新高二数学暑假开学考试测试试题

合集下载

高二数学上学期暑假返校开学考试试题

高二数学上学期暑假返校开学考试试题

卜人入州八九几市潮王学校仙游第一二零二零—二零二壹高二数学上学期暑假返校〔开学〕考试试题一.选择题1.集合2{|log 4}A x x =<,集合{|||2}B x x =≤,那么A B =〔〕A.(0,2]B.[0,2]C.[2,2]-D.(2,2)-2.如右图所示的程序框图,运行相应的程序,假设输入的值是20,那么输出的值是〔〕 A .4B .3 C .2D .13.假设当x R ∈时,函数()xf x a =始终满足0()1f x <≤,那么函数1log ay x=的图象大致为〔〕4.在△ABC 中,a =5,b =15,A=30°,那么c 等于() A .25B .25或者5C .5D .以上都不对5.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从M 点测得A 点的俯角30NMA ︒∠=,C 点的仰角45CAB ︒∠=以及75MAC ︒∠=;从C 点测得=60MCA ︒∠;山高200BC m =,那么山高MN =〔〕A .300mB .2002mC .2003mD .3002m 6.在等差数列{}n a 中,563,2a a ==-,那么348a a a +++等于〔〕A .2B .1C .4D .37.ABC ∆的内角,,A B C 的对边分别为a ,b ,c ,假设22cos 3C =,cos cos 2b A a B +=,那么ABC ∆的外接圆的面积为〔〕 A .4πB .8πC .9πD .36π 8.假设数列满足a 1=1,log 2a n +1=log 2a n +1(n ∈N *),它的前n 项和为S n ,那么S n =〔〕A .2-21-nB .2n -1-1C .2n -1D .2-2n -19.对于定义在R 上的函数()f x ①假设()f x 满足()()20182017f f >,那么()f x 在R 上不是减函数;②假设()f x 满足()()22f f -=,那么函数()f x 不是奇函数;③假设()f x 满足在区间(),0-∞上是减函数,在区间[)0.+∞也是减函数,那么()f x 在R 上也是减函数;④假设()f x 满足()()20182018f f -≠,那么函数()f x 〕 A .①④B .①②C .②③D .②④10.如图,在同一平面内,点P 位于两平行直线12,l l 同侧,且P 到12,l l 的间隔分别为1,3.点,M N 分别在12,l l 上,8PM PN +=,那么·PM PN 的最大值为()A .9B .12C .10D .1511.假设[]0,απ∈,,44ππβ⎡⎤∈-⎢⎥⎣⎦,R λ∈,且3cos 202πααλ⎛⎫---= ⎪⎝⎭,314sin 202ββλ++=,那么cos 2αβ⎛⎫+ ⎪⎝⎭的值是〔〕A .0B .12C .22D 3 12.在直角坐标系xoy 中,全集},|),{(R y x y x U ∈=,集合}20,1sin )4(cos |),{(πθθθ≤≤=-+=y x y x A ,集合A 的补集A C U 所对应区域的对称中心为M ,点P 是线段)0,0(8>>=+y x y x 上的动点,点Q 是x 轴上的动点,那么MPQ ∆周长的最小值为〔〕A .24B .104C .14D .248+ 二.填空题13.设向量a →=〔1,2〕,(,1)b x →=,当向量a →+2b →与2a b →→-平行时,那么x=_______ 14.3cos 45πα⎛⎫-=⎪⎝⎭,512sin 413πβ⎛⎫+=- ⎪⎝⎭,3,44ππα⎛⎫∈ ⎪⎝⎭,0,4πβ⎛⎫∈ ⎪⎝⎭,那么sin()αβ+=________.15.如下列图,墙上挂有一块边长为的正六边形木板,它的六个角的空白局部都是以正六边形的顶点为圆心,半径为的扇形面,某人向此板投镖一次,假设一定能击中木板,且击中木板上每个点的可能性都一样,那么他击中阴影局部的概率是__________.16.假设圆0104422=---+y x y x 上至少有三个不同点到直线l :0=+-b y x 的间隔为22,那么b 的取值范围是. 三、解答题17.长时间是用 上网严重影响着学生的身体安康,某校为理解A ,B 两班学生 上网的时长,分别从这两个班中随机抽取5名同学进展调查,将他们平均每周 上网的时长作为样本,绘制成茎叶图如下列图〔图中的茎表示十位数字,叶表示个位数字〕. 〔1〕分别求出图中所给两组样本数据的平均值, 并据此估计,哪个班的学生平均上网时间是较长;(2)从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.18.向量1sin ,22x a ⎛⎫= ⎪⎝⎭,)1,2sin 2cos 3(x x b -= ,函数b a x f⋅=)(,ABC ∆三个内角,,A B C 的对边分别为,,a b c .〔1〕求()f x 的单调递增区间;〔2〕假设()1,f B C +=3,1a b ==,求ABC ∆的面积S .19.如图,三棱锥P-ABC 中,PA ⊥平面ABC ,1,1,2,60PA AB AC BAC ===∠=. 〔1〕求三棱锥P-ABC 的体积;〔2〕证明:在线段PC 上存在点M ,使得AC ⊥BM ,并求PMMC的值. 20.函数,角的终边经过点.假设是的图象上任意两点,且当时,的最小值为.(1)求或者的值;(2)当时,不等式恒成立,求的最大值.21.圆22:1O x y +=与x 轴负半轴相交于点A ,与y 轴正半轴相交于点B .〔1〕假设过点13,22C ⎛⎫⎪ ⎪⎝⎭的直线l 被圆O 3l 的方程;〔2〕假设在以B 为圆心半径为r 的圆上存在点P ,使得2PA PO =(O 为坐标原点),求r 的取值范围;〔3〕设()()1122,,,M x y Q x y 是圆O 上的两个动点,点M 关于原点的对称点为1M ,点M 关于x 轴的对称点为2M ,假设直线12QM QM 、与y 轴分别交于()0,m 和()0,n ,问m n ⋅是否为定值?假设是求出该定值;假设不是,请说明理由.22.〔本小题总分值是16分〕函数,),,( 1)(2R x b a bx ax x f ∈++=为实数〔1〕假设不等式()4f x >的解集为{|3x x <-或者1}x >,求)(x F 的表达式;〔2〕在〔1〕的条件下,当[1, 1]x ∈-时,kx x f x g -=)()(是单调函数,务实数k 的取值范围;〔3〕设0<⋅n m ,,0>+n m 0>a 且)(x f 为偶函数,判断)(m F +)(n F 能否大于零参考答案1.A2.C3.B4.B5.A6.D7.C8.C9.A10.D11.C12.B13.1214.655615.16.22b-≤≤17.解析:〔Ⅰ〕A班样本数据的平均值为1(911142031)17 5++++=,B班样本数据的平均值为1(1112212526)19 5++++=,据此估计B班学生平均每周上网时间是较长.5分〔Ⅱ〕依题意,从A班的样本数据中随机抽取一个不超过21的数据记为a,从B班的样本数据中随机抽取一个不超过21的数据记为b的取法一共有12种,分别为:〔9,11〕,〔9,12〕,〔9,21〕,〔11,11〕,〔11,12〕,〔11,21〕,〔14,11〕,〔14,12〕,〔14,21〕,〔20,11〕,〔20,12〕,〔20,21〕.其中满足条件“a>b〞的一共有4种,分别为:〔14,11〕,〔14,12〕,〔20,11〕,〔20,12〕.设“a >b 〞为事件D , 那么31124)(==D P .答:a >b 的概率为31.18.解析:〔1〕由题意得=31cos 1sin 222x x --+=31sin cos 22x x +πsin()6x =+,3分令πππ2π2π262k x k -≤+≤+(Z)k ∈ 解得2ππ2π2π 33k x k -≤≤+(Z)k ∈ 所以函数()f x 的单调增区间为2ππ2π,2π33k k ⎡⎤-+⎢⎥⎣⎦(Z)k ∈.6分 〔2〕解法一:因为()1,f B C +=所以πsin()16B C ++=,又(0,π)B C +∈,ππ7π(,)666B C ++∈, 所以πππ,623B C B C ++=+=,所以2π3A =,8分由正弦定理sin sin a b A B =把3,1a b ==代入,得到1sin 2B =10分 得6B π=或者者56B π=,因为23A π=为钝角,所以56B π=舍去所以π6B =,得π6C =.所以,ABC ∆的面积1113sin 312224S ab C ==⋅⋅⋅=.12分 解法二:同上〔略〕2π3A =,8分 由余弦定理,2222cos a b c bc A =+-,得231c c =++,1c =或者3-〔舍去〕10分 所以,ABC ∆的面积1133sin 112224S bc A ==⋅⋅⋅=.12分 19.【解析】〔Ⅰ〕解:由题设=1,可得.由面可知是三棱锥的高,又所以三棱锥的体积〔Ⅱ〕证:在平面内,过点B作,垂足为,过作交于,连接.由面知,所以.由于,故面,又面,所以.在直角中,,从而.由,得.20.〔1〕角的终边经过点.角的终边在第四象限,且,可以取,点是的图象上任意两点,且当时,的最小值为.那么函数的图象的相邻的2条对称轴间的间隔等于,故函数的周期为,故,解得.〔2〕,那么,由不等式可得,那么有,解得,的最大值为.21.解析:〔1〕1︒假设直线l 的斜率不存在,那么l 的方程为:12x =,符合题意. 2︒假设直线l 的斜率存在,设l 的方程为:312y k x ⎛⎫=- ⎪⎝⎭,即2230kx y k --+= ∴点O 到直线l 的间隔()()22322k d k -+=+-∵直线l 被圆O 322312d ⎛⎫+= ⎪ ⎪⎝⎭∴3k =l 的方程为:310x y -+= ∴所求直线l 的方程为12x =或者310x y += 〔2〕设点P 的坐标为(),x y ,由题得点A 的坐标为()1,0-,点B 的坐标为()0,1 由2PA PO =()222212x y x y ++=+()2212x y -+=∵点P 在圆B 上,∴()()22210012r r -≤-+-≤022r <≤∴所求r 的取值范围是022r <≤〔3〕∵()11,M x y ,那么()()111211,,,M x y M x y --- ∴直线1QM 的方程为()211121y y y y x x x x ++=++令0x =,那么122112x y x y m x x -=+同理可得122112x y x y n x x +=-∴()()2212211221122122121212x y x y x y x y x y x y mn x x x x x x --+=⋅=+--()()222212212212111x x x x x x ---==-∴m n ⋅为定值1.【答案】〔1〕由不等式230ax bx +->的解集为{|3x x <-或者1}x >,故0,a >且方程230ax bx +-=的两根为3,1-,由韦达定理,得0,2,33.a baa>⎧⎪⎪-=-⎨⎪⎪-=-⎩解得1, 2.a b ==因此, 〔2〕那么1)2(12)()(22+-+=-++=-=x k x kx x x kx x f x g4)2(1)22(22k k x --+-+=, 当212k -≥或者212k -≤-时,即4k ≥或者0k ≤时,)x (g 是单调函数. 〔3〕∵)(x f 是偶函数∴,1)(2+=ax x f ⎪⎩⎪⎨⎧<-->+=)0( 1)0(1)(22x ax x ax x F , ∵,0n m <⋅设,n m >那么0n <.又,0 ,0>->>+n m n m ∴|n ||m |->)(m F +)(n F 0)(1)1()()(2222>-=--+=-=n m a an am n f m f ,∴)m (F +)n (F 能大于零。

黑龙江省齐齐哈尔市衡齐高级中学2024-2025学年高二上学期暑假作业验收(开学)考试数学试题

黑龙江省齐齐哈尔市衡齐高级中学2024-2025学年高二上学期暑假作业验收(开学)考试数学试题

B.函数
f
(
x)

éêë0,
π 6
ù úû
上单调递增
C.
f
(x)
的一个对称中心是
æ çè
π 3
,
0
ö ÷ø
D.若
x1
,
x2
Î
éêë1π27,π12
ù úû

x1
¹
x2 时,
f
( x1 ) =
f
( x2 ) 成立,则
x1 - x2
的最大值为 π 6
11.在棱长为
2
的正方体
ABCO
-
A1B1C1O1
中,
uuur AE
=
uuur l AB,
uuur BF
=
l
uuur BC,
l
Î
(0,1)
,则下列说法
正确的是( )
A. A1F ^ C1E
试卷第31 页,共33 页
B.三棱锥 B1 - BEF 的体积最大值为 1
C.若 l
=
1 2
,则点
A1 到直线
EF
的距离为
3
2 2
D.三棱锥 B1 - BEF 外接球球心轨迹的长度近似为 2
黑龙江省齐齐哈尔市衡齐高级中学 2024-2025 学年高二上学
期暑假作业验收(开学)考试数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知
a
Î
R
,若
1
a +
i
+
1
+ 2

