垂直于弦的直径
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
垂直于弦的直径
------垂径定理
【教学内容】垂径定理
【教学目标】
1.知识目标:①通过观察实验,使学生理解圆的轴对称性;
②掌握垂径定理,理解其证明,并会用它解决有关的证明与计算问题;
③掌握辅助线的作法——过圆心作一条与弦垂直的线段。
2.能力目标:①通过定理探究,培养学生观察、分析、逻辑思维和归纳概括能力;
②向学生渗透“由特殊到一般,再由一般到特殊”的基本思想方法。
3.情感目标:①结合本课教学特点,向学生进行爱国主义教育和美育渗透;
②激发学生探究、发现数学问题的兴趣和欲望。
【教学重点】垂径定理及其应用。
【教学难点】垂径定理的证明。
【教学方法】探究发现法。
【教具准备】自制的教具、自制课件、实物投影仪、电脑、三角板、圆规。
【教学设计】
一复习提问
1 放映幻灯片,请同学们观察几幅图片,看他们有什么共同特点?
2那么圆具有这样的特点吗?如果是,它的对称轴是什么? 你能找到多少条对称轴?
你是用什么方法解决上述问题的?与同伴进行交流.
3(老师点评)圆是轴对称图形,它的对称轴是直径, 我能找到无数多条直径.
4板书:圆是轴对称图形,其对称轴是任意一条过圆心的直线.
二、实例导入,激疑引趣
1.实例:同学们都学过《中国石拱桥》这篇课文(初二语文第三册第一课·茅以升),其中介绍了我国隋代工匠李春建造的赵州桥(如图)。因它位于现在的历史文化名城河北省赵县(古称赵州)而得名,是世界上现存最早、保存最好的巨大石拱桥,距今已有1400
多年历史,被誉为“华北四宝之一”,它的结构是当时世界桥梁界的首创,这充分显示了我国古代劳动人民的创造智慧。
2.导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4米拱高(弧的中点到弦ab的距离,
也叫弓高)为7.2米。请问:桥拱的半径(即弧ab所在圆的半径)是多少?
通过本节课的学习,我们将能很容易解决这一问题。(图1幻灯片放映)
三、尝试诱导,发现定理
(一)学生活动
1让学生将准备好的一张圆形纸片按下列条件操作;教师用电脑演示重叠的过程。
如图,ab是⊙o的一条弦,做直径cd,使cd⊥ab,垂足为e.2教师用电脑演示重叠的过程。
提问:(1)如图是轴对称图形吗?如果是,其对称轴是什么?
(2)你能发现图中有哪些等量关系?说一说你的理由.
⌒
⌒
⌒
⌒
(老师点评)(1)是轴对称图形,其对称轴是cd.
(2)ae=be,ad=bd ac=bc
(二)引导探究,证明定理
1.引导证明:
引导学生从以下两方面寻找证明思路。
①证明“ae=be”,可通过连结oa、ob来实现,利用等腰三角形性质证明。共2页,当前第1页12
②证明“弧相等”,就是要证明它们“能够完全重合”,可利用圆的对称性证明。
2.归纳定理:
根据上面的证明,请学生自己用文字语文进行归纳,并将其命名为“垂径定理”。
(板书)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
3.巩固定理:
a
d
在下列图形能否利用“垂径定理”得到相等的线段和相等的弧?若不能,说明理由;。
a
b
c
c
e
a
b
o
e
b
c
o
c
c
e
e
a
b
e
b
a
b
a
d
d
d
向学生强调:(1)定理中的两个条件缺一不可;(2)定理的变式图形。
四、例题示范,变式练习
1.运用定理解决赵州桥的问题。
〖例1〗导入:赵州桥的桥拱呈圆弧形的(如图1),它的跨度(弧所对的弦长)为37.4米拱高(弧的中点到弦ab的距离,⌒
⌒
也叫弓高)为7.2米。请问:桥拱的半径(即弧ab所在圆的半径)是多少?
o
d
a
c
r
⌒
分析:如图,用ab 表示主桥拱,设ab 所在圆的圆心为o,半径为r.经过圆心o 作弦ab 的垂线oc,d为垂足,oc与ab 相交于点d,根据前面的结论,d 是ab 的中点,c是ab 的中点,cd 就是拱高在图中ab=37.4,cd=7.2
b
ad=1/2ab=1/2×37.4=18.7
od=oc-cd=r-7.2
在rt△oad中,由勾股定理,得
oa2=ad2+od2
即r2=18.72+(r-7.2)2
解得:r≈27.9(m)
答:赵州桥的主桥拱半径约为27.9m.
e
b
a
例2 如图,在⊙o中,弦ab的长为8cm,圆心o到ab的距离为3cm,求⊙o的半径.
解
答:⊙o的半径为5cm.
五小结
请大家围绕以下两个问题小结本节课
①学习了一个与圆有关的重要定理,定理的内容是什么?
②在圆中解决与弦有关问题时经常做的辅助线是什么?
归纳:
1.垂径定理相当于说一条直线如果具备
(1)过圆心;
(2)垂直于弦
则它有以下性质
(1)平分弦;
(2)平分弦所对的劣弧;平分弦所对的优弧.
2.在圆中解决有关弦的问题时,经常是过圆心作弦的垂线段,连结半径等辅助线,为应用垂径定理创造条件.
六作业
1教材88页练习1,2题
2教材95页习题24.1 7、8、9;