最新的初中数学竞赛——比例线段初步

合集下载

初三数学比例线段知识精解

初三数学比例线段知识精解

初三数学比例线段知识精解好嘞,今天咱们聊聊初三数学里的比例和线段,听上去是不是有点严肃?但别急,咱们就像喝茶聊天一样,轻松点说。

你们知道吗,比例其实就像我们生活中的很多事情,像是“你给我一块,我给你一块”,这就是一种分享,懂吧?比例就是这样的,描述了两个量之间的关系,比如说一块蛋糕分给你和我,比例就是你我之间的那种默契。

想象一下,咱们一起去吃火锅,锅里有好多种菜,有牛肉、虾、蔬菜,还有那诱人的豆腐。

假如你是个牛肉控,那你可能会说:“嘿,我要两份牛肉!”我则可能大喊:“我只要一份虾!”这时候,咱们就可以用比例来算,牛肉和虾的比例就是2:1。

这听起来简单,但其实蕴含了许多道理,咱们吃火锅也讲究分享和比例呢!然后说到线段,线段就像是一条从A到B的路,简单吧?想象一下,你从家到学校的路程,那条路就可以看作一条线段。

线段的长度和比例一起出现,像是一个好搭档。

假设你走到学校需要10分钟,哎,换句话说,这10分钟就是这条线段的长度。

如果咱们把这个时间缩短,走得更快,咱们就把这个线段的比例弄得更加合理,懂不?再来说说,比例的基本性质,记住了,就像吃火锅时一定要记得点菜的顺序一样。

比例的基本性质是“交叉相乘”。

这个听上去复杂,其实一点都不!就好比你跟我一起去买饮料,店里有个特价活动,买两瓶可乐只要五块钱,买三瓶水要七块钱。

咱们可以通过交叉相乘的方法来判断哪个划算,简单得很,是不是?咱们可以把比例带入到图形中,线段和比例在几何里也是密不可分的。

你想,画一条直线,分成几个部分,像是把一根巧克力棒切成几段。

比如,你把这根棒子切成4段,每段都是1/4,比例就变得清晰了。

这时候你就能发现,巧克力的美味和比例的关系多么奇妙,真的是看着都让人想流口水啊!再说说,比例的应用。

生活中其实到处都离不开比例,像是在厨房里做饭,调料的比例很重要,盐多了菜咸,糖多了就成了甜汤。

这种情况下,比例就像是一位严厉的老师,告诉你该怎么做,才能把菜做得恰到好处。

初中数学相似三角形基础知识精讲--比例线段

初中数学相似三角形基础知识精讲--比例线段

A
E
F
B
D
C
作业
姓名: 作业等级: . 1.美是一种感觉,当人体下半身长与身高的比值越接近 0.618 时,越给人一种美感.如图,某女士 身高 165cm,下半身长 x 与身高 l 的比值是 0.60,为尽可能达到好的效果,她应穿 的高跟鞋的高度大约为( ) A.4cm B.6cm C.8cm D.10cm
3.在△ABC 中,AB=12,AC=10,BC=9,AD 是 BC 边上的高.将△ABC 按如图所示的方式折叠, 使点 A 与点 D 重合,折痕为 EF,则△DEF 的周长为( ) A.9.5 B.10.5 C.11 D.15.5
10.在△ABC 中,D 是 BC 上一点,若 AB=15 cm,AC=10 cm,且 BD∶DC=AB∶AC, BD-DC=2cm,求 BC.
◆----平行线分线段成比例定理 质定理(推论):平行于三角形一边的直线截其他两边(或两边的 延长线) ,所得的对应线段成比例。 2、三角形一边的平行线的判定定理 1:如果一条直线截三角形的两边(或两边的延长线)所 得的对应线段成比例,那么这条直线平行于三角形的第三边。 3、三角形一边的平行线的性质定理 2:平行于三角形的一边,并且和其他两边(或两边的延 长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例。 例 、 如 图 5, 在 △ABC 中 , D 是 BC 上 的 点 , E 是 AC 上 的 点 , AD 与 BE 交 于 点 F, 若 AE:EC=3:4, BD:DC=2:3,求 BF:EF 的值。
1 2
a b c ,则 x 的值一定是( bc ac ab 1 3 B、-1 C、 或-1 D、 2 2

2.已知一次函数 y kx 1 中,比例系数 k 满足 k 试求直线 y kx 1 与 x 轴的交点坐标.

九年级数学比例线段3省名师优质课赛课获奖课件市赛课一等奖课件

九年级数学比例线段3省名师优质课赛课获奖课件市赛课一等奖课件

在平面直角坐标系中,过点(a,b)和坐标原
点旳直线是一种怎么样旳正百分比函数旳图像? 假如a,b,c,d四个数成百分比,你以为点 (a,b),点(c,d)和坐标原点在一条直线 上吗?请阐明理由
解:设经过点(a,b)是过原点成正百分比函数
y=kx ∴k=b/a ∴y=(b/a)x
∵a,b,c,d成百分比
b、c 叫做百分比内项,
试一试:
下列各组数能否成百分比?假如能成百分比,请 写出一种百分比式,并指出百分比旳内项与外
项. 13,9,2,6
2 12, 6, 10, 5
33, 3, 2,2
做一做
1,请指出下列百分比式旳百分比内项和百分比 外项,.
(1) 0.3 0.6 (2) 2 1
2
4
6
3
2、求出两百分比内项旳积和两百分比外项旳积
你有什么发觉?
3、利用等式性质,你能从 ad=bc 吗?
a b
c d
推导出
百分比有如下性质: a c ad bc (a,b,c,d均不为零) bd
反过来呢?
试一试:
1,根据下列条件,求a:b旳值. (1)2a 3b(2) a b
54
2,求下列百分比式中旳 x.
(1)4 : 3 5 : x(2) x x 1 32
3、已知
a b
=
2c d
,求 a b
b
旳值。
利代用入等法式性质
4、已知 a c 判断下列百分比式是 否成 b d
立,并阐明理由
(1) a b c d (2) a a c
b
d
b bd
百分比式变形旳常用措施:
利用等式性质
设比值 k
练习:

初中数学竞赛第十六讲和圆有关的比例线段(含解答)

初中数学竞赛第十六讲和圆有关的比例线段(含解答)

第十六讲 和圆有关的比例线段【趣题引路】某建筑物上装有一块长方形广告牌,上下边相距5m,下底边距离地面5.6m.•如果人的眼部高度为 1.6m,那么从远处正对广告牌走近时,看广告牌效果最好的位置距该建筑物多远?解析 广告牌AB 在视线的水平线DF 之上.如图,因此,可过AB•两点作一个圆,使圆与DF 相切,这时可看到,当人从远处走来时,人眼在DF 的水平线上,除D 点外,•DF 上的其余各点都在圆外 ,则当人走到DE 处时∠ADB 最大,看广告效果最好. 那么如何求出CE 的距离呢?由切割线定理可知,DF 2=BF ·AF,且CE=DF,因此,很容易得到 D F 2=4×9=36,∴DF=6(m)即人距离广告牌6m 左右看广告牌的效果最好.【知识延伸】过一点P 作与圆有关的两条直线,点P 与圆的不同位置有两种:1.当点P 在圆内时,这两条直线分别交圆于A 、B 和C 、D,则PA ·PB=PC ·PD,•这就是相交弦定理,如图1.(1) (2) (3) 2.当点P 在圆外时,分两种情况:(1)这两条直线与圆都有两个交点,分别为A 、B 与C 、D,则PA ·PB=PC ·PD称作割线定理:如图2.(2)当这两条直线中一条与圆有两个交点,另一条只有一个交点(切点)M时,得切割线定理:PA·PB=PM2.相交弦定理、切割线定理及切割线定理的推论(割线定理),•我们统称为圆幂定理.圆幂定理在形式上也可以进一步统一.如图3,点P在圆内时,像所作的虚线那样,连OP,过点P作弦EF⊥OP,交圆于E、F,由于PE=PF,故PA·PB=PC·PD=PE·PF=PF2=r2-OP2,其中r为⊙O的半径.如图4,点P在圆外时,连OM、ON、OP,有PA·PB=PC·PD=•PM·PN=P M2=OP2-r2.综上所述,圆幂定理可以统一为PA·PB=│r2-OP2│.换言之,•圆幂定理可叙述为:通过不在⊙O上一定点P向⊙O任作一直线交⊙O于A、B两点,则有PA·PB=│r2-OP2│.(r2-OP2叫做点对于⊙O的幂).圆幂定理揭示了圆中线段的比例关系,对于涉及相交弦,切割线的有关计算,•常可利用圆幂定理去求.例1已知,如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,割线CDF交AB于E,并且CD:DE:EF=1:2:1,AC=4.求⊙O的直径AB.解析设CD=k,则DE=2k,EF=k,CF=4k.由切割线定理,有AC2=CD·CF.∴42=k·4k,•k=2.∴CE=6,DE=4,EF=2.在Rt△ACE中,由勾股定理,有根据相交弦定理,得AE·EB=DE·EF.∴EB=4×2,EB=5。

初中数学九年级上册《比例线段》

初中数学九年级上册《比例线段》

a 2.已知 b

c d
, 判断下例比例式是否成立,并
说明理由. (1) a b c d
bd
(2) a a c b bd
注意: 1.若a:b=k , 说明a是b的k倍。 2.两条线段的比与所采用的长度单位
无关,但求比时两条线段的长度单 位必须一致。 3.两条线段的比值是一个没有单位的 正数。 4.除了a=b外,a:b≠b:a, a 与 b 互为倒数
a2 即 a:b=2:3或 b = 3
如果改用米、毫米作为线段的长度单位, 那么a、b两条线段的比分别是:
a 0.02米 2 b = 0.03米 = 3
a 20毫米 2 b = 30毫米 = 3
2.比例的基本性质:
a c ad bc(a,b, c, d都不为零) bd
例 (11: )1.2根a据=3下b 例; 条件,(求2)a:b的值a5 . b4
(3)a=50mm , b=6cm ;
(4)a=3m , b=10mm .
答: (1) a:b=5
(2) a:b=1:100
(3) a:b=5:6 (4) a:b=300
例2
已知:A、B两地的实际距离AB=250m 画在地图上的距离A'B'=5cm
求:图上距离与实际距离的比 (即该地图的比例尺)
解:∵ AB=250m=25000cm
两个边数相同的多边形,如果他们的 对应角相等,对应边长度的比相等,那么 这两个多边形叫做形似多边形.
相似多边形对应边长度的比叫做 相似比或相似系数
1.线段的比
定义:在同一长度单位下,两条线段 的长度的比叫做这两条线段的比。
即如果用同一长度单位量得线段a、b的 am