准高二数学入学测试卷

准高二数学入学测试卷

准高二暑假辅导入学测试卷时间:120分钟 满分:150分一、选择题.(本大题共12小题,每小题5分,共60分)1、直线l 经过原点和点(2,2)--,则该直线的倾斜角是( )A 、45︒B 、135︒C 、135︒或225︒D 、0︒2、下列说法错误..的是( )A 、三棱锥的各个面都是三角形B 、九棱柱有9条侧棱,9个侧面,侧面为平行四边形C 、长方体和正方体都是棱柱D 、三棱柱的侧面为三角形3、下列说法正确的是( )A 、平行直线的平行投影重合B 、平行于同一直线的两个平面平行C 、垂直于同一平面的两个平面平行D 、垂直于同一平面的两条直线平行4、直线(1)2010ax a y x ay +-+=--=与垂直,则实数a 的值为( )A 、0B 、2C 、02或D 、02-或5、一个几何体的三视图形状都相同,大小均相等,那么这个几何体不.可以是( )A 、球B 、三棱锥C 、正方体D 、圆柱6、设,m n 是两条不同的直线,,αβ是两个不同的平面.下列命题中正确的是( )A 、若αβ⊥,,m n αβ⊂⊂,则m n ⊥B 、若,,m n αβαβ⊂⊂∥,则m n ∥C 、若m n ⊥,,m n αβ⊂⊂,则αβ⊥D 、若,,m m n n αβ⊥∥∥,则αβ⊥7、直线210x y -+=关于直线1x =对称的直线方程为( )A 、210x y +-=B 、210x y +-=C 、230x y +-=D 、230x y +-=8、实数,x y 满足240x y +-=,当12x ≤≤时,1y x +的取值范围为( )A 、14,2⎡⎤--⎢⎥⎣⎦B 、[]1,2C (),-∞+∞D 、1,42⎡⎤⎢⎥⎣⎦9 )10、某几何体的三视图如图所示,则它的体积是( )A 、23π3π、82π- D 、23π11、如图,四棱锥S ABCD -的底面为正方形,SD ⊥底面ABCD ,则下列结论中不.正确的是( ) A 、AC ⊥SBB 、AB ∥平面SCDC 、SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D 、AB 与SC 所成的角等于DC 与SA 所成的角12、在正四面体ABCD 中,E 是棱BC 的中点,则异面直线AE 与BD 所成角的余弦值为( )A 、12 D 二、填空题.(本大题共4小题,每小题5分,共20分)13、两条平行直线34106810x y x y --=-+=与间的距离为 .14、设P 点在x 轴上,Q 点在y 轴上,PQ 的中点是(1,2)M -,则PQ 等于 .15、用与球心距离为1的平面去截球,所得截面面积为π,则球的体积为 .16、如图,二面角l αβ--的大小是60︒,线段,AB B l α⊂∈,AB 与l 所成的角为30︒,则AB 与平面β三.解答题.(本大题共小题,其中17题10分,其余5个小题每题12分,共70分)17、已知△ABC 的顶点为1(1,0)(1,0)(2A B C -、、,判断此三角形形状,并求其面积.18、设直线l 的方程为(1)20()a x y a a R +++-=∈.(Ⅰ)若l 在两坐标轴上的截距相等,求l 的方程;(Ⅱ)若l 不经过第二象限,求实数a 的取值范围.19、已知直线l 平行于直线1:10l x y +-=,且经过直线23:230:210l x y l x y +-=-+=与的交点.(Ⅰ)求直线l 的方程;(Ⅱ)求点(3,4)A 关于直线l 的对称点'A 的坐标.20、在一个金属球表面涂上油漆,需要油漆2.4kg ,若把这个金属球融化,制成64个半径相等的小金属球 (设损耗为零),将这些小金属球表面涂漆,需要多少油漆?21、如图,在四面体ABCD 中,2,CB CD ==AD BD ⊥.点E F 、分别是AB BD 、的中点. 求证:(Ⅰ)直线EF ACD ∥平面;(Ⅱ)平面EFC BCD ⊥平面.22、如图,已知AP O ⊥圆所在平面,AB O 为圆的直径,C AB 是圆弧的中点,2PA AB ==,过A 作AE PC ⊥于点E .(Ⅰ)证明:AE PBC ⊥平面;(Ⅱ)求二面角A PB C --的正弦值.准高二数学入学测试卷参考答案一.选择题.(本大题共12小题,每小题5分,共60分)1—5:ADDCD 6—10:DDDAA 11-12:DB二.填空题.(本大题共4小题,每小题5分,共20分)13、310 14、、3 16、4三.解答题.(本大题共6小题,其中17题10分,其余5个小题每题12分,共70分)172,112ABC AB AC BC ABC S AC BC ===∴∴=⨯⨯=△、解:易求得 △为直角三角形218()1,2122,0,211302020()1:11201a a l x y a a a a a a a a l x y x y a a a a a a l -≠--+-∴=-==+=-∴+=++=-⎧≥⎪≠-⇒<-+⎨⎪-≤⎩=-、解:Ⅰ当时,在轴上的截距为在轴上的截距为 解得或 当时,不满足题意的方程为或 Ⅱ①当时,由题意知 ②当时,经过三四象限,也满足题意综上所述,(],1a -∞-的取值范围为23'''19()1(1,1)1(1),2034()(,),(,)22342022241(1)13(2,1)l l l l y x x y x y A x y AA x y x y y x A -∴-=--+-=++++⎧+-=⎪=-⎧⎪∴⇒⎨⎨-=-⎩⎪⨯-=-⎪-⎩∴--、解:Ⅰ由题意知,的斜率为,与的交点为 的方程为即 Ⅱ设则的中点为3312212220,.4464,43341=6444R r R r R rS S S RS r ππππ=⨯=∴=⨯∴、解:设大金属球的半径为小金属球的半径为则得 大金属球的表面积与所有小金属球的表面积之比为将所有小金属球表面涂漆,需要油漆的量为21:(),,(),,,BDA E F AB BD EF ADEF ACD AD ACD EF ACDCBD CB CD F BD BD CFAD BD EF AD BD EFCF EF F∴⊄⊂∴=∴∴=、证明Ⅰ△中、分别是、的中点 ∥ 又平面平面 ∥平面 Ⅱ△中是的中点 ⊥ 又⊥∥ ⊥ 又 BD EFCBD BCDEFC BCD∴⊂∴⊥平面 又平面 平面⊥平面 22.(),,(),,,=,PA ABCBC PABC AC PA AC A BC PACBC AEPC AE BC PC C AE PBCPB F AF EFPAB PA AB F PB ∴=∴∴=∴解:Ⅰ证明:⊥平面 ⊥ 又⊥ ⊥平面 ⊥ 又⊥ ⊥平面 Ⅱ取的中点连接 △中是的中点(),=2,=2,,2AF PBAE PBCEF PB AFE ABC AB AC Rt PAC PA AC PC PA ACAE PC Rt PAB PA AB PB ∴∴∴∴∴=⋅∴====∴= ⊥ 又⊥平面 ⊥三垂线定理 ∠即为所求二面角在等腰直角△中 在△中 又在△中,sin 3PA ABAF PB AERt AEF AFE AF ⋅∴==∴== 在△中∠。

高二数学暑假班入学测试题

高二数学暑假班入学测试题

高二数学暑假班入学测试题1、对于0a >且1a ≠,在下列命题中,正确的命题是:( )A.若M N =,则log log a a M N =;B. 若,M N R +∈,则log ()log log a a a M N M N +=+;C. 若log log a a M N =,则M N =;D. 若22log log a a M N =,则M N =; 2、cos75cos15⋅ 的值是( )A .12B . 14C .D 3、如果tan (α+β)=43,tan (β-4π )=21,那么tan (α+4π)的值是( ) A .1110 B .112 C .52D .24、ABC ∆中,角A B C 、、的对边分别为a b c 、、,且lg lg lgcos a c B -=,则ABC ∆的形状为( )A. 锐角三角形B.直角三角形C. 钝角三角形D.不能确定5、若函数sin cos y x a x =+的一条对称轴方程为x π=,则此函数的递增区间是:( )A. (,)42ππB. 3(,)4ππC. 3(2,2),k k k Z ππππ-+∈D. (2,2),k k k Z ππππ-+∈6、已知函数()tan(2)f x x b π=-的图象的一个对称中心为(,0)3π,若1||2b <,则()f x 的解析式为( )A .tan(2)3x π+B .tan(2)6x π- C .tan(2)6x π+或tan(2)3x π- D .tan(2)6x π-或tan(2)3x π+7、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( )A .0B .1C .-1D .±18、若不等式log sin2(0,1)a x x a a >>≠,对于任意(0,]4x π∈都成立,则实数a 的取值范围是 ( )A. (0,)4πB. (,1)4πC. (,)42ππ D. (0,1)9、设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值10、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( )A .6π B .51212orππ C .5612orππ D .12π 11、若()43sin ,sin 525ππθθ⎛⎫+=+= ⎪⎝⎭,则θ角的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限12、函数2sin cos y x x ωω= (0)ω>的最小正周期为π,则函数()2sin()2f x x πω=+的一个单调增区间是( )A .[]22ππ-,B .[2ππ]C .[]23ππ,D .[0]2π,13、已知函数sin()y A x ωϕ=+,(0,0,2A πωϕ>><的图象如下图所示,则该函数的解析式是 ( )A .)672sin(2π+=x y B .22sin()76y x π=- C .)62sin(2π+=x yD .62sin(2π-=x y14、已知函数12sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 15、将函数sin(23y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π参考答案:1、对于0a >且1a ≠,在下列命题中,正确的命题是:( C )A.若M N =,则log log a a M N =;B. 若,M N R +∈,则log ()log log a a a M N M N +=+;C. 若log log a a M N =,则M N =;D. 若22log log a a M N =,则M N =; 2、cos75cos15⋅ 的值是( B )A .12B . 14C .D 3、如果tan (α+β)=43,tan (β-4π )=21,那么tan (α+4π)的值是( B ) A .1110 B .112 C .52D .24、ABC ∆中,角A B C 、、的对边分别为a b c 、、,且lg lg lgcos a c B -=,则ABC ∆的形状为( B )A. 锐角三角形B.直角三角形C. 钝角三角形D.不能确定5、若函数sin cos y x a x =+的一条对称轴方程为4x π=,则此函数的递增区间是:( C )A. (,)42ππB. 3(,)4ππC. 3(2,2),44k k k Z ππππ-+∈D. (2,2),22k k k Z ππππ-+∈6、已知函数()tan(2)f x x b π=-的图象的一个对称中心为(,0)3π,若1||2b <,则()f x 的解析式为( D )A .tan(2)3x π+B .tan(2)6x π- C .tan(2)6x π+或tan(2)3x π- D .tan(2)6x π-或tan(2)3x π+7、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( A )A .0B .1C .-1D .±18、若不等式log sin2(0,1)a x x a a >>≠,对于任意(0,]4x π∈都成立,则实数a 的取值范围是 ( B )A. (0,)4π B. (,1)4π C. (,)42ππ D. (0,1)9、设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是 ( B )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值10、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( B )A .6π B .51212orππ C .5612orππ D .12π 11、若()43sin ,sin 525ππθθ⎛⎫+=+= ⎪⎝⎭,则θ角的终边在( D )A .第一象限B .第二象限C .第三象限D .第四象限12、函数2sin cos y x x ωω= (0)ω>的最小正周期为π,则函数()2sin()2f x x πω=+的一个单调增区间是( C )A .[]22ππ-,B .[2ππ]C .[]23ππ,D .[0]2π,13、已知函数sin()y A x ωϕ=+,(0,0,2A πωϕ>><的图象如下图所示,则该函数的解析式是 ( C )A .)672sin(2π+=x y B .22sin()76y x π=- C .)62sin(2π+=x yD .62sin(2π-=x y14、已知函数12sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 15、将函数sin(23y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π。

