎰;(推论二)()()bbaaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★) (定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dx ϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x xx L x d e dt e dt dx x x--'→→='⎰⎰ ()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin lim lim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122x xx x xL x x x x x x e e x x e x xd xe dx x x e x e x xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅= 第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足:a .,αβ∃,使得()(),ab ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()ba f x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰【题型示例】求40⎰【求解示例】()2210,43220,1014,332332311132213111332223522933解:t t x x t x t t dx tt t dt t dt t x t =-====+→+⎛⎫=⋅⋅=+=+ ⎪⎝⎭=-=⎰⎰⎰⎰ ⑶(分部积分法)()()()()()()()()()()()()bba ab bb aaau x v x dx u x v x v x u x dxu x dv x u x v x v x du x ''=-=-⎡⎤⎣⎦⎰⎰⎰⎰○偶倍奇零(★★)设()[],f x C a a ∈-,则有以下结论成立: ⑴若()()f x f x -=,则()()02aaaf x dx f x dx -=⎰⎰⑵若()()f x f x -=-,则()0aaf x dx -=⎰第四节 定积分在几何上的应用(暂时不作要求) 第五节 定积分在物理上的应用(暂时不作要求) 第六节 反常积分(不作要求)第六章 如:不定积分公式21arctan 1dx x C x =++⎰的证明。

有关本科少学时高等数学的教学探究

有关本科少学时高等数学的教学探究

有关本科少学时高等数学的教学探究【摘要】本科少学时高等数学教学在现今教育领域扮演着重要的角色,其背景意义和意义不言而喻。

本文旨在探究本科少学时高等数学教学的现状,分析影响教学的因素,并提出改进方法。

本文还将探讨教学的有效性,比较少学时高等数学与正常高等数学教学的差异,以期为教学实践提供参考。

在将提出对本科少学时高等数学教学的建议,展望未来的发展方向。

通过本文的研究和探讨,有望为教学改革和提升教育质量提供新的视角和思路,推动本科少学时高等数学教学水平的提升,同时也助力学生数学学习的效果和成果。

【关键词】高等数学、本科教育、少学时、教学探究、现状、影响因素、改进方法、有效性、差异比较、建议、未来展望1. 引言1.1 本科少学时高等数学教学的背景意义本科少学时高等数学教学的背景意义是非常重要的。

随着社会的发展和人才需求的变化,高等数学成为了各个学科中不可或缺的一部分。

但是由于本科学生在学习高等数学方面的时间有限,所以如何有效地开展高等数学教学成为了一个亟待解决的问题。

1. 教学内容简化:由于学时有限,本科少学时高等数学教学需要对教学内容进行精简和优化,突出重点,使学生能够快速理解和掌握最核心的知识点。

2. 培养学生的数学思维能力:在少量学时内,需要注重培养学生的数学思维能力,让他们掌握基本的解题方法和思维模式,从而应对各种数学问题。

3. 提高学生的实际应用能力:本科少学时高等数学教学应该注重与实际问题的结合,让学生能够将数学知识应用到社会和工程实践中去,提高他们的实际应用能力。

本科少学时高等数学教学的背景意义在于为学生提供基础数学知识和数学思维能力,帮助他们在日后的学习和工作中更加游刃有余。

1.2 本研究的目的和意义本研究的目的是为了探究本科少学时高等数学教学的现状,分析影响教学效果的因素,提出改进教学方法的建议,探讨教学的有效性,以及比较本科少学时高等数学与正常高等数学教学的差异。

通过这些研究,我们可以更好地了解本科少学时高等数学教学的特点和挑战,为教育实践提供理论支持和参考。

有关本科少学时高等数学的教学探究

有关本科少学时高等数学的教学探究

有关本科少学时高等数学的教学探究【摘要】本文探讨了本科少学时高等数学的教学探究,包括确定教学目标、选取教学内容、探索教学方法、评估与改进以及学生学习态度和成绩变化的分析。

通过对教学进行深入研究,可以提高教学质量,促进学生的学习效果和兴趣。

结论部分总结了教学探究的启示,展望未来研究方向,并对整个研究进行了总结。

本研究意义重大,不仅可以提高教育质量,还能为未来的教学改进提供参考。

通过本文的研究,可以更好地探讨如何有效地进行本科少学时高等数学的教学,使学生更好地掌握知识,提高学习效率。

【关键词】高等数学、本科教育、教学探究、教学目标、教学内容、教学方法、教学评估、学习态度、成绩变化、教学探究的启示、未来研究方向。

1. 引言1.1 背景介绍本科少学时高等数学教学探究是指针对本科阶段学生在高等数学学科上学时相对较短的情况,对教学目标的确定与分析、教学内容的选取与整合、教学方法和手段的探索、教学评估与改进、以及学生学习态度和成绩变化进行深入研究和探讨的活动。