最新的初中数学竞赛——比例线段初步

最新的初中数学竞赛——比例线段初步

第4讲 比例线段初步知识总结归纳一. 平行线分线段成比例定理:如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A二. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==三. 平行的判定定理:如上图,如果有AD AEAB AC=,那么DE BC ∥.四. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,则BD EGDC FG=.G FE DCBAADAEGFCED CBAB D AE C典型例题一. 比例式的计算【例1】 已知35a b =,求(1)b a ;(2)a bb +的值.【例2】 已知513b a =,则a ba b -+的值是( ) A .23 B .32 C .94 D .49【例3】 已知()()73a b a b +-=::,求(1)ab ;(2)222ab b a b ++.【例4】 已知425xy z==,那么3223x y zx y-+=+______;若(2)x y y +=:,那么(32)(45)x y x y -+=:______.二. 基础训练【例5】 如图,已知直线a b c ∥∥,直线m 、n 分别与a 、b 、c 交于A 、C 、E 、B 、D 、F .若4AC =,6CE =,3BD =,则BF =_______.【例6】 如图,12l l ∥,25AF FB =::,41BC CD =::,则AE EC =:_______.C FD B AEnbam cEFG A DC B2l 1l【例7】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDCBA【例8】 证明下列各组问题,并对各组的两个图形进行比较:(1)如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,求证:BD EGDC FG=.(2)如图,已知DE BC ∥,EF CD ∥,求证:2AD AF AB =⋅.【例9】 如图,已知ABC △,作DE BC ∥交AB 于D ,交AC 于E ,连CD 、BE 交于点F .求证:(1)DF AD CF AB =;(2)1BD EFAB BF+=.FEDCBAG FEDCBABAEGFCFEDCBACBFDEA【例10】 如图,已知AD 为ABC △的BC 边上的中线,P 为线段BD 上一点,过点P 作AD 的平行线交AB 于Q ,交CA 的延长线于R .求证:2PQ PR AD +=.【例11】 如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【例12】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长.OFED CBA三. 巩固提高【例13】 如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且梯形AEFD 与梯形EBCF 的周长相等,求EF 的长.F E DCBAQDPBCA R【例14】 如图,在ABC △中,D 、E 为AC 、AB 上的点,BD 、CE 相交于O ,取AB 的中点F ,连结OF .若12AD CD =,12AE BE =.求证:OF BC ∥.【例15】 如图,ABCD □中,AC 与BD 交于O 点,E 为AD 延长线上一点,OE 交CD 于F ,EO 的延长线交AB 于G ,求证:2AB ADDF DE-=.【例16】 在四边形ABCD 中,AC 、BD 相交于.O .,直线l BD ∥,且与AB 、DC 、BC 、AD 及AC的延长线分别相交于点M 、N 、R 、S 和P ,求证:PM PN PR PS ⋅=⋅.CES RNP C O D BAMlO E DCBAF【例17】 已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.G FECDBA【例18】 已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形.【例19】 已知:P 为ABC △的中位线上任意一点,BP 、CP 的延长线分别交对边AC 、AB 于D 、E ,求证:1AD AEDC EB+= PNME D CBA思维飞跃【例20】 如图,已知梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 相交于M ,EF AD ∥,且过M ,EC 和FB 交于N ,GH AD ∥,且过N .求证:1212AD BC EF GH+=+.【例21】 如图,AD 是ABC △的中线,过CD 上任意一点F ,作EG AB ∥,与AC 和AD 的延长线分别交于G 和E ,FH AC ∥交AB 于点H ,求证:HG BE =.作业1. 已知238x y z ==,求(1)22x z y z +-;(2)2345x y zx+-.DHG F ECBANH MG F E CBD A2. 如下两个图中,已知EF BC ∥,FG DC ∥,分别证明:AE AGAB AD=.3. 已知:如图,在梯形ABCD 中,AB CD ∥,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF CD ∥(2)若AB a =,CD b =,求EF 的长.FEMDCBA4. 在梯形ABCD 中,AB CD ∥,AC 与BD 交于O ,MON AB ∥,且M O N 交AD 、BC 于M 、N .若1MN =,求11AB CD+的值.EF GD CBA CGE BAF5. 如已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB A6. 如图,已知D 、E 是AC 、AB 上的点,BD 、CE 交于O 点,过O 点作OF CB ∥交AB 于F ,12AD CD =,12AE BE =,求证:F 为AB 的中点.7. 设D 为ABC △的边BC 的中点,过D 作一条直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交EF 的延长线于G ,则EG FD GF DE ⋅=⋅.FOE CB ADFC DB EGA8. 凸四边形ABCD 中,ADC ∠,90BCD ∠ >,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,,连接E 、F .证明:EF CD ∥.9. 如图, 在直线l 的同侧有三个相邻的等边三角形ABC △、ADE △、AFG △,且G 、A 、B 都在直线l 上,设这三个三角形边长分别为a 、b 、c ,连结GD 交AE 于N ,连BN 交AC 于L ,求AL 的长.10. 如图,D 、E 、F 分别是ABC △中BC 、CA 、AB 的中点,过A 任作一直线DE 、FD 分别交于G 、H ,求证:CG BH ∥.CDOF EBA LNFE DC lBGAHG FED C BAP。

初中数学《比例线段》优质课PPT课件

初中数学《比例线段》优质课PPT课件


2 3
的比例中项是什么?
(3)若线段a=2cm,b=8cm,则线段a和b 的比例中项是什么?
摄影作品之美
判断题
(1).如图,点 P是线段 AB的黄金分割点,
( AP BP),则 AP BP .
()
AB AP
A
P
B
(2). 已知,线段 MN 被点C黄金分割, (MC NC), 则 MC2 MN • NC
比例线段(3)
判断下列几组数成比例的是: (1)1,3,3,9
(2)2,3,4,5
(3)-1,2,2,-4
概念:
一般地,如果三个数a,b, c满足
比例式 a b (或a : b b : c),则 bc
b就叫做a, c的比例中项。
练习1:
(1)1是不是
1
1 2

2 3
的比例中项?
(2)
11 2
468m
欣赏之三:上海东方明珠塔
上海东方明珠电视塔高 468m,上球体到塔底的 距离约为289.2m, 289.2 与468的比值是一个神奇 的数字,这个塔的设计精 巧,外型匀称、漂亮、美 289.2m 观、大方.
A
D
E
F
B
C
欣赏之四: 蒙娜丽莎
著名画家达·芬奇的蒙 娜丽莎,拉斐尔笔下温和、 俊秀的圣像,其漂亮的面 部是矩形ABCD的宽BC 与长AB的比也是一个神 奇的数.
MCNຫໍສະໝຸດ 二、请你欣赏 感受匀称 协调之美
欣赏之一:
世界艺术珍品——维纳斯 女神, 她是西元前一百多 年希腊雕塑鼎盛时期的代 表作,她的上半身(以肚脐
眼为分界点)和下半身的比 值接近0.618.
欣赏之二: 芭蕾舞

七年级数学尖子生培优竞赛专题辅导第十六讲 比例线段(含答案)

七年级数学尖子生培优竞赛专题辅导第十六讲 比例线段(含答案)
解 ①

由①、②得:
∵x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx),
∴ .
∵p+q+r=9,∴ ,故选A.
二、构造比例线段解题
例2(江苏省初中竟赛题)如图,过△ABC顶点B的两条直线分三角形BC边上的中线AD所成的比AE:EF:FD=4:3:1,则这两直线分AC所成的比AG:GH:HC为()
5.(2000年湖北省初中竞赛题)如图16-21,已知 、 为 的边 上的两点,且满足 ,一条平行于 的直线分别交 和 的延长线于点 和 .求证: .
6.(1998年山东省初中竞赛题)如图16-22,在四边形 中, 与 相交于 ,直线 平行于 且与 及 的延长线分别交于点 和 ,求证: .
∴△BAD∽△CAB.∴
∴CD=BD=AB∴
∴AB2=AC2-AB·AC即
∴ 或 (舍去)
∴命题成立.
点评顶角为36°的等腰三角形的底与腰之比等于黄金分割比,顶角为108°的等腰三角形的腰与底之比等于黄金分剖比,因此,常把这两种三角形称之为黄金三角形.
例6如图,在△ABC中,已知∠A:∠CBA:∠BCA=1:2:4,求证: .
例5求证:顶角为36°等腰三角形的底与腰之比等于黄金数.
已知如图,在△ABC中,AC=BC,∠C=36°.
求证: .
解析若将三角形分成两个相似三角形,可找到AB、AC间的关系式.
证明作∠CBA的平分线DB交AC于D.
∵∠C=36°,AC=BC,∴∠CBA=72°
∴∠DBA=∠DBC=∠C.∵∠A=∠A,
解析延长AB至D,使BD=BC,连接CD,在AB上取一点E,使ED=CD,设∠A=a,则∠CBA=2a,

数学教案比例线段第2课时

数学教案比例线段第2课时

数学教案-比例线段(第2课时)一、教学目标1.理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念.2.掌握比例基本性质和合分比性质.3.通过通过的应用,培养学习的计算能力.4.通过比例性质的教学,渗透转化思想.5.通过比例性质的教学,激发学生学习兴趣.二、教学设计先学后做,启发引导三、重点及难点1.教学重点比例性质及应用.2.教学难点正确理解成比例线段及应用.四、课时安排1课时五、教具学具准备股影仪、胶片、常用画图工具六、教学步骤1.什么是线段的比?2.已知这两条线段的比是吗,为什么?1.比例线段:见教材P203页。

如:见教材P203页图5-2。

又如:即a、b、c、d是成比例线段。

注:①已知问这四条线段成比例吗?(答:成比例。

,这里与顺序无关)。

②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材P203页比例线段的一些附属概念。

2.比例的性质:(1)比例的基本性质:如果,那么。

它的逆命题也成立,即:如果,那么。

推论:如果,那么。

反之亦然:如果,那么。

①基本性质证明了“比例式”和“等积式”是可以互化的。

②由,除可得到外,还可得到其它七个比例式。

即由一个等积式,可写成八个不同的比例式(让学生试写)。

然后教师教给方法。

即:先按左:右=右:左“写出四个比例式。

再由等式的对称性写出另外四个比例式:。

注意区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。

即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:如果,那么证明:∵,∴即:同理可证:(找学生板演)(3)等比性质:如果那么证明:设;则∴等比性质的证明思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必掌握。