高二开学考试(数学)试题含答案

高二开学考试(数学)试题含答案

高二开学考试(数学)(考试总分:150 分)一、 单选题 (本题共计12小题,总分60分)1.(5分)1.已知全集{}1,2,3,4,5,6,7U =,{}2,3,5,7A =,{}1,3,6,7B =,则()UA B =( )A .{}4B .∅C .{}1,2,4,5,6D .{}1,2,3,5,62.(5分)2.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .()y x x R =-∈B .3()y x x x R =--∈C .1()()2x y x R =∈D .1y x=-(x R ∈,且0)x ≠ 3.(5分)3.已知函数21,1()1,1x x f x x x ->⎧=⎨+≤⎩,则((2))f f -=( ) A .5-B .2-C .4D .54.(5分)4.下列函数是同一个函数的是( )A .0y x =与1y =B .y 与y x =C .12x y -=与112xy -=D .2lg y x =与2lg y x =5.(5分)5.函数21()21x x f x +=-的图象大致为( )A .B .C .D .6.(5分)6.设角θ的终边经过点34,55P ⎛⎫- ⎪⎝⎭,那么2sin cos θθ+等于( )A .25B .25-C .1D .1-7.(5分)7.已知复数z 满足(1i)2i z -=,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.(5分)8.为了得到函数sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数sin3y x =的图象( )A .向左平移3π个单位 B .向右平移3π个单位C .向左平移9π个单位 D .向右平移9π个单位 9.(5分)9.如果向量a 和b 满足||1,||2a b ==,且()a a b ⊥-,那么a 和b 的夹角大小为( ) A .60︒B .45︒C .75︒D .135︒10.(5分)10.已知一个圆锥的侧面展开图是半径为2的半圆,则该圆锥的体积为( )A B C D11.(5分)11.英国数学家泰勒发现了如下公式:357sin 3!5!7!x x x x x =-+-+⋅⋅⋅,其中!1234n n =⨯⨯⨯⨯⋅⋅⋅⨯.根据该公式可知,与11113!5!7!-+-+-⋅⋅⋅的值最接近的是( )A .cos57.3︒B .cos147.3︒C .sin57.3︒D .()sin 32.7-︒12.(5分)12.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,122AA AB BC ==,则直线1A C 与11B C 所成角的余弦值为( )A .12 BC D 二、 填空题 (本题共计4小题,总分20分)13.(5分)13.已知平面向量a ,b 满足1a =,4b =,且a 与b 的夹角为3π,则2a b -=_______________________.14.(5分)14.已知样本数据1x ,2x ,3x ,4x ,5x 的方差为2,则样本数据132x -,232x -,332x -,432x -,532x -的方差为______.15.(5分)15.已知函数3()3af x x bx x=++-,且()2f m =,那么()f m -的值为_________.16.(5分)16.若1cos 64x π⎛⎫-= ⎪⎝⎭,则sin 26x π⎛⎫+= ⎪⎝⎭__________.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.已知函数()23f x x ax =++.(1)若()f x 有一个零点为3x =,求a ;(2)若当x ∈R 时,()f x a ≥恒成立,求a 的取值范围.18.(12分)18.已知函数()24313ax x f x -+⎛⎫⎪⎝⎭=(1)若1a =-,求()f x 的单调区间; (2)若()f x 的值域是()0,∞+,求a 的值.19.(12分)19.已知函数()()2cos sin f x x x x =.(1)求函数()f x 的最小正周期和单调递增区间;(2)若角,42⎛⎫∈ ⎪⎝⎭ππα,625f α⎛⎫= ⎪⎝⎭2sin 3πα⎛⎫+⎪⎝⎭的值. 20.(12分)20.某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[)40,50,[)50,60,…,[)80,90,[]90,100.(1)求频率分布直方图中a 的值;(2)从评分在[)40,60的受访职工中,随机抽取2人,求此2人的评分都在[)40,50的概率.21.(12分)21.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,侧面PAD 是正三角形,侧面PAD ⊥底面ABCD ,M 是PD 的中点.(1)求证:AM ⊥平面PDC ; (2)求二面角P BC A --的余弦值.22.(12分)22.如图所示,三棱柱111ABC A B C -中,侧棱1AA 垂直底面,90ACB ∠=︒,12AA AC BC ===,D 为1C B 的中点,点P 为AB 的中点.(1)求证://PD 平面11AAC C ; (2)求证:BC PD ⊥; (3)求点B 到面PCD 的距离.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1.C【详解】因为{}2,3,5,7A =,{}1,3,6,7B =,所以{}3,7A B ⋂=, 又全集{}1,2,3,4,5,6,7U =,所以()UAB ={}1,2,4,5,6.故选:C2.(5分)2.B【详解】解:对于A 选项,()()f x x x f x -=--=-=,为偶函数,故错误;对于B 选项,()()()()33f x x x x x f x -=----=+=-,为奇函数,且函数3,y x y x =-=-均为减函数,故3()y x x x R =--∈为减函数,故正确; 对于C 选项,指数函数没有奇偶性,故错误;对于D 选项,函数为奇函数,在定义域上没有单调性,故错误. 故选:B3.(5分)3.C【详解】解:函数21,1()1,1x x f x x x ->⎧=⎨+≤⎩,则()()22215f -=-+=,则((2))f f -=()5514f =-=, 故选:C.4.(5分)4.C【详解】对于A 选项,0y x =的定义域为{}0x x ≠,1y =定义域为R ,故不满足;对于B 选项,y x =与y x =对应关系不同,故不满足; 对于C 选项,12x y -=与112x y -=定义域均为R ,且()1111222x x xy ----===,故是同一函数,满足;对于D 选项,2lg y x =的定义域为{}0x x >,2lg y x =的定义域为{}0x x ≠,故不满足. 故选:C5.(5分)5.D【详解】函数21()21x x f x +=-定义域为()(),00,-∞⋃+∞,关于原点对称,()211221()211221x x x x x x f x f x --+++-===-=----,所以函数为奇函数,排除A 、C ;212()12121+==+--x x xf x 当x →+∞时,()1f x →,排除B. 故选:D6.(5分)6.D【详解】解:因为角θ的终边经过点34,55P ⎛⎫- ⎪⎝⎭,所以43sin ,cos 55θθ=-=,所以432sin cos 2155θθ⎛⎫+=⨯-+=- ⎪⎝⎭,故选:D7.(5分)7.B【详解】由题意,复数z 满足(1i)2i z -=,可得()()()2i 1i 2i 1i 1i 1i 1i z ⋅+===-+--+, 所以复数z 在复平面内对应的点(1,1)Z -位于第二象限. 故选:B.8.(5分)8.C【详解】解为了得到函数sin(3)3y x π=+的图象,可将函数sin3y x =的图象向左平移9π个单位得到,即sin3()sin(3)93y x x ππ=+=+.故选:C .9.(5分)9.A【详解】解:由题意()a a b ⊥-故()0a a b ⋅-=,即20a a b -⋅=, 所以1a b ⋅=故11cos ,122a b ==⨯ 故两向量夹角的大小是60︒. 故选:A .10.(5分)10.B【详解】解:设圆锥的母线长为l ,底面圆的半径为r ,圆锥的高为h ,则2l =, 所以1222l r ππ⋅=,解得1r =,所以圆锥的高h =所以体积213V r h π=⋅⋅. 故选:B .11.(5分)11.B【详解】原式()()()sin 1sin 57.3sin 90147.3cos147.3=-≈-︒=︒-︒=︒ 故选:B12.(5分)12.C【详解】解:如图所示:连接1A B ,由题意得:11,,BC AB BC BB AB BB B ⊥⊥⋂=, 故BC ⊥平面11ABB A , 又1A B ⊂平面11ABB A ,故1BC A B ⊥,设1AB =,则AC =12AA = ,故1AC11//B C BC ,∴直线1A C 与11B C 所成角即直线1A C 与BC 所成角,11cos BC ACB AC ∠=, 故直线1A C 与11B C故选:C.二、 填空题 (本题共计4小题,总分20分) 13.(5分)13【详解】解:因为1a =,4b =,且a 与b 的夹角为3π, 所以()2222244a b a ba ab b -=-=-⋅+=14.(5分)14.18【详解】样本数据1x ,2x ,3x ,4x ,5x 的方差为22S =,所以样本数据132x -,232x -,332x -,432x -,532x -的方差为:23218⨯=. 故答案为:1815.(5分)15.-8【详解】由3()3a f x x bx x =++-,构造函数3()()3a g x f x x bx x=+=++.因为()()33()()=0a a g x g x x bx x b x xx ⎛⎫⎡⎤+-=+++-++- ⎪⎢⎥-⎝⎭⎣⎦, 所以()()g x g x -=-,即3()()3ag x f x x bx x=+=++为奇函数. 所以()()0g m g m +-=, 所以()3()30f m f m ++-+=. 因为()2f m =,所以()=8f m --. 故答案为:-8.16.(5分)16.78-【详解】由2sin 2cos(2)cos(2)cos(2)2cos ()1626336x x x x x ππππππ⎛⎫+=--=-=-=-- ⎪⎝⎭,因为1cos 64x π⎛⎫-= ⎪⎝⎭,所以2217sin 22cos ()12()16648x x ππ⎛⎫+=--=⨯-=- ⎪⎝⎭,故答案为:78-三、 解答题 (本题共计6小题,总分70分) 17.(10分)17.(1)4a =-;(2)[]6,2-.【详解】解:(1)因为()f x 有一零点3x =, 所以23330a +⨯+=, 所以4a =-.(2)因为当x ∈R 时,230x ax a ++-≥恒成立,需()2430a a ∆=--≤,即24120a a +-≤,解得62a -≤≤,所以a 的取值范围是[]6,2-.18.(12分)18.(1)递增区间是()2,-+∞,递减区间是(),2-∞-;(2)0.【详解】(1)当1a =-时,2431()3x x f x --+⎛⎫= ⎪⎝⎭令()243t g x x x ==--+,由()g x 在(),2-∞-上单调递增,在()2,-+∞上单调递减, 又由13ty ⎛⎫= ⎪⎝⎭在R 上单调递减,根据复合函数的单调性的判定方法,可得()f x 在(),2-∞-上递减,在()2,-+∞上递增, 即函数()f x 的单调递增区间是()2,-+∞,单调递减区间是(),2-∞-.(2)令()243g x ax x =-+,由指数函数的性质知,要使()()13g x f x ⎛⎫= ⎪⎝⎭的值域为()0,∞+,应使()243g x ax x =-+的值域为R ,当0a =时,()43g x x =-+,此时()g x R ∈,符合题意;当0a ≠时,函数()243g x ax x =-+为二次函数其值域不可能为R ,不符合题意,综上可得,实数a 的值为0.19.(12分)19.(1)π;()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2 【详解】())22sin cos sin 21cos2f x x x x x x =+=+2sin 23x π⎛⎫=+ ⎪⎝⎭(1)22T ππ==. ∵sin y x =在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上递增,∵当222232k x k πππππ-≤+≤+时,()f x 递增,即()51212k x k k πππ-≤≤π+∈Z , 即()f x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.(2)62sin 235f απα⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭∵3sin 35πα⎛⎫+= ⎪⎝⎭,∵,42⎛⎫∈ ⎪⎝⎭ππα∵75,3126πππα⎛⎫+∈ ⎪⎝⎭,∵4cos 35πα⎛⎫+=- ⎪⎝⎭, ∵2sin sin 333πππαα⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭314sin cos cos sin 3333525ππππαα⎛⎫⎛⎫=+++=⨯-= ⎪ ⎪⎝⎭⎝⎭20.(12分)20.(1)0.006a =;(2)110. 【详解】(1)由题意,(0.0040.0220.0280.0220.018)101a +++++⨯=,解得0.006a =. (2)由(1)知:50名职工中[)40,50、[)50,60分别有2人、3人, 若[)40,50为职工A 、B ,[)50,60为职工1、2、3,∵随机抽取2人的可能组合{,}A B 、{,1}A 、{,2}A 、{,3}A 、{,1}B 、{,2}B 、{,3}B 、{1,2}、{1,3}、{2,3}共10种,其中2人的评分都在[)40,50有{,}A B ,即1种,∵2人的评分都在[)40,50的概率为11021.(12分)21.(1)证明详见解析;(2. 【详解】 (1)因为侧面PAD ⊥底面ABCD ,且交线为AD ,又CD ⊂面ABCD ,CD AD ⊥,所以CD ⊥平面PAD ,又AM ⊂平面PAD ,所以CD AM ⊥. 侧面PAD 是正三角形,M 是PD 的中点,所以PD AM ⊥. 又PD CD D ⋂=,所以AM ⊥平面PDC . (2)取AD 的中点E ,BC 的中点F ,连接PE ,EF ,PF .依题意知AD PE ⊥,AD FE ⊥,且PE FE E =,所以AD ⊥平面PEF ,又//BC AD ,所以BC ⊥平面PEF ,因此BC FE ⊥,BC FP ⊥,所以PFE ∠就是二面角P BC A --的平面角. 由(1)知CD ⊥平面PAD ,因为//EF CD ,所以EF ⊥平面PAD ,从而EF PE ⊥.在直角三角形PEF 中,设2EF a =,则PE =,所以PF =,cosEF PFE PF ∠===所以,二面角P BC A --.22.(12分)22.(1)证明见解析;(2)证明见解析;(3 【详解】(1)证明:如图所示:连接1AC , D ,P 分别是1BC ,AB 的中点,1//DP AC ∴,又1AC ⊂平面11AAC C ,PD ⊄平面11AAC C ,//PD ∴平面11AAC C ;(2)1AA ⊥平面ABC ,且90ACB ∠=︒,1AA BC ∴⊥,BC AC ⊥,又1AA AC A =,1AA 、AC ⊂平面11ACC A ,则BC ⊥平面11ACC A ,1AC ⊂平面11ACC A , 1BC AC ∴⊥, 1//AC DP ,BC PD ∴⊥;(3)如上图所示:连接1C P , D 为1C B 的中点,则112D BCP C BCP V V --=, 由D 为1C B 的中点, 则111221222BCP ABC S S ==⨯⨯⨯=△△, 则11112233D BCP V -=⨯⨯⨯=,易知11AB BC AC ===则CP CD PD ===,1sin 23PCD S π==△ 设点B 到平面PCD 的距离为d ,由B PCD D BCP V V --=,得:11 33d =,解得:d =,故点B 到平面PCD。

高二数学上学期开学考试试题_1 4(共9页)

高二数学上学期开学考试试题_1 4(共9页)

三学实验2021-2021学年高二数学上学期(xuéqī)开学考试试题考前须知:1.本套试卷分满分是150分.考试时间是是120分钟。

2.在答题之前,考生先将自己的准考证号、姓名、座位号用0.5毫米黑色签字笔填写上清楚。

3.选择题使需要用2B铅笔填涂,非选择题用0.5毫米黑色签字笔书写,字体工整、笔迹清楚,按照题号顺序在各题目的答题区域内答题,超区域书写之答案无效;在草稿纸、试卷上答题无效。

