11 变化率与导数(解析)-8页精选文档

合集下载

311变化率与导数

311变化率与导数
27
[点拨] 本例引导学生理解瞬时速度是物体在t 到 t+Δt
这段时间内的平均速度Δs当 Δt
Δt
趋近于
0
时的极限,即为s
对 t 的导数.对于作匀变速运动的物体来说,其位移对时间
的函数的导数就是其运动的速度对时间的函数,速度对时间
的函数的导数就是其运动的加速度对时间的函数,这是导数
的物理意义,利用导数的物理意义可以解决一些相关的物理
20
[解] f(x)=2x2+3x-5, ∴ Δy=f(x1+Δx)-f(x1) =2(x1+Δx)2+3(x1+Δx)-5-(2·x21+3·x1-5) =2[(Δx)2+2x1Δx]+3Δx =2(Δx)2+(4x1+3)Δx.
21
(1)当 x1=4,Δx=1 时,Δy=2+(4×4+3)×1=21, ∴ ΔΔxy=211=21; (2)当 x1=4,Δx=0.1 时, Δy=2×0.12+(4×4+3)×0.1=0.02+1.9=1.92, ∴ ΔΔxy=10..912=19.2;
7
1.函数 y=f(x)的自变量x 由 x0 改变到x0+Δx 时,函数 值的改变量Δy为( )
A.f(x0+Δx) B.f(x0)+Δx C.f(x0)·Δx D.f(x0+Δx)-f(x0) 解析:分别写出x=x0 和 x=x0+Δx 对应的函数值f(x0) 和 f(x0+Δx),两式相减,就得到了函数值的改变Δ量y=f(x0 +Δx)-f(x0),故应选D.
§3.1变化率与导数 3.1.1~3.1.2变化率问题 导数的概念
1
2
3
1.平均变化率
? f?x2?-f?x1?
函数y=f(x)从x1到 x2的平均变化率为①____x_2_-_x_1____,

导数与函数的变化率关系解析与归纳

导数与函数的变化率关系解析与归纳

导数与函数的变化率关系解析与归纳在微积分中,导数是一个重要的概念,它描述了函数在某一点处的变化率。

函数的变化率是指函数的输出值随着输入值变化而变化的快慢程度。

导数不仅对于研究函数的性质和特征有着重要的作用,还在物理学、经济学等多个领域中具有广泛的应用。

本文将解析导数与函数的变化率之间的关系,并对导数的性质进行归纳和总结。

1. 导数的定义在数学中,函数f(x)在x点处的导数可以通过极限的概念定义为:f'(x) = lim (h->0) [f(x+h) - f(x)] / h其中,f'(x)表示函数f(x)在点x处的导数,h表示自变量的增量。

导数可以理解为函数在该点附近的平均变化率。

2. 变化率与导数的关系函数的变化率与导数密切相关。

导数可以用来描述函数在某一点的瞬时变化率,即函数在该点处的瞬时变化速度。

具体来说,如果函数在某点的导数为正,说明函数在该点处递增;如果函数的导数为负,说明函数在该点处递减;如果函数的导数为零,说明函数在该点处取得极值。

3. 导数与函数的性质导数具有许多重要的性质,这些性质对于研究函数的变化率和特征非常有用。

以下是几个常见的导数性质:- 导数的可导性:几乎所有常见的函数都具有导数。

只有在某些特殊的情况下,函数可能不可导。

例如,函数在某一点处的导数不存在,当且仅当该点存在间断、角点或垂直切线。

- 导数的线性性质:导数具有线性运算的性质。

即,对于任意常数a 和b,以及函数f(x)和g(x),有以下成立:- [af(x) + bg(x)]' = af'(x) + bg'(x)- 导函数的乘积法则:对于两个函数f(x)和g(x),其乘积的导数可以通过以下公式计算:- [f(x) * g(x)]' = f'(x) * g(x) + f(x) * g'(x)- 链式法则:对于复合函数,可以使用链式法则计算导数。