例1(要求了解即可)(1)已知:,求证:。

初中九年级数学竞赛培优讲义全套专题17 直角三角形中的比例线段

初中九年级数学竞赛培优讲义全套专题17 直角三角形中的比例线段

专题17直角三角形中的比例线段阅读与思考借助相似三角形法研究直角三角形,我们会得到许多在解题中应用极为广泛的结论. 如图,在Rt △ABC 中,∠A =900,AD ⊥BC 于D ,则1.图中角的关系:∠B =∠DAC ,∠C =∠DAB ; 2.同一三角形中三边平方关系:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2;BC 2=AB 2+AC 2.3.三角形之间的关系: △ABD ∽△CAD ∽△CBA ,由此得出的线段之间的关系: AD 2=BD •DC ,AB 2=BD •BC ,AC 2=CD •BC .直角三角形被斜边上的高分成的两个直角三角形与原三角形相似,由此得出的等积式在计算与证明中应用极为广泛,其特点是:①一线段是两个三角形的公共边; ②另两条线段在同一直线上.例题与求解【例1】如图,Rt △ABC 中,CD 为斜边AB 上的高,DE ⊥CB 于E .若BE =6,CE =4,则AD =________.(上海市竞赛试题)解题思想:图中有两个基本图形,恰当选取相应关系式求出AD .例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =900,CD ⊥AB ,下列结论:①CD •AB =AC •BC ; ②22AC ADBC BD=; ③222111AC BC CD+=; ④AC +BC >CD +AB . 其中正确的个数是 ( ) A .4个 B .3个C .2个D .1个(江苏省竞赛试题)解题思路:综合运用直角三角形性质逐一验证,从而作出判断.CAB DECABD AB C D【例3】如图,在等腰Rt △ABC 中,AB =1,∠A =900,点E 为腰AC 的中点,点F 在底边BC 上,且EF ⊥BE ,求△CEF 的面积. (全国初中数学联赛试题)解题思想:欲求△EFC 的面积,由于EC =12,只需求出△EFC 中EC 边上的高,或求出EC 边上的高与EC 的关系.本例解法甚多,同学们的解题思路,自由探索与思考,寻求更多更好的解法.【例4】如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2),在直线OB 上找一点C ,使△ACO 为等腰三角形,求点C 的坐标.(江苏省竞赛试题)解题思想:注意分类讨论.能力训练A 级1.如图,在两个直角三角形中,∠ACB =∠ADC =900,AC =6,AD =2,当AB =_______时,这两个直角三角形相似.2.如图,在Rt △ACB 中,CD ⊥AB 于点D ,∠A 的平分线AF 交CD 于E ,过E 引EG ∥AB 交BC 于G ,若CE =3,则BG 的长为____________. (上海市竞赛试题)ABCEF CDB(第1题图)(第2题图)(第3题图) B A OxyABD CFE GABCDEA3.如图,ABCD 为矩形,ABDE 为等腰梯形,BD =20,EA =10,则AB =_________________.(“五羊杯”竞赛试题)4.如图,梯子AB 斜靠在墙面上,AC ⊥BC ,AC =BC ,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( )A .y x =B .y x >C .y x <D .不确定(江苏省竞赛试题)5.如图,矩形ABCD 中,AB =3,BC =3,AE ⊥BD 于E ,则EC 等于( )A .72B .52C .152D .2126.在△ABC 中,AD 是高,且2AD BD CD =⋅,那么∠BAC 的度数是( ) A .小于900B .等于900C .大于900D .不确定(全国初中数学联赛试题)7.如图,在△ABC 中,已知∠C =900,AD 是∠CAB 的角平分线,点E 在AB 上,DE ∥CA ,CD =12,BD =15,求AE ,BE 的长.(上海市中考试题)8.如图,在矩形ABCD 中,E 是CD 的中点,BE ⊥AC 交AC 于F ,过F 作FG ∥AB 交AE 于G ,求证:AG 2=AF ·FC .(西安市中考试题)ABCDE (第7题图)CAB(第4题图)ABCD(第5题图)E9.如图,在Rt△ABC中,∠ACB=900,CD⊥AB,DE⊥AC,DF⊥BC,D,E,F分别为垂足,求证:CD3=AB·AE·BF.(四川省中考试题)10.如图,在Rt△ABC中,∠ACB=900,AD平分∠CAB交BC于点D,过点C作CE⊥AD于点E,CE的延长线交AB于点F,过点E作EG∥BC交AB于点G,AE·AD=16,AB =45.⑴求证:CE=EF;⑵求EG的长.(河南省中考试题)11.如图,在△ABC中,已知∠ACB=90°,BC=k·AC,CD⊥AB于点D,点P为AB边上一动点,PE⊥AC于E,PF⊥BC于F.⑴当k=2时,则CEBF=_____________;⑵当k=3时,连结EF,DF,求EFDF的值;A BE(第10题图)DFCGA BE(第9题图)DFC(第8题图)A BCDEFGA BE(第11题图)DFCP⑶当k =___________时,233EF DF (直接写出结果,不需证明).B 级1.如图,在Rt △ABC 中,∠A =900,AD ⊥BC ,P 为AD 的中点,BP 交AC 于E ,EF ⊥BC 于F ,AE =3,EC =12,则EF =___________.(黄冈市竞赛试题)2.如图,在Rt △ABC 中,两条直角边AB ,AC 的长分别为1厘米,2厘米,那么直角的角平分线的长度等于______厘米.(全国初中数学联赛试题)3.如图,EFGH 是矩形ABCD 的内接矩形,且EF :FG =3:1,AB :BC =2:1,则AH :AE =______.(上海市竞赛试题)4.如图,△ABC 中,∠ACB =900,CD 和CE 分别是底边AB 上的高和∠C 的平分线,若△CED ∽△ABC ,则∠ECD 等于( )A .180B .200C .22.50D .300(山东省竞赛试题)5.如图,在△ABC 中,D ,E 分别在AC ,BC 上,且AB ⊥AC ,AE ⊥BC ,BD =DC =EC =1,则AC =( )A .2B .3C .32D .33E .43(美国高中统一考试题)ABCD F (第1题图)EAB CD(第2题图)A BC D (第3题图)FG EH E DB AC(第4题图)ABE(第5题图)D F C6.如图,在等腰Rt △ABC 中,F 为AC 边的中点,AD ⊥BF .求证:BD =2CD .(武汉市竞赛试题)7.如图,P ,Q 分别是正方形ABCD 的边AB ,BC 上的点,且BP =BQ ,过B 点作PC 的垂线,垂足为H .求证:DH ⊥HQ .(“祖冲之杯”邀请赛试题)8.△ABC 中,BC =a ,AC =b ,AB =c .若∠C =900,如图1,根据勾股定理,则a 2+b 2=c 2.若△ABC不是直角三角形,如图2、图3,请你类比勾股定理,试猜想a 2+b 2与c 2的关系,并证明你的结论.9.已知∠AOB =900,在∠AOB 的平分线OM 上有一点C ,将一个三角形的直角顶点与点C 重合,它的两条直角边分别与OA ,OB (或它们的反向延长线)相交于点D ,E .当三角形绕点C 旋转到CD 与OA 垂直时,如图1,易证:OD +OE =2OC .当三角形绕点C 旋转到CD 与OA 不垂直,如图2,图3这两种情况下,上述结论是否还成立? 若成立,请给予证明;若不成立,线段OD ,OE ,OC 之间,又有怎样的数量关系?请写出你的猜想,不需证明.ABCD(第7题图)QP H C 图2BAA A BBCCc c c b b b a a a 图1图310.⑴如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P .求证:DP PEBQ QC=. ⑵在△ABC 中,∠BAC =900,正方形DEFG 的四个顶点在△ABC 的边上.连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB =AC =1,直接写出MN 的长; ②如图3,求证:MN 2=DM ⋅EN .(武汉市中考试题)A D OEB MC CMBEO DA EBA DOC图1图2图3D 图1EA BP Q CA A BBCDDEEM M NNG G FF 图2图3C。

初中比例线段试题及答案

初中比例线段试题及答案

初中比例线段试题及答案一、选择题(每题3分,共30分)1. 在比例线段中,如果a:b=c:d,那么下列说法正确的是()A. a+b=c+dB. a:c=b:dC. a:b=d:cD. a+c=b+d答案:B2. 若线段AB=6cm,线段CD=12cm,且AB:CD=2:3,则线段AB与CD的比例中项是()A. 4cmB. 8cmC. 9cmD. 10cm答案:A3. 已知线段a、b、c满足a:b=b:c,那么线段a、b、c成()A. 等差数列B. 等比数列C. 等分线段D. 黄金分割答案:B4. 在比例线段中,如果a:b=c:d且a+b=c+d,那么下列说法错误的是A. a=cB. b=dC. a+c=b+dD. a:c=b:d答案:A5. 线段AB被点C分成两段,AC:CB=2:3,若AB=10cm,则AC的长度是()A. 4cmB. 6cmC. 8cmD. 10cm答案:A6. 线段DE被点F分成两段,EF:FD=3:2,若DE=15cm,则EF的长度是()A. 5cmB. 6cmC. 9cmD. 12cm答案:C7. 已知线段MN被点P分成两段,MP:PN=4:5,且MN=20cm,则MP的长度是()A. 8cmB. 10cmC. 12cm答案:A8. 在比例线段中,如果a:b=c:d且b:d=e:f,则下列说法正确的是()A. a:c=e:fB. a:e=b:fC. a:b=c:dD. a:e=c:f答案:A9. 线段GH被点I分成两段,GI:IH=5:7,若GH=35cm,则GI的长度是()A. 15cmB. 17.5cmC. 25cmD. 35cm答案:B10. 已知线段JK被点L分成两段,JL:LK=3:4,且JK=36cm,则JL的长度是()A. 9cmB. 12cmC. 18cmD. 24cm答案:C二、填空题(每题4分,共20分)1. 若线段XY=18cm,线段PQ=36cm,且XY:PQ=3:6,则线段XY与PQ的比例中项的长度是_______cm。

初中数学重点梳理:比例线段

初中数学重点梳理:比例线段

比例线段知识定位比例线段这部分内容较多,例如平行线分线段成比例定理、三角形一边的平行线的性质定理、判定定理,圆中的比例关系等,极为精彩。

在数学竞赛中,它容易与相似三角形、三角形重心的性质、切割线定理等相结合,内容杂,难度也比较大,经常会涉及证明及计算,需要引起足够重视。

知识梳理知识梳理1:比例线段相关定理平行线分线段成比例定理:如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==平行的判定定理:如上图,如果有AD AEAB AC=,那么DE BC ∥. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,ED CBAB DAE C则BD EGDC FG=.知识梳理2:圆中的比例线段角在圆中能灵活转化,为寻找构造相似三角形,得到比例线段提供了可能;而圆幂定理实质上反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段相关。