第I卷〔选择题,一共60分〕一、选择题:本大题一一共12小题,每一小题5分,满分是60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.假设直线的倾斜角为60°,那么直线的斜率为A. 3 B.- 3 C.33D.-332.△ABC中,a=4,b=43,∠A=30°,那么∠B等于A.30° B.30°或者150° C.60° D.60°或者120°3.给定以下命题:①a>b⇒a2>b2;②a2>b2⇒a>b;③a>b⇒ba<1;④a>b⇒1a<1b.其中正确的命题个数是A.0 B.1 C.2 D.3 4.向量a=(1,-1),b=(-1,2),那么(2a+b)·a等于A.-1 B.0 C.1 D.25.在以下四个正方体中,能得出AB ⊥CD 的是6.在等差数列(děnɡ chā shù liè){a n }中,a 4+a 8=16,那么该数列前11项的和S 11等于 A .58 B .88 C .143 D .1767.直线l 1:y =ax +b 与直线l 2:y =bx +a (ab ≠0,a ≠b )在同一平面直角坐标系内的图象只可能是8.关于直线m ,n 与平面α,β,以下四个命题中真命题的序号是:①假设m ∥α,n ∥β,且α∥β,那么m ∥n ; ②假设m ⊥α,n ⊥β,且α⊥β,那么m ⊥n ;③假设m ⊥α,n ∥β,且α∥β,那么m ⊥n ; ④假设m ∥α,n ⊥β,且α⊥β,那么m ∥n .A .①②B .③④C .①④D .②③9.设点A (2,-3),B (-3,-2),直线过P (1,1)且与线段AB 相交,那么l 的斜率k 的取值范围是A .k ≥34或者k ≤-4B .-4≤k ≤34C .-34≤k ≤4D .以上都不对10. 设函数f (x )=mx 2-mx -1,假设对于任意的,f (x )<-m +4恒成立,那么实数m 的取值范围为A.(-∞,0] B. C.(-∞,0)∪ D.11.△ABC的内角(nèi jiǎo)A,B,C的对边分别为a,b,c,a sin A-b sin B=4c sin C,cos A=-,那么=A.6 B.5 C.4 D.312.如图,O为△ABC的外心,AB=4,AC=2,∠BAC为钝角,M是边BC的中点,那么AM→·AO→等于A.4 B.5C.6 D.7第II卷(非选择题一共90分)二、填空题:本大题一一共4小题,每一小题5分.13.点A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD平行,那么m 的值是_______;14.记S n为等比数列{a n}的前n项和.假设,那么S5=_______;15.直线l与直线y=1,x-y-7=0分别相交于P,Q两点,线段PQ的中点坐标为(1,-1),那么直线l的斜率为________;的四个顶点在球的球面上,,△是边长为的正三角形,分别是的中点,,那么球O的体积为_______.三、解答题:解容许写出文字说明,证明过程或者演算步骤.17.〔本小题10分〕AB→=(-1,3),BC→=(3,m),CD→=(1,n),且AD→∥BC→.(1)务实数n 的值;(2)假设(jiǎshè)AC →⊥BD →,务实数m 的值.18.〔本小题12分〕直线l 的方程为3x +4y -12=0,求l ′的斜截式方程,使得: (1)l ′与l 平行,且过点(-1,3);(2)l ′与l 垂直,且l ′与两坐标轴围成的三角形的面积为4.19.〔本小题12分〕记S n 为等差数列{a n }的前n 项和,S 9=-a 5. (1)假设a 3=4,求{a n }的通项公式;(2)假设a 1>0,求使得S n ≥a n 的n 的取值范围.20. 〔本小题12分〕Rt△ABC 的顶点A (-3,0),直角顶点B (-1,-22),顶点C 在x 轴上. (1)求点C 的坐标; (2)求斜边上的中线的方程.21.〔本小题12分〕的内角(nèi jiǎo)的对边分别为,设.(1)求;(2)假设,求.22.〔本小题12分〕如下图,在△ABC中,AC=BC=22AB,四边形ABED是正方形,平面ABED⊥底面ABC,G,F分别是EC,BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面DAC⊥平面EBC;2021年秋季三学实验2021级入学考试数学(sh ùxu é)答案一.选择题:题号123456789 11112 答案ADACABDDAD AB二.填空题:13.0或者1 14. 15.-2316.三.简答题:17.解 因为AB →=(-1,3),BC →=(3,m ),CD →=(1,n ), 所以AD →=AB →+BC →+CD →=(3,3+m +n ), (1)因为AD →∥BC →,所以AD →=λBC →,即⎩⎪⎨⎪⎧3=3λ,3+m +n =λm ,解得n =-3.(2)因为AC →=AB →+BC →=(2,3+m ), BD →=BC →+CD →=(4,m -3), 又AC →⊥BD →, 所以AC →·BD →=0,即8+(3+m )(m -3)=0,解得m =±1.18.解 ∵直线(zhíxiàn)l 的方程为3x +4y -12=0, ∴直线l 的斜率为-34.(1)∵l ′与l 平行,∴直线l ′的斜率为-34.∴直线l ′的方程为y -3=-34(x +1),即y =-34x +94(2)∵l ′⊥l ,∴k l ′=43.设l ′在y 轴上的截距为b ,那么l ′在x 轴上的截距为-34b ,由题意可知,S =12|b |·⎪⎪⎪⎪⎪⎪-34b =4,∴b =±463, ∴直线l ′的方程为y =43x +463或者y =43x -463.19.解:〔1〕设的公差为d . 由得.由a 3=4得.于是.因此{}n a 的通项公式为.〔2〕由〔1〕得,故.由知,故等价于,解得1≤n ≤10.所以n 的取值范围是.20.解 (1)∵Rt△ABC 的直角顶点B (-1,-22), ∴AB ⊥BC ,故k AB ·k BC =-1.又∵A (-3,0),∴k AB =0+22-3-(-1)=-2,∴k BC =22,∴直线(zhíxiàn)BC的方程为y+22=22(x+1),即x-2y-3=0.∵点C在x轴上,∴由y=0,得x=3,即C(3,0).(2)由(1)得C(3,0),∴AC的中点为(0,0),∴斜边上的中线为直线OB(O为坐标原点),直线OB的斜率k=22,∴直线OB的方程为y=22x.21.〔1〕由得,故由正弦定理得.由余弦定理得.因为,所以.〔2〕由〔1〕知,由题设及正弦定理得,即,可得.由于,所以,故.22.(1)证明连接AE.∵四边形ADEB为正方形,∴AE∩BD=F,且F是AE的中点(zhōnɡ diǎn),∵G是EC的中点,∴GF∥AC.又AC⊂平面ABC,GF⊄平面ABC,∴GF∥平面ABC.(2)证明∵四边形ADEB为正方形,∴EB⊥AB.又∵平面ABED⊥平面ABC,平面ABED∩平面ABC=AB,BE⊂平面ABED,∴BE⊥平面ABC,∴BE⊥AC.∵CA2+CB2=AB2,∴AC⊥BC.又∵BC∩BE=B,BC,BE⊂平面EBC,∴AC⊥平面EBC.∵AC⊂平面DAC∴平面DAC⊥平面EBC内容总结(1)三学实验2021-2021学年高二数学上学期开学考试试题考前须知:1.本套试卷分满分是150分.考试时间是是120分钟。

