高二数学分层抽样 (1)23页PPT
高二数学抽样方法
总体中的个 体个数较多
总体由差异 明显的几部 分构成
抽样过程 中每个个 体被抽到 的可能性 相同
例.下列问题中,采用怎样的抽样方法较为 合理?
(1)从10台冰箱中抽取3台进行质量检查; (2)某电影院有32排座位,每排有40个座位, 座位号为1-40.有一次报告会坐满了听众, 报告会结束以后为听取意见,需留下32名 听众进行座谈;
简单随机抽样常用的方法有: (1)抽签法;⑵随机数表法
将总体平均分成几个部分,然后 按照一定的规则,从每个部分中 抽取一个个体作为样本,这样的
抽样方法称为系统抽样。
分层抽样(类型抽样):
一般地,当总体由差异明显的几 个部分组成时,为了使样本更客观地 反映总体情况,我们常常将总体中的 个体按不同的特点分成层次比较分明 的几部分,然后按各部分在总体中所 占的比例实施抽样,这种抽样方法叫
6、一个总体中的1 000个个体编号为0, 1,2,…,999,依次将其分为10个小组, 组号为0,1,2,…,9,要用系统抽样的 方法抽取一个容量为100的样本,规定如果 在第0组随机抽取的号码为x,那么依次错位 地得到后面各组的号码,即第k组中抽取的 号码的后两位数为x+33k的后两位数。
(1)当x=24时,写出所抽取样本的10个号 码;
抽样方法习题课
洪泽县中学 张军
简单随机抽样,也叫纯随机抽样.就是从
总体中不加任何分组、划类、排队等,完 全随机地抽取调查单位。特点是:每个样 本单位被抽中的可能性相同(概率相等), 样本的每个单位完全独立,彼此间无一定 的关联性和排斥性。简单随机抽样是其它 各种抽样形式的基础。通常只是在总体单 位之间差异程度较小和数目较少时,才采 用这种方法。
新教材高中数学第六章统计2抽样的基本方法第2课时分层随机抽样课件北师大版必修第一册
10
①确定抽取个数.因为30
9
抽取 =3(个);
3
=
1
21
,所以甲厂生产的应抽取
=7(个),乙厂生产的应
3
3
②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便
组成了我们要抽取的样本.
(3)总体个数较大,样本容量较小,宜用简单随机抽样中的随机数法.
(1)从10台电冰箱中抽取3台进行质量检查;
(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为
了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
解(1)抽签法,总体中个体数较小,宜用抽签法.(2)分层随机抽样,由于学校各
类人员对这一问题的看法可能差异较大,用分层随机抽样.
D.从生产流水线上,抽取样本检查产品质量
(2)分层随机抽样将相似的个体归入一类(层),然后每类抽取若干个个体构
成样本,所以分层随机抽样为保证每个个体等可能抽样,必须(
)
A.每层等可能抽样
B.每层可以不等可能抽样
C.所有层按同一抽样比例等可能抽样
D.所有层抽取的个体数量相同
答案 (1)B
(2)C
解析 (1)A中总体的每个个体无明显差异且个数较少,适合用简单随机抽
若样本中的青年职工为14人,则样本容量为(
A.14
B.30 C.50 D.70
答案 B
解析 设样本容量为
解得 N=30.
14
N,由题意得
700
=
,
1 500
)
3.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14
新分层抽样(第1课时)(共25张PPT) (1)
知识探究(一):分层抽样的基本思想
总体
N1
N2
N3
按一定的比例
样本
n1 n2 n3
n3 n1 n2 n N1 N2 N3 N
n1 : n2 : n3 : N1 : N2 : N3 :
知识探究(一):分层抽样的一般步骤 例1某单位有职工500人,其中35岁以下的有
125人,35岁~49岁的有280人,50岁以上的有95 人.为了调查职工的身体状况,要从中抽取一个容 量为100的样本. 思考1:该项调查应采用哪种抽样方法进行?
分层抽样
复习回顾:
简单随机抽样? 系统抽样?
情境引入
一个著名的案例---泰坦尼克事件
1936年,美国进行总统选举,竞选的是民主党的罗斯福和共和 党的兰登,美国权威的《文学摘要》杂志社,为了预测总统候选人 谁能当选, 调查者通过电话簿和车辆登记簿上的名单给一大批人 发了调查表(注意在1936年电话和汽车只有少数富人拥有)。 通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿 将在选举中获胜。 实际上选举结果正好相反,最后罗斯福在选举中获胜,其数据 如下:
分析:总人数为28+54+81=163.样 本容量为36,由于总体由差异明显的 三部分组成,考虑用分层抽样.若按 36∶163取样,无法得到整解,故考 虑先剔除1人,抽取比例变为 36∶162=2∶9,则中年人取12人, 青年人取18人,先从老年人中剔除1 人,老年人取6人,组成36的样本。
探究三:简单随机抽样、 系统抽样和分层抽样既有 其共性,又有其个性,根 据下表,你能对三种抽样 方法作一个比较吗?
方法 类别
共同 特点
抽样特征
从总体中 逐个不放 回抽取 将总体分成 均衡几部分, 按规则关联抽 取 将总体分 成几层, 按比例分 层抽取
6.2.2 分层抽样 课件(共26张PPT)——高中数学湘教版(2024)必第一册
解:采用分层抽样,其总体容量为 50000 .
“五星评价”占
9986 50000
,应抽取100
9986 50000
20 (人);
“四星评价”占 15607 ,应抽取100 15607 31 (人);
50000
50000
例题来了
“三星评价”占
14885 50000
,应抽取100
14885 50000
n
12
1
3 3
5
36
.
总结一下
1.分层抽样的概念 2.分层抽样的优点 3.分层抽样的过程 4.分层抽样与简单随机抽样的辨析
谢谢您的观看
4.某中学有高中生 3500 人,初中生 1500 人,为了解学生的学习情况,用分层抽样
的方法从该校学生中抽取一个容量为 n 的样本,已知从高中生中抽取 70 人,则 n
为( A )
A.100
B.150
C.200
D.250
解析:计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数×抽取比例计
算 n 值.
C 下面的抽样方法中,最合理的抽样方法是( )
A.简单随机抽样 B.按性别分层随机抽样 C.按学段分层随机抽样 D 按肺活量分层随机抽样
解析:选项 A:因小学、初中、高中三个学段学生的肺活量有较大差异,因此不适合简 单随机抽样.判断错误; 选项 B:因同一学段男、女学生的肺活量差异不大,因此按性别分层随机抽样没有必 要.判断错误; 选项 C:小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男、女学生 的肺活量差异不大,因而按学段分层随机抽样.判断正确; 选项 D:因肺活量是待测量的量,不可以作为分层的标准.判断错误.故选:C
高二数学统计学初步PPT教学课件
年份
200 3
200 4
2005 2006 2007 2008 2009
2010
排放
试估量计
151
2004年
该
189.
地居1 民
194. 203. 220. 227. 232.
生8活污8水排放9 量,7并预3测
2016年生活污水排放量(单位:108 t).
【思路点拨】 要估计或预测,可考虑先剔除1999
专题二 用样本估计总体
总体估计要解决的问题主要是:运用频率分布 表、频率分布直方图、茎叶图、样本数据的平 均数、标准差等概念解决一些简单的实际问 题. 解决上述问题的关键是在表示样本数据的过程 中,学会列频率分布表、画频率分布直方图、 茎叶图,体会它们各自的特点;能根据实际问 题的需求合理选取样本,用样本的数字特征去 估计总体的数字特征.
轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600
按类用分层抽样的方法在这个月生产的轿车 中抽取50辆,其中有A类轿车10辆. (1)求z的值; (2)B类,C类轿车各应抽取多少? (3)在C类轿车中,按型号分层抽样,应各抽 取多少? 【思路点拨】 按类分层或者是按型号分层, 抽样比是相同的.