相交弦定理、切割线定理、割线定理统称为圆幂定理。

1、相交弦定理如图①,若圆内两条弦AB 、CD 交于点P ,则PD PC PB PA •=•。

2、切割线定理如图②,若从圆外一点P 引圆的切线TP ,和割线PAB ,则PB PA PT •=2。

3、割线定理如图③,若从圆外一点P 引圆的两条割线PAB 、PCD ,则PD PC PB PA •=•。

例题精讲【试题来源】【题目】如图,在梯形ABCD 中,AB ∥CD ,AC 与BD 交于O ,MON ∥AB ,且MON 交AD 、BC 分别于M 、N 。

若MN=1,求11AB CD+的值。

G FE DCBAADAEGFCPOC ABAOPBTAOPBCD【答案】2【解析】【知识点】比例线段【适用场合】随堂课后练习【难度系数】2【试题来源】【题目】如图,△ABC中,AC=BC,F为底边AB上的一点,BFAFmn=(m,n>0),取CF的中点D,连结AD并延长交BC于E,⑴求BEEC的值;⑵如果BE=2EC,那么CF所在直线与边AB有怎样的位置关系?证明你的结论;⑶E点能否为BC中点?如果能,求出相应的BFAFmn=的值;如果不能,证明你的结论。

初中数学竞赛专题复习第二篇平面几何第11章比例与相似试题1新人教版

初中数学竞赛专题复习第二篇平面几何第11章比例与相似试题1新人教版

第11章 比例与相似§11.1比例线段11.1.1★在ABC △中,角平分线AD 与BC 交于D ,AB c =,BC a =,CA b =,求BD 、CD 之长度(用a 、b 、f 表示). 解析 如图,易知有BD CD a +=,BD AB c CD AC b ==,故ac BD b c =+,abCD b c=+. AB D C11.1.2★已知:等腰梯形ABCD 中,M 、N 分别是腰AB 、CD 的中点,BD BC =,BD CA ⊥且交于E ,求证:CE MN =.解析 如图,不妨设1BE CE ==,则BC BD AC ==,1AE ED =,故2AD =,()112MN AD BC CE =+==. ADEMN BC11.1.3★在ABC △中,2AC AB =,A ∠的平分线交BC 于D ,过D 分别作AB 、AC 的平行线交AC 、AB 于F 、E ,FE 和CB 的延长线交于G ,求证:EF EG =. 解析 如图,由ED AC ∥,及AD 平分BAC ∠,知12GE BE BE BD AB GF DF AE CD AC =====,故2GF GE =,因此EF EG =.AEFGBDC11.1.4★设D 为ABC △的边BC 的中点,过D 作一直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交FE 的延长线于G ,则EG FD GF DE ⋅=⋅.G AE BDCF解析 由平行知GE AG AG GFDE BD CD DF===. 于是由第一式与最后一式,转化为乘法,即可得结论. 11.1.5★已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形. 解析 如图,易知OP EO GA BF EF AB ==,OQ GO AEDH GH AD==. 由于AE BF =,GA DH =,故OP AB GA BF AE DH OQ AD ⋅=⋅=⋅=⋅,于是AB AD =,四边形ABCD 是菱形.A E DQGH POB F C11.1.6★ABC △中,AB AC >.AD 是BAC ∠的角平分线.G 是BC 的中点,过G 作直线平行于AD 交AB 、AC 或延长线于E 和F .求证:2AB ACBE CF +==. 解析 如图,易知G 比D 靠近B ,E 在AB 上,而F 在CA 延长线上.易知12BG BC =,而AB BC BD AB AC ⋅=+,故2BE BG AB ACAB BD AB+==,同理,CF 也是此值. F AEB G D C评注 不用比例线段的方法是:延长EG 一倍至P ,则CP BE =,再证AEF △和FCP △均为等腰三角形.11.1.7★凸四边形ABCD 中,ADC ∠,90BCD ∠>︒,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,连结E 、F ,证明:EF CD ∥. 解析 如图,设AC 、BD 交于O ,则由平行线性质,知FO AO BO CO =,AOFO BO CO=⋅,同理,BO EO AO DO =⋅,故FO DOEO CO=,故EF CD ∥. AF DOB CE11.1.8★★如图,在ABC △中.AB AC =,BP 、BQ 为B ∠的三等分角线,交A ∠的平分线AD 于P 、Q ,连结CQ 并延长交AB 于R ,求证:PR QB ∥.ARP Q BDC解析 易知ABC △关于AD 对称.又设QBC QCB θ∠=∠=,则2ABQ RQB θ∠==∠,故RQ RB =,于是由角平分线之性质,知AR AR AC AB APBR RQ CQ BQ PQ====,于是PR QB ∥. 11.1.9★★梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 交于M ,过M 作EF AD ∥,交AB 、CD 于E 、F ,EC 和FB 交于N ,过N 作GH AD ∥,交AB 、CD 于G 、H .求证:1212AD BC EF GH+=+.A DE MF GNHBC解析 11EM AM DM BM EM BC AC DB DB AD ===-=-,故111EM AD BC =+,同理111FM AD BC =+,故11112EF AD BC ⎛⎫=+ ⎪⎝⎭,同理11112GH EF BC ⎛⎫=+ ⎪⎝⎭,两式相加并整理即得结论.11.1.10★设a 、b 、c 分别是ABC △的三边的长,且a a bb a b c+=++,求它的内角A ∠、B ∠. 解析 由条件,得22a ab ac ab b -+=+,即()2b a a c =+,所以b a ca b+=. 如图,延长CB 至D ,使BD AB =,于是CD a c =+.因此在ABC △与DAC △,AC DCBC AC=,且C ∠为公共角,所以ABC △∽DAC △,BAC D ∠=∠.而BAD D ∠=∠,故22ABC D BAD D BAC ∠=∠+∠=∠=∠.CABbca D11.1.11★设凸四边形ABCD ,对角线交于E ,过E 作直线与BC 平行,交AB 、CD 及DA 延长线于G 、H 、F .若1GE =,2EH =,求EF .DA FGEHBC K解析 延长DF 与CB 延长线交于K ,则有FG GE KB FEBC EH==. 设EF x =,则1FG x =-,代人上式,便得12xx -=.故2EF x ==. 11.1.12★★AP 为等腰三角形ABC 底边BC 上的高,CD 为ACB ∠的平分线,作DE BC ⊥于E ,又作DF DC ⊥与直线BC 交于F ,求证:4CFPE =. 解析 如图,设AB AC m ==,BC n =,则由角平分线性质知PE AD ACBP AB AC BC==+, 故()2mnPE m n =+.又取FC 中点G ,连结DG ,1902F C ∠=︒-∠,DG FG =,故1902FDG C ∠=︒-∠,DGF C ∠=∠,故DG AC ∥,从而DG BD BC AC AB AC BC ==+,故mnDG m n=+.于是224FC FG DG PE ===.ADF B EG P C11.1.13★★足球场四周有四盏很高的灯,在长方形的四角,且一样高,求某一运动员任何时刻的四个影子长之间的关系.跳起来呢?解析 设运动员P 在矩形球场ABCD 内,如图(a),过P 作MPN BC ∥,M 在AB 上,N 在CD 上,则22222222AP BP AM BM DN CN PD PC -=-=-=-,或2222AP CP BP DP +=+.A MBCND P图(a)又设灯高为H ,运动员身高为h ,点A 处的灯造成的影子长为PA ′,如图(b),则A P h AA H'=',得A P h PA H h '=-,同理B PC PD P hPB PC PD H h'''===-,故四个影子的关系是2222A P C P B P D P '+'='+'.图(b)图(c)A'hHAP A'AA''P lh H跳起来时,不妨设脚底离地l ,此时点A 处的灯造成的影子长度为A ′A ″,如图(c),则h l A P PA H h l +'=--,lA P PA H l"=-,于是A A A P A P '"='-"h l l PA H h l H l +⎛⎫=- ⎪---⎝⎭()()Hh PA H h l H l =---, 同理B B C C D D PB PC PD '"'"'"==()()Hh H h l H l =---,所以A ′2A "+2C C '"=22B B D D '"+'"仍旧成立.11.1.14★★求日高公式.解析 如图所示,设太阳高度为RD x =,杆AB =A ′B =h 直立在地上,影子的长度分别为BC a =,B ′C ′b =,两杆距离为d .所谓日高公式就是用a 、b 、d 、h 表示x ,这里假定大地为平面,且AB 、A ′B ′与R 在同一平面上.RxDB'A A'hhCB易知CB AB CD RD =,代入得a h a BD x =+,故1x BD a h ⎛⎫=- ⎪⎝⎭;同理,B ′1x D b h ⎛⎫=- ⎪⎝⎭.由BD B -′D B =B ′d =,代入得()1x a b d h ⎛⎫--= ⎪⎝⎭,由此解得1d x h a b ⎛⎫=+⎪-⎝⎭. 11.1.15★★设梯形ABCD ,E 、F 分别在AB 、CD 上,且AD EF BC ∥∥,若3AD =,7BC =,5AB =,6CD =,梯形AEFD 和梯形EBCF 的周长相等,求EF .