本科少学时高等数学的教学探究在当前教育教学改革的背景下显得尤为重要和必要。

随着教育理念的不断更新和教学手段的不断创新,如何让本科学生在有限时间内系统掌握高等数学的基础知识和方法,成为教育工作者亟需解决的问题之一。

在过去,本科阶段的高等数学课程往往时间较长,学生有充足的时间和机会进行深入学习和实践。

随着社会发展的加速和知识的不断扩大,学生们在高等数学学科上的学习时间却相对减少,这就对高等数学的教学提出了新的挑战。

本科少学时高等数学教学探究成为当前教育领域需要重点关注和研究的课题之一。

通过对本科少学时高等数学的教学探究,可以更好地促进教学质量的提升,激发学生学习兴趣和创新能力,为学生的终身发展奠定坚实的基础。

1.2 研究目的本研究的目的是探究本科少学时高等数学的教学方法和手段,帮助教师更好地指导学生学习高等数学的内容,提高学生的学习效果和学习兴趣。

通过深入研究教学目标的确定与分析、教学内容的选取与整合、教学方法和手段的探索、教学评估与改进以及学生学习态度和成绩变化的分析,旨在为高等数学的教学提供更科学、更有效的指导,为培养学生的数学素养和创新能力奠定基础。

高等数学(本科少学时类型)(第三版)上册4

高等数学(本科少学时类型)(第三版)上册4

f ( x ) f ( x0 ) f ( )( x x0 )
f ( x ) f ( x0 ) f ( )( x x0 ) f ( x0 ) f ( ) x x0 f ( x0 ) M ( b a ) K
(定数)

可见对任意
Index First
证: 因 f (x) 在[0, 3]上连续, 所以在[0, 2]上连续, 且在 [0, 2]上有最大值 M 与最小值 m,
故 m f (0), f (1), f ( 2) M f (0) f (1) f ( 2) m M 3 由介值定理可知 c [0, 2] , 使 f (0) f (1) f (2) f (c ) 1 3
所以当x>0时, 令x=b得
即所证不等式成立 .
Index
First
Up
Back
Down
Last
End
Demand
18
例12. 求
解法1 利用中值定理求极限
2
a a 1 a a 原式 lim n 之间) ( ) ( 在 与 2 n n n1 1 n n 1 n2 a lim n n( n 1) 1 2

a0 a1 x an x 0 在 (0, )内至少有一个实根 . 1
n
Index
First
Up
Back
Down
Last
End
Demand
7
例4.设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且
f (0) f (1) f (2) 3, f (3) 1, 证明 (0, 3), 使 f ( ) 0. f (0) f (1) f (2) 1, f (3) 1 分析: 所给条件可写为 3 f (0) f (1) f (2) 想到找一点 c , 使 f (c ) 1 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Index First Up Back
改为 f ( x ) f ( x ) 0 ,
( x) e x f ( x)
Last End Demand
15
Down
例9. 求数列
1 x
的最大项 .
1 2 x
用对数求导法得 证: 设 f ( x ) x ( x 1),
f ( x ) x
a b x 柯西中值定理 o
f (b) f (a ) f ( ) ba F ( x) x n 0 f (x) y
y
泰勒中值定理
f (b) f (a ) f ( ) F (b) F (a ) F ( )
Index First Up Back
f ( x ) f ( x0 ) f ( x0 )( x x0 ) o 1 a n ) b x f ( ( x0 )( x x0 )n n! 1 f ( n1) ( )( x x0 )n1 ( n 1)!
令 列表判别: 因为 得
( 1 ln x )
[ 1, e )
极大值
( e , )
0

e
x=e 处f(x)也取最大值 . 又因
1 e
只有唯一的极大点x=e, 因此在
中的最大项 .
Index First Up Back Down Last End Demand
16
arctan x 例10. 证明 ln(1 x ) ( x 0). 1 x 证: 设 ( x ) (1 x )ln(1 x ) arctan x,则(0)=0 1 x 0 ( x 0) ( x ) 1 ln(1 x ) ln(1 x ) 2 2 1 x 1 x 故x>0时, (x)单调增加 , 从而(x)>(0)=0 arctan x 即 ln(1 x ) ( x 0) 1 x 1 x ln(1 x ) 思考: 证明 (0 x 1)时, 如何设辅助 1 x arcsin x 函数更好 ? ( x ) (1 x )ln(1 x ) 1 x 2 arcsin x 提示:
O
x2
x
x0
.
f ( x)
提示: 根据f(x)的连续性及导函数 的正负作 f (x) 的示意图.
Index First Up Back Down Last
x1 O x2
End
x
12
Demand
(2) 设函数
的图形如图所示, 则函数 f (x) 的图
y
f ( x )
形在区间 ( x1 , 0), ( x2 , ) 上是凹弧;
Index
First
Up
Back
Down
Last
End
Demand
10
例5. 设f(x), g(x)在(a,+∞)上具有n 阶导数, 且
(1) f ( k ) (a ) g ( k ) (a ) (k 0 , 1 , 2 ,, n 1)
则当x>a时 证: 令 ( x ) f ( x ) g( x ) ,则
x1 O x2
x
Demand
13
例7. 证明
1 证: ln f ( x ) x ln(1 ) x x [ ln( 1 x ) ln x ]
令 F ( t ) ln t , 在 [ x , x +1 ]上利用拉氏中值定理, 得
ln( 1 x ) ln x
1