链式法则是导数运算中的一种基本规则。

变化率与导数

变化率与导数

变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数: 函数y =f (x )在x =x 0处的瞬时变化率 li mΔx →0 ΔyΔx =li m Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li mΔx →0 ΔyΔx =li m Δx →0f (x 0+Δx )-f (x 0)Δx.(2)导数的几何意义 :函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数: 称函数f ′(x )=li mΔx →0 f (x +Δx )-f (x )Δx为f (x )的导函数.2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x )′=a x ln_a , (e x )′=e x ,(log a x )=1x ln a,(ln x )′=1x .3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). [小题体验]1.曲线y =e x 在点A (0,1)处的切线斜率为( ) A .1 B .2 C .eD.1e解析:选A 由题意知y ′=e x ,故所求切线斜率k =e x |x =0=e 0=1. 2.设函数f (x )在(0,+∞)内可导,且f (x )=x +ln x ,则f ′(1)=________.解析:由f (x )=x +ln x (x >0),知f ′(x )=1+1x ,所以f ′(1)=2.答案:23.已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.解析:f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ). 由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3. 答案:31.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[小题纠偏]1.函数y =ln xe x的导函数为________________. 答案:y ′=1-x ln xx e x2.已知直线y =-x +1是函数f (x )=-1a ·e x 图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,a =e 2. 答案:e 2考点一 导数的运算(基础送分型考点——自主练透)[题组练透]求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos xe x; (4)y =11-x +11+x. 解:(1)y ′=(x 2)′sin x +x 2(sin x )′ =2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′ =1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . (4)∵y =11-x +11+x =21-x, ∴y ′=⎝⎛⎭⎫21-x ′=-2(1-x )′(1-x )2=2(1-x )2. [谨记通法]求函数导数的三种原则考点二 导数的几何意义(常考常新型考点——多角探明)[命题分析]导数的几何意义是每年高考的必考内容,考查题型既有选择题、填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题.常见的命题角度有: (1)求切线方程; (2)求切点坐标; (3)求参数的值.[题点全练]角度一:求切线方程1.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( )A .4B .5 C.254D.132解析:选C ∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8,故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.角度二:求切点坐标2.若曲线y =x ln x 上点P 处的切线平行于直线 2x -y +1=0,则点P 的坐标是________. 解析:由题意得y ′=ln x +x ·1x =1+ln x ,直线2x -y +1=0的斜率为2.设P (m ,n ),则1+ln m =2,解得m =e ,所以n =eln e =e ,即点P 的坐标为(e ,e).答案:(e ,e) 角度三:求参数的值3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1 D .-2解析:选B 设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,所以y ′|x =x 0=1x 0+a =1,即x 0+a =1.又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.[方法归纳]导数几何意义的应用的2个注意点(1)当曲线y =f (x )在点(x 0,f (x 0))处的切线垂直于x 轴时,函数在该点处的导数不存在,切线方程是x =x 0;(2)注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.一抓基础,多练小题做到眼疾手快 1.函数f (x )=(x +2a )(x -a )2的导数为( ) A .2(x 2-a 2) B .2(x 2+a 2) C .3(x 2-a 2)D .3(x 2+a 2)解析:选C ∵f (x )=(x +2a )(x -a )2=x 3-3a 2x +2a 3, ∴f ′(x )=3(x 2-a 2).2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( ) A .-e B .-1 C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x .∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.3.曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x , ∴y ′=cos x +e x , ∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0. 4.已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________. 解析:∵f ′(x )=3ax 2+1, ∴f ′(1)=3a +1. 又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1). ∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1. 答案:15.分别求下列函数的导数: (1)y =e x ·cos x ;(2)y =x ⎝⎛⎭⎫x 2+1x +1x 3. 解:(1)y ′=(e x )′cos x +e x (cos x )′=e x cos x -e x sin x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x 3.二保高考,全练题型做到高考达标1.已知f (x )=x (2 015+ln x ),若f ′(x 0)=2 016,则x 0=( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 015+ln x +x ·1x =2 016+ln x ,故由f ′(x 0)=2 016得2 016+ln x 0=2 016,则ln x 0=0,解得x 0=1.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3.曲线y =1-2x +2在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2解析:选A ∵y =1-2x +2=x x +2, ∴y ′=x +2-x (x +2)2=2(x +2)2,y ′| x =-1=2,∴曲线在点(-1,-1)处的切线斜率为2, ∴所求切线方程为y +1=2(x +1),即y =2x +1.4.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处切线倾斜角α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫5π6,π B.⎣⎡⎭⎫2π3,π C.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π D.⎝⎛⎦⎤π2,5π6解析:选C 因为y ′=3x 2-3≥-3,故切线斜率k ≥-3,所以切线倾斜角α的取值范围是⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫2π3,π. 5.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1, 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.6.函数f (x )=x e x 的图象在点(1,f (1))处的切线方程是________. 解析: ∵f (x )=x e x , ∴f (1)=e ,f ′(x )=e x +x e x ,∴f ′(1)=2e ,∴f (x )的图象在点(1,f (1))处的切线方程为y -e =2e(x -1),即y = 2e x -e.答案:y =2e x -e7.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x ) 是g (x )的导函数,则g ′(3)=________.解析:由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3), 由题图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 答案:08.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′(a )+b f ′(b )+c f ′(c )=________.解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc , ∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca , f ′(a )=(a -b )(a -c ), f ′(b )=(b -a )(b -c ), f ′(c )=(c -a )(c -b ). ∴a f ′(a )+b f ′(b )+cf ′(c )=a (a -b )(a -c )+b (b -a )(b -c )+c(c -a )(c -b )=a (b -c )-b (a -c )+c (a -b )(a -b )(a -c )(b -c )=0.答案:09.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3).解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +x cos 2x. (2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.10.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程.解:(1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2,即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4), ∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0,或y +2=0. 三上台阶,自主选做志在冲刺名校1.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278 B .-2 C .2 D .-278解析:选A 设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′| x =t =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k=-a 和k =274-a ,由题意得它们互为相反数,故a =278.2.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2- 2 ]∪(1,3)∪[2+2,+∞).。

高中数学选修11【变化率与导数】课件

高中数学选修11【变化率与导数】课件

10 A (1, 3.5)
2
02
10
20
30 34 t(d)
T (℃)
C (34, 33.4)
30
B (32, 18.6) 20
这就是
10 A (1, 3.5)
气温的
2
平均变
02
10
20
30 3化4 t(率d) 。
问题1:从3月18日到4月18日气温上升了多少度?
问题2:从4月18日到4月20日气温上升了多少度?
ffx 2fx 1fx 1 xfx 1
x x 2 x 1
x
例题
求函数 y 3x2 2在区间 [x0,x0 x]上的平均 变化率,并求当x0 2,x1时,平均变化率
的值。
练习
设函数y=f(x),当自变量x由 x 0 改变到 x0 x
时,函数的改变量 y 为( )
A. f (x0 x)
变化率
xB xA
(4)我们用比值 y C y B 表示[32,34]上的气温平
均变化率
xC xB
平均变化率
从以上的例子中,我们可以了解到,平均变
化率是指在某个区间内数值的平均变化量.对于
函数y=f(x)有:
平均变化率: f x2 f x1
x2 x1
令“增量”xx2 x1
f f x2 f x1Fra bibliotek为函数h(x)在
导数的概念
一般地,函数 y =f(x) 在点x=x0处的瞬时变化
率是
lim ylimf(x0 x)f(x0)
x x 0
x 0
x
我们称它为函数 y = f (x)在点x=x0处的导数,
记为 f ( x 0 ) 或 y x xo ,即