2024年新高二上学期开学考数学试卷与答案

2024年新高二上学期开学考数学试卷与答案

2024年新高二上学期开学考数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若()()1,2,1,1OA OB =-=-,则AB = ()A.()2,3-B.()2,3-2.复数2i 2i z =-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.为了培养青少年无私奉献,服务社会,回馈社会的精神,某学校鼓励学生在假期去社会上的一些福利机构做义工.某慈善机构抽查了其中100名学生在一年内在福利机构做义工的时间(单位:小时),绘制成如图所示的频率分布直方图,则x 的值为()A.0.0020B.0.0025C.0.0015D.0.00304.已知四边形ABCD 中,AB DC =,并且AB AD = ,则四边形ABCD 是()A.菱形B.正方形C.等腰梯形D.长方形5.抛掷两枚质地均匀的硬币,记事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,事件C =“两枚硬币都正面朝上”,事件D =“至少一枚硬币反面朝上”则()A.C 与D 独立B.A 与B 互斥C.()12P D =D.()34P A B ⋃=6.在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若cos a b C =,则ABC 的形状一定为()A.直角三角形B.等腰三角形C.等边三角形D.锐角三角形7.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A.α、β都垂直于一个平面γB.平面α内有无数条直线与平面β平行C.l 、m 是α内两条直线,且l ∥β,m ∥βD.l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β8.已知正三棱柱ABC A B C -₁₁₁的底面边长为2,侧棱长为D 为棱BC 上一点,则三棱锥A B DC -₁₁₁的体积为()A.3B.32C.1D.29.已知三棱锥-P ABC 的底面ABC 是边长为1的等边三角形,PA ⊥平面ABC 且PA =一只蚂蚁从ABC 的中心沿表面爬至点P ,则其爬过的路程最小值为()10.在直角梯形ABCD 中,AD BC ∥,90ABC ∠=︒,222AD AB BC ===,点P 为梯形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.1,42⎡⎤-⎢⎥⎣⎦B.1,22⎡⎤-⎢⎥⎣⎦C.[]1,4-D.1,44⎡⎤-⎢⎥⎣⎦二、填空题:本题共5小题,每小题5分,共25分.11.复数1ii-=.12.已知向量(4,3)a =- ,(6,)b m = ,若a b ⊥,则m =,若a b∥,则m =.13.甲、乙两人独立解同一道数学题目,甲解出这道题目的概率是13,乙解出这道题目的概率是45,这道题被解出(至少有一人解出来)的概率是.14.在ABC 中,30,A AC ∠== ,满足此条件ABC 有两解,则BC 边长度的取值范围为.15.如图,正方体的1111ABCD A B C D -棱长为1,E ,F ,G ,H 分别是所在棱上的动点,且满足1DH BG AE CF +=+=,则以下四个结论正确有①.E ,G ,F ,H 四点一定共面②.若四边形EGFH 为矩形,则DH CF=③.若四边形EGFH 为菱形,则E ,F 一定为所在棱的中点④.若四边形EGFH 为菱形,则四边形EGFH 周长的取值范围为⎡⎣三、解答题:本题共6小题,共85分.解答应写出文字说明、证明过程或演算步骤.16.(13分)已知向量(1,3),(1,2)a b =-=.(1)求a b ⋅;(2)求a 与b夹角的大小;(3)求2a b - .17.(13分)如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点.(1)求证:1AC BD ⊥;(2)求证:1//AC 平面BDE .18.(14分)在ABC 中,2sin2sin ,8,77b A a B ac =-==(1)求b 值;(2)求角C 和ABC 的面积.19.(15分)某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.为了解某校学生选科情况,现从高一、高二、高三学生中各随机选取了100名学生作为样本进行调查,调查数据如下表,用频率估计概率.选考情况第1门第2门第3门第4门第5门第6门物理化学生物历史地理政治高一选科人数807035203560高二选科人数604555404060高三选科人数504060404070(1)已知该校高一年级有400人,估计该学校高一年级学生中选考历史的人数;(2)现采用分层抽样的方式从样本中随机抽取三个年级中选择历史学科的5名学生组成兴趣小组,再从这5人中随机抽取2名同学参加知识问答比赛,求这2名参赛同学来自不同年级的概率;(3)假设三个年级选择选考科目是相互独立的.为了解不同年级学生对各科目的选择倾向,现从高一、高二、高三样本中各随机选取1名学生进行调查,设这3名学生均选择了第k 门科目的概率为(12345,6)k P k =,,,,,当k P 取得最大值时,写出k 的值.(结论不要求证明)20.(15分)在△ABC 中,角,,A B C 所对的边为,,a b c ,△ABC 的面积为S,且2224a b cS +-=.(1)求角C ;(2)若2cos c b b A -=,试判断△ABC 的形状,并说明理由.21.(15分)如图,在三棱柱111ABC A B C -中,90ABC ∠=︒,11AA AB ==,平面11ABB A ⊥平面ABC .(1)求证:11AB AC ⊥;(2)从条件①、条件②这两个条件中选择一个作为已知,当直线1AC 与平面ABC 所成角为30︒时,(ⅰ)求证:平面ABC ⊥平面11AAC C ;(ⅱ)求二面角1B A C A --的正弦值.条件①:11AC AC =;条件②:1A B =2024年新高二上学期开学考数学试卷答案1.C【分析】求出向量AB的坐标,根据模的计算公式求得答案.【详解】因为()()1,2,1,1OA OB =-=- ,所以()()11,122,3AB OB OA =-=+--=-,因此,AB == C .2.C【分析】化简复数后,利用复数对应象限内点的特征求解即可.【详解】由题意得2i 2i 12i z =-=--,故z 在复平面内对应的点为()1,2--,该点位于第三象限,故C 正确.故选:C3.B【分析】根据题意结合频率和为1列式求解即可.【详解】由题意可得:()200.01750.02250.0051x x ++++=,解得0.0025x =.故选:B.4.A【分析】由AB DC =,得到四边形ABCD 为平行四边形,再由AB AD = ,得到BC AB =,得出四边形ABCD 为菱形.【详解】由题意,四边形ABCD 中,因为AB DC =,可得AB AD = 且AB CD ,所以四边形ABCD 为平行四边形,又因为AB AD =,可得BC AB =,所以四边形ABCD 为菱形.故选:A.5.D【分析】写出样本空间及事件,,,A B C D ,再结合相互独立事件、互斥事件判断AB;利用古典概率公式计算判断CD.【详解】样本空间Ω={(正,正),(正,反),(反,正),(反,反)},事件A ={(正,正),(正,反)},事件B ={(正,反),(反,反)},事件C ={(正,正)},事件D ={(正,反),(反,正),(反,反)},对于A,13()()44P C P D ==,而CD =∅,()0P CD =,C 与D 不独立,A 错误;对于B,事件,A B 可以同时发生,A 与B 不互斥,B 错误;对于C,3()4P D =,C 错误;对于D,A B ⋃={(正,正),(正,反),(反,反)},()34P A B ⋃=,D 正确.6.A【分析】利用余弦定理将cos a b C =化为2222a b c a b ab+-=⋅,然后化简可得答案.【详解】 cos a b C =,由余弦定理可得2222a b c a b ab+-=⋅,则22222a a b c =+-,则222a c b +=,所以ABC 为直角三角形.故选:A.7.D【分析】对于ABC,举例判断,对于D,由面面平行的判定理分析判断.【详解】对于A,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.8.C【分析】连接1A D ,通过已知条件证明AD ⊥平面11BCC B ,即AD 为三棱锥111A B DC -的高,再通过三棱锥的体积公式计算即可.【详解】如图所示,连接1A D ,因为ABC 为正三角形,且D 为BC 中点,所以AD BC ⊥,又因为1BB ⊥平面ABC ,且AD ⊂平面ABC ,所以1AD BB ⊥,因为1BC BB B = ,BC ⊂平面11BCC B ,1BB ⊂平面11BCC B ,所以AD ⊥平面11BCC B ,所以AD 为三棱锥111A B DC -的高,且3AD =,所以111111112331332A B DC B DC V S AD -=⨯⨯=⨯⨯⨯⨯= 9.B【分析】利用垂直条件证明得PA ⊥平面ABC ,即可得平面PAC ⊥平面ABC ,然后根据平面展开图判断最短距离,再利用勾股定理计算求解即可.【详解】将底面ABC 旋转,以AC 为轴,旋转至平面PAC 与平面ABC 共面,如图,设ABC 的中心为O ,此时OP 为最短距离,设O 到直线AC 的距离为d ,则136d =,所以3OP =.10.D【分析】此题可以先证明一下极化恒等式,再使用,轻松解决此题.【详解】如图ABP 中,O 为AB 中点,22()()()()PA PB PO OA PO OB PO OA PO OA PO OA =++=+-=-(极化恒等式)共起点的数量积问题可以使用.如图,取AB 中点O ,则由极化恒等式知,2221·4PA PB PO OA PO =-=- ,要求PA PB 取值范围,只需要求2PO 最大,最小即可.由图,可知2PO 最大时,P 在D 点,即2222174PO DO AD AO ==+=,此时21·44PA PB PO =-= ,2PO 最小时,P 在O 点,即20PO =,此时211·44PA PB PO =-=- .综上所得,PA PB ⋅ 取值范围为:1,44⎡⎤-⎢⎥⎣⎦.11.【分析】由复数的除法运算即可求解.【详解】()()i 1i 1i 1i i i i ---==---,故答案为:1i--12.【分析】根据平面向量共线以及垂直的坐标运算,即可得到结果.【详解】由题意可得,若a b ⊥,则46308m m -⨯+=⇒=;若a b ∥,则43962m m -=⇒=-故答案为:8;92-13.【分析】设这道题没被解出来为事件A ,则这道题被解出(至少有一人解出来)的概率()1P P A =-【详解】设数学题没被解出来为事件A ,则()142113515P A ⎛⎫⎛⎫=-⋅-= ⎪ ⎪⎝⎭⎝⎭,则这道题被解出(至少有一人解出来)的概率:()1P P A =-13115152=-=.故答案为:131514.【分析】根据三角形有两解,应满足sin 30AC BC AC ︒<<,化简即可求解.【详解】ABC 有两解,sin 30AC BC AC ∴︒<<,BC <<故答案为:.15.【分析】对①:连接正方体体对角线以及,EF HG ,通过证明,EF HG 互相平分,即可判断四边形FGFH 为平行四边形,从而证明四点共面;对②:通过证明当DH AE =时,也有四边形EGFH 为矩形,即可判断;对③:通过证明,H G 分别为所在棱中点时,也有四边形EGFH 为菱形,即可判断;对④:根据正方体侧面展开图,结合四边形EGFH 的形状,求得周长的最值,即可判断.【详解】因为正方体的1111ABCD A B C D -棱长为1,且1DH BG AE CF +=+=,可得1D H BG =,1AE CF =,对于①:连接1,BD HG ,交于点O ,如下图所示:根据题意,可得1D H BG =,又1//D H BG /,1BGO D HO ≌,故点O 为直线1,HG D B 的中点,同理可得1AEO C FO ≌,故点O 也为直线1,EF AC 的中点,则四边形EGFH 的对角线互相平分,故四边形EGFH 为平行四边形,则,,,H G E F 四点共面,故①正确;对于②:因为AE //DH ,故当DH AE =时,四边形EADH 为平行四边形,则//EH AD ,又AD ⊥平面11,AA B B EG ⊂平面11AA B B ,故AD EG ⊥,则EH EG ⊥,又四边形EGFH 为平行四边形,故四边形EGFH 为矩形;同理,当DH CF =时,也有四边形EGFH 为矩形,综上所述,当DH AE =或DH CF =时,四边形EGFH 为矩形,故②错误;对于③:若,H G 为所在棱的中点时,易知//HG BD /,又111,,,,BD AC BD AA AC AA A AC AA ⊥⊥⋂=⊂平面11AAC C ,故BD ⊥平面11AAC C ,又EF ⊂平面11AAC C ,故BD EF ⊥;则HG EF ⊥,又四边形EGFH 为平行四边形,故四边形EGFH 为菱形,即当,H G 为所在棱中点时,四边形EGFH 为菱形;同理,当,E F 分别为所在棱的中点时,四边形EGFH 也为菱形,故③错误;对于④:根据选项C 中所证,不妨取,E F 分别为所在棱的中点,此时四边形EGFH 为菱形满足题意,取11,BB DD 的中点分别为,M N,画出正方体的部分侧面展开图如下所示由图可知,当,G H 分别与,M N 重合时,四边形EGFH 的周长最小,最小值为4;当,G H 分别与1,B D 重合时,四边形EGFH的周长最大,最大值为12BD =故四边形EGFH周长的取值范围为,故④正确;故选:①④16.【分析】(1)直接利用坐标求解即可;(2)利用向量的夹角公式求解;(3)先求出2a b -的坐标,再求其模【详解】解:(1)因为(1,3),(1,2)a b =-=,所以11325a b ⋅=-⨯+⨯=,(2)设a 与b夹角为θ,则cos a b a b θ⋅== ,因为[0,]θπ∈,所以4πθ=,所以a 与b 夹角的大小为4π,(3)因为(1,3),(1,2)a b =-=,所以22(1,3)(1,2)(3,4)a b -=--=-,所以25a b -== 17.【分析】(1)由线面垂直的判定定理证明BD ⊥平面1ACA ,结合线面垂直的性质即可得解;(2)由中位线定理得出1//OE A C ,结合线面平行的判定定理即可得证.【详解】(1)如图所示,连接AC ,交BD 于点O ,在正方体1111ABCD A B C D -中,1AA ⊥平面ABCD ,而BD ⊂平面ABCD ,所以1AA BD ⊥,又因为在正方形ABCD 中,AC BD ⊥,且注意到1AC AA A =∩,1,AC AA ⊂平面1ACA ,所以BD ⊥平面1ACA ,而1AC ⊂平面1ACA ,所以1BD AC ⊥;(2)如图所示,连接OE ,因为,O E 分别为1,AC AA 的中点,所以1//OE AC ,而1A C ⊄平面BDE ,OE ⊂平面BDE ,从而1//AC 平面BDE .18.【分析】(1)根据正弦定理边化角和二倍角公式可得1cos 7=-A ,再利用余弦定理计算得出结果;(2)根据余弦定理推论计算得出角;再根据三角形面积公式计算的结果;【详解】(1)在ABC 中,由正弦定理得22sin sin2sin sin 2sin sin cos sin sin ,77B A A B B A A A B =-⇒=-因为sin 0,sin 0B A ≠≠,所以1cos 7=-A ,由余弦定理得2222cos a b c bc A =+-,代入2264492,2150b b b b =+-∴--=,解得3b =或=5b -(舍)(2)由余弦定理推论得222649491cos 22832a b c C ab +-+-===⨯⨯,因为0πC <<,所以角π3C =;因此ABC 的面积为11sin 8322ab C =⨯⨯=19.【分析】(1)样本中高一学生共有100人,其中选择历史学科的学生有20人,由此能估计高一年级选历史学科的学生人数.(2)应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,利用列举法能求出事件“这2名参赛同学来自相同年级”的概率.(3)利用相互独立事件概率乘法公式求解.【详解】(1)解:由题意知,样本中高一学生共有100人,其中选择历史学科的学生有20人,故估计高一年级选历史学科的学生有20400=80100⨯人.(2)解:应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}34,A A ,{}35,A A ,{}45,A A ,共10种,设A 为事件“这2名参赛同学来自不同年级”,则A 为事件“这2名参赛同学来自相同年级”有2{A ,3}A ,4{A ,5}A 共2种,所以事件A 发生的概率24()1()1105P A P A =-=-=.(3)解:10.80.60.50.24P =⨯⨯=,20.70.450.40.126P =⨯⨯=,30.350.550.60.1155P =⨯⨯=,40.20.40.40.032P =⨯⨯=,50.350.40.40.056P =⨯⨯=,60.60.60.70.252P =⨯⨯=,∴当k P 取得最大值时,6k =.20.【分析】(1)应用面积公式及余弦定理得出正切进而得出角;(2)先应用正弦定理及两角和差的正弦公式化简得出2A B =,结合π4C =判断三角形形状即可.【详解】(1)在ABC 中,因为2224a b c S +-=,则12cos sin 24ab C ab C =,整理得tan 1C =,且π0,2C ⎛⎫∈ ⎪⎝⎭,所以π4C =.(2)由正弦定理得sin sin 2sin cos C B B A -=,()sin sin sin cos cos sin C A B A B A B =+=+ ,sin cos cos sin sin 2sin cos A B A B B B A ∴+-=,sin cos cos sin sin A B A B B ∴-=,于是()sin sin A B B -=,又(),0,πA B ∈,故ππA B -<-<,所以()πB A B =--或B A B =-,因此πA =(舍去)或2A B =,所以2A B =.πππ,,,424C A B =∴== ABC 是等腰直角三角形.21.【分析】(1)根据面面垂直可证线面及线线垂直,进而可得线面垂直证明线线垂直;(2)(i)若选①,可证四边形11ACC A 为矩形,进而可得线线垂直,证得面面垂直;若选②,由勾股定理可证1AA AB ⊥,进而可证面面垂直;(ii)过B 作BD AC ⊥于点D ,再过D 作1DE A C ⊥,可得二面角的平面角,再根据定义法可得二面角的正弦值.【详解】(1)因为90ABC ∠=︒,所以AB BC ⊥,因为平面11ABB A ⊥平面ABC ,平面11ABB A 平面ABC AB =,BC 平面ABC ,所以BC ⊥平面11ABB A ,因为1AB ⊂平面11ABB A ,所以1BC AB ⊥,因为三棱柱111ABC A B C -,所以四边形11ABB A 是平行四边形,因为1AA AB =,所以11ABB A 是菱形,所以11AB A B ⊥,因为11A B BC B = ,1A B ,BC 平面1A BC ,所以1AB 平面1A BC ,因为1AC 平面1ABC ,所以11AB AC ⊥;(2)若选择条件①:(ⅰ)因为11AC AC =,所以平行四边形11ACC A为矩形,所以1AA AC ⊥,由(1)知,1AA BC ⊥,因为AC BC C = ,BC ,AC ⊂平面ABC ,所以1AA ⊥平面ABC ,因为1AA ⊂平面11ACC A ,所以平面11ACC A ⊥平面ABC ;(ⅱ)因为1AA ⊥平面ABC ,AC 平面ABC C =,所以直线1AC 与平面ABC 所成的角为1A CA ∠,所以130ACA ∠=︒,因为11AA AB ==,所以12AC =,AC =BC =1A B =作BD AC ⊥于D ,因为平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BD ⊂平面ABC ,所以BD ⊥平面11ACC A ,又1AC ⊂平面11ACC A ,所以1BD AC ⊥.作1DE A C ⊥于E ,连接BE ,因为BD DE D ⋂=,BD ,DE ⊂平面BDE ,所以1A C ⊥平面BDE ,因为BE ⊂平面BDE ,所以1A C BE ⊥,所以BED ∠是二面角1B A C A --的平面角.因为AC BD AB BC ⋅=⋅,所以3BD =,因为11AC BE A B BC ⋅=⋅,所以1BE =,所以sin BD BED BE ∠==,所以二面角1B A C A --若选择条件②:1A B =,因为11AA AB ==,所以22211AA AB A B +=,所以1AA AB ⊥,由(1)知,1AA BC ⊥,因为AB BC B ⋂=,AB ,BC ⊂平面ABC ,所以1AA ⊥平面ABC ,因为1AA ⊂平面11ACC A ,所以平面11ACC A ⊥平面ABC ;(ⅱ)因为1AA ⊥平面ABC ,AC 平面ABC C =,所以直线1AC 与平面ABC 所成的角为1A CA ∠,所以130ACA ∠=︒,因为11AA AB ==,所以12AC =,3AC =2BC =12A B =作BD AC ⊥于D ,因为平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,BD ⊂平面ABC ,所以BD ⊥平面11ACC A ,又1AC ⊂平面11ACC A ,所以1BD AC ⊥.作1DE A C ⊥于E ,连接BE ,因为BD DE D ⋂=,BD ,DE ⊂平面BDE ,所以1A C ⊥平面BDE ,因为BE ⊂平面BDE ,所以1A C BE ⊥,所以BED ∠是二面角1B A C A --的平面角.因为AC BD AB BC ⋅=⋅,所以63BD =,因为11AC BE A B BC ⋅=⋅,所以1BE =,所以6sin 3BD BED BE ∠==,所以二面角1B A C A --63。

湖南省长沙市长郡中学2023-2024学年高二上学期入学考试(暑假作业检测)数学试题

湖南省长沙市长郡中学2023-2024学年高二上学期入学考试(暑假作业检测)数学试题

湖南省长沙市长郡中学2023-2024学年高二上学期入学考试(暑假作业检测)数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.有一组互不相等的数组成的样本数据1x 、2x 、L 、9x ,其平均数为a (i a x ¹,1i =、2、L 、9),若插入一个数a ,得到一组新的数据,则( )A .两组样本数据的平均数相同B .两组样本数据的中位数相同C .两组样本数据的方差相同D .两组样本数据的极差相同10.如图,在棱长为2的正方体1111ABCD A B C D -中,,,E F G 分别为棱111,,A D AA CD 的中点,则( )6,A12.AD【分析】根据函数的对称性,周期性判断A ,根据()g x 与()f x 的关系及周期性判断B ,根据中心对称的性质及周期性可判断CD.【详解】对于A ,因为()()20f x f x -+=,所以()f x 的对称中心为()1,0,因为()()33f x g x +-=,所以()()33f x g x ++=,又()()13f x g x -+=,所以()()31f x f x +=-,所以()()31f x f x +=-+,即()()2f x f x +=-,所以()()()()42f x f x f x f x +=-+=--=éùëû,即()f x 的周期为4,又()()31g x f x =--,所以()g x 的周期也为4,故A 正确;对于B ,因为()()31f x f x +=-,所以()()4f x f x +=-,又由A 知()f x 周期为4,即()()4f x f x +=,所以()()=f x f x -,()f x 为偶函数,故B 错误;对于C ,由()f x 对称中心为()1,0,得()10f =,又因为直线2x =为()f x 对称轴,所以()30f =,所以()f x 关于点()3,0对称,所以()()22f ,和()()4,4f 关于点()3,0对称,所以()()240f f +=,所以()()()()12340f f f f +++=,所以()()()1220240f f f ++×××+=,故C 错误;对于D ,由C 得()()()()01230f f f f +++=,因为()()31g x f x =--,所以()()130g f =-,()()()23131g f f =--=-,()()332g f =-,()()433g f =-,所以()()()()()()()()123430313233g g g g f f f f +++=-+-+-+-。