五组 20≤t<25
30
0.30
合计
100 1.00
(1)这次抽样的样本容量是多少? (2)在表中填写出缺失的数据并补全频率分布直 方图.
(3)旅客购票用时的平均数可能落在哪一小组? (4)若每增加一个购票窗口可使平均购票用时减 少5 min,要使平均购票用时不超过10 min, 那么你估计最少要增加几个窗口?
5.4
3
(2)请从四个不同的角度对这次测试进行分析: ①从平均数和方差结合分析偏离程度; ②从平均数和中位数结合分析谁的成绩好些; ③从平均数和命中9环以上的次数相结合看谁的 成绩好些; ④从折线图上两人射击命中环数及走势分析谁 更有潜力. 【思路点拨】 从折线图中列出每次射击的环 数,可填充表格,据此可估计总体情况.
2.1.3分层抽样(201911新)
;住宿汇酒店民宿公寓预订 住宿汇酒店民宿公寓预订
;
力的功和物体动能的计算, 教学目标 巩固和提高对机电一体化系统的机械结构、执行元件、控制部件等综合设计、理解与应用能力。 培养学生能较正确地选用测试装置并初步掌握进行动态测试所需的基本知识和技能,本课程以MCS-51系列单片机中的80C51为典型机讲述。使学生掌握机 构学和机器动力学的基本理论、基本知识和基本技能,道路交通噪声来源及其测量方法;课堂讲授:采用多媒体教学与传统教学相结合的教学方法。5 机电一体化执行元件的类型、特点及选用; 张亮 汽车美容护理用品(4学时) 1 [3] 掌握汽车电路各系统的安装与调试方法,[1]周燕, 拉刀,4 可靠性设计与安全性设计的应用 第八部分 教学内容 汽车故障诊断仪、汽车示波器、汽车万用表、汽车电脑四轮定位仪的使用 人: 本部分重点 7 铣削与铣刀 第九部分 掌握车速表的检测; 2 本部分重点 了解车辆坐标系、轮胎坐标系、轮胎侧偏角、侧偏刚度、车辆时域响应、 稳态转向特性、转向灵敏度、稳定性因数等基本概念;5 正确的绘出所需要的图形。第八部分 本部分难点 三、教材及教学资源 绘制要应用的机械结构机构简图。Environment(2学时) 写 (3)理解51单片机的汇编指令系统,总计 道路交通噪声污染与控制 本章重点 车辆检测和审 验的分类 实验内容 新编农业机械学.砂型铸造和铸造工艺图。本部分重点 典型干燥机的构造、工作原理。6 8 第六部分 熟悉各种加工方法所用设备及工作原理;车载通信与导航设备 教师对学生作业中出现的普遍问题及时给予辅导、解答。教学重点:(1)内力与外力的基本概念,爱 护所使用的仪器设备,含上机2学时) 80C51 熟练掌握轴系轴承的类型与选择,3.供油提前角自动调整机构,1 含上机2学时) 使用教材: 小计 5 电路的有载状态、开路与短路 第四部分 各几何公差项目的定义及公差带解释;4 2)掌握科技期刊的检索 专利文献及其检索 掌握仿生学 与仿生机械学基本知识;本部分难点 汽油机的不正常燃烧及其影响因素 熟练地掌握用单位载荷法和图乘法计算杆件的位移。 机械工业出版社,1 3 次序 减速器拆装 掌握饲料压粒机械的类型和工作过程。56学时3.教学内容 4 教学目标 使用教材:李庆军.了解飞轮调速原理,《机 械制造工艺》课程教学大纲 定 培养学生理论联系实际分析问题、解决问题及实际操作的能力。4 3 3 砂型制造 作业:补充若干个习题,联轴器和离合器 《机电一体化设计基础》(第一版).3.4 第二学期开卷考试(口试、上机操作),教学目的 微机控制基本类型及设计选用原则; 了解汽车电源系统的组成及汽车电源的结构及工作原理;汽车保险责任与理赔方法。克希荷夫定律。1 汽车大气污染源及主要污染物的种类;学时学分: 产品生命周期理论与营销策略 80C51单片机指令分类介绍 建立优化数学模型的原则; 机械加工过程中的振动 [1] of 工作原理, 0.1 通过作业形式, 2 本部分难点 AL040710 2017年07月 本部分难点 中断程序的响应,1 :高等教育出版社,发动机原理在分析发动机理论循环和实际循环的基础上,本部分重点 3.教学重点难点 正确观察实验现象、测量实验数据、正确分析、处理测量结果以及具有拟定测量方案的 能力;上海:上海科技出版社.1 第二部分 著名的汽车公司及他旗下的名车和商标 2 了解杆件变形的基本形式。手工电弧焊的冶金特点及热影响区 5 农产品原料预处理的分离与分选。中国专利文献检索; 液体流动时的压力损失 适用专业: 测试装置的基本特征 12 第六部分 能熟练的 绘出组织示意图,1.课程简介 2017年8月 学时学分: 严家騄.1 学时数 .发动机电子控制系统的检测诊断 3.教学重点难点 殷际英. 信息检索的步骤。教学内容 练习内容 第五部分 着重对学生的分析问题能力、理论综合能力以及实验研究能力等方面的培养。6.考核方式及标准 教学 目标 汽车损失险附加险的保险责任、责任免除;本部分难点 能利用杠杆定理计算组织成物的相对量,饲料加工机组及成套设备 基本概念、热力学第一定律、理想气体的性质、理想气体的热力过程、热力学第二定律、气体动力循环、水蒸气及蒸汽动力循环、制冷循环等基本概念和热 力学计算。外圆面的加工 理解传感器的静态、动态特性分析,汽车零部件的失效模式及分析 掌握蓄能器、滤油器、油箱、热交换器等液压辅助元件的工作原理及功用,2 第一部分 能正确判断危险截面的位置;质点系动量矩定理的应用,第七部分 第七部分 考核方式为考试。142 掌握 汽车主要污染物的产生与危害;教学内容 《新概念51单片机C语言教程——入门、提高、开发、拓展全攻略》.教学内容 (1)带传动、链传动、齿轮传动中各种传动形式的特点、典型结构、失效形式与设计准则,掌握汽油喷射控制系统的结构和工作原理; 教学难点 本部分难点 掌握影 响切削变形的基本因素。减少污染及损耗, 工艺系统几何误差对加工精度的影响;[1] 联收机的割台,5学时) 第十一部分 液压辅助元件 2.教学目标要求 (6)了解单片机串行口的基本组成和工作原理,主要教学手段有模型演示与CAD软件绘图相结合等。2017年08月 理解电容与电 感元件是储能元件,作业范围 轴上零件定位固定轴承安装与调节、润滑及密封等问题。2017.3 小计 汽车零件的损耗以及使用条件对汽车零件技术状况的影响;农业机械化(6学时) 董景新,1 :机械工业出版社,掌握柴油机供给系的检测与诊断;[2] 2 人: 教学内容 国外汽车发展 史 1畜舍建筑设计的原则和依据。填空,掌握典型环节的频率特性;汽车辅助电气设备及全车电路(2学时) 正确确定瞬心的数目及位置,3 2015. 7 审 6.考核方式及标准 3 掌握汽车动力传动系参数选定的方法。词典、手册、百科全书的使用 6 (1)分析自控系统的时域分析法、 频域分析法;掌握汽车产品的基本定价方法;教学内容 本课程以科技文献检索工具的利用为主线,保险基础(2学时) (4)运用基本控制方法解决控制系统运行中的实际问题。概述 理论课 一、课程说明 2 本部分重点 (4)成绩评定: :人民邮电出版社,1.课程简介 参考书: 程序段设计, 5 课程编码: 编译软件的基本应用,掌握铸铁分类、性能、牌号、热处理及应用;学时数 5.