变化率与导数导数的计算

变化率与导数导数的计算

变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。

而导数则是描述函数在其中一点上的变化率的概念。

在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。

那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。

这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。

变化率可以通过求平均变化率和瞬时变化率来进行计算。

平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。

而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。

二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。

导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。

导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。

1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。

(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。

(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。

(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。

(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。

2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。

变化率与导数、导数的计算 (共31张PPT)

变化率与导数、导数的计算 (共31张PPT)

4. 若 f x cosx,则 f ' x sin x ;
6. 若 f x ex ,则 f ' x ex ;
1 7. 若 f x loga x, 则 f x ; x lna 1 ' 8. 若 f x ln x, 则 f x . x
3x2sin x-x3-1cos x y′ = sin2x
考点一
导数的运算 (基础送分型考点——自主练透)
[必备知识]
1.基本初等函数的导数公式 (xα)′=αxα-1,(sin x)′=cos x,(cos x)′=-sin x,(ax)′ 1 1 =a ln a,(e )′=e ,(logax)′= ,(ln x)′=x. xln a
'
(二)小题查验
判断正误
(1)sin
π π ′=cos 3 3
(× ) (× )
(√ )
1 1 (2)若(ln x)′=x,则x′=ln x
(3)(3x)′=3xln 3
基础盘查三
导数四则运算法则
(一)循纲忆知
能利用导数的四则运算法则求解导函数.
知识小结
1. 由常函数、幂函数及正、余弦函数经加、
f(x0 +Δx)- f(x0 ) k = f(x0 )= lim Δx→ 0 Δx
切线方程:
y - f(x 0 ) = f (x 0 )(x - x 0 )
作用:
确定x = x 0处切线的斜率,从而确 定切线的方程.
(二)小题查验
1.判断正误
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率 ( × )
求下列函数的导数. (1)y=x2sin x; 1 (2)y=ln x+x; (3)y= cos x ; ex

《变化率和导数》课件

《变化率和导数》课件

变化率的计算方法
直接代入法
将自变量和因变量的值代入公式 进行计算。
差商法
通过比较函数值的变化量与自变量 的变化量的比值来计算变化率。
极限法
利用极限的概念,将自变量趋近于 某一点时函数值的变化量与自变量 的变化量的比值定义为该点的变化 率。
变化率的实际应用
物理学中的速度和加速度
速度是位置随时间的变化率,加速度 是速度随时间的变化率。
,从而做出更优的决策。
02
供需关系
导数在经济学中还可以用来描述供需关系的变化。例如,需求函数和供
给函数的导数可以用来分析市场价格与需求量或供给量之间的关系,从
而预测市场的变化趋势。
03
最优化问题
在经济学中,最优化问题是一个常见的问题。通过求函数的导数并令其
为零,我们可以找到使函数取得极值的点。这种方法在生产、分配、投
05
总结与展望
总结变化率和导数的知识点
变化率的概念
变化率描述了函数值随 自变量变化的速率,是
导数的基础。
导数的定义
导数表示函数在某一点 的切线斜率,是变化率
的极限形式。
导数的计算方法
包括基本初等函数的导 数、复合函数的导数、
参数方程的导数等。
导数的几何意义
导数等于切线的斜率, 可以用于研究函数的单 调性、极值和拐点等。
THANKS
感谢观看
展望导数在未来的应用和发展
导数的应用
导数在各个领域都有广泛的应用,如经济学 、生物学、物理学等。例如,边际分析、速 度与加速度的研究、最优化的求解等。
导数的未来发展
随着科学技术的发展,导数作为数学的一个 重要分支,将会在理论和应用方面得到更深 入的研究。例如,在人工智能、大数据分析 等领域,导数将发挥更大的作用。同时,随 着数学与其他学科的交叉融合,导数将会在 解决实际问题中发挥更加重要的作用。

第1节变化率与导数导数的计算

第1节变化率与导数导数的计算

第1节变化率与导数导数的计算导数是微积分中的重要概念之一,它描述了函数在其中一点的变化率。

导数的概念最早由牛顿和莱布尼茨在17世纪提出,是微积分研究的基石之一、在实际问题中,导数的概念有着广泛的应用,如物理学中的速度、加速度、斜率等都是变化率的概念。

导数的定义是函数在其中一点的变化率,用极限表示,即:如果函数f(x)在点x=a处存在导数,则称函数在点x=a处可导,导数的值记为f'(a),即:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)对于一个实函数来说,导数被定义为函数变化的斜率,表示的是函数在其中一点的瞬时变化速率。

在应用中,导数有许多计算方法,这里列举一些常用的计算方法:1.基本导数公式基本导数公式是指常用的函数的导数公式,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。