河南省郑州市2024-2025学年高二上学期开学考试 数学含答案

河南省郑州市2024-2025学年高二上学期开学考试 数学含答案

2024—2025学年郑州市高二(上)开学考试数学(答案在最后)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。

2.每道选择题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考试结束后,请将本试卷和答题卡一并交回。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知正数a ,b ,c 满足2b ac =,则a c bb a c+++的最小值为()A.1 B.32C.2D.522.已知2319,sin ,224a b c ππ===,则()A.c b a<< B.a b c<< C.a <c <bD.c <a <b3.已知1133log (1)log (1)a b -<-,则下列说法一定成立的是()A.11a b> B.1120222021ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C.n 0()l a b -> D.若AC abAB =,则点C 在线段AB 上4.已知函数()π37π5sin 2,0,63f x x x ⎛⎫⎡⎤=-∈ ⎪⎢⎥⎝⎭⎣⎦,若函数()()4F x f x =-的所有零点依次记为123,,,,n x x x x ,且123n x x x x <<<< ,则1231222n n x x x x x -+++++= ()A.292πB.625π2C.1001π3D.711π25.同时掷红、蓝两枚质地均匀的骰子,事件A 表示“两枚骰子的点数之和为5”,事件B 表示“红色骰子的点数是偶数”,事件C 表示“两枚骰子的点数相同”,事件D 表示“至少一枚骰子的点数是奇数”.则下列说法中正确的是()①A 与C 互斥②B 与D 对立③A 与D 相互独立④B 与C 相互独立A.①③B.①④C.②③D.②④6.已知函数()()ππcos 322f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线5π18x =对称,则函数()f x 在区间[]0,π上零点的个数为()A.1B.2C.3D.47.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若2cos a cC C b+=+,则a cb +的最大值为()C.328.已知12,z z 是复数,满足124z z +=,13=z ,12z z -=12⋅=z z ()A.32B.3C. D.6二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.设12,z z 为复数,则下列命题正确的是()A.若12z z =,则12Rz z ∈B.若112z =-+,则202411i22z =-C.若12=z z ,则2212z z =D.若12z z z z -=-,且12z z ≠,则z 在复平面对应的点在一条直线上10.如图,函数()()π2tan 04f x x ωω⎛⎫=+> ⎪⎝⎭的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,且满足ABC 的面积为π2,则下列结论不正确的是()A.4ω=B.函数()f x 的图象对称中心为ππ,082k ⎛⎫-+ ⎪⎝⎭,k ∈ZC.()f x 的单调增区间是ππ5ππ,8282k k ⎛⎫++ ⎪⎝⎭,k ∈ZD.将函数()f x 的图象向右平移π4个单位长度后可以得到函数2tan y x ω=的图象11.如图:棱长为2的正方体1111ABCD A B C D -的内切球为球O ,E 、F 分别是棱AB 和棱1CC 的中点,G 在棱BC 上移动,则下列命题正确的是()①存在点G ,使OD 垂直于平面EFG ;②对于任意点G ,OA 平行于平面EFG ;③直线EF 被球O 截得的弦长为④过直线EF 的平面截球O 所得的所有截面圆中,半径最小的圆的面积为π2.A.①B.②C.③D.④三、填空题:本大题共3个小题,每小题5分,共15分.12.函数()sin cos sin2f x x x x =-+在区间π0,2⎡⎤⎢⎥⎣⎦上的值域是.13.若函数()7tan f x x =,()5sin 2g x x =,则()y f x =和()y g x =在π3π,22x ⎡⎤∈-⎢⎥⎣⎦的所有公共点的横坐标的和为.14.在正四棱台1111ABCD A B C D -中,4AB =,112A B =,1AA =为.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知1≤x ≤27,函数33()log (3)log 227=⋅++xf x a x b (a >0)的最大值为4,最小值为0.(1)求a 、b 的值;(2)若不等式()(3)0t g t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,求实数k 的取值范围.16.(15分)新高考取消文理分科,采用选科模式,这赋予了学生充分的自由选择权.新高考地区某校为了解本校高一年级将来高考选考历史的情况,随机选取了100名高一学生,将他们某次历史测试成绩(满分100分)按照[)0,20,[)20,40,[)40,60,[)60,80,[]80,100分成5组,制成如图所示的频率分布直方图.(1)求图中a 的值并估计这100名学生本次历史测试成绩的中位数;(2)据调查,本次历史测试成绩不低于60分的学生,高考将选考历史科目;成绩低于60分的学生,高考将不选考历史科目.按分层抽样的方法从测试成绩在[)0,20,[]80,100的学生中选取5人,再从这5人中任意选取2人,求这2人中至少有1人高考选考历史科目的概率.17.(15分)ABC 中,角A,B,C 所对的边分别为,,a b c .已知3,cos 2a A B A π==+.(1)求b 的值;(2)求ABC 的面积.18.(17分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,其中//AD BC ,且2AD BC =,8PA PB AD ===,5CD =,点E ,F 分别为棱PD ,AD 的中点.(1)若平面PAB ⊥平面ABCD ,①求证:PB AD ⊥;②求三棱锥P ABE -的体积;(2)若8PC =,请作出四棱锥P ABCD -过点B ,E ,F 三点的截面,并求出截面的周长.19.(17分)已知平面向量π2sin 3cos 2a x x ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭ ,πsin ,2sin 2b x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,且函数.(1)求π3f ⎛⎫⎪⎝⎭的值;(2)求函数()f x 的最小正周期;(3)求函数()y f x =在π0,2⎡⎤⎢⎥⎣⎦上的最大值,并求出取得最大值时x 的值.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】因为a ,b ,c 为正数且满足2b ac =,所以2a c b +≥=,当且仅当a b c ==时等号成立,令a c t b+=,[)2,t ∈+∞,则1a cb t b ac t ++=++,令1y t t =+,[)2,t ∈+∞,又1y t t=+在[)2,+∞上单调递增,所以当2t =时,y 取得最小值为15222+=,所以a c bb a c+++的最小值为52,当且仅当a b c ==时取得.故选D.2.【答案】D 【解析】293334π2π2π2πc a ==⨯<= c a∴<3132π2a π==⨯,设()sin f x x =,3()g x x π=,当6x π=时,31sin662πππ=⨯=()sin f x x ∴=与3()g x x π=相交于点1,62π⎛⎫⎪⎝⎭和原点∴0,6x π⎛⎫∈ ⎪⎝⎭时,3sin x xπ>10,26π⎛⎫∈ ⎪⎝⎭∴13sin22π>,即b a >∴c<a<b故选:D.3.【答案】B【解析】因为1133log (1)log (1)a b -<-,则101011a b a b ->⎧⎪->⎨⎪->-⎩,即1a b >>,所以11a b<,故A 错误;因为12022xy ⎛⎫= ⎪⎝⎭在R 上单调递减,且a b >,所以1120222022ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,又1b >,所以by x =在()0,+∞单调递增,所以1120222021bb⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭,所以1120222021a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故B 正确;因为1a b >>,所以0a b ->,当01a b <-<时,()ln 0a b -<,当1a b ->时,()ln 0a b ->,故C 错误;又1a b >>,所以1ab >,由AC abAB =可得点C 在AB 延长线上,故D 错误;故选B.4.【答案】A【解析】函数()π5sin 2,6f x x ⎛⎫=- ⎪⎝⎭令()ππ2π62x k k -=+∈Z ,可得1ππ()23x k k =+∈Z ,即函数的对称轴方程为1ππ()23x k k =+∈Z ,又()f x 的周期为πT =,37π0,3x ⎡⎤∈⎢⎥⎣⎦,令1π37ππ=233k +,可得24k =,所以函数在37π0,3x ⎡⎤∈⎢⎥⎣⎦上有25条对称轴,根据正弦函数的性质可知,12231π5π71π2,2,,2366n n x x x x x x -+=⨯+=⨯+=⨯ (最后一条对称轴为函数的最大值点,应取前一条对应的对称轴),将以上各式相加得12312π5π8π71π22226666n n x x x x x -⎛⎫+++++=++++⨯ ⎪⎝⎭()2+7124π876π==292π323⨯⨯=,故选A.5.【答案】B【解析】①;因为两枚骰子的点数相同,所以两枚骰子的点数之和不能为5,所以A 与C 互斥,因此本序号说法正确;②:当红色骰子的点数是偶数,蓝色骰子的点数是奇数时,B 与D 同时发生,因此这两个事件同时发生,所以本序号说法不正确;③:()()()419341,1,369364369P A P D P AD ===-===,显然()()()P A P D P AD ≠,所以A 与D 不相互独立,所以本序号说法不正确;④:()()()1131,,263612P B P C P BC ====,显然()()()P B P C P BC =,所以B 与C 相互独立,所以本序号说法正确,故选:B.6.【答案】C【解析】函数()()ππcos 322f x x ϕϕ⎛⎫=+-<< ⎪⎝⎭图象关于直线5π18x =对称,所以()5π3π18k k ϕ⨯+=∈Z ,解得()5ππ6k k ϕ=-∈Z ,又因为ππ22ϕ-<<,所以6ϕ=π,所以()πcos 36f x x ⎛⎫=+ ⎪⎝⎭,令()πcos 306f x x ⎛⎫=+= ⎪⎝⎭,则()ππ3π62x k k +=+∈Z ,解得ππ39k x =+,因为[]0,πx ∈,所以π9x =,4π9,7π9.即函数()f x 在区间[]0,π上零点的个数为3.故选C.7.【答案】B【解析】在ABC中,有2cos a cC C b++由正弦定理得sin 2sin sin sin cos A C B C B C +=+,又()sin sin sin cos cos sin A B C B C B C =+=+,所以cos sin 2sin sin B C C B C +=,因为sin 0C ≠,所以cos 2B B -=,即π2sin 26B ⎛⎫-= ⎪⎝⎭,则ππ62B -=,即2π3B =,由余弦定理得2222cos b a c ac B =+-()222a c ac a c ac=++=+-()()222324a c a c a c +⎛⎫≥+-=+ ⎪⎝⎭,则233a c +≤,当且仅当a c =时,等号成立,所以33a cb b +≤=.故选B.8.【答案】D【解析】因为21212121212()()()z z z z z z z z z z +=+⋅+=+⋅+,且124z z +=,13=z ,即221211121222212129||()16z z z z z z z z z z z z z z +=+++=+++=,得221212||7z z z z ++=;同理因为21212121212()()()z z z z z z z z z z -=-⋅-=-⋅-,且12z z -=即221211121222212129||()10z z z z z z z z z z z z z z z -=--+=+-+=,得:221212||1z z z z --=;联立可得:224z =,22z =,1212||326z z z z ⋅=⋅=⨯=.故选D.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】AD【解析】对于A,设()2i ,R z m n m n =+∈,则1i z m n =-,所以2212R z z m n =+∈,故A 正确;对于B,由112z =-,得2211122z ⎛⎫=-=- ⎪ ⎪⎝⎭,所以()22421111i i 2222z z⎛⎫==-=-+ ⎪ ⎪⎝⎭,所以450220462112z z ⨯-==,故B 错误;对于C,若121,i z z ==,则12=z z ,而22121,1z z ==-,故C 错误;对于D,因为12z z ≠,设12,z z 对应的点为,A B ,若12z z z z -=-,则z 在复平面内对应点到A 和B 的距离相等,即z 在复平面内对应点在线段AB 的垂直平分线上,所以z 在复平面对应的点在一条直线上,故D 正确.故选:AD.10.【答案】ABD【解析】A:当0x =时,()π02tan 24OC f ===,因为2ABC S π= ,所以122ABCS OC AB π== ,得π2AB =,即函数()f x 的最小正周期为π2,由πT ω=得2ω=,故A 不正确;B:由选项A 可知()π2tan 24f x x ⎛⎫=+ ⎪⎝⎭,令ππ242k x +=,k ∈Z ,解得ππ48k x =-,k ∈Z ,即函数()f x 的对称中心为ππ,048k ⎛⎫- ⎪⎝⎭,k ∈Z ,故B 不正确;C:由ππ3ππ2π242k x k +<+<+,k ∈Z ,得π5ππ8282πk k x +<<+,k ∈Z ,故C 正确;D:将函数()f x 图象向右平移π4个长度单位,得函数π2tan 24y x ⎛⎫=- ⎪⎝⎭的图象,故D 不正确.故选ABD.11.【答案】ACD【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()2,2,0C 、()0,2,0D 、()10,0,2A 、()12,0,2B 、()12,2,2C 、()10,2,2D 、()1,0,0E 、()2,2,1F 、()1,1,1O ,设点()2,,0G a ,其中02a ≤≤,对于①,()1,1,1OD =-- ,()1,2,1EF = ,()1,,0EG a =,若存在点G ,使OD 垂直于平面EFG ,只需OD EF ⊥,OD EG ⊥,则1210OD EF ⋅=-+-= ,10OD EG a ⋅=-+=,解得1a =,此时,G 为BC 的中点,故当点G 为BC 的中点时,OD ⊥平面EFG ,①对;对于②,当点G 与点B 重合时,A ∈平面EFG ,②错;对于③,()0,1,1EO = ,()1,2,1EF =,则3cos 2EO EF OEF EO EF ⋅∠==⋅,因为0πOEF ≤∠≤,则π6OEF ∠=,所以,点O 到EF的距离为π12sin 622d EO === ,所以,直线EF 被球O截得的弦长为=对于④,设点O 在EF 上的射影为点M ,过直线EF 的平面为α,当直线OM 与平面α垂直时,平面α截球O 所得截面圆的半径最小,且半径的最小值为22=,因此,半径最小的圆的面积为2ππ22⎫⨯=⎪⎪⎝⎭,④对.故选:ACD.三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】51,4⎡⎤-⎢⎥⎣⎦【解析】令πsin cos )4t x x x =-=-,因为π0,2x ⎡⎤∈⎢⎥⎣⎦,πππ,444x ⎡⎤-∈-⎢⎣⎦,所以[1,1]t ∈-,()22sin cos sin2sin cos (sin cos )11f x x x x x x x x t t =-+=---+=-+,设2()1,[1,1]g t t t t =-++∈-,显然一元二次函数2()1g t t t =-++在区间1[1,]2-上单调递增,在区间1[,1]2上单调递减,所以max min 15(,(1)124g g =-=-,所以函数()sin cos sin2f x x x x =-+的值域为5[1,4-.故答案为:5[1,]4-.13.【答案】3π【解析】因为()7tan f x x =的对称中心为π,02k ⎛⎫⎪⎝⎭,k ∈Z ,()5sin 2g x x =的对称中心为π,02k ⎛⎫⎪⎝⎭,k ∈Z ,所以两函数的交点也关于π,02k ⎛⎫⎪⎝⎭对称,k ∈Z ,又因为函数()7tan f x x =,()5sin 2g x x =的最小正周期为π,作出两函数的在π3π,22x ⎡⎤∈-⎢⎥⎣⎦的图象,如下图,由此可得两函数图象共6个交点,设这6个交点的横坐标依次为123456,,,,,x x x x x x ,且123456x x x x x x <<<<<,其中13,x x 关于()0,0对称,20x =,46,x x 关于()π,0对称,5πx =,所以1234563πx x x x x x +++++=.故答案为:3π.14.【答案】3/【解析】正四棱台1111ABCD A B C D -的对角面为11ACC A 是等腰梯形,其高为该正四棱台的高,在等腰梯形11ACC A 中,11AC A C ==,因为1AA =h =所以该棱台的体积为()221442233V =+⨯+⨯.故答案为:四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)1,2a b ==;(2)43⎛⎤-∞ ⎥⎝⎦,【解析】(1)()()()()3333log 3log 2log 1log 3227x f x a x b a x x b =⋅++=+-++()23log 142a x a b =+--+,由1≤x ≤27得[]3log 0,3t x =∈,()[]23log 10,4x -∈,又a >0,因此33()log (3)log 227=⋅++xf x a x b 的最大值为24+=b ,最小值为420a b -++=,解得1,2a b ==.(2)()()23log 1f x x =-,()()()2310t g t f kt t kt =-=--≥又1,32t ⎡⎤∈⎢⎥⎣⎦,()2112t k t t t-≤=+-,而1()2h t t t =+-在1,12⎡⎤⎢⎥⎣⎦上单调递减,在(]1,3上单调递增.由不等式()()30tg t f kt =-≥在1,32t ⎡⎤∈⎢⎥⎣⎦上有解,得:max 12k t t ⎛⎫≤+- ⎪⎝⎭43=.因此,k 的取值范围是43⎛⎤∞ ⎥⎝⎦-,.16.(15分)【答案】(1)0.0075;1603;(2)910【解析】(1)()0.0050.010.0150.0125201a ++++⨯=,解得0.0075a =设中位数为x ,因为学生成绩在[)0,40的频率为()200.0050.010.30.5⨯+=<,在[)0,60的频率为()200.0050.010.0150.60.5⨯++=>所以中位数满足等式()0.005200.01200.015400.5x ⨯+⨯+⨯-=,解得1603x =故这100名学生本次历史测试成绩的中位数为1603.(2)成绩在[)0,20的频数为0.0052010010⨯⨯=成绩在[]80,100的频数为0.00752010015⨯⨯=按分层抽样的方法选取5人,则成绩在[)0,20的学生被抽取105225⨯=人,在[]80,100的学生被抽取155325⨯=人从这5人中任意选取2人,都不选考历史科目的概率为2225C 1C 10=,故这2人中至少有1人高考选考历史科目的概率为1911010P =-=.17.(15分)【答案】(1)2.【解析】(1)在ABC中,由题意知sin A ==又因为2B A π=+,所有sin sin(cos 23B A A π=+==,由正弦定理可得3sin sin a BAb ==.(2)由2B A π=+得cos cos sin 2()B A A π=+=-=A B C π++=,得()C A B π=-+.所以sin sin[()]sin()C A B A B π=-+=+sin cos cos sin A B A B =+(3333=-+⨯13=.因此,ABC的面积111sin 32232S ab C ==⨯⨯=.18.(17分)【答案】(1)①证明见解析.②247.(2)232 6.2+【解析】(1)①因为平面PAB ⊥平面,ABCD 平面PAB ⋂平面,ABCD AB =又因为底面ABCD 为直角梯形,其中//,AD BC 所以,AD AB ⊥又因为AD ⊂面,PAD 所以AD ⊥面.PAB 又因为PB ⊂面,PAB 所以.PB AD ⊥②由①知AD ⊥面,PAB 取PA 的中点设为,Q 连结,QE 则,QE AD //则QE ⊥面,PAB 则点E 到面PAB 的距离为14.2AD =又因为在ABCD 直角梯形ABCD 中4BC =,8PA PB AD ===,5,CD =解得3,AB =所以在等腰三角形PAB 中PAB S =△3247.4三棱锥P ABE -的体积132474247.34V =⨯⨯=(2)取线段PC 的中点H ,连接,EH HB ,因为DN BC =,且//DN BC ,所以四边形NDCB 为平行四边形,所以//DC NB ,又,E H 分别为线段,PD PC ,所以//EH DC ,所以//EH NB ,则四边形EHBN 为四棱锥P ABCD -过点,B E 及棱AD 中点的截面,则5BN CD ==,142EN PA ==,1522HE CD ==,在PBC 中,14,4,2BC HC PC ===,21cos 84PCB ∠==,所以22212cos 161624424.4BH BC HC BC HC HCB =+-⋅⋅∠=+-⨯⨯⨯=,则 6.BH =,所以截面周长为523546622BN EN HE HB +++=++=+19.(17分)【答案】(1)3π;(3)max ()2f x =,5π12x =【解析】(1)解法1:因为当π3x =时,ππ32sin 362a ⎛⎫⎫== ⎪⎪⎝⎭⎭ ,5ππ1sin ,2sin 632b ⎛⎫⎛== ⎪ ⎝⎭⎝ ,π13322f a b ⎛⎫=⋅=+ ⎪⎝⎭==.解法2:由诱导公式可得()2sin a x x = ,()cos ,2sin b x x = ,所以()2sin cos 2sin f x a b x x x x =⋅=⋅+⋅)2sin212sin x x =-sin2x x =π2sin 23x ⎛⎫=- ⎪⎝⎭,所以ππ2sin 33f ⎛⎫== ⎪⎝⎭(2)由解法2得()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,故函数()y f x =的最小正周期为π.(3)当π02x ≤≤时,ππ2π2333x -≤-≤,当ππ232x -=,即5π12x =时,函数πsin 23y x ⎛⎫=- ⎪⎝⎭取最大值1,此时max ()2f x =.。