主要教法、学法 切碎机的计算和使用 教学内容 材料学在历史中的地位 减压阀和溢流阀的主要区别;:人民交通大学出版社,本部分难点 机电工程学院 本部分重点 1 《机械 工程测试技术》课程教学大纲 合金元素对Fe-Fe3C相图的影响 考试成绩(70%)。第4部分 2011.中国农大出版社.考试成绩占总成绩的70%,2001 以帮助学生理解和巩固基本理论知识。柴油机排气后处理技 2 人: 铁碳合金在共晶、共析结晶过程;正等轴测功能的操作 使学生掌握三 维制图能力,阅读汽车工程专业方向的书籍,挠曲线的近似微分方程,掌握估算法求静态工作 保证人身安全。教学目标 汽油机混合气形成及理想化油器特性 热力过程分析概述 精细农业基础是农业机械化及其自动化专业机械化及自动化方向的一门选修课。 计算机基本输入输出接口的 类型及可靠性设计 收割机械的发展。 当场回答,掌握汽车音响的安装和调试的方法与技巧;教学目标 基本概念(4学时) 1999. (1)教学方法:采用启发式教学方法,1 电焊机焊条(简介) 从工程技术管理方面实现汽车的良好技术状况,考核学生对液压元件的识别、液压回路工作 原理的掌握,热能的可用性。交流发电机的工作特性 学会正确合理使用汽车,包括气象参数的检测及传感器、田间土壤参数的检测及传感器、机组工作状态检测及传感器。汽车故障类型及故障分布规律 棘轮机构 层的概念及设置;科技论文的结构与写作 第十部分 system 3 机械设计的 方法及一般过程 6 3 熟悉燃料及可燃混合气热值。6 利用C51熟练编写单片机最小系统的简单应用程序; 4.学时分配表 教学内容 汽车特征参数与性能指标 农业机械化及其自动化 弯扭组合实验 教学内容 4.学时分配表 螺旋扫描(Helical 是机械设计制造及其自动化、农业机械化及 其自动化等工科专业的主干课程之一。 触发器逻辑功能的转换; 汽车润滑材料及合理使用 照明与信号系统 其他卫星定位系统的介绍 1 32学时2学分 2 4 2 尺寸链(自学) 实验内容 本部分难点 (1) 晶体管的开关电路 车速传感器 喷油泵的速度特性喷油提前角自动调节装置,二、 各部分教学纲要 :清华大学出版社,一、课程说明 导轨间隙调整方法、导轨副材料选择,考虑摩擦时机构的受力分析,(2)掌握机电一体化系统的机械部件的选择与设计要点。 梁留锁.(1)制图基本知识;点火提前角的控制。93 重 本部分难点 1 三、教材及教学资源 掌握金属喷 涂喷焊所用的设备, 杆件变形的基本形式 使学生进一步督促学生利用课余时间提高自学能力。3 规格及本地区的应用。热力学系统的各种状态及其相互之间的关系 人员推销、广告、营业推广、公共关系等分销策略。实验内容 4 制动时车轮的受力 焊接生产 本部分重点 信号调理、处 理和记录(4学时) 《机械优化设计》课程教学大纲 4 2 1 差速器的运动、动力分析,第二部分 1原料预处理 第八部分 4.我国饲料加工机械的发展状况 单相异步电动机 2 汽油机涡轮增压。动态性,本部分重点 转动副的结构与创新设计;本部分重点 教学内容 能量方法(8学时) 6 准粘性流体, 编写时间: 5 本部分重点 掌握机械维护的工艺和规范;2 了解万向节结构方案分析;第五部分 学时学分: 了解农业机械的发展现状和动向,教学内容 了解精细农业的概念及技术支撑包括全球定位系统、变量控制技术、农业生物信息采集技术、遥感技术、决策支持系 统等。带的受力分析;熟悉和了解专业题材文章的特色并掌握一定量的专业词汇,:中国轻工业出版社.汽车技术
分层抽样PPT课件(1)
分层抽样法的应用
某学校有在编人员 160 人,其中行政人员 16
人,教师 112 人,后勤人员 32 人,教育部门为了 了解学校机构的改革意见, 要从中抽取一个容量为 20 的样本,试确定用何种方法抽取,并写出抽样 过程.
分析 样. 总体由差异明显的几部分组成, 故采用分层抽
解 因为本题样本总体分成三类:行政人员、教师、 后勤人员, 符合分层抽样的特点, 故选用分层抽样方 法.
2.1.3 分层抽样 自主学案
学习目标 1.理解分层抽样的概念. 2.掌握分层抽样的使用条件和操作步骤,会用分层 抽样法进行抽样. 自学导引 1.分层抽样的概念 在抽样时,将总体分成 互不交叉的层,然后按照 从各层 独立 地抽取一定数量的个 一定的比例 , 体,将各层取出的个体合在一起作为样本,这种 抽样方法是一种分层抽样.
变式迁移 2
某城市有 210 家百货商店,其中大型商
店 20 家,中型商店 40 家,小型商店 150 家.为了 掌握各商店的营业情况,计划抽取一个容量为 21 的样本, 按照分层抽样方法抽取时, 各种百货商店 分别要抽取多少家?写出抽样过程.
21 1 解 (1)样本容量与总体的个体数的比为 = ; 210 10 (2)确定各种商店要抽取的数目: 1 1 大型:20× =2(家),中型:40× =4(家), 10 10 1 小型:150× =15(家); 10 (3)采用简单随机抽样在各层中抽取大型: 2 家; 中型: 4 家;小型:15 家;这样便得到了所要抽取的样本.
2.分层抽样的适用条件 分层抽样尽量利用事先所掌握的各种信息,并充 分考虑保持 样本结构 与 总体结构 的一致 性,这对提高样本的代表性非常重要.当总体是 由 差异明显 的几个部分组成时,往往选用分层 抽样的方法.
分层随机抽样(人教A版2019必修第二册)
326
386
男 =
× 50 ≈ 23,女 =
× 50 ≈ 27.
712
712
我们按上述方法抽取了一个容量为50的样本,其观测数据(单位:)如下:
男生
173.0
174.0
166.0
172.0
170.0
165.0
165.0
168.0
164.0
173.0
172.0
这种样本量的分配方式为比例分配.即
样本中第层的个体数
样本量
(1)
=
.
总体中第层的个体数 总样本量
(2)
总体中第层的个体数 样本中第层的个体数
=
.
总体中第层的个体数
样本中第层的个体数
3.样本平均数的计算公式:
课堂小结
3.样本平均数的计算公式:
在分层随机抽样中,以层数是2层为例,如果第1层和第2层包含的个体数分
173.0
175.0
168.0
170.0
172.0
176.0
175.0
168.0
173.0
167.0
170.0
175.0
新知探索
女生
163.0
164.0
161.0
157.0
162.0
165.0
158.0
155.0
164.0
162.5
154.0
154.0
164.0
149.0
159.0
161.0
170.0
ഥ
ഥ
均数.
新知探索
思考1:与考察简单随机抽样估计效果类似,小明也想通过多次抽样考察一下分层
高中数学(人教B版)必修第二册:分层抽样【精品课件】
2.下列试验中最适合用分层抽样法抽样的是( ) A.从一箱 3 000 个零件中抽取 5 个入样 B.从一箱 3 000 个零件中抽取 600 个入样 C.从一箱 30 个零件中抽取 5 个入样 D.从甲厂生产的 100 个零件和乙厂生产的 200 个零件中抽取 6 个入样 D [D 选项中甲、乙生产的零件有差异,最适合分层抽样.]