熟练掌握这些公式,可以快速计算函数的导数。

2.导数的基本性质导数有一些基本的性质,如积差、和差、复合函数的导数规则。

这些性质可以简化复杂函数的导数计算。

3.高阶导数高阶导数是指导数的导数。

如果一个函数的导数可导,则可以继续对导数求导,得到高阶导数。

高阶导数可以描述函数的凹凸性、拐点等特性。

4.隐函数求导有时函数的表达式不显含自变量,而是通过一个方程来描述函数与自变量之间的关系。

这种情况下,要通过隐函数求导的方法来计算导数。

5.参数方程求导对于参数方程描述的曲线,可以通过参数对函数进行求导,得到曲线的切线方程、法线方程等。

通过以上方法,可以计算得到函数在其中一点的导数值,进而研究函数的性质、变化规律等。

在实际问题中,导数的应用非常广泛。

例如,在物理学中,加速度是速度的导数,速度是位移的导数;在经济学中,边际成本、边际收益等概念都是导数的应用;在工程学中,导数是电路中信号变化的关键指标。

总之,导数是微积分中的重要概念,可以描述函数的变化率,通过导数的计算可以研究函数的性质和变化规律,并在实际问题中得到广泛应用。

变化率与导数及导数的计算

变化率与导数及导数的计算

变化率与导数及导数的计算变化率是指其中一物理量在一定时间或空间上的变化幅度。

导数是微积分中用来描述函数变化率的概念。

导数的定义是函数在其中一点的变化率。

在微积分中,导数用于刻画函数曲线上一点的斜率,即曲线在该点的切线的斜率。

导数表示了函数在该点附近的局部变化情况。

若函数y=f(x),则函数f(x)在x=a的导数表示为f'(a)或dy/dx,_x=a。

导数表示了函数y=f(x)在x=a点附近的变化率。

导数可以通过几何方法、物理方法、以及代数方法进行求解。

一、几何解释法通过对函数对应的图像进行观察,可以直观地看出导数的几何意义。

函数y=f(x)在x=a点的导数f'(a)等于函数曲线在x=a点处的切线的斜率。

二、平均变化率和瞬时变化率平均变化率表示了函数的两个点之间的变化情况。

若函数f(x)在区间[a,b]上是连续的,则函数在该区间上的平均变化率为(f(b)-f(a))/(b-a)。

瞬时变化率表示了函数在其中一点的瞬时变化情况。

当间隔变得非常短小,即b趋近于a时,平均变化率趋近于瞬时变化率,即瞬时变化率等于导数。

三、导数的计算方法1.基本导数公式常见的基本导数公式如下:(1)常数函数的导数为零,即d(c)/dx=0,其中c为常数;(2)x的导数为1,即d(x)/dx=1;(3)可加性,即d(u+v)/dx=du/dx+dv/dx,其中u和v是函数;(4)乘性,即d(uv)/dx=udv/dx+vdu/dx,其中u和v是函数。

2.基本函数的导数(1)幂函数的导数:若f(x)=x^n,则f'(x)=nx^(n-1),其中n为常数;(2)指数函数的导数:若f(x)=a^x,则f'(x)=a^x * ln(a),其中a为常数,ln(a)为a的自然对数;(3)对数函数的导数:若f(x)=log_a(x),则f'(x)=1/(x*ln(a)),其中a为常数,ln(a)为a的自然对数;(4)三角函数的导数:若f(x)=sin(x),则f'(x)=cos(x);若f(x)=cos(x),则f'(x)=-sin(x);若f(x)=tan(x),则f'(x)=sec^2(x),其中sec(x)为x的余切。