(0 x x 1)
Down Last End Demand
2
2. 微分中值定理的主要应用 (1) 研究函数或导数的性态 (2) 证明恒等式或不等式
(3) 证明有关中值问题的结论
Index
First
Up
Back
Down
Last
End
Demand
3
3. 有关中值问题的解题方法
利用逆向思维 , 设辅助函数 . 一般解题方法: (1) 证明含一个中值的等式或根的存在 , 多用罗尔定理, 可用原函数法找辅助函数 . (2) 若结论中涉及到含中值的两个不同函数 , 可考虑用 柯西中值定理 . (3) 若结论中含两个或两个以上的中值 , 必须多次应用 中值定理 . (4) 若已知条件中含高阶导数 , 多考虑用泰勒公式 ,
21
练习1:计算极限
练习2:利用函数
的单调性证明不等式
练习3:确定函数y=x2/3(x-3)的单调区间与极值。
Back Down Last End Demand
11
例6. 填空题
(1) 设 其导数图形如图所示,则f(x)的 单调减区间为 (, x1 ), (0 , x2 ) ; 单调增区间为 ( x1 , 0), ( x2 , ) ; x1 , x2 极小值点为 ; 极大值点为
y
x1
f ( x )

a0 a1 x an x 0 在 (0, )内至少有一个实根 . 1
n
Index
First
Up
Back
Down
Last
End
Demand
7
例4.设函数 f (x) 在[0, 3] 上连续, 在(0, 3) 内可导, 且
f (0) f (1) f (2) 3, f (3) 1, 证明 (0, 3), 使 f ( ) 0. f (0) f (1) f (2) 1, f (3) 1 分析: 所给条件可写为 3 f (0) f (1) f (2) 想到找一点 c , 使 f (c ) 1 3
满足下述等式 an a1 a0 0 2 n1 在 (0, 1) 内至少有一
( x ) a0 a1 x an x n , F an n1 a1 2 x 则可设 F ( x ) a0 x x 2 n1
且F (0) F (1) 0 , 由罗尔定理知: (0,1),
Index First Up Back Down Last End Demand
8
f (c ) f ( 3) 1,
且 f ( x ) 在[c, 3] 上连续, 在(c, 3) 内可导,
(03考研)
由罗尔定理知: (c, 3) (0, 3), 使 f ( ) 0.
Index
x (a , b) , f ( x ) K , 即得所证 .
Up Back Down Last End Demand
5
例2. 设f(x)在[0,1]上连续, 在(0,1)内可导, 且f(1)=1
证明至少存在一点 使 证: 问题转化为证 f ( ) 2 f ( ) 0 .
设辅助函数
( k ) (a ) 0 (k 0 , 1 ,, n 1) ; ( n ) ( x ) 0 ( x a )
利用(x)在x=a处的 n-1 阶泰勒公式得
( x)
因此x>a时
Index First
( n ) ( )
n!
Up
( x a )n
f ( x ) g( x ) .
所以当x>0时, 令x=b得
即所证不等式成立 .
Index
First
Up
Back
Down
Last
End
Demand
18
例12. 求
解法1 利用中值定理求极限
2
a a 1 a a 原式 lim n 之间) ( ) ( 在 与 2 n n n1 1 n n 1 n2 a lim n n( n 1) 1 2
证: 因 f (x) 在[0, 3]上连续, 所以在[0, 2]上连续, 且在 [0, 2]上有最大值 M 与最小值 m,
故 m f (0), f (1), f ( 2) M f (0) f (1) f ( 2) m M 3 由介值定理可知 c [0, 2] , 使 f (0) f (1) f (2) f (c ) 1 3
( x) x 2 f ( x)
显然(x)在[0,1]上满足罗尔定理条件,
故 (0,1) ,
使得
即有
Index First Up Back Down Last End Demand
6
( ) 2 f ( ) 2 f ( ) 0
例3. 设实数
证明方程
个实根 . 证: 令
1 1 1 故当 x > 0 时,ff( x) [ ln(1 x(x)在(0,+∞)上单调增.] (x)>0,从而f ) ln x ] x [ f ( x) 1 x x
Index First Up Back Down Last End Demand
14
例8. 设

上可导, 且
习题课
一、 微分中值定理及其应用
二、 导数应用
Index
First
Up
Back
Down
Last
End
Demand
1
一、 微分中值定理及其应用
1. 微分中值定理及其相互关系
罗尔定理
f (a ) f (b)
拉格朗日中值定理
f ( ) 0
y
F ( xy)f (x) x
f (a ) f (b)
Index First Up Back Down Last End Demand
17
2
例11. 设f(0)=0且在
递减 , 证明对一切a>0, b>0有
存在 , 且单调
证: 设
( x ) f (a x ) f (a ) f ( x ), 则(0)=0
相关文档
最新文档