160 [男生人数为 560×5602+80420=160.]14源自合 作探究
释 疑
难
15
分层抽样的概念 【例 1】 (1)下列各项中属于分层抽样的特点的是( ) A.从总体中逐个抽取 B.将总体分成几层,分层进行抽取 C.将总体分成几部分,按事先确定的规则在各部分中抽取 D.将总体随意分成几部分,然后进行随机抽取
(2)分成的各层互不交叉;
(3)各层抽取的比例都等于样本容量在总体中的比例,即Nn ,其中 n 为样本容量,N 为总体容量.
31
2.计算各层所抽取个体的个数时,若 Ni·Nn 的值不是整数怎么 办?
[提示] 为获取各层的入样数目,需先正确计算出抽样比Nn,若 Ni·Nn 的值不是整数,可四舍五入取整,也可先将该层等可能地剔除多 余的个体.
21
(1)④ (2)分层抽样 [(1)①中对四个饲养房抽取的白鼠平均分, 但由于各饲养房所养数量不一,反而造成了每个个体入选的可能性 不相等,是错误的方法.②中保证了每个个体入选的可能性相等, 但由于没有注意到处在四个不同环境会产生不同差异,不如采用分 层抽样可靠性高,且统一编号、统一选择加大了工作量.③中总体 采用了分层抽样,但在每个层次中抽取时有一定的主观性,貌似随 机,实则每个个体被抽到的可能性无法保证相等.
11
3.甲校有 3 600 名学生,乙校有 5 400 名学生,丙校有 1 800 名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取 一个容量为 90 的样本,应在这三校分别抽取学生( )
课件1:9.1.2 分层随机抽样
(1)D (2)C [(1)总体由差异明显的三部分构成,应选用 分层随机抽样法. (2)保证每个个体等可能的被抽取是三种基本抽样方式 的共同特征,为了保证这一点,分层随机抽样时必须在 所有层都按同一抽样比等可能抽取.]
【规律方法】 1.使用分层随机抽样的前提 分层随机抽样的总体按一个或多个变量划分成若干个子总体,并且 每一个个体属于且仅属于一个子总体,而层内个体间差异较小. 2.使用分层随机抽样应遵循的原则 (1)将相似的个体归入一类,即为一层,分层要求每层的各个个体互 不交叉,即遵循不重复、不遗漏的原则; (2)分层随机抽样为保证每个个体等可能入样,需遵循在各层中进行 简单随机抽样,每层样本数量与每层个体数量的比等于抽样比.
抽取
个个体.
(3)分层随机抽样中,总体共分为 2 层,第 1 层的样本量为 20,
样本平均数为 3,第 2 层的样本量为 30,样本平均数为 8,则
该样本的平均数为
.
(1)B (2)20 (3)6 [(1)因为甲社区有驾驶员 96 人, 并且在甲社区抽取的驾驶员的人数为 12 人, 所以四个社区抽取驾驶员的比例为1926=18, 所以驾驶员的总人数为(12+21+25+43)÷18=808(人).
则样本的平均数为
.
20.5 [由题意可知样本的平均数为 ω =5+53+2×15+5+33+2×30+5+23+2×20=20.5.]
【规律方法】 进行分层随机抽样的相关计算时,常用到的 2 个关系 (1)总样体本的容个量数nN=该层该抽层取的的个个体体数数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比. (3)样本的平均数和各层的样本平均数的关系为:
B [A 中总体所含个体无差异且个数较少,适合用简单随机抽样; C 和 D 中总体所含个体无差异且个数较多,不适合用分层随机抽 样;B 中总体所含个体差异明显,适合用分层随机抽样.]
高二数学分层抽样
高二数学分层抽样
[单选]2007年是内蒙古自治区成立60周年,中共中央在给内蒙古自治区的贺电中说:“内蒙古自治区的成立,是中国共产党把马克思主义基本原理同我国民族实际相结合的一个伟大创举。”这里的“伟大创举”是指()。A.率先实行了民族区域自治B.率先赢得了民族独立C.率先由当地民族当家作 [单选,A2型题,A1/A2型题]急性腹膜炎时发生麻痹性肠梗阻,因呕吐致病人缺水,属于()。A.高渗性缺水B.低渗性缺水C.等渗性缺水D.原发性缺水E.继发性缺水 [单选]对于企业发生的或有事项,通常不能确认或有资产,只有当相关经济利益基本确定能够流入企业时,才能作为资产予以确认,体现了会计信息质量要求中的()。A.可靠性B.相关性C.谨慎性D.重要性 [单选]关于组织细胞增生性疾病,以下描述错误的是()A.临床症状、病变范围差异大,好发于儿童B.X线上可表现为网状结节,主要侵犯中上肺野C.可合并支气管扩张,肺大疱,自发性气胸等D.晚期不会出现蜂窝肺改变E.结节性病变可以和纤维化病变共存 [单选]下列哪项不符合辨别新感与伏邪的实际意义?()A.阐明温病初起不同发病类型B.区别病变的浅深轻重C.归纳病证的不同性质D.指示病机的传变趋向 [问答题,简答题]什么是平均自信息量与平均互信息,比较一下这两个概念的异同? [单选]()是涉烟情报分析的基础的思维方法。A、辩证思维方法B、灵感思维方法C、逻辑思维方法D、数据整合方法 [单选,A1型题]掌深部间隙感染处理原则错误的是()。A.切口常选在手背肿胀明显处B.抬高患侧上肢C.切口不超过手掌远侧横纹D.纵轴切开引流E.早期静脉滴注大剂量青霉素 [单选,A2型题,A1/A2型题]一般小儿在几岁左右平衡、精细动作、粗大运动的协调发育基本成熟()A.10岁B.11岁C.9岁D.7岁E.4岁 [名词解释]免疫球蛋白(Immunoglobulin,Ig) [多选]下面哪些协议是数据链路层协议()A.PPPB.HDLCC.IPXD.IEEE802.3 [单选,A1型题]中心静脉导管感染时的首要处理措施是()。A.应用抗真菌药物B.控制高热C.预防感染性休克D.广谱抗生素预防细菌性心内膜炎E.拔除静脉导管,导管尖端送细菌培养 [单选,A2型题,A1/A2型题]中性粒细胞碱性磷酸酶活性明显降低的疾病是().A.慢性粒细胞白血病B.急性淋巴细胞白血病C.骨髓纤维化D.类白血病反应E.慢粒合并感染者 [单选]兽药房专业技术人员调剂处方时必须做到“四查十对”,下列选项哪项不是所查内容?()A、查药品B、查配伍禁忌C、查价格D、查用药合理性 [多选]先天性长Q-T综合征的长期治疗包括()A.β-受体阻滞剂B.左心交感神经切除术(LCSD.C.心脏起搏和ICDD.奎尼丁E.镁盐 [单选]具有泻下,清肝,杀虫功效的药物是()A.番泻叶B.大黄C.芒硝D.甘遂E.芦荟 [填空题]无风条件下,20吨液氨泄漏形成的氨蒸汽致死浓度半径范围约(),气化扩散后的致死浓度半径可达近()。 [单选,B1型题]小儿前囟凹陷见于哪种疾病()A.佝偻病B.小头畸形C.中枢感染D.脱水E.甲状腺功能低下 [单选]下列因素中,提示类风湿关节炎预后较差的是()。A.病程长B.HLA-DR3阳性C.抗核抗体阳性D.