变化率与导数、导数的计算 Word版含解析

变化率与导数、导数的计算 Word版含解析

课时分层作业十三变化率与导数、导数的计算一、选择题(每小题5分,共35分)1.f′(x)是函数f(x)=x3+2x+1的导函数,则f′(-1)的值为( )A.0B.3C.4D.-【解析】选B.因为f(x)=x3+2x+1,所以f′(x)=x2+2.所以f′(-1)=3.2.已知函数f(x)=cos x,则f(π)+f′= ( )A.-B.-C.-D.-【解析】选C.因为f′(x)=-cos x+(-sin x),所以f(π)+f′=-+·(-1)=-.3.(2018·吉林模拟)已知曲线y=ln x的切线过原点,则此切线的斜率为 ( )A.eB.-eC.D.-【解析】选C.y=ln x的定义域为(0,+∞),且y′=,设切点为(x0,ln x0),则y′=,切线方程为y-ln x0=(x-x0),因为切线过点(0,0),所以-ln x0=-1,解得x0=e,故此切线的斜率为.【变式备选】曲线y=e x在点A(0,1)处的切线斜率为( )A.1B.2C.eD.【解析】选A.由题意知y′=e x,故所求切线斜率k=e x=e0=1. 4.(2018·沈阳模拟)若曲线y=x3+ax在坐标原点处的切线方程是2x-y=0,则实数a= ( )A.1B.-1C.2D.-1【解析】选C.导数的几何意义即为切线的斜率,由y′=3x2+a得在x=0处的切线斜率为a,所以a=2.【变式备选】直线y=x+b是曲线y=ln x(x>0)的一条切线,则实数b 的值为 ( )A.2B.ln 2+1C.ln 2-1D.ln 2【解析】选C.y=ln x的导数为y′=,由=,解得x=2,所以切点为(2,ln 2).将其代入直线方程y=x+b,可得b=ln 2-1.5.已知f(x)=2e x sin x,则曲线f(x)在点(0,f(0))处的切线方程为( )A.y=0B.y=2xC.y=xD.y=-2x【解析】选 B.因为f(x)=2e x sin x,所以f(0)=0,f′(x)=2e x·(sin x+cos x),所以f′(0)=2,所以曲线f(x)在点(0,f(0))处的切线方程为y=2x.6.设曲线y=在点处的切线与直线x-ay+1=0平行,则实数a等于 ( )A.-1B.C.-2D.2【解析】选A.因为y′=,所以y′=-1,由条件知=-1,所以a=-1.7.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值等于( )A.2B.-1C.1D.-2【解析】选C.依题意知,y′=3x2+a,则由此解得所以2a+b=1.二、填空题(每小题5分,共15分)8.若曲线y=2x2的一条切线l与直线x+4y-8=0垂直,则切线l的方程为________________.【解析】设切点为(x0,y0),y′=4x,则4x0=4⇒x0=1,所以y0=2,所以切线方程为:y-2=4(x-1)⇒4x-y-2=0.答案:4x-y-2=09.(2018·长沙模拟)若函数f(x)=ln x-f′(-1)x2+3x-4,则f′(1)=________.【解析】因为f′(x)=-2f′(-1)x+3,所以f′(-1)=-1+2f′(-1)+3,解得f′(-1)=-2,所以f′(1)=1+4+3=8.答案:810.已知定义在R上的函数f(x)满足f(1-x)+f(1+x)=2,且当x>1时,f(x)=xe2-x,则曲线y=f(x)在x=0处的切线方程是________.【解析】因为f(x)满足f(1-x)+f(1+x)=2,所以y=f(x)的图象关于点(1,1)对称.当x<1时,取点(x,y),该点关于(1,1)的对称点是(2-x,2-y),代入f(x)=xe2-x可得:2-y=(2-x)e2-(2-x),所以y=2-(2-x)e x=xe x,y′=(x+1)e x,y′|x=0=1,所以切线方程为y=x,即x-y=0.答案:x-y=01.(5分)已知函数f(x)在R上满足f(2-x)=2x2-7x+6,则曲线y=f(x)在(1,f(1))处的切线方程是 ( )A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3【解析】选 C.令x=1得f(1)=1,令2-x=t,可得x=2-t,代入f(2-x)=2x2-7x+6得f(t)=2(2-t)2-7(2-t)+6,化简整理得f(t)=2t2-t,即f(x)=2x2-x,所以f′(x)=4x-1,所以f′(1)=3.所以所求切线方程为y-1=3(x-1),即y=3x-2.【巧思妙解】选C.令x=1得f(1)=1,由f(2-x)=2x2-7x+6,两边求导可得f′(2-x)·(2-x)′=4x-7,令x=1可得-f′(1)=-3,即f′(1)=3.所以所求切线方程为y-1=3(x-1),即y=3x-2.2.(5分)(2018·上饶模拟)若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2距离的最小值为 ( )A.1B.C.D.【解析】选B.对于曲线y=x2-ln x上任意一点P,当过该点的切线斜率与直线y=x-2的斜率相同时,点P到直线的距离最小.因为定义域为(0,+∞),所以y′=2x-=1,解得x=1,则在P(1,1)处的切线方程为x-y=0,所以两平行线间的距离为d==.【变式备选】曲线y=ln(2x)上任意一点P到直线y=2x的距离的最小值是________.【解析】如图,所求最小值即曲线上斜率为2的切线与y=2x两平行线间的距离,也即切点到直线y=2x的距离.由y=ln(2x),则y′==2,得x=,y=ln =0,即与直线y=2x平行的曲线y=ln(2x)的切线的切点坐标是,y=ln(2x)上任意一点P到直线y=2x的距离的最小值,即=.答案:3.(5分)(2018·沧州模拟)若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的值为________.【解析】易知点O(0,0)在曲线f(x)=x3-3x2+2x上,(1)当O(0,0)是切点时,切线方程为y=2x,则联立y=2x和y=x2+a得x2-2x+a=0,由Δ=4-4a=0,解得a=1.(2)当O(0,0)不是切点时,设切点为P(x0,y0),则y0=-3+2x0,且k=f′(x0)=3-6x0+2.①又k==-3x0+2,②由①,②联立,得x0=(x0=0舍),所以k=-,所以所求切线l的方程为y=-x.由得x2+x+a=0.依题意,Δ′=-4a=0,所以a=.综上,a=1或a=.答案: 1或【易错警示】(1)片面理解“过点O(0,0)的直线与曲线f(x)=x3-3x2+2x 相切”.这里有两种可能:一是点O是切点;二是点O不是切点,但曲线经过点O,解析中易忽视后面情况.(2)本题还易出现以下错误:一是当点O(0,0)不是切点,无法与导数的几何意义沟通起来;二是盲目设直线l的方程,导致解题复杂化,求解受阻.4.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程.(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.【解析】(1)可判定点(2,-6)在曲线y=f(x)上.因为f′(x)=(x3+x-16)′=3x2+1,所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.所以切线的方程为y+6=13(x-2),即y=13x-32.(2)设切点坐标为(x0,y0),则直线l的斜率k为f′(x0)=3+1,y0=+x0-16,所以直线l的方程为y=(3+1)(x-x0)++x0-16.又因为直线l过原点(0,0),所以0=(3+1)(-x0)++x0-16,整理得,=-8,所以x0=-2,所以y0=(-2)3+(-2)-16=-26,得切点坐标为(-2,-26),k=3×(-2)2+1=13.所以直线l的方程为y=13x,切点坐标为(-2,-26).5.(13分)已知函数f(x)=x-1+(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值.(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)相切,求l的直线方程.【解析】(1)f′(x)=1-,因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=1-=0,解得a=e.(2)当a=1时,f(x)=x-1+,f′(x)=1-.设切点为(x0,y0),因为f(x0)=x0-1+=kx0-1,①f′(x0)=1-=k,②①+②得x0=kx0-1+k,即(k-1)(x0+1)=0.若k=1,则②式无解,所以x0=-1,k=1-e.所以l的直线方程为y=(1-e)x-1.关闭Word文档返回原板块。