解析 如图,作平行四边形DABH ,H 在BC 上,则5DH AB ==,4CH =.设DH 与EF 交于G .A DEG FB HC易知梯形AEFD 的周长为DGF △的周长加上6,梯形EBCF 的周长为梯形FGHC 的周长加6,故DGF △的周长=梯形GHCF 的周长,也即DG DF DHC +=△周长的一半即152. 又56DG DH DF CD ==,故6154511211DF =⨯=.453046611DF GF CH CD =⋅=⨯=,306331111EF =+=.11.1.16★★如图,已知ABC △中,AD 、CE 交于F ,BF 、ED 交于G ,过G 作GMN BC ∥,交CE 于M ,交AC 于N ,求证:GM MN =.AEP BDCG K MNF解析 设AD 与GM 交于K ,AB 与直线NG 交于P ,则KN CD KMPK BD GK==. 于是1PK PG CD GM MN KN KM KM KM PG PG GM GK GK BD PG ⎛⎫=-=-=⋅=⋅=⋅=⎪⎝⎭. 11.1.17★四边形ABCD 为正方形,E 、F 在BC 延长线上,CE CD =,CF CA =,H 、G 分别是CD 、DE 与AF 的交点.求证:CHG △为等腰三角形. 解析 如图,不妨设正方形边长为1,则CF ,1CE =,1EF .ADH JBCEFG作GJ CF ∥,交CD 于J.则JG DG AD CE DE AD EF ==+于是12HG JG HF CF ===,即G 为直角三角形斜边HF 之中点,于是GH GC =. 11.1.18★★在ABC △中,4AB =,2BC =,3CA =,P 是ABC △内一点,D 、E 、F 分别在AB 、BC 、CA 上,且PD BC ∥,PE AC ∥,PF AB ∥.若PD PE PF ==,求PD . 解析 如图,延长CP 交AB 于C ′(同理定义A ′、B ′,图中未画出),设PD PE PF x ===,则2x C P CC '=',同理,4x B P BB '=',3x PA AA '=',由于1PA PB PC AA BB CC '''++=''',故1234x x x ++=,1213x =. AC'FPDE B C11.1.19★ABC △内有一点O ,AO 的延长线交边BC 于点A ′,BO 的延长线交边AC 于点B ′,CO 的延长线交边AB 于点C ′.若AO BO CO k OA OB OC ++=''',求AO BO COOA OB OC ⋅⋅'⋅'⋅'的值(用k 表示). 解析 如图,设AO x OA =',BO y OB =',CO z OC =',则x y z k ++=,而1OA OB OCAA BB CC ''++=''',即1111111x y z++=+++,展开得 ()32x y z xy yz zx ++++++()1x y z xy yz zx xyz =+++++++,故22xyz x y z k =+++=+.AC'B'B A'CO11.1.20★已知ABC △的三边长分别为a 、b 、c ,三角形中有一点P ,过P 作三边的平行线,长度均为x ,试用a 、b 、c 来表示x .解析 设AP 延长后与BC 交于A ′(同理定义B ′与C ′),则1x AP PA a AA AA '==-'',同理1x PB b BB '=-', 1x PC b CC '=-',三式相加,得11132PA PB PC x a b c AA BB CC '''⎛⎫⎛⎫++=-++= ⎪ ⎪'''⎝⎭⎝⎭,所以2abcx ab bc ca=++.ABCPA'评注 P 存在的条件是x a <,b ,c ,代人得:1a 、1b 、1c可组成三角形三边之长. 11.1.21★已知D 、E 、F 分别是锐角三角形ABC 的三边BC 、CA 、AB 上的点,且AD 、BE 、CF 相交于点P ,6AP BP CP ===.设PD x =,PE y =,PF z =,28xy yz zx ++=,求xyz 的大小.解析 由熟知结论1PD PE PFAD BE CF++=,得1666x y z x y z ++=+++,因此(6)(6)(6)(6)(6)(6)x x z y x z z x y ++++++++=(6)(6)(6)x y z +++,即 1083()xyz xy yz zx =-++=24.11.1.22★如图,正方形ABCD 边长为1,Q 为BC 延长线上一点,QA 与CD 、BD 分别交于点P 、E ,QO (点O 是AC 与BD 交点)与CD 交于点F ,若EF AC ∥,求AP 的长.ADEPFOCBQ解析 连结DQ ,则由EF AC ∥,得EQ EF EF DEQA AO CO DO===,于是DQ AC ∥,CQ AD =,P 为CD 中点,所以AP =. 11.1.23★★如图,已知EF BC <,G 、D 分别在EF 、BC 上,则下面任两条可推出第三条:(1)BE 、DG 、CF 共点;(2)EF BC ∥;(3)EG BDFG CD=. AA'E'EGF F'B DC解析 (1),(2)⇒(3):EF BC ∥,则EG AG GF BD AD CD ==,故EG BDGF CD=. (2),(3)⇒(1):EG BD FG CD =⇒1EG FG EFBD CD BC==<,故可设BE 、DG 延长后交于A ,DG 、CF 延长后交于AG EG GF AD BD CD ===A G A D '',AG A GGD GD'=,A 与A '重合. (1),(3)⇒(2):若EF 与BC 不平行,作E 'GF 'BC ∥,E '在AB 上,F '在AC 上,则有E G BD EG F G CD FG'==',得EE 'FF ∥',即AB AC ∥,矛盾. 11.1.24★ABC △中,AK 为A ∠的平分线,在BA 、CA 上取BD CE =,G 、F 分别为DE 、BC 的中点,则GF AK ∥.解析 如图,连结BE ,设BE 中点为M ,连结CM 、FM ,则12GM BD =∥12CE MF ∥,所以GM FM =,且GMF GME EMF ABE ∠=∠+∠=∠+180180BEC BAC ︒-∠=︒-∠. 取AC 上的点S ,使KS AB ∥,则等腰GMF △∽等腰AKS △,且对应边KS GM ∥,AS MF ∥,故第三边也平行,即GF AK ∥.AE SGD MBFKC11.1.25★★★已知:ABC 中,90A ∠=︒,D 为BC 上一点,且非BC 中点,211AD BD CD=+,P 为AD 中点,求证:2BDA BAD ∠=∠,PD 平分BPC ∠.解析 如图,作BR AD ∥,与CA 延长线交于R ,延长CP 交BR 于Q ,则由AP PD =,AD RB ∥,有RQ BQ =.又90RAB ∠=︒,故AQ BQ =.由条件,知111BCPD BD CD BD CD++=⋅,于是PD CD PD BD BC BQ ==,BD BQ AQ ==,四边形AQBD 乃等腰梯形(若四边形AQBD 是菱形,则C ∠=QAR R DAC ∠=∠=∠,D 为BC 中点,与题设矛盾),12BAD QBA QAD ∠=∠=∠12BDA =∠.又P 为AD 中点,显然(比如由全等)有BPD APQ DPC ∠=∠=∠.RQBDCAP11.1.26★★★已知M 、N 分别为矩形ABCD 的边AD 、BC 的中点,CD 延长线上有一点P ,PM 延长后与AC 交于Q .求证.NM 平分PNQ ∠.解析 如图,设AC 与MN 交于O ,则MO NO =,过O 作OR MN ⊥,交QN 于R ,则MR NR =.AMDPROB N C又OR BC ∥,MO PC ∥,故QM QO QRMP OC RN==,于是MR PN ∥,由于OR 将MN 垂直平分,于是RNO RMO PNM ∠=∠=∠. 11.1.27★★在ABC △中,3A B ∠=∠,求证:2a b b c a b -⎛⎫= ⎪+⎝⎭,a 、b 、c 为ABC △的对应边长.解析 如图,延长CA 至D ,使223D BAC ABC ∠=∠=∠,于是DBA ABC ∠=∠,故CD BC =,AD a b =-.ABD △中,2D DBA ∠=∠,则2()AB AD AD BD =+.又由角平分线性质BD AD BC AC =,得()a a b BD b-=,22a b AD BD b -+=,代人前式,得222()()a b a b c b --=,即得结论.DACB评注 ABC △中,22()A B BC AC AC AB ∠=∠⇔=+,证明如下:延长CA 至D ,使AD AB =,于是2()D ABC BC AC AC AD ∠=∠⇔=+或()AC AC AB +.11.1.28★★已知AB CD ∥,E 、F 分别是AB 、CD 上任两点,DE 、FB 延长后交于M ,AF 、EC 延长后交于N ,求证:若AB CD ≠,则AD 、BC 、MN 共点;若AB CD =,则AD BC MN ∥∥.解析 如图,设AE a =,BE b =,CF c =,DF d =,延长AB 、DC 分别与MN 交于P 、Q ,设BP x =,CQ y =.由AP FQ ∥知a cb x y =+,同理d bc y x=+,即ay bc cx =+,dx bc by =+,于是ay cc dx by -=-,a b c d x y ++=,或AB CDBP CQ=.若AB CD =,则BP CQ =,又BP CQ ∥,做AD BC PQ ∥∥;AB CD ≠,由AB ∥CD ,得AD 、BC 、MN 共点(见题11.1.23).ADE FB C MPQN11.1.29★★正三角形ABC ,D 、E 、F 是BC 、CA 、AB 的中点,P 、Q 、R 分别在EF 、FD 、DE 上,A 、P 、Q 共线,B 、Q 、R 共线,C 、R 、P 共线,求FPPE. 