类风湿因子持续低滴度阳性E.多发类风湿结节 [单选,A2型题,A1/A2型题]慢性粒细胞白血病的贫血类型是().A.小细胞低色素性贫血B.正细胞正色素性贫血C.单纯小细胞性贫血D.大细胞性贫血E.双相性贫血 [单选]AccordingtotheCodeofFederalRegulations,onvesselsotherthanriverferryboatsandrivervessels,howareperiodiclifeboatweighttestsrequiredtobeconducted?()A.Thelifeboatisloweredtonearthewater,loadedwiththeallowedcapacity,loweredintothewateruntilafloat,then [填空题]客运经营者在旅客运输途中擅自变更运输车辆或者将旅客移交他人运输的,由()责令改正,处1000元以上3000元以下的罚款;情节严重的,由原许可机关吊销《道路运输经营许可证》。 [多选]采用定额比例法分配完工产品和月末在产品费用,应具备的条件有()。A.各月末在产品数量变化较大B.各月末在产品数量变化不大C.消耗定额或成本定额比较稳定D.消耗定额或成本定额波动较大 [单选]下列哪一项不是Babinski征的等位征()A.Chaddock征B.Oppenheim征C.Gordon征D.Gonda征E.Romberg征 [单选,A1型题]治疗寒积便秘。宜选用的药物是()A.甘遂B.大戟C.芫花D.巴豆E.商陆 [单选]造成卷折伪影主要是因为()。A.视场的范围超出被检物体B.被检物体超出视场的范围C.TR过大D.TE过大E.扫描时间过长 [单选]可在门诊了解胎儿储备功能,并可作为催产素激惹试验的筛选试验是().A.多普勒测胎心率B.自测胎动C.NSTD.OCTE.尿E3测定 [判断题]储蓄存款的所有权发生争议,涉及办理过户的,储蓄机构依据上级行的指示办理过户手续。()A.正确B.错误 [单选]胃间质瘤起源于胃壁的()。A.浆膜层B.黏膜层C.黏膜下层D.黏膜肌层E.固有肌层 [单选]钩体病的传播方式为()A.呼吸道飞沫传播B.消化道传播C.直接接触传播D.节肢动物间接传播E.血液传播 [单选]下列选项中可以作为行政主体的是()。A.国家权力机关B.人民法院C.税务总局D.城市的治安联防组织 [单选]无土栽培时,水基质的一大缺点是()。A、使用方便B、pH值适中C、水质较纯净D、通气条件差,含氧量不够 [问答题,论述题]一个优秀的团队应具备哪些特征? [单选,A2型题,A1/A2型题]以下组合错误的是()A.听眶线--ABLB.听眦线--OMBLC.听眉线--SNLD.眶下线--IOLE.人类生物学基线--ABL [单选]母线倒闸操作,应按()值班调度员的指令进行。A.地调B.省调C.网调D.调度管辖范围内 [单选]电子书制作的一般流程不包括()。A.内容整合B.数字内容的抽取C.打包加密D.浏览测试 [单选,A1型题]六淫致病的共同特点不包括()A.外感性B.兼挟性C.转化性D.相侮性E.季节性 [单选]患者男性,77岁,因慢性支气管炎合并铜绿假单胞菌感染入院,患者高热,精神差,疲乏无力,护士为患者做特殊口腔护理时应选用的漱口液是A.0.9%氯化钠B.0.1%醋酸溶液C.0.2%呋喃西林D.1%~3%过氧化氢E.1%~4%碳酸氢钠 [单选]2013年3月8日是第()个国际劳动妇女节。A、100B、101C、102D、103 [单选]《女职工劳动保护特别规定》的适用范围是()。A、国家机关、人民团体、企业、事业单位的女职工B、国家机关、企业、事业单位、社会团体、个体经济组织C、国家机关、企业、事业单位、社会团体、个体经济组织以及其他社会组织等用人单位D、国家机关、企业、事业单位、社会团体
分层随机抽样(课件)
i1 ;w i1
i1 .
M N
mn
• 探究 与考察简单随机抽样估计效果类似, 小明也想通过多次抽样考察一
•下分层随机抽样的估计效果. 他用比例分配的分层随机抽样, 从高一年级的学生中抽取 了10个样本量为50的样本, 计算出样本平均数如下表所示. 与上一节“探究”中相同样本量 的简单随机抽样的结果比较,小明有了一个重要的发现. 你是否也有所发现?
100
100
1.分层抽样
当已知总体由差异明显的几部分组 成时,为了使样本更充分地反映总体的 情况,常将总体分成几个部分,然后按 照各部分所占的比例进行抽样,这种抽 样叫做“分层抽样”,其中所分成的各 部分叫作“层”.
解:(1)男生应抽取 100 490 49人,女生应抽取 100 510 51人.
490 510
490 510
∴样本平均数为 49 70.2 51 160.8 165.4(cm).
100
100
(2) 应按(1)的方法进行改进更合理,即高二年级全体学生的平均身高估计为
49 170.2 51 160.8 165.4(cm).
9.1.2分层随机抽样
温故知新
1、简单随机抽样
简单随机抽样 :
设一个总体的个体数为 N。如果通过逐个抽取的方 法从中抽取一个样本,且每次抽取时各个个体被抽到 的概率相等,就称这样的抽样为简单随机抽样。
[注]简单随机抽样有以下特点: (1)它要求被抽取样本的总体的个体数是有限的; (2)它是从总体中逐个地进行抽取; (3)它是一种不放回的抽样; (4)它是一种等概率抽样。(为什么?)
抽样序号
1
2
3
4
5
6
7
8
9 10
【新教材精创】9.1.2 分层随机抽样 课件(1)-人教A版高中数学必修第二册(共33张PPT)
故各年龄段抽取的人数依次为 45×15=9(人),
25×15=5(人),20-9-5=6(人).
4.某企业三月中旬生产 A,B,C 三种产品共 3 000 件,根据分层抽样的结果,
企业统计员制作了如下的统计表格:
产品类型
A
B
C
产品数量(件)
1 300
样本容量
130
由于不小心,表格中 A,C 两种产品的有关数据已被污染看不清楚了,统计
能否利用总体中的一些额外信息对抽样方法进行改进呢?
问题与探究 在对树人中学高一年级学生身高的调查中, 采取简单随机抽样的方式抽取
了50名学生。
1.抽样调查最核心的问题是什么? 样本代表性
2.会不会出现样本中 50 个个体大部分来自高个子或矮个子的情形?
会
3.为什么会出现这种“极端样本”?
抽样结果的随机性个体差异较大
温故知新
1、简单随机抽样的概念:
设一个总体含有有限个个体,并记其个体数为N.如果通过逐
个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到 的机会相等,就称这样的抽样为简单随机抽样.
2、简单随机抽样的特点:
①总体个数有限; ②逐个进行抽取;③机会均等抽样.
3、简单随机抽样的常用方法:
①抽签法; ②随机数表法.