变化率与导数导数的计算

变化率与导数导数的计算
导数与积分的关系
导数与积分是互逆运算,一个函数的导数与其积分之间的关系可以通过微积分基本定理来表示。
04 导数的应用
导数在几何中的应用
求切线斜率
导数可以用来求曲线在某一点的切线斜率,从而了解曲线在该点的 变化趋势。
研究函数极值
通过求导数并令其为零,可以找到函数的极值点,进而研究函数的 最大值和最小值。
莱布尼茨法则
对于复合函数的 $n$ 阶导数,可以利用莱布尼 茨法则进行计算。
幂级数展开法
对于复杂的函数,可以利用幂级数展开法求得高阶导数。
THANKS FOR WATCHING
感谢您的观看
曲线的凹凸性判断
通过求二阶导数,可以判断曲线的凹凸性,进而了解曲线的弯曲程度。
导数在物理中的应用
速度和加速度的研究
在物理学中,导数可以用来研究物体的速度和加速度, 例如瞬时速度和瞬时加速度。
斜抛运动的研究
通过导数可以研究斜抛物体的运动轨迹,例如研究射 程、射高等。
振动和波动的研究
导数可以用来研究振动和波动的规律,例如振幅、频 率等。
03
导数可以用来研究函数的单调性、极值、拐点等性质。
导数的几何意义
导数的几何意义是函数在某一 点处的切线斜率,即切线与x
轴正方向的夹角正切值。
当导数大于0时,函数在该点 处单调递增;当导数小于0时,
函数在该点处单调递减。
导数的符号变化点为函数的拐 点,即函数图像的凹凸分界点。
导数的计算方法
定义法
隐函数的导数计算
对数求导法
对于形如 $y = f(x)$ 的隐函数,可以通 过两边取对数,转化为显函数进行求导 。
VS
参数方程法
对于参数方程 $x = x(t), y = y(t)$,可以 通过对参数 $t$ 求导来求得隐函数的导数。

11变化率与导数

11变化率与导数

x x
y 2(2x)1 1 ,
x
x
2(2x)
lx i0 m x y lx i0 [1 m 2 (2 1 x )] 1 1 4 4 3 , y |x 2 4 3 .
例 2:已知y函 x数 在 xx0处附近,且 有 y'|x定 x0 1 2,求 x0的.值
……
……
我 们 发 现 ,当 t趋 近 于 0时 ,即 无 论 t从 小 于 2的 一 边 ,
还 是 从 大 于 2一 边 趋 近 于 2时 ,平 均 速 度 都 趋 近 于 一 个
确 定 的 值 13.1.
从 物 理 的 角 度 看 ,时 间 间 隔 |t|无 限 变 小 时 ,平 均
速 度 v就 无 限 趋 近 于 t2时 的 瞬 时 速 度 .因 此 ,运 动 员 在
△t<0时, 在[ 2+△t, 2 ]这段时 间内
v 4 .9 t 1.1 3
当△t = – 0.01时, v13.051
△t>0时, 在[2, 2 +△t ]这段时 间内
v 4 .9 t 1.1 3
当△t = 0.01时, v13.149
当△t = – 0.001时, v13.0951 当△t =0.001时, v13.104
y2x(x)22x, x x
lx i0 m x y lx i0 (m 2 x ) 2 , y |x 1 2 .
(2 ) y (2 x )1 (2 1 ) x x, 2 x 2 2 (2 x )
( x)23 x
平 均 变 化 率y( x)23x x3
x
x
f/( 1 )limylim (x3 )3

变化率与导数及计算

变化率与导数及计算

f(x)=logax
f′(x)=xl1na
课 时 规 范

f(x)=lnx
f′(x)=1x





4.导数运算法则
梳 理

(1)[f(x)±g(x)]′=f′(x)±g′(x);
焦 考

(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
透 析

(3)gfxx′=f′xgx[g- xf]2xg′x(g(x)≠0).
基 础

+Δy),则ΔΔxy等于(
)
识 梳 理


A.3+2Δx B.4+Δx C.4+2Δx D.3+Δx
考 向

解析:∵Δy=2(1+Δx)2-2=2Δx2+4Δx,



∴ΔΔxy=2Δx2Δ+x 4Δx=2Δx+4,故选 C.
经 典 考 题
答案:C
课 时




4.(教材改编题)函数 f(x)=(x+2a)(x-a)2 的导数为________. 基
础 知


线的关系


曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点,若切线斜率
焦 考


存在时,切线斜率为 k=f′(x0),是唯一的一条切线;曲线 y=f(x) 析

过点 P(x0,y0)的切线,是指切线经过 P 点,点 P 可以是切点,也可
悟 经


以不是切点,而且这样的直线可能有多条.