高二数学暑假班入学测试题

高二数学暑假班入学测试题

高二数学暑假班入学测试题1、对于0a >且1a ≠,在下列命题中,正确的命题是:( )M N =,则log log a a M N =;B. 若,M N R +∈,则log ()log log a a a M N M N +=+;C. 若log log a a M N =,则M N =;D. 若22log log a a M N =,则M N =; 2、cos75cos15⋅的值是( )A .12B . 14C .D 3、如果tan (α+β)=43,tan (β-4π )=21,那么tan (α+4π)的值是( ) A .1110 B .112 C .52D .24、ABC ∆中,角A B C 、、的对边分别为a b c 、、,且lg lg lgcos a c B -=,则ABC ∆的形状为( )A. 锐角三角形B.直角三角形C.5、若函数sin cos y x a x =+的一条对称轴方程为4x π=,则此函数的递增区间是:( )A. (,)42ππB. 3(,)4ππC. 3(2,2),44k k k Z ππππ-+∈D. (2,2),22k k k Z ππππ-+∈6、已知函数()tan(2)f x x b π=-的图象的一个对称中心为(,0)3π,若1||2b <,则()f x 的解析式为( )A .tan(2)3x π+B .tan(2)6x π- C .tan(2)6x π+或tan(2)3x π- D .tan(2)6x π-或tan(2)3x π+7、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = ( )A .0B .1C .-1D .±18、若不等式log sin 2(0,1)a x x a a >>≠,对于任意(0,]4x π∈都成立,则实数a 的取值范围是 ( )A. (0,)4πB. (,1)4πC. (,)42ππ D. (0,1)9、设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值10、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( )A .6π B .51212orππ C .5612orππ D .12π 11、若()43sin ,sin 525ππθθ⎛⎫+=+= ⎪⎝⎭,则θ角的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限12、函数2sin cos y x x ωω= (0)ω>的最小正周期为π,则函数()2sin()2f x x πω=+的一个单调增区间是( )A .[]22ππ-,B .[2ππ],C .[]23ππ,D .[0]2π,13、已知函数sin()y A x ωϕ=+,(0,0,)2A πωϕ>><的图象如下图所示,则该函数的解析式是 ( ) A .)672sin(2π+=x y B .22sin()76y x π=- C .)62sin(2π+=x yD .)62sin(2π-=x y14、已知函数1)2sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 15、将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π参考答案:1、对于0a >且1a ≠,在下列命题中,正确的命题是:( C )M N =,则log log a a M N =; B. 若,M N R +∈,则log ()log log a a a M N M N +=+;C. 若log log a a M N =,则M N =;D. 若22log log a a M N =,则M N =;2、cos75cos15⋅的值是( B )A .12B . 14C .D 3、如果tan (α+β)=43,tan (β-4π )=21,那么tan (α+4π)的值是( B ) A .1110 B .112 C .52D .24、ABC ∆中,角A B C 、、的对边分别为a b c 、、,且lg lg lgcos a c B -=,则ABC ∆的形状为( B )A. 锐角三角形B.直角三角形C.5、若函数sin cos y x a x =+的一条对称轴方程为4x π=,则此函数的递增区间是:( C )A. (,)42ππB. 3(,)4ππC. 3(2,2),44k k k Z ππππ-+∈D. (2,2),22k k k Z ππππ-+∈6、已知函数()tan(2)f x x b π=-的图象的一个对称中心为(,0)3π,若1||2b <,则()f x 的解析式为( D )A .tan(2)3x π+B .tan(2)6x π- C .tan(2)6x π+或tan(2)3x π- D .tan(2)6x π-或tan(2)3x π+7、已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a = ( A )A .0B .1C .-1D .±18、若不等式log sin 2(0,1)a x x a a >>≠,对于任意(0,]4x π∈都成立,则实数a 的取值范围是 ( B )A. (0,)4π B. (,1)4π C. (,)42ππ D. (0,1)9、设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是( B )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值10、设锐角θ使关于x 的方程24cos cot 0x x θθ++=有重根,则θ的弧度数为( B )A .6π B .51212orππ C .5612orππ D .12π11、若()43sin ,sin 525ππθθ⎛⎫+=+= ⎪⎝⎭,则θ角的终边在( D )A .第一象限B .第二象限C .第三象限D .第四象限12、函数2sin cos y x x ωω= (0)ω>的最小正周期为π,则函数()2sin()2f x x πω=+的一个单调增区间是( C )A .[]22ππ-,B .[2ππ],C .[]23ππ,D .[0]2π,13、已知函数sin()y A x ωϕ=+,(0,0,)2A πωϕ>><的图象如下图所示,则该函数的解析式是 ( C ) A .)672sin(2π+=x y B .22sin()76y x π=- C .)62sin(2π+=x yD .)62sin(2π-=x y14、已知函数1)2sin()(--=ππx x f ,则下列命题正确的是A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 15、将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( C )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π。