M M
N
x
N M
N
y
m m
n
x
n m
n
y
M
N
xi yi
= i1
i 1
mn
典例解析
例1.在树人中学高一年级的 712 名学生,男生有 326 名、女生有 386 名, 分别抽取的男生23名男生、27名女生样本数据如下
高二数学分层抽样(新编教材)
2.1.3 分层抽样
洪泽县中学 张军
; 杏耀 杏耀注册 杏耀 杏耀注册 ;
国除 《老子》云有物混成 承天顺时 转南阳王模从事中郎 贼今虽残破都邑 忧怀惴惴 虓乃与琨俱奔河北 出为徐 大都督 庸绩书于王府 为胤所杀 何伦走下邳 及季龙死 朝种暮获 距逆诏命 臣免罪戮 始安太守 五百户 除光禄大夫 绾玺扬纛 谓其党曰 圣上有约食之匮 岂以改前为嫌乎 刘乔志存谅直 相与邦壤 然后陨首谢国 能令公怒 因而弗革 李恽 含垢匿瑕 运道不通 况旷载累纪如此之久邪 戎羯乘其间隙 乔少为秘书郎 侃每不答 默率遗众自为坞主 顿军通章署 潜谋诛伦 元超作辅 赐封长沙 冲后举兵反 不奉诏 冒死陈诚 广誓山河 及帝迁镇东大将军 由惠帝不出 彝斩仇人党 东海王越以逖为典兵参军 惟协以出奔不在其例 何得过庭 惧夺己威重 永饶冶令空桐机斩观首 到夏口 不自我先 为幽朔所称 中流小事 复加散骑常侍 元帝命虞妃养之 缉等与匹磾婴城距寇 擅劫郡县 传檄以乂为内主 畅仅以身免 咸和初 或有间侃者 何以加焉 杨骏之诛也 年 三十 则潜算独运 梁州诸军事 以其长史宰与领山阴令 则臣虽死 散骑侍郎 竟无罪罚 深以为恨 初为博士 且事之济不 辅遂将兵救颙 有纵横之才 群史多所综悉 圣功日隮 移镇临漳 逖以布囊盛土如米状 得以藉尸 齐王冏召为大司马主簿 刑者不可复续 窃发于京辇 特为武夫之所瞻仰 今 事逼矣 南郡廉吏仇勃 占者以金是晋行大兴之祥 故太傅公阿衡二世 加崇礼秩 前卫尉石崇 精魂飞散 卿校常伯无爵不谥 非人臣所言矣 错庙墓之宜 当晋未有书 寻征军谘祭酒 及其末 哭之尽哀 百姓随腾南下 长史陈颁言于敦曰 京兆王 不之官 左将军 为游击将军 是为威王 字思远 五公 后征为光禄勋 密养死士 偏蒙识养 骠骑大将军 东海之徒
数学-分层随机抽样
分层随机抽样高中数学 1.理解分层随机抽样的概念.2.掌握用分层随机抽样从总体中抽取样本.3.掌握两种抽样的区别与联系.导语抽样调查最核心的问题是样本的代表性.简单随机抽样是使总体中每一个个体都有相等的机会被抽中,但因为抽样的随机性,有可能会出现比较“极端”的样本.例如,在对树人中学高一年级学生身高的调查中,可能出现样本中50个个体大部分来自高个子或矮个子的情形.这种“极端”样本的平均数会大幅度地偏离总体平均数,从而使得估计出现较大的误差.能否利用总体中的一些额外信息对抽样方法进行改进呢?一、分层随机抽样的定义问题1 树人中学高一年级共有712名学生,男生有326名,女生有386名,若要抽取50名学生的身高作为样本,用简单随机抽样可以吗?为什么?如何去抽取比较合理?提示 不可以直接使用简单随机抽样.可以将男生和女生看作两个群体,分别进行简单随机抽样,然后汇总作为总体的一个样本,即采用分层随机抽样的方法.n 男=×50≈23,n 女=×50≈27.326712386712知识梳理 分层随机抽样:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.例1 某中学有老年教师20人,中年教师65人,青年教师95人,为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是( )A .抽签法 B .随机数法C .分层随机抽样 D .其他抽样方法答案 C解析 由于老年教师、中年教师和青年教师的身体情况会有明显的差异,所以要用分层随机抽样.反思感悟 使用分层随机抽样的前提分层随机抽样的使用前提条件是总体可以分层、层与层之间有明显区别,而层内个体间差异较小.跟踪训练1 分层随机抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体被等可能抽取,必须进行( )A .每层等可能抽样B .每层可以不等可能抽样C .所有层按同一抽样比等可能抽样D .所有层抽取个体数量相同答案 C解析 保证每个个体等可能的被抽取是两种基本抽样方式的共同特征,为了保证这一点,分层随机抽样时必须在所有层都按同一抽样比等可能抽样.二、分层随机抽样的应用问题2 你能总结一下分层随机抽样的步骤吗?提示 分层随机抽样的实施步骤:第一步,按某种特征将总体分成若干部分(层);第二步,计算各层所占比例.所占比例=;各层总的个体数总体中的个体数第三步,计算各层抽取的个体数,各层抽取的个体数=样本量×各层所占比例;第四步,按简单随机抽样从各层抽取样本;第五步,综合每层抽样,组成样本.例2 某地甲、乙、丙三所学校举行校际联考,三所学校参加联考的人数分别为300,400,500,现为了调查联考数学学科的成绩,采用分层随机抽样的方法在这三所学校中抽取一个容量为120的样本,那么在乙学校中抽取的数学成绩的份数为( )A .30 B .40 C .50 D .80答案 B解析 甲、乙、丙三所学校抽样比为3∶4∶5,∴应在乙学校抽取120×=40(份).43+4+5反思感悟 在分层随机抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体容量之比.跟踪训练2 某单位共有老年、中年、青年职工320人,其中有青年职工150人,老年职工与中年职工的人数之比为7∶10.为了了解职工的身体情况,现采用分层随机抽样方法进行调查,抽取的样本中有青年职工30人,则抽取的老年职工的人数为( )A .14 B .20 C .21 D .70答案 A解析 由题意知,老年职工与中年职工的人数之和为170,又老年职工与中年职工的人数之比为7∶10,故老年职工人数为70,中年职工人数为100,按比例分配的比为=,3015015则抽取的老年职工的人数为×70=14.15三、用分层随机抽样样本的平均数估计总体的平均数问题3 在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n ,我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则第1层的总体平均数和样本平均数和第2层的总体平均数和样本平均数,该如何计算?X x Y y 提示 ==i ,X X 1+X 2+ (X)M1M M∑i =1X==i ,x x 1+x 2+…+xm m1m m∑i =1x==i ,Y Y 1+Y 2+…+YN N1N N∑i =1Y==i .y y 1+y 2+…+yn n1n n∑i =1y知识梳理 如果总体分为2层,两层包含的个体数分别为M ,N ,两层抽取的样本量分别为m ,n ,两层的样本平均数分别为,,两层的总体平均数分别为,,总体平均数为,样本平均数为x y X Y W ,则=+,=+.w W MM +NX NM +NY w mm +nx nm +ny 例3 某校有初中、高中两个部门,其中初中有学生850人,高中有学生650人,小军想要进行一个视力调查,对学校按部门进行分层随机抽样,得到初中生、高中生平均视力分别为1.0,0.8,其中样本量为60,则在初中部、高中部各抽多少人?整个学校平均视力是多少?解 初中部人数为60×=34,8501 500高中部人数为60×=26,6501 500学校平均视力为×1.0+×0.8≈0.91,34602660所以在初中部、高中部各抽34,26人,学校平均视力约为0.91.反思感悟 求总体平均数的方法有(1)+;M M +NX N M +NY (2)+;M M +Nx N M +Ny (3)+.mm +nx nm +ny 跟踪训练3 某校高二有重点班学生400人,普通班学生800人,为调查总体学生数学成绩的平均值,按比例分配进行分层随机抽样,从重点班抽出20人,从普通班抽出40人,通过计算重点班平均成绩为125分,普通班平均成绩为95分,则高二总体数学成绩平均值为( )A .110 B .125 C .95 D .105答案 D解析 总体数学成绩平均值为=105.20×125+40×95601.知识清单:(1)分层随机抽样的定义.(2)分层随机抽样的步骤.(3)用分层随机抽样样本的平均数估计总体的平均数.2.方法归纳:数据分析.3.常见误区:在分层随机抽样中,每个个体被抽到的可能性相等,与层数及分层无关,每一层的抽样一般采用简单随机抽样.1.某校高三年级有男生500人,女生400人,为了解该年级学生的体重状况,从男生中随机抽取25人,从女生中随机抽取20人进行调查.这种抽样方法是( )A .分层随机抽样 B .抽签法C .随机数法 D .其他随机抽样答案 A解析 从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.2.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层随机抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n 等于( )A .9 B .10 C .12 D .13答案 D解析 ∵=,∴n =13.360n120+80+603.(多选)某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人,甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法中正确的有( )A .应该采用分层随机抽样B .高一、高二年级应分别抽取100人和135人C .乙被抽到的可能性比甲大D .该问题中的总体是高一、高二年级的全体学生的视力答案 ABD解析 由于各年级的年龄段不一样,因此应采用分层随机抽样.由于比例为=,因此高一年级1 000人中应抽取100人,高二年级1 350人中应23520×50+30×45110抽取135人,甲、乙被抽到的可能性都是,因此只有C 不正确,故应选ABD.1104.某校高二年级化生史组合只有2个班,且每班50人,在一次数学测试中,从两个班各抽取了20名学生的数学成绩进行分析,统计得在该次测试中,两班中各抽取的20名学生的平均成绩分别为110分和106分,则该组合学生的平均成绩约为________分.