解析:f′(x)=(x-a)2+(x+2a)[2(x-a)]=3(x2-a2).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一节变化率与导数、导数的计算[知识能否忆起]一、导数的概念1.函数y =f (x )在x =x 0处的导数 (1)定义:称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 ΔyΔx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.二、基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) f ′(x )=nx n -1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x f ′(x )=a x ln_a f (x )=e x f ′(x )=e x f (x )=log a x f ′(x )=1x ln af (x )=ln xf ′(x )=1x三、导数的运算法则1.[f (x )±g (x )]′=f ′(x )±g ′(x ); 2.[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); 3.⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). (理)4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[小题能否全取]1.(教材习题改编)若f (x )=x e x ,则f ′(1)=( )A .0B .EC .2eD .e 2解析:选C ∵f ′(x )=e x +x e x ,∴f ′(1)=2e.2.曲线y =x ln x 在点(e ,e)处的切线与直线x +ay =1垂直,则实数a 的值为( )A .2B .-2 C.12D .-12解析:选A 依题意得y ′=1+ln x ,y ′ |x =e =1+ln e =2,所以-1a×2=-1,a =2.3.(教材习题改编)某质点的位移函数是s (t )=2t 3-12gt 2(g =10 m/s 2),则当t =2 s 时,它的加速度是( )A .14 m/s 2B .4 m/s 2C .10 m/s 2D .-4 m/s 2解析:选A 由v (t )=s ′(t )=6t 2-gt ,a (t )=v ′(t )=12t -g ,得t =2时,a (2)=v ′(2)=12×2-10=14(m/s 2).4.(2019·广东高考)曲线y =x 3-x +3在点(1,3)处的切线方程为________.解析:∵y ′=3x 2-1,∴y ′ |x =1=3×12-1=2.∴该切线方程为y -3=2(x -1),即2x -y +1=0. 答案:2x -y +1=0 5.函数y =x cos x -sin x 的导数为________.解析:y ′=(x cos x )′-(sin x )′ =x ′cos x +x (cos x )′-cos x =cos x -x sin x -cos x =-x sin x . 总结 1.函数求导的原则对于函数求导,一般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.2.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别与联系(1)曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,切线斜率为k =f ′(x 0)的切线,是唯一的一条切线.(2)曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点.点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.利用导数的定义求函数的导数 典题导入[例1] 用定义法求下列函数的导数.(1)y =x 2; (2)y =4x2.[自主解答] (1)因为Δy Δx =f (x +Δx )-f (x )Δx =(x +Δx )2-x 2Δx =x 2+2x ·Δx +(Δx )2-x 2Δx =2x +Δx ,所以y ′=lim Δx →0 ΔyΔx=lim Δx →0 (2x +Δx )=2x . (2)因为Δy =4(x +Δx )2-4x 2=-4Δx (2x +Δx )x 2(x +Δx )2, ΔyΔx =-4·2x +Δx x 2(x +Δx )2,所以limΔx →0 Δy Δx =lim Δx →0 ⎣⎢⎡⎦⎥⎤-4·2x +Δx x 2(x +Δx )2=-8x 3. 由题悟法根据导数的定义,求函数y =f (x )在x =x 0处导数的步骤(1)求函数值的增量Δy =f (x 0+Δx )-f (x 0); (2)求平均变化率Δy Δx =f (x 0+Δx )-f (x 0)Δx ;(3)计算导数f ′(x 0)=li m Δx →0ΔyΔx. 以题试法1.一质点运动的方程为s =8-3t 2.(1)求质点在[1,1+Δt ]这段时间内的平均速度;(2)求质点在t =1时的瞬时速度(用定义及导数公式两种方法求解). 解:(1)∵s =8-3t 2,∴Δs =8-3(1+Δt )2-(8-3×12)=-6Δt -3(Δt )2, v =ΔsΔt=-6-3Δt . (2)法一(定义法):质点在t =1时的瞬时速度 v =li m Δt →0ΔsΔt=li m Δt →0 (-6-3Δt )=-6. 法二(导数公式法):质点在t 时刻的瞬时速度v =s ′(t )=(8-3t 2)′=-6t . 当t =1时,v =-6×1=-6.导数的运算典题导入[例2] 求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1; [自主解答] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x (e x -1)2. 则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5.由题悟法求导时应注意:(1)求导之前利用代数或三角恒等变换对函数进行化简可减少运算量.(2)对于商式的函数若在求导之前变形,则可以避免使用商的导数法则,减少失误.以题试法2.求下列函数的导数.(1)y =e x ·ln x ; (2)y =x ⎝⎛⎭⎫x 2+1x +1x 3; 解:(1)y ′=(e x ·ln x )′ =e x ln x +e x ·1x =e x ⎝⎛⎭⎫ln x +1x . (2)∵y =x 3+1+1x 2,∴y ′=3x 2-2x3.导数的几何意义典题导入[例3] (1)(2019·山东高考)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15(2)设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( )A .-14B .2C .4D .-12[自主解答] (1)y ′=3x 2,故曲线在点P (1,12)处的切线斜率是3,故切线方程是y -12=3(x -1),令x =0得y =9.(2)∵曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,∴g ′(1)=k =2. 又f ′(x )=g ′(x )+2x ,∴f ′(1)=g ′(1)+2=4,故切线的斜率为4 [答案] (1)C (2)C 若例3(1)变为:曲线y =x 3+11,求过点P (0,13)且与曲线相切的直线方程.解:因点P 不在曲线上,设切点的坐标为(x 0,y 0), 由y =x 3+11,得y ′=3x 2, ∴k =y ′|x =x 0=3x 20. 又∵k =y 0-13x 0-0,∴x 30+11-13x 0=3x 20. ∴x 30=-1,即x 0=-1. ∴k =3,y 0=10. ∴所求切线方程为y -10=3(x +1), 即3x -y +13=0.由题悟法导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0); (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k ;(3)已知切线过某点M (x 1,f (x 1))(不是切点)求切点,设出切点A (x 0,f (x 0)),利用k =f (x 1)-f (x 0)x 1-x 0=f ′(x 0)求解.以题试法3.(1)(2019·新课标全国卷)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________.(2)(2019·乌鲁木齐诊断性测验)直线y =12x +b 与曲线y =-12x +ln x 相切,则b 的值为( )A .-2B .-1C .-12D .1解析:(1)y ′=3ln x +1+3,所以曲线在点(1,1)处的切线斜率为4,所以切线方程为y -1=4(x -1),即y =4x -3.(2)设切点的坐标为⎝⎛⎭⎫a ,-12a +ln a ,依题意,对于曲线y =-12x +ln x ,有y ′=-12+1x ,所以-12+1a =12,得a =1.又切点⎝⎛⎭⎫1,-12 在直线y =12x +b 上,故-12=12+b ,得b =-1. 