解析 如图,不妨设ABC △边长为2,PF x =,QD y =,ER z =,则1PE x =-,1FQ y =-,1DR z =-.AE PQRBDCF由PE ER CD RD =,得11z x z -=-,同理11y z y -=-,11x y x -=-,于是121xy x -=-,121y x yx -=-,13111111212x x x z x x--=-=-=---,x y z ===.所以1x -=1FPx PE x ===- 11.1.30★★任给锐角ABC △,问在BC 、CA 、AB 上是否各存在一点D 、E 、F ,使FD BC ⊥,DE AC ⊥,EF AB ⊥?解析 这样的DEF △是存在的.作法如下:在BC 上任取一点D ′,作D ′E ′AC ⊥于E ′,分别过D ′、E ′作BC 、AB 的垂直线交于点F ′.A RF SB D'D CEE'F'若F ′恰在AB 上,则D ′、E ′、F ′,即为满足条件的三点D 、E 、F ;若,F ′不在AB 上,设C 、F ′,所在直线与AB 交点为F (因为ABC △是锐角三角形,所以交点必在AB 上),过F 分别作BC 、AB 的垂线交BC 、AC 于D 、E ,则FD BC ⊥,EF AB ⊥,连结DE ,易知CD CF CECD CF CE ==''',得DE ∥D ′E ′,由作法D ′E ′AC ⊥,所以DE AC ⊥,D 、E 、F 满足条件.11.1.31★★★已知凸四边形内有一点P ,APB ∠、BPC ∠、CPD ∠、DPA ∠的平分线分别交AB 、BC 、CD 、DA 于K 、L 、M 、N ,求证:四边形KLMN 为平行四边形的充要条件是P 为AC 、BD 的中垂线的交点.解析 若P 为AC 、BD 的中垂线之交点,则AP CP =,BP DP =,于是AK AP AP ANBK BP DP ND===,于是KN BD ∥,同理ML ∥BD ,又同理MN AC KL ∥∥,故四边形KLMN 为平行四边形.D反之,若四边形KLMN 为平行四边形,由于AN DM AP AK BLND MC CP KB LC⋅==⋅,故由梅氏定理,若MN 、KL 不与AC 平行,它们将与AC 交于同一点,这与NM KL ∥矛盾,因此NM AC ∥,AP CP =,同理BP DP =,故P 在AC 、BD 的中垂线上. 11.1.32★★★已知梯形ABCD 中,AD ∥BC ,E 、F 分别在AB 、CD 上,求证:若ED BF ∥,则AF CE ∥.又此时若ED 、AF 交于M ,CE 、BF 交于N ,问三直线AB 、MN 、CD 共点的条件.解析 如图(a),不妨议BA 、CD 延长后交于P ,于是有PQ PD BP PC =,PE PDPB PF=.PA D M EFN BC图(a)于是PA PC PB PD PE PF ⋅=⋅=⋅,由此可得PA PFPE PC=,故AF CE ∥. 因为四边形MENF 为平行四边形,MN 过EF 的中点,若P 、M 、N 共线,则由塞瓦定理,有AD EF ∥BC ∥.下面刻画E 或F 的位置,如图(b),设BD 与EF 交于Q ,AEk EB=,则由ED BF ∥,DF DQ EQ k FC BQ FQ ===,而111EQ AD K =++,1QF k BC k =+,故1ADk k BC =⋅,此即AEBE= ADEFQBC图(b)11.1.33★★如图,已知ABC △中,AD 、BE 、CF 交于G ,FH AD ∥,FH 延长后与ED 的延长线交于K ,求证:FH HK =.AFEMG N BH DJ CK解析 作EJ AD ∥,EJ 与CF 交于N ,FK 与BE 交于M ,则由平行,知FH AD EJFM AG EN==,故FH FM FG HD HKEJ EN GN DJ EJ====,于是FH HK =.11.1.34★★★已知ABC △,AD 、BE 、CF 是角平分线,M 、N 在BC 上,且FM AD EN ∥∥,求证:AD 平分MAN ∠.AF EPI TSBMDN C解析1 设ABC △内心为I ,FM 与BE 交于S ,EN 与CF 交于T ,连结EF ,交AD 于P .由角平分线及平行性质,有FM AD EN FS AI ET ==,故有FM FS SI FP AFEN ET IE PE AE====,又11802AFM BAC ∠=︒-∠∠AEN =∠,故AFM △∽AEN △,于是FAM EAN ∠=∠,于是AD 平分MAN ∠.解析2 由角平分线性质,知AE AB EC BC =,AF AC BF BC =,于是AE AB CE AF AC BF =⋅.又易见FM BFAD AB=,EN CE AD AC =,故EN CE AB FM BF AC ⋅=⋅,于是AE ENAF FM =,以下同解析1. 评注 注意解析1更好些,因为只要求AD 平分BAC ∠.不要求I 是内心,本题结论也成立.于是本题的逆命题是,由AD 平分MAN ∠得出AD 平分BAC ∠,而不能证明I 是内心.这个逆命题也是正确的,读诗者不妨一试.11.1.35★★P 为XOY ∠内一点,A 、B 在OX 上,C 、D 在OY 上,线段AD 、BC 交于P .若1111OA OD OB OC+=+,则OP 平分XOY ∠,反之亦然. 解析 如图,作平行四边形PQOR ,Q 、R 分别在OX 、OY 上.设QP OR a ==,OQ PR b ==. 此时易得1a b a b OD OA OC OB +=-+,因此1111a b a b b b OD OD OA OC OC OB --⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭,于是a b a bOD OC --=.但OD OC >,故a b =.所以平行四边形PQOR 是菱形,OP 为XOY ∠之平分线.XYBA Q POR C反之,可设所作平行四边形PQOR 为菱形.设菱形边长为n ,则1a PR RD aOA OA OD OD===-,即得111OA OD a +=.同理,111OB OC a+=,于是命题得证.11.1.36★★已知ABC △,三边分别为a 、b 、c ,AD 是角平分线.求AD 之长(用a 、b ,c 表示)解析 如图,延长AD 至E ,使E B ∠=∠,于是A 、B 、E 、C 共圆,又ABD △∽AEC △,故AB AC ⋅=()AD AE AD AD DE ⋅=+=22AD AD DE AD BD CD +⋅=+⋅.ABDCE设AB c =,AC b =,则ac BD b c =+,abCD b c=+,故AD ===. 11.1.37★★在ABC △中,AD 、AE 三等分BAC ∠,且BD =2,DE =3,EC =6,求AB 的长. 解析 如图,设AB x =,AD y =,则由角平分线性质知32AE x =,2AC y =. AB D E由于2AB AE AD BD DE ⋅-=⋅,即22362x y -=,同理2292184y x -=,消去y ,得AB x ==11.1.38★★★已知平行四边形ABCD ,点E 是点B 在AD 上的垂足,点F 在CD 上,90AFB ∠=︒,EG AB ∥,点G 在BF 上,点H 是AF 与BE 的交点,又DH 延长后与CB 的延长线交于点I ,求证:FI GH ⊥.解析 如图,作IK HF ⊥.对OKF △与HFG △来说,KF FG ⊥,IK HF ⊥,而90HFG IKF ∠=︒=∠,如果能证明两三角形(顺向)相似,那么第三组对应边OF 与HG 就垂直了,于是只需证明KF IK FG HF =或KF FGIK HF=.事实上设AF 、BC 延长后交于点J ,且设J θ∠=∠,则易知cos KF BO θ=,sin KI IJ θ=,于是cot cot cot KF BI DE FGIK IJ AD FBθθθ===,又HB BJ ⊥,故HBF θ∠=,于是tan FB HF θ=,代人上式,即得KF FGKI HF=. θθθCJ IB G KF HAE D§11.2相似三角形11.2.1★已知,B 是AC 中点,D 、E 在AC 的同侧,且ADB EBC ∠=∠,DAB BCE ∠=∠,证明:BDE ADB ∠=∠.解析 如图,易知DBE DBC EBC A ADB EBC A ∠=∠-∠=∠+∠-∠=∠. 又ABD △∽BDE △,故BD AD ADBE BC AB==,于是ADB △∽BDE △,故BDE ADB ∠=∠. DEA B C11.2.2★已知αβ+=α′+β′<180︒,sin sin αβ=sin sin αβ'',则αα=′,ββ='. 解析 如图,作ABC △与A △′B ′C ′,使B α∠=,B ∠′α=′,C β∠=,C ∠′β=',则由条件A A ∠=∠′,且sin sin sin sin AB A B AC A C ββαα'''===''',故ABC △∽A △′B ′C ′,从而B B ∠=∠′,C C ∠=∠′.此即αα=′,ββ=′.AB C A'B'C'评注 这个结果用途极广.11.2.3★线段BE 分ABC △为两个相似的三角形,求ABC △的各内角. 解析 如图,不妨设BCE △∽ABE △,BCE △比较“大”.BA EC由于BEA ∠>EBC ∠及C ∠,故只能有BEA CEB ∠=∠,于是BE AC ⊥.ABE CBE ∠=∠不可能(否则ABE △≌BCE △),故ABE C ∠=∠,CBE A ∠=∠,90ABC ∠=︒,BCAB=ABC △三内角为:30︒、60︒、90︒. 11.2.4★★设ABC △中,D 在BC 在上,且22BD AD BC AC =,求证:ABD △∽CBA △. AEB D C解析 过D 作DE AC ∥,E 是AB 是一点.于是BD EDBC AC=,代入条件并整理,即得ED ADAD AC=. 又EDA DAC ∠=∠,于是EDA ∠∽DAC △,于是BAD C ∠=∠,故ABD △∽CBA △.。