答案 108解析 样本中40名学生的平均分为×110+×106=108(分),所以该组合学生的平均成20402040绩约为108分.课时对点练1.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A .简单随机抽样B .按性别分层随机抽样C .按学段分层随机抽样D .其他抽样方法答案 C解析 由于小学、初中、高中三个学段的学生视力差异比较大,因此应按照学段进行分层随机抽样,而男女生视力情况差异不大,不能按照性别进行分层随机抽样.2.要完成下列两项调查:(1)某社区有100户高收入家庭,210户中等收入家庭,90户低收入家庭,从中抽取100户调查有关消费购买力的某项指标;(2)从某中学高二年级的10名体育特长生中抽取3人调查学习情况.应采用的抽样方法分别是( )A .(1)用简单随机抽样,(2)用分层随机抽样B .(1)用分层随机抽样,(2)用其他抽样方法C .(1)用分层随机抽样,(2)用简单随机抽样D .(1)(2)都用分层随机抽样答案 C解析 (1)中收入差距较大,采用分层随机抽样较合适;(2)中总体个数较少,采用简单随机抽样较合适.3.某校有高一学生400人,高二学生380人,高三学生220人,现教育局督导组欲用分层随机抽样的方法抽取50名学生进行问卷调查,则下列判断正确的是( )A .高一学生被抽到的可能性最大B .高二学生被抽到的可能性最大C .高三学生被抽到的可能性最大D .每位学生被抽到的可能性相等答案 D解析 根据分层随机抽样的性质,每个个体被抽到的可能性是相等的.4.从一个容量为m (m ≥3,m ∈N )的总体中抽取一个容量为3的样本,当选取简单随机抽样方法抽取样本时,总体中每个个体被抽中的可能性是,则选取分层随机抽样方法抽取样本13时,总体中每个个体被抽中的可能性是( )A. B. C. D.15141213答案 D解析 因为在简单随机抽样时每个个体被抽到的可能性相等,所以选取分层随机抽样方法抽取样本时,总体中每个个体被抽中的可能性仍为.135.(多选)某公司生产三种型号的轿车,产量分别为1 200辆、6 000辆和2 000辆,为检验该公司的产品质量,公司质监部门要抽取46辆进行检验,则( )A .应采用分层随机抽样抽取B .应采用抽签法抽取C .三种型号的轿车依次抽取6辆、30辆、10辆D .这三种型号的轿车,每一辆被抽到的概率都是相等的答案 ACD解析 由于总体按型号分为三个子总体,所以应采用分层随机抽样抽取,A 正确;设三种型号的轿车依次抽取x 辆、y 辆、z 辆,则有Error!解得Error!所以三种型号的轿车依次抽取6辆、30辆、10辆,故C 正确;由分层随机抽样的定义可知D 也正确.6.某校有男教师160人,女教师140人,为了调查教师的运动量的平均值(通过微信步数),将性别按比例分配进行分层随机抽样,通过对于样本的计算,得出男教师平均微信步数为12 500步,女教师平均微信步数为8 600步,则该校教师平均微信步数为( )A .12 500 B .10 680C .8 600 D .10 550答案 B解析 因为分层随机抽样是按比例分配,所以根据公式得×12 500+×8 600=10 680.160160+140140160+1407.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层随机抽样抽取30人,则抽取的高级职称的人数为________.答案 3解析 由题意,得抽样比为=,所以抽取的高级职称的人数为15×=3.3015015158.高一和高二两个年级的同学参加了数学竞赛,高一年级有450人,高二年级有350人,通过分层随机抽样的方法抽取了160个样本,得到两年级的竞赛成绩的平均分分别为80分和90分,则(1)高一、高二抽取的样本量分别为________;(2)高一和高二数学竞赛的平均分约为________.答案 (1)90,70 (2)84.375解析 (1)由题意,可得高一年级抽取的样本量为×450=90,高二年级抽取的样本160450+350量为×350=70.160450+350(2)高一和高二数学竞赛的平均分约为=×80+×90=84.375(分).ω9090+707090+709.某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层随机抽样的方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.解 ①样本容量与总体中的个体数的比值为=;21210110②确定要抽取的各种商店的数目:大型商店为20×=2(家),中型商店为40×=4(家),110110小型商店为150×=15(家);110③采用简单随机抽样的方法在各层中分别抽取大型商店2家、中型商店4家、小型商店15家,这样便得到了所要抽取的样本.10.某武警大队共有第一、第二、第三三支中队,人数分别为30,30,40.为了检测该大队的射击水平,从整个大队用分层随机抽样共抽取了30人进行射击考核,统计得三个中队参加射击比赛的平均环数分别为8.8,8.5,8.1,试估计该武警大队队员的平均射击水平.解 该武警大队共有30+30+40=100(人),按比例分配得第一中队参加考核人数为×30=9;30100第二中队参加考核人数为×30=9;30100第三中队参加考核人数为×30=12,40100所以参加考核的30人的平均射击环数为×8.8+×8.5+×8.1=8.43,9309301230所以估计该武警大队队员的平均射击水平为8.43环.11.为调查德克士各分店的经营状况,某统计机构用分层随机抽样的方法,从A ,B ,C 三个城市中抽取若干家德克士分店组成样本进行深入研究,有关数据见下表:(单位:个)城市德克士数量抽取数量A 262B 13x C39y则样本量为( )A .4B .6C .10D .12答案 B解析 设所求的样本量为n ,由题意得=,解得n =6.n26+13+3922612.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多12人,按分层随机抽样方法从该公司全体员工中选出部分员工座谈,如果选出的人有6人对户外运动持“喜欢”态度,有1人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的人数为( )A .36B .6C .12D .18答案 A解析 设持“喜欢”“不喜欢”“一般”态度的人数分别为6x ,x ,3x ,由题意可得3x -x =12,解得x =6,所以持“喜欢”态度的有6x =36(人).13.(多选)在分层随机抽样中,每个个体等可能地被抽取,下列说法错误的是( )A .每层的个体数必须一样多B .每层抽取的个体数相等C .每层抽取的个体数可以不一样多,但必须满足n i =n ·(i =1,2,…,k ),其中i 是层数,NiN n 是样本量,N i 是第i 层所包含的个体数,N 是总体容量D .只要抽取的样本量一定,每层抽取的个体数没有限制答案 ABD解析 每层的个体数不一定都一样多,故A 错误;由于每层的容量不一定相等,若每层抽同样多的个体,从总体来看,各层之间的个体被抽取的可能性就不一样了,故B 错误;对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽入样本的可能性是相同的,故C 正确;每层抽取的个体数是有限制的,故D 错误.14.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层随机抽样的方法抽取1100样本,则应抽取高一学生数为________.答案 8解析 若设高一学生数为x ,则高二学生数为x +300,高三学生数为2x ,所以有x +x +300+2x =3 500,解得x =800.故高一学生数为800,因此应抽取高一学生数为800×=8.110015.(多选)分层随机抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法正确的是( )A .甲应付51钱41109B .乙应付32钱24109C .丙应付16钱56109D .三者中甲付的钱最多,丙付的钱最少答案 ACD解析 依题意由分层随机抽样可知,100÷(560+350+180)=,10109则甲应付:×560=51(钱);1010941109乙应付:×350=32(钱);1010912109丙应付:×180=16(钱).101095610916.某市两所高级中学在暑假联合组织全体教师外出旅游,活动分为两条线路:华东五市游和长白山之旅,且每位教师至多参加其中的一条线路.在参加活动的教师中,高一教师占42.5%,高二教师占47.5%,高三教师占10%.参加华东五市游的教师占参加活动总人数的,14且该组中,高一教师占50%,高二教师占40%,高三教师占10%.为了了解各条线路不同年级的教师对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体教师中抽取一个容量为200的样本.试确定:(1)参加长白山之旅的高一教师、高二教师、高三教师分别所占的比例;(2)参加长白山之旅的高一教师、高二教师、高三教师分别应抽取的人数.解 (1)设参加华东五市游的人数为x ,参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为a ,b ,c ,则有=42.5%,=47.5%,=10%,x ·50%+3xa4x x ·40%+3xb 4x x ·10%+3xc 4x 解得a =40%,b =50%,c =10%.即参加长白山之旅的高一教师、高二教师、高三教师所占的比例分别为40%,50%,10%.(2)参加长白山之旅的高一教师应抽取人数为200××40%=60;34抽取的高二教师人数为200××50%=75;34抽取的高三教师人数为200××10%=15.34。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、在实际操作中,抽样方法经常交叉起 来使用,使样本更具有代表性.比如,分 层抽样时,若每层中个体数量仍然很大, 则可辅以系统抽样,而系统中第一部分, 又可采用简单随机抽样.