答案:(1)y =4x -3 (2)B1.函数f (x )=(x +2a )(x -a )2的导数为( )A .2(x 2-a 2)B .2(x 2+a 2)C .3(x 2-a 2)D .3(x 2+a 2)解析:选C f ′(x )=(x -a )2+(x +2a )[2(x -a )]=3(x 2-a 2).2.已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( )A.194B.174C.154D.134解析:选D ∵s ′=2t -3t 2,∴s ′|t =2=4-34=134.3. (2019·哈尔滨模拟)已知a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导函数f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-3xB .y =-2xC .y =3xD .y =2x解析:选B ∵f (x )=x 3+ax 2+(a -2)x , ∴f ′(x )=3x 2+2ax +a -2. ∵f ′(x )为偶函数,∴a =0. ∴f ′(x )=3x 2-2.∴f ′(0)=-2. ∴曲线y =f (x )在原点处的切线方程为y =-2x .4.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( ) A .-1B.12C .-2D .2解析:选A ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos x sin 2x ,∴y ′|x =π2=-1.由条件知1a =-1,∴a =-1.5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为( )A .1B.2C.22D. 3解析:选B 设P (x 0,y 0)到直线y =x -2的距离最小,则y ′|x =x 0=2x 0-1x 0=1.得x 0=1或x 0=-12(舍). ∴P 点坐标(1,1).∴P 到直线y =x -2距离为d =|1-1-2|1+1= 2.6.f (x )与g (x )是定义在R 上的两个可导函数,若f (x ),g (x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )=g (x )=0C .f (x )-g (x )为常数函数D .f (x )+g (x )为常数函数解析:选C 由f ′(x )=g ′(x ),得f ′(x )-g ′(x )=0, 即[f (x )-g (x )]′=0,所以f (x )-g (x )=C (C 为常数).7.(2019·郑州模拟)已知函数f (x )=ln x -f ′(-1)x 2+3x -4,则f ′(1)=________.解析:∵f ′(x )=1x -2f ′(-1)x +3, f ′(-1)=-1+2f ′(-1)+3,∴f ′(-1)=-2,∴f ′(1)=1+4+3=8.8.(2019辽宁高考)已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________.解析:易知抛物线y =12x 2上的点P (4,8),Q (-2,2),且y ′=x ,则过点P 的切线方程为y =4x -8,过点Q 的切线方程为y =-2x -2,联立两个方程解得交点A (1,-4),所以点A 的纵坐标是-4.答案:-49.(2019·黑龙江哈尔滨二模)已知函数f (x )=12x -14sin x -34cos x 的图象在点A (x 0,y 0)处的切线斜率为1,则tan x 0=________.解析:由f (x )=12x -14sin x -34cos x 得f ′(x )=12-14cos x +34sin x ,则k =f ′(x 0)=12-14cos x 0+34sin x 0=1, 即32sin x 0-12cos x 0=1,即sin ⎝⎛⎭⎫x 0-π6=1. 所以x 0-π6=2k π+π2,k ∈Z ,解得x 0=2k π+2π3,k ∈Z. 故tan x 0=tan ⎝⎛⎭⎫2k π+2π3=tan 2π3=- 3. 10.求下列函数的导数.(1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x. (2)y ′=(x +1)′(x +2)(x +3)+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.11.已知函数f (x )=x -2x ,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x =1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线.解:根据题意有曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a . 所以f ′(1)=g ′(1),即a =-3.曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),得:y +1=3(x -1),即切线方程为3x -y -4=0. 曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1). 得y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12.设函数f (x )=x 3+ax 2-9x -1,当曲线y =f (x )斜率最小的切线与直线12x +y =6平行时,求a 的值.解:f ′(x )=3x 2+2ax -9=3⎝⎛⎭⎫x +a 32-9-a 23,即当x =-a 3时,函数f ′(x )取得最小值-9-a23,因斜率最小的切线与12x +y =6平行,即该切线的斜率为-12,所以-9-a 23=-12,即a 2=9,即a =±3.1.(2019·商丘二模)等比数列{a n }中,a 1=2,a 8=4,f (x )=x (x -a 1)(x -a 2)…(x -a 8),f ′(x )为函数f (x )的导函数,则f ′(0)=( )A .0B .26C .29D .212解析:选D ∵f (x )=x (x -a 1)(x -a 2)…(x -a 8), ∴f ′(x )=x ′(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′ =(x -a 1)…(x -a 8)+x [(x -a 1)…(x -a 8)]′,∴f ′(0)=(-a 1)·(-a 2)·…·(-a 8)+0=a 1·a 2·…·a 8=(a 1·a 8)4=(2×4)4=(23)4=212.2.已知f 1(x )=sin x +cos x ,记f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n (x )=f n -1′(x )(n ∈N *,n ≥2),则f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=________.解析:f 2(x )=f 1′(x )=cos x -sin x f 3(x )=(cos x -sin x )′=-sin x -cos x , f 4(x )=-cos x +sin x ,f 5(x )=sin x +cos x ,以此类推,可得出f n (x )=f n +4(x ), 又∵f 1(x )+f 2(x )+f 3(x )+f 4(x )=0, ∴f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+…+f 2 012⎝⎛⎭⎫π2=503f 1⎝⎛⎭⎫π2+f 2⎝⎛⎭⎫π2+f 3⎝⎛⎭⎫π2+f 4⎝⎛⎭⎫π2=0. 3.已知函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l ,根据以下条件求l 的方程.(1)直线l 和y =f (x )相切且以P 为切点; (2)直线l 和y =f (x )相切且切点异于P .解:(1)由f (x )=x 3-3x 得f ′(x )=3x 2-3,过点P 且以P (1,-2)为切点的直线的斜率f ′(1)=0, 故所求的直线方程为y =-2.(2)设过P (1,-2)的直线l 与y =f (x )切于另一点(x 0,y 0),则f ′(x 0)=3x 20-3. 又直线过(x 0,y 0),P (1,-2),故其斜率可表示为y 0-(-2)x 0-1=x 30-3x 0+2x 0-1, 所以x 30-3x 0+2x 0-1=3x 20-3, 即x 30-3x 0+2=3(x 20-1)(x 0-1). 解得x 0=1(舍去)或x 0=-12, 故所求直线的斜率为k =3⎝⎛⎭⎫14-1=-94. 所以l 的方程为y -(-2)=-94(x -1),即9x +4y -1=0.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又f ′(x )=a +bx2,则⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20·(x -x 0),即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,此定值为6.。

相关文档
最新文档