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段(附答案解析)

九年级数学中考典型及竞赛训练专题22 与圆相关的比例线段阅读与思考比例线段是初中数学的一个核心问题.我们开始是用平行线截线段成比例进行研究的,随着学习的深入、知识的增加,在平行线法的基础上,我们可以利用相似三角形研究证明比例线段,在这两种最基本的研究与证明比例线段方法的基础上,在不同的图形中又发展为新的形式.在直角三角形中,以积的形式更明快地表示直角三角形内线段间的比例关系.在圆中,又有相交弦定理、切割线定理及其推论,这些定理用乘积的形式反映了圆内的线段的比例关系. 相交弦定理、切割线定理及其推论,它们之间有着密切的联系: 1.从定理的形式上看,都涉及两条相交直线与圆的位置关系;2.从定理的证明方法上看,都是先证明一对三角形相似,再由对应边成比例而得到等积式. 熟悉以下基本图形和以上基本结论.TPBDCBAPP ADCBA例题与求解【例1】如图,已知AB 是⊙O 的直径,弦CD 与AB 交于点E ,过点A 作圆的切线与CD 的延长线交于点F .若DE =34CE ,AC =85,点D 为EF 的中点,则AB = . (全国初中数学联赛试题)解题思路:设法求出AE 、BE 的长,可考虑用相交弦定理,勾股定理等.例1题图 例2题图【例2】如图,在Rt △ABC 中,∠C =90°,AC =4,BC =3,以BC 上一点O 为圆心作⊙O 与AC 、AB 都相切,又⊙O 与BC 的另一个交点为D ,则线段BD 的长为( )A .1B .12C .13D .14(武汉市中考试题)解题思路:由切割线定理知BE 2=BD ·BC ,欲求BD ,应先求BE . 须加强对图形的认识,充分挖掘隐含条件.【例3】如图,AB 是半圆的直径,O 是圆心,C 是AB 延长线上一点,CD 切半圆于D ,DE ⊥AB 于E .已知AE ∶ EB =4∶ 1,CD =2,求BC 的长.(成都市中考试题)解题思路:由题设条件“直径、切线”等关键词联想到相应的知识,寻找解题的突破口.【例4】如图,AC 为⊙O 的直径且PA ⊥AC ,BC 是⊙O 的一条弦,直线PB 交直线AC 于点D ,DB DP =DC DO =23. (1)求证:直线PB 是⊙O 的切线; (2)求cos ∠BCA 的值.(呼和浩特市中考试题)解题思路:对于(1),恰当连线,为已知条件的运用创设条件;对于(2),将问题转化为求线段的比值.P【例5】如图,已知AB 为⊙O 的直径,C 为⊙O 上一点.延长BC 至D ,使CD =BC ,CE ⊥AD 于E ,BF 交⊙O 于F ,AF 交CE 于P .求证:PE =PC .(太原市竞赛试题)解题思路:易证PC 为⊙O 切线,则PC 2=PF ·PA ,只需证明PE 2= PF ·PA . 证△PEF ∽△PAE ,作出常用辅助线,突破相关角.B【例6】如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线. 过点P 作⊙O 的割线PAB ,交⊙O 于A 、B 两点,与ST 交于点C .求证:1PC =12(1PA +1PB ).(国家理科实验班招生试题)解题思路:利用切割线定理,再由三角形相似即可证.能力训练A 级1.如图,PA 切⊙O 于A 点,PC 交⊙O 于B 、C 两点,M 是BC 上一点,且PA =6,PB =BM =3,OM =2,则⊙O 的半径为 .(青岛市中考试题) 2.如图,已知△ABC 内接于⊙O ,且AB =AC ,直径AD 交BC 于点E ,F 是OE 的中点.如果BD ∥CF ,BC =25,则CD = .(四川省竞赛试题)PD(第1题图) (第2题图) (第3题图) (第4题图)3.如图,AB 切⊙O 于点B ,AD 交⊙O 于点C 、D ,OP ⊥CD 于点P . 若AB =4cm ,AD =8cm ,⊙O 的半径为5cm ,则OP = .(天津市中考试题)4.如图,已知⊙O 的弦AB 、CD 相交于点P ,PA =4,PB =3,PC =6,EA 切⊙O 于点A ,AE 与CD 的延长线交于点E ,AE =25,那么PE 的长为 .(成都市中考试题)5.如图,在⊙O 中,弦AB 与半径OC 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为( ) A .2 6 B . 6 C .2 3 D .2 2(辽宁省中考试题)MD CBAC(第5题图) (第6题图) (第7题图)6.如图,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD =13,PD =4,则两圆组成的圆环的面积为( )A .16πB .36πC .52πD .81π(南京市中考试题)7.如图,两圆相交于C 、D ,AB 为公切线,若AB =12,CD =9,则MD =( )A .3B .3 3C .6D .6 38.如图,⊙O 的直径AB =10,E 是OB 上一点,弦CD 过点E ,且BE =2,DE =22,则弦心距OF 为( ) A .1 B . 2C .7D . 3(包头市中考试题)B(第8题图) (第9题图) (第10题图)9.如图,已知在△ABC 中,∠C =90°,BE 是角平分线,DE ⊥BE 交AB 于D ,⊙O 是△BDE 的外接圆. (1)求证:AC 是⊙O 的切线; (2)若AD =6,AE =62,求DE 的长.(南京市中考试题)10.如图,PA 切⊙O 于A ,割线PBC 交⊙O 于B 、C 两点,D 为PC 的中点,连结AD 并延长交⊙O 于E ,已知:BE 2=DE ·EA .求证:(1)PA =PD ;(2)2BP 2=AD ·DE .(天津市中考试题)11.如图,△ABC 是直角三角形,点D 在斜边BC 上,BD =4DC .已知⊙O 过点C 且与AC 相交于F ,与AB 相切于AB 的中点G .求证:AD ⊥BF .(全国初中数学联赛试题)(第11题图) (第12题图)12.如图,已知AB 是⊙O 的直径,AC 切⊙O 于点A . 连结CO 并延长交⊙O 于点D 、E ,连结BD 并延长交边AC 于点F.(1)求证:AD ·AC =DC ·EA ;(2)若AC =nAB (n 为正整数),求tan ∠CDF 的值.(太原市竞赛试题)B 级1.如图,两个同心圆,点A 在大圆上,AXY 为小圆的割线,若AX ·AY =8,则圆环的面积为( ) A .4π B .8π C .12π D .16π(咸阳市中考试题)2.如图,P 为圆外一点,PA 切圆于A ,PA =8,直线PCB 交圆于C 、B ,且PC =4,AD ⊥BC 于D ,∠ABC =α,∠ACB =β. 连结AB 、AC ,则sin αsin β的值等于( ) A .14 B .12 C .2 D .4(黑龙江省中考试题)βαPAD CB(第1题图) (第2题图) (第3题图)3.如图,正方形ABCD 内接于⊙O ,E 为DC 的中点,直线BE 交⊙O 于点F ,若⊙O 的半径为2,则BF 的长为( )A .23 B .22 C .556 D .5544.如图,已知⊙O的半径为12,锐角△ABC内接于⊙O,BD⊥AC于点D,OM⊥AB于点M,则sin∠CBD的值等于()A.OM的长B.2OM的长C.CD的长D.2 CD的长(武汉市中考试题)(第4题图)(第5题图)(第6题图)5.如图,PC为⊙O的切线,C为切点,PAB是过O点的割线,CD⊥AB于D.若tan∠B=12,PC=10cm,求△BCD 的面积.(北京市海淀区中考试题)6.如图,已知CF为⊙O的直径,CB为⊙O的弦,CB的延长线与过F的⊙O的切线交于点P.(1)若∠P=45°,PF=10,求⊙O半径的长;(2)若E为BC上一点,且满足PE2=PB·PC,连结FE并延长交⊙O于点A.求证:点A是⌒BC的中点.(济南市中考试题)7.已知AC、AB是⊙O的弦,AB>AC.(1)如图1,能否在AB上确定一点E,使AC2=AE·AB?为什么?(2)如图2,在条件(1)的结论下延长EC到P,连结PB,如果PB=PE,试判断PB与⊙O的位置关系并说明理由;(3)在条件(2)的情况下,如果E是PD的中点,那么C是PE的中点吗?为什么?(重庆市中考试题)PA DCEACB(第7题图) (第8题图)8.如图,P 为⊙O 外一点,PA 与⊙O 切于A ,PBC 是⊙O 的割线,AD ⊥PO 于D ,求证:PB BD =PCCD .(四川省竞赛试题)9.如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在的直线的解析式分别为:y =43x 和y =32534+-x .D 、E 分别为边OC 和AB 的中点,P 为OA 边上一动点(点P 与点O 不重合),连接DE 和CP ,其交点为Q .(1)求证:点Q 为△COP 的外心; (2)求正方形OABC 的边长;(3)当⊙Q 与AB 相切时,求点P 的坐标.(河北省中考试题)(第9题图) (第10题图) (第11题图)10.如图,已知BC 是半圆O 的直径,D 是 ⌒AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E . (1)求证:AC ·BC =2BD ·CD ;(2)若AE =3,CD =25,求弦AB 和直径BC 的长.(天津市竞赛试题)11.如图,PA是⊙O的切线,切点为A,PBC是⊙O的割线,AD⊥OP,垂足为D.证明:AD2=BD·CD.(全国初中数学联合竞赛试题)专题22 与圆相关的比例线段例 1 设CE=4k,则DA=DF=3k,AF=AC=,由,即=3k10k,得,而AE==8,又BE===16,故AB=AE+BE=24. 例2 C例3 1 提示:设EB=x,则AE=4x.设CB=y,则由,,,得4=y(y+5x),. 例4(1)联结OB,OP,可证明△BDC∽△P AE,有.又∵OC为△ABD的中位线,∴OC∥AD,则CE⊥OC,知CE为☉O的切线,故,有,即PE=PC.例 6 解法一:如图1,过P作PH⊥ST于H,则H是ST的中点,由勾股定理得.又由切割线∴,即.解法二:如图2,联结PO 交ST 于D ,则PO ⊥ST .联结SO ,作OE ⊥PB 于E ,则E为AB 的中点,于是.∵C ,E ,O ,D 四点共圆,∴.∵Rt △SPD ∽Rt △OPS ,∴,∴,即.A 级 1. 2. 提示:△BDE ≌△CFE ,DE =EF ,OF =FE =ED ,设OF =x ,则OA =OD =3x ,AE =5x ,由,得,∴. 3. 4cm 4.4 5.D 6.B 7.A 8.C 9.(1)略 (2),△AED ∽△ABE ,=.设DE =,BE =2x ,而,解得x =.∴DE =. 10.(1)略 (2).可得PB =BD =PD ,∴PB =PD =DC ,∴又∵BD CD =AD DE ,∴. 11.作DE ⊥AC 于E ,则AC =AE ,AG =DE .由切割线定理得,故,即.∵AB =5DE ,∴,于是.又∠BAF =∠AED =90°,∴△BAF ∽△AED ,于是又∠ABF =∠EAD . ∵∠EAD+∠DAB=90°,∴∠ABF+∠DAB=90°,故AD ⊥BE. 12. ⑴如图,连接AD ,AE. ∵∠DAC=∠DAE ,∴△ADC ∽△EAC AD EAAD AC DC EA DC AC⇒=⇒•=•. ⑵∵∠CDF=∠1=∠2=∠DEA ,∴tan ∠CDF=tan ∠DEA=AD AE .由⑴知=AD DC AE AC ,故tan ∠CDF= DCAC.由圆的切割线定理知2AC DC EC =•,而EC=ED+DC ,则()2AC DC DC ED =+.又AC=nAB ,ED=AB ,代入上式得()22n AB DC DC AB =+,即222n 0DC AB DC AB +•-=,故2114n =2DC -+.显然,上式只能取加号,于是214n 1n DC DC tan CDF AC AB +-∠==.B 级1. B2. B3. C4. A5. 提示:1=2AD CD AC tanB CDDB BC===.设AD=x ,则CD=2x ,DB=4x ,AB=5x ,由△PAC ∽△PCB 得,1=2PA AC PC CB =,∴PA=5,又2PC PA PB =•,即()210=555x +,解得:x=3,∴AD=3,CD=6,DB=12,∴1362BCDSCD DB =•=. 6. ⑴略. ⑵连接FB ,证明PF=PE ,∠BFA=∠AFC.7. ⑴能.连接BC ,作∠ACE=∠B ,CE 交AB 于E. ⑵ PB 与⊙O 相切. ⑶C 是PE 的中点.8. 连接OA 、OB 、OC ,则2PA PD PO PB PC =•=•,于是,B 、C 、O 、D 四点共圆,有△PCD ∽△POB ,则=PC PO POCD OB OC= ①,又由POC ∽△PBD 得PO PB OC BD = ②,由①②得PB PCBD CD=. 9. ⑴略 ⑵ A (4,3),OA=5. ⑶P (3,94). 10. ⑴延长BA ,CD 交于点G ,由Rt △CAG ∽Rt △BDC ,得AC CG BD BC =,即AC BC BD CG •=•,又12DG CD CG ==,故2AC BC BD CG •=•. ⑵由Rt △CDE ∽Rt △CAG ,得CE CDCG AC =,即2545=,解得CE=5,从而AG= ()()222245354CG AC +=--=,GA GB GD GC •=•,即()442545AB +=⨯,解得AB=6,()222261035BC AB AC =+==++.11. 延长AD 交⊙O 于E ,连接PE 、BE 、CE ,∵PA 为⊙O 的切线,PO ⊥AE ,∴PE=PA ,12AD DE AE ==,易证△PAB ∽△PCA ,△PEB ∽△PCE ,∴,AB PA EB PE AC PC EC PC ==,则AB EB AC EC=,即AB EC AC EB •=•,由托勒密定理得=AB EC AC EB AE BC •+••. ∴=AB EC AC EB AD BC •+••,即AB BC AC BC AD EC AD EB==,,有∵∠BAE=∠BCE ,∠CAD=∠CBE , ∴△ABD ∽△CBE ,△CAD ∽△CBE ,则△ABD ∽△CAD ,∴AD CD BD AD =,故2AD BD CD =•.。

初中数学课件《比例线段

初中数学课件《比例线段
初中数学课件《比 例线段》
目录
• 比例线段的定义与性质 • 比例线段的判定与性质定理 • 比例线段与相似三角形的关系 • 比例线段的综合应用
01
比例线段的定义与性 质
比例线段的定义
比例线段的定义
如果四条线段a, b, c, d满足a/b=c/d ,则称这四条线段为比例线段。
比例线段的表示方法
比例线段的性质
相似三角形性质
在三角形中,如果两个角 相等,则对应的边成比例 ,即形成比例线段。
比例线段在生活中的应用
地图绘制
在地图上,不同地区的尺寸是通 过比例尺来表示的,而比例尺就
是应用了比例线段的原理。
建筑设计
在建筑设计中,常常需要使用比 例线段来设计建筑物的各个部分
,以确保整体的美观和协调。
摄影构图
在摄影中,摄影师常常使用比例 线段来构图,以使照片更加美观 和平衡。例如,黄金分割就是一 种常见的构图方法,它利用了比
在相似三角形中,对 应边之间的比例关系 即为比例线段。
相似三角形在实际问题中的应用
01
02
03
04
测量
利用相似三角形的性质,可以 测量无法直接到达的物体的高
度或距离。
建筑设计
在建筑设计过程中,可以利用 相似三角形来计算建筑物的尺
寸和比例。
物理学
在物理学中,可以利用相似三 角形来研究光学、力学等问题