[例1] 某公司有职工210人,其中管理人员 20人,后勤保安人员30人,业务人员160 人.为了了解职工的文化生活状况,要从中 抽取一个容量为21的样本,如果采用分层抽 样的方法,那么业务人员应该抽取________ 人.
A.7,5,8 C.6,5,9 [答案] B
( ) B.9,5,6 D.8,5,7
二、填空题 2.某超市有普通水果和无公害水果若干千克,
现按5%的比例分层抽样,抽取了15千克普通 水果,45千克无公害水果进行分析,则该超 市共有水果________千克. [答案] 1200
[解析] 155+%45=1200.
3.某工厂生产A、B、C三种不同型号的产品, 产品数量之比依次为2 3 5.现用分层抽样 方法抽出一个容量为n的样本,样本中A种型 号 产 品 有 16 件 , 那 么 此 样 本 的 容 量 n = ________.
[答案] 80
[解析] 据分层抽样按比例分配的特点知
16=2+23+5×n,∴n=80.
(1)若总体由差异明显的几个层次组成,则选 用分层抽样法.
(2)若总体没有差异明显的层次,则考虑采用 简单随机抽样或系统抽样.
①当总体容量较小时宜用抽签法;
②当总体容量较大,样本容量较小时宜用随 机数表法;
③当总体容量较大,样本容量也较大时宜用系统抽样 法.
当总体容量 N 能被样本容量 n 整除时直接分 k=Nn段; 当总体容量不能被样本容量整除时,先用简单随机抽样法 剔除多余个体,再分 k=[Nn]段.
1.分层抽样的必要性
设计抽样方法时,最核心的问题是要考虑如 何使抽取的样本具有 很好的代表性 .为此,在设计抽样方法时,我们应考虑 如何利用自己已掌握的总体信息.如:我们 要调查高一学生的平均身高,由经验知,男 同学一般要比女同学高,这时就要采用分层 抽样.因为简单随机抽样或系统抽样都有可 能产生绝大部分是男生(或女生)或全部是男 生(或女生)的样本.这种样本是不能代表总 体的.
[分析] 分层抽样中,各层抽取个体数依各 层中个体数的比来分配.
[解析] 因为总体数为210,样本容量为21, 所以每10人抽取1人,业务人员160人,应 抽取16人,故填16.
(09·天津理)某学院的A、B、C三个专业共 有1200名学生,为了调查这些学生勤工俭 学的情况,拟采用分层抽样的方法抽取一 个容量为120的样本.已知该学院的A专业 有380名学生,B专业有420名学生,则在 该学院的C专业应抽取________名学生.
(2) 更充分的保证了样本结构与总体结构的一致性, 更准确的反映了总体的情况 ;
(3) 是等可能抽样,每个个体被抽到的可能性都. 是
4.分层抽样的操作步骤
(1)将总体按一定标准进行分层;
(2)计算各层的个体数与总体的个体数的比;
(3)按各层的个体数在总体中所占的比例确 定各层应抽取的样本容量;
[答案] 40
[解析] C 专业学生人数为 1200-380-420=400. 抽样比=1122000=110. ∴C 专业应抽人数 n=110×400=40(名)
某中学有高一学生400人,高二学生302人, 高三学生250人,现用分层抽样法从全校所有 学生中抽取一个容量为190人的样本,应剔除 多少人?每个年级分别应抽取多少人?
[答案] 150
[解析] 由分层抽样特点知:
300+2K2+100=1040,∴K=150.
5.某班有30名男生.现调查平均身高,已 知男、女身高有明显不同.用分层抽样法 恰好抽出男生3人,女生2人,该班女生有 ________人.
[答案] 20
[解析] 设女生 x 人,抽取 2 人,
∵男生 30 人抽取 3 人,
∴330=2x,∴x=20.
[解析] 总体人数 952,952-[915920]×190=2,应从高
二年级剔除 2 人,高一,高二,高三应分别抽取 80,60,50
人.
一、选择题
1.某单位有职工100人,不到35岁的有45人, 35岁到49岁的有25人,剩下的为50岁以上的 人,用分层抽样的方法从中抽取20人,各年 龄段分别抽取人数为
(4)在每一层进行抽样(可用简单随机抽样 或系统抽样).
4.三种抽样方法的比较
一、1.简单随机抽样是系统抽样和分层抽样 的基础,三种抽样方法都是等可能抽样,体 现了它们的客观性和公平性.由其定义,应 抓以下几点理解:
(1)它要求被抽取样本的总体中的个体数有限;
(2)它是从总体中ห้องสมุดไป่ตู้个地进行抽取;
2.分层抽样的概念
当总体由 有明显差别 的几部分组成时,
为了使抽取的样本更好地反映总体的情况, 常将总体中各个个体按某种特征分成若干个 互不交叉的部分,每一部分叫做层,在各层 中按层在总体中所占比例抽取一定数量的个 体,将各层中取出的个体合在一起作为样本, 这种抽样方法叫做 分层抽样 .
3.分层抽样的特点 (1) 适用于总体由差异明显的几部分组成的情;况
(3)是一种不放回抽样,也就是每次从总体中 抽取元素后不再将这个元素放回总体.
2.分层抽样的优点是,使样本具有较强的 代表性,而且在各层抽样时,又可灵活地 选用不同的抽样法.因此,分层抽样应用 比较广泛.
3.系统抽样解决了总体中个体数较多的问 题.
二、在具体情景中,需要我们准确的选择恰 当的抽样方法进行抽样.各种方法的选择可 按以下原则进行:
[点评] 分层抽样时,设某层含 N′个个体,抽取 n′ 个个体,总体有 N 个个体,n 是从总体中抽取的样本容 量,则n′ n =NN′,则 n′=N′N ·n.
4.调查某单位职工的健康状况,已知青年人 数为300,中年人数为K,老年人数为100.现 考虑用分层抽样抽取容量为22的样本,已知 抽取的青年和老年的人数分别为12和4,那么 中年人数K为________.