工程学
在工程学中,可以利用相似三 角形来研究机械运动、流体动
力学等问题。
04
比例线段的综合应用
比例线段在几何图形中的应用
相似三角形
比例线段是判断三角形相似的重要依据,通过比较对应边长比例,可以判断两 个三角形是否相似。

初中数学华杯赛比例线段知识点

初中数学华杯赛比例线段知识点

1、⽐例线段的相关概念
如果选⽤同⼀长度单位量得两条线段a,b的长度分别为m,n,那么就说这两条线段的⽐是,或写成a:b=m:n
在两条线段的⽐a:b中,a叫做⽐的前项,b叫做⽐的后项。

在四条线段中,如果其中两条线段的⽐等于另外两条线段的⽐,那么这四条线段叫做成⽐例线段,简称⽐例线段
若四条a,b,c,d满⾜或a:b=c:d,那么a,b,c,d叫做组成⽐例的项,线段a,d叫做⽐例外项,线段b,c叫做⽐例内项,线段的d叫做a,b,c的第四⽐例项。

如果作为⽐例内项的是两条相同的线段,即或a:b=b:c,那么线段b叫做线段a,c的⽐例中项。

2、⽐例的性质
(1)基本性质
①a:b=c:dad=bc
②a:b=b:c
(2)更⽐性质(交换⽐例的内项或外项)
(交换内项)
(交换外项)
(同时交换内项和外项)
(3)反⽐性质(交换⽐的前项、后项):
(4)合⽐性质:
(5)等⽐性质:
3、黄⾦分割
把线段AB分成两条线段AC,BC(AC>BC),并且使AC是AB和BC的⽐例中项,叫做把线段AB黄⾦分割,点C叫做线段AB的黄⾦分割点,其中AC=AB0.618AB。

初中竞赛培优 比例线段

初中竞赛培优  比例线段

A卷一、填空题01.设2425a ba b+=-,则a ba+=_________。

02.已知a=18cm,b=10cm,则a、b的比例中项c=_________cm。

03.如图154,已知梯形ABCD中,下底AB=12,上底CD=9,过对角线交点O作EF∥AB交AD和BC于E、F,则EF=_________。

04.如图155,△ABC中,M为AC中点,E为AB上一点,且AE=AB,连结EM并延长交BC的延长线于D,则BC : CD=_________。

05.如图156,已知AB∥EF∥CD,若AB=6cm,CD=9cm,则EF=_________。

06.如图157,平行四边形ABCD的对角线交于O,OE交BC于E,交AB的延长线于F。

若AB=a,BC=b,BF=c,则BE=_________。

07.如图158,在△ABC中,BD:DC=3 : 1,G是AD的中点,BG延长线交AC于E,则BG : GE=_________。

08.如图159,在梯形ABCD中,AD∥BC,E是AB上一点,且AD∥EF,EF交CD于F。

若AD=2,BC=4,AE : EB=2 : 3,则EF=_________。

09.如图160,等腰梯形ABCD,AD∥BC,AB=CD,AC=24,M为AB中点,BC : AD=2 : 3,MD与AC交于K,则CK=_________。

10.如图161,正方形ABCD的边长为12,DE=5,AE的垂直平分线分别交AD、AE、BC于P、M、Q,则PM : MQ=_________。

二、解答题11.如图,点D在△ABC的AC边上,E在CB的延长线上,且AD=BE,求证:EF∙BC=AC∙FD。

12.如图,菱形ABCD,E为CD上一点,AE交BD于O,交BC延长线于F,OE=4,EF=5,求OC长。

B卷一、填空题01.如图164,已知在平行四边形ABCD中,对角线AC、BD交于O,在BC上取点E,使EC=14BC,DE交AC于F,则AO : OF : FC=_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 比例线段初步知识总结归纳一. 平行线分线段成比例定理:如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB ACDE DF=. l 3l 2l 1FE D CB A二. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC ∥,则AD AE DEAB AC BC==三. 平行的判定定理:如上图,如果有AD AEAB AC=,那么DE BC ∥.四. 两个常见模型:如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,则BD EGDC FG=.G FE DCBAADAEGFCED CBAB D AE C典型例题一. 比例式的计算【例1】 已知35a b =,求(1)b a ;(2)a bb +的值.【例2】 已知513b a =,则a ba b -+的值是( ) A .23 B .32 C .94 D .49【例3】 已知()()73a b a b +-=::,求(1)ab ;(2)222ab b a b ++.【例4】 已知425xy z==,那么3223x y zx y-+=+______;若(2)x y y +=:,那么(32)(45)x y x y -+=:______.二. 基础训练【例5】 如图,已知直线a b c ∥∥,直线m 、n 分别与a 、b 、c 交于A 、C 、E 、B 、D 、F .若4AC =,6CE =,3BD =,则BF =_______.【例6】 如图,12l l ∥,25AF FB =::,41BC CD =::,则AE EC =:_______.C FD B AEnbam cEFG A DC B2l 1l【例7】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长.EDCBA【例8】 证明下列各组问题,并对各组的两个图形进行比较:(1)如图,已知直线EF BC ∥,直线EF 分别与直线AB 、AC 、AD 相交于E 、F 、G 点,求证:BD EGDC FG=.(2)如图,已知DE BC ∥,EF CD ∥,求证:2AD AF AB =⋅.【例9】 如图,已知ABC △,作DE BC ∥交AB 于D ,交AC 于E ,连CD 、BE 交于点F .求证:(1)DF AD CF AB =;(2)1BD EFAB BF+=.FEDCBAG FEDCBABAEGFCFEDCBACBFDEA【例10】 如图,已知AD 为ABC △的BC 边上的中线,P 为线段BD 上一点,过点P 作AD 的平行线交AB 于Q ,交CA 的延长线于R .求证:2PQ PR AD +=.【例11】 如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和BD 相交于点E ,EF BD ⊥,垂足为F .证明:111AB CD EF+=. FEDCBA【例12】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,,过对角线交点O 作EF CD ∥交AD BC ,于E F ,,求EF 的长.OFED CBA三. 巩固提高【例13】 如图,在梯形ABCD 中,AD BC ∥,396AD BC AB ===,,,4CD =,若EF BC ∥,且梯形AEFD 与梯形EBCF 的周长相等,求EF 的长.F E DCBAQDPBCA R【例14】 如图,在ABC △中,D 、E 为AC 、AB 上的点,BD 、CE 相交于O ,取AB 的中点F ,连结OF .若12AD CD =,12AE BE =.求证:OF BC ∥.【例15】 如图,ABCD □中,AC 与BD 交于O 点,E 为AD 延长线上一点,OE 交CD 于F ,EO 的延长线交AB 于G ,求证:2AB ADDF DE-=.【例16】 在四边形ABCD 中,AC 、BD 相交于.O .,直线l BD ∥,且与AB 、DC 、BC 、AD 及AC的延长线分别相交于点M 、N 、R 、S 和P ,求证:PM PN PR PS ⋅=⋅.CES RNP C O D BAMlO E DCBAF【例17】 已知,如图,四边形ABCD ,两组对边延长后交于E 、F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =.G FECDBA【例18】 已知O 是平行四边形ABCD 内的任意一点,过点O 作EF AB ∥,分别交AD 、BC 于E 、F ,又过O 作GH BC ∥,分别交AB 、CD 于G 、H ;连结BE ,交GH 于P ;连结DG ,交EF 于Q .如果OP OQ =,求证:平行四边形ABCD 是菱形.【例19】 已知:P 为ABC △的中位线上任意一点,BP 、CP 的延长线分别交对边AC 、AB 于D 、E ,求证:1AD AEDC EB+= PNME D CBA思维飞跃【例20】 如图,已知梯形ABCD 中,AD BC ∥(AD BC <),AC 和BD 相交于M ,EF AD ∥,且过M ,EC 和FB 交于N ,GH AD ∥,且过N .求证:1212AD BC EF GH+=+.【例21】 如图,AD 是ABC △的中线,过CD 上任意一点F ,作EG AB ∥,与AC 和AD 的延长线分别交于G 和E ,FH AC ∥交AB 于点H ,求证:HG BE =.作业1. 已知238x y z ==,求(1)22x z y z +-;(2)2345x y zx+-.DHG F ECBANH MG F E CBD A2. 如下两个图中,已知EF BC ∥,FG DC ∥,分别证明:AE AGAB AD=.3. 已知:如图,在梯形ABCD 中,AB CD ∥,M 是AB 的中点,分别连接AC 、BD 、MD 、MC ,且AC 与MD 交于点E ,DB 与MC 交于F . (1)求证:EF CD ∥(2)若AB a =,CD b =,求EF 的长.FEMDCBA4. 在梯形ABCD 中,AB CD ∥,AC 与BD 交于O ,MON AB ∥,且M O N 交AD 、BC 于M 、N .若1MN =,求11AB CD+的值.EF GD CBA CGE BAF5. 如已知DE AB ∥,2OA OC OE =⋅,求证:AD BC ∥.DOECB A6. 如图,已知D 、E 是AC 、AB 上的点,BD 、CE 交于O 点,过O 点作OF CB ∥交AB 于F ,12AD CD =,12AE BE =,求证:F 为AB 的中点.7. 设D 为ABC △的边BC 的中点,过D 作一条直线,交AB 、AC 或其延长线于E 、F ,又过A 作AG BC ∥,交EF 的延长线于G ,则EG FD GF DE ⋅=⋅.FOE CB ADFC DB EGA8. 凸四边形ABCD 中,ADC ∠,90BCD ∠ >,BE 平行于AD 交AC 延长线于点E ,AF 平行于BC 交BD 延长线于点F ,,连接E 、F .证明:EF CD ∥.9. 如图, 在直线l 的同侧有三个相邻的等边三角形ABC △、ADE △、AFG △,且G 、A 、B 都在直线l 上,设这三个三角形边长分别为a 、b 、c ,连结GD 交AE 于N ,连BN 交AC 于L ,求AL 的长.10. 如图,D 、E 、F 分别是ABC △中BC 、CA 、AB 的中点,过A 任作一直线DE 、FD 分别交于G 、H ,求证:CG BH ∥.CDOF EBA LNFE DC lBGAHG FED C BAP。

相关文档
最新文档