高二数学开学考(含答案)(完整资料).doc

高二数学开学考(含答案)(完整资料).doc

【最新整理,下载后即可编辑】高二开学考试数学试题一、选择题(每小题5分,共60分) 1.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角答案:B2.已知f(α)=sin π-α·cos 2π-αcos -π-α·tan π-α,则f ⎝⎛⎭⎪⎪⎫-25π3的值为( )A.12 B .-12C .32D .-32答案:A3.函数f(x)=sin(2x +φ)⎝⎛⎭⎪⎪⎫|φ|<π2向左平移π6个单位后是奇函数,则函数f(x)在⎣⎢⎢⎡⎦⎥⎥⎤0,π2上的最小值为( )A .-32B .-12C .12D .32答案:A4.函数f(x)=sin(ωx+φ)⎝⎛⎭⎪⎪⎫ω>0,|φ|<π2的最小正周期是π,若其图象向右平移π6个单位长度后得到的函数为奇函数,则函数f(x)的图象( )A .关于点⎝ ⎛⎭⎪⎪⎫π12,0对称 B .关于直线x =π12对称C .关于点⎝⎛⎭⎪⎪⎫π6,0对称 D .关于直线x =π6对称答案:B5.已知cos α=13,cos(α+β)=-13,且α,β∈⎝⎛⎭⎪⎪⎫0,π2,则cos(α-β)的值为( )A .-12B .12C .-13D .2327答案:D6.已知函数f(x)=1+cos 2x 4sin ⎝ ⎛⎭⎪⎪⎫π2+x +asin x 2cos ⎝ ⎛⎭⎪⎪⎫π-x 2的最大值为2,则常数a 的值为( )A.15 B .-15 C .±15 D .±10答案:C7.在△ABC 中,BD →=2DC →,AD →=mAB →+nAC →,则m n 的值为( )A .2B .12C .3D .13答案:B 8.已知平面向量a =(1,x),b =⎝⎛⎭⎪⎪⎫12x -3,y -1,若a 与b 共线,则y =f(x)的最小值是( )A .-92B .-4C .-72D .-3答案:C9.已知△ABC 中,|BC →|=10,AB →·AC →=-16,D 为边BC 的中点,则|AD→|=( ) A .6 B .5 C .4 D .3答案:D10.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A .9B .18C .27D .36 答案:B11.对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i )(i =1,2,…,8),其回归直线方程是y ^=13x +a ^,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a ^的值是( )A.116 B .18C.14D .12答案:B12.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A.17 B .1235C .1735D .1答案:C二、填空题(每小题5分,共20分)13.(2015·辽宁五校二联)已知sin x =m -3m +5,cos x =4-2mm +5,且x ∈⎝ ⎛⎭⎪⎪⎫3π2,2π,则tan x =________.答案:-3414.在与2 010°终边相同的角中,绝对值最小的角的弧度数为________. 答案:-5π615.设点M 是线段BC 的中点,点A 在直线BC 外,BC 2→=16,|AB→+AC →|=|AB →-AC →|.→|=________.则|AM答案:216.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:球与性别有关.(请用百分数表示)附表:答案:三、解答题17(本小题10分).已知扇形AOB的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB.解:设扇形AOB的半径为r,弧长为l,圆心角为α.(1)由题意,得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧ r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴α=l r =23或α=lr=6.(2)解法一:∵2r +l =8,∴S 扇=12lr =14l·2r≤14⎝ ⎛⎭⎪⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎪⎫822=4, 当且仅当2r =l =4,即α=lr =2时,扇形面积取得最大值4.∴圆心角α=2,弦长AB =2sin 1×2=4sin 1. 解法二:∵2r +l =8,∴S 扇=12lr =12r(8-2r)=r(4-r)=-(r -2)2+4≤4,当且仅当r =2,即α=lr =2时,扇形面积取得最大值4.∴弦长AB =2sin 1×2=4sin 1. 18(本小题12分).已知sin(3π+α)=2sin ⎝⎛⎭⎪⎪⎫3π2-α,求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.解:由已知得sin α=2cos α. (1)原式=2cos α-4cos α5×2cos α+2cos α=-16.(2)原式=sin 2α+2sin αcos αsin 2α+cos 2α=sin 2α+sin 2αsin 2α+14sin 2α=85.19(本小题12分).设函数f(x)=sin ⎝ ⎛⎭⎪⎪⎫πx 3-π6-2cos 2πx 6.(1)求y =f(x)的最小正周期及单调递增区间;(2)若函数y =g(x)与y =f(x)的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g(x)的最大值.解:(1)由题意知,f(x)=32sin πx 3-32cos πx 3-1=3sin ⎝ ⎛⎭⎪⎪⎫πx 3-π3-1, 所以y =f(x)的最小正周期T =2ππ3=6.由2kπ-π2≤πx 3-π3≤2kπ+π2,k ∈Z ,得6k -12≤x≤6k+52,k ∈Z ,所以y =f(x)的单调递增区间为⎣⎢⎢⎡⎦⎥⎥⎤6k -12,6k +52,k ∈Z .(2)因为函数y =g(x)与y =f(x)的图象关于直线x =2对称, 所以当x ∈[0,1]时,y =g(x)的最大值即为x ∈[3,4]时y =f(x)的最大值.当x ∈[3,4]时, π3x -π3∈⎣⎢⎢⎡⎦⎥⎥⎤2π3,π, sin ⎝ ⎛⎭⎪⎪⎫π3x -π3∈⎣⎢⎢⎡⎦⎥⎥⎤0,32, f(x)∈⎣⎢⎢⎡⎦⎥⎥⎤-1,12, 即当x ∈[0,1]时,函数y =g(x)的最大值为12.20(本小题12分).在平面直角坐标系xOy 中,已知向量m=⎝⎛⎭⎪⎪⎫22,-22,n =(sin x ,cos x),x ∈⎝⎛⎭⎪⎪⎫0,π2.(1)若m⊥n ,求tan x 的值; (2)若m 与n 的夹角为π3,求x 的值.解:(1)∵m =⎝⎛⎭⎪⎪⎫22,-22,n =(sin x ,cos x),m⊥n , ∴ m·n =22sin x -22cos x =0,即sin x =cos x ,∴ tan x =sin xcos x=1.(2)由题意知,|m|=⎝ ⎛⎭⎪⎪⎫222+⎝ ⎛⎭⎪⎪⎫-222=1, |n|=sin 2x +cos 2x =1,m·n =22sin x -22cos x =sin ⎝⎛⎭⎪⎪⎫x -π4. 而m·n =|m|·|n|·cos〈m ,n 〉=cos π3=12,∴sin ⎝⎛⎭⎪⎪⎫x -π4=12. 又∵x ∈⎝⎛⎭⎪⎪⎫0,π2,x -π4∈⎝⎛⎭⎪⎪⎫-π4,π4, ∴ x -π4=π6,∴ x =5π12.21(本小题12分).某网络营销部门随机抽查了某市200名网友在2015年11月11日的网购金额,所得数据如图①:②已知网购金额不超过3千元与超过3千元的人数比恰好为3∶2.(1)试确定x ,y ,p ,q 的值,并补全频率分布直方图(如图②); (2)营销部门为了了解该市网友的购物体验,在这200名网友中,用分层抽样方法从网购金额在(1,2]和(4,5]的两个群体中抽取5人进行问卷调查.若需从这5人中随机选取2人进行访谈,则此2人来自不同群体的概率是多少?解:(1)根据题意,得⎩⎪⎨⎪⎧16+24+x +y +16+14=200,16+24+x y +16+14=32,解得⎩⎪⎨⎪⎧x =80,y =50.∴p =0.4,q =0.25.补全频率分布直方图如图所示.(2)根据题意,“网购金额在(1,2]”的群体中应抽取24 24+16×5=3(人),记为a,b,c,“网购金额在(4,5]”的群体中应抽取1624+16×5=2(人),记为A,B.在此5人中随机选取2人,有以下可能情况:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B),共10种情况.设“此2人来自不同群体”为事件M,包含了(a,A),(a,B),(b,A),(b,B),(c,A),(c,B),共6种可能,∴P(M)=610=35,即此2人来自不同群体的概率是35.22(本小题12分).一个均匀的正四面体的四个面上分别写有1,2,3,4四个数字,现随机抛掷两次,正四面体面朝下的数字分别为b,c.(1)z=(b-3)2+(c-3)2,求z=4的概率;(2)若方程x2-bx-c=0至少有一根x∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解:(1)因为随机抛掷两次,所以基本事件(b ,c)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.当z =4时,(b ,c)的所有取值为(1,3),(3,1),共2个. 所以P(z =4)=216=18.(2)∵Δ=b 2+4c>0恒成立, ∴方程必有两根.∴①若方程一根为x =1,则1-b -c =0, 即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0, 即2b +c =4,所以⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0, 即3b +c =9,所以⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0, 即4b +c =16,所以⎩⎪⎨⎪⎧b =3,c =4.由①②③④知,(b ,c)的所有可能取值为(1,2),(2,3),(3,4).所以方程为“漂亮方程”的概率为P =316.。

高二数学下学期开学考试试题含解析 试题

高二数学下学期开学考试试题含解析 试题

智才艺州攀枝花市创界学校鸡泽县第一二零二零—二零二壹高二数学下学期开学考试试题〔含解析〕一.选择题〔一共12小题〕 1.“00x ∃>,20010x x ++<〞的否认是〔〕A.0x ∀>,210x x ++≥B.0x ∀≤,210x x ++<C.0x ∀>,210x x ++<D.0x ∀≤,210x x ++≥【答案】A 【解析】 【分析】的关系,准确改写,即可求解.【详解】“00x ∃>,20010x x ++<〞的否认为:“0x ∀>,210x x ++≥〞.应选:A . 【点睛】. 2.设()ln(21)f x x =-,假设()f x 在0x 处的导数0()1f x '=,那么0x 的值是〔〕A.12e + B.32C.1D.34【答案】B 【解析】 【分析】直接求出原函数的导函数,由0()1f x '=列式求解0x 的值.【详解】由()ln(21)f x x =-,得(212)f x x =-'. 由002()121f x x '==-,解得:032x =. 应选:B .【点睛】此题考察了简单的复合函数求导,关键是不要忘记对内层函数求导,是根底题. 3.某射手射击所得环数ξ的分布列如下:ξ的数学期望()8.9E ξ=,那么y 的值是〔〕A. B. C. D.【答案】C 【解析】 【分析】根据分布列的概率之和为1得,x y 的一个关系式,由变量的期望值得,x y 的另一个关系式,联立方程,求解y 的值.【详解】解:由表格可知:0.10.31780.190.3108.9x y x y +++=⎧⎨+⨯+⨯+⨯=⎩, 解得0.4y =.应选:C .【点睛】此题考察根据分布列和期望值求参数,熟记概念即可,属于常考题型.4.从2名男同学和3名女同学中任选2人参加社区效劳,那么选中的恰有一名女同学的概率为〔〕 A.B.C.D.【答案】D 【解析】 【分析】设2名男生为,a b ,3名女生为,,A B C ,那么任选2人的种数一共10种,其中恰有一名女同学一共6种,根据古典概型概率计算公式,即可求出结果. 【详解】设2名男生为,a b,3名女生为,,A B C,那么任选2人的种数为ab aA aB aC bA bB Bc AB AC BC ,,,,,,,,,一共10种,其中全是女生为aA aB aC bA bB Bc ,,,,,一共6种,故恰有一名女同学的概率60.610P ==. 应选:D .【点睛】此题考察概率的求法,考察古典概型概率计算公式等根底知识,考察运算求解才能,考察函数与方程思想,是根底题.5.某人进展投篮训练100次,每次命中的概率为0.8〔互相HY 〕,那么命中次数的HY 差等于〔〕 A.20 B.80C.16D.4【答案】D 【解析】 【分析】先分析出变量服从二项分布,再直接带入公式即可. 【详解】命中次数服从ξ~B 〔100,〕;∴命中次数的HY =4.应选:D .【点睛】此题考察服从二项分布的变量的HY 差,考察计算才能,属于根底题. 6.如图是函数()y f x =的导数()'y f x =的图象,那么下面判断正确的选项是〔〕A.在()3,1-内()f x 是增函数B.在1x =时()f x 获得极大值C.在()4,5内()f x 是增函数D.在2x=时()f x 获得极小值【答案】C 【解析】 【分析】 根据导函数()y f x ='的图象,分别判断函数的单调区间和极值.【详解】对A ,由导函数()y f x ='的图象可知,在区间(3,1)-内函数先减后增,∴在(3,1)-不单调,故A 错误; 对B ,当1x =时,'(1)0f ≠,此时(1)f 不是极大值,故B 错误;对C ,在(4,5)内()0f x '>,此时函数单调递增,故C 正确.对D ,当2x=时,'(2)0f =,但此时(2)f 不是极小值,而是极大值,故D 错误;应选:C .【点睛】此题考察函数单调性和极值与导数之间的关系,考察函数与方程思想、转化与化归思想、数形结合思想,求解时注意从图形中提取信息. 7.设函数2()5cos xf x e x x =--,那么函数()f x 的图象大致为〔〕A. B. C.D.【答案】B 【解析】 【分析】根据函数解析式判断奇偶性,结合极限和特殊值进展排除选项,即可得解. 【详解】依题意,函数()f x 的定义域为R ,关于原点对称, 且()()()225cos 5cos ()xxf x ex x e x x f x --=----=--=,故函数()f x 为偶函数,图象关于y 轴对称,排除C ;当x →+∞时,()f x →+∞排除D ;225cos 222f e ππππ⎛⎫⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2202e ππ⎛⎫=-> ⎪⎝⎭,排除A. 应选:B【点睛】此题考察根据函数解析式选择适宜的函数图象,关键在于纯熟掌握函数性质,结合特殊值与极限求解,此类问题常用排除法解决.8.α为第二象限的角,且3tan 4α=-,那么sin cos αα+=() A.75-B.34-C.15-D.15【答案】C 【解析】 【分析】由sin 3tan cos 4ααα==-,①,22sin cos 1a a +=,②,联立①②,再结合条件即可求出sin , cos αα的值,那么答案可求.【详解】解:sin 3tan cos 4ααα==-,①,22sin cos 1a a +=,②,又α为第二象限的角,sin 0,cos 0αα∴><,联立①②,解得34sin ,cos 55αα==-, 那么1sin cos 5αα+=-.应选:C .【点睛】此题考察了三角函数的化简求值,考察了同角三角函数根本关系,是根底题.9.集合{}2230A x x x =--<,122x Bx ⎧⎫=≥⎨⎬⎩⎭,那么“x B ∈〞是“x A ∈〞的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】 【分析】 解出集合A 、B 中的不等式即可判断出答案.【详解】因为{}{}223013A x x x x x =--<=-<<,{}1212x B x x x ⎧⎫=≥=≥-⎨⎬⎩⎭所以假设x A ∈,那么x B ∈,反之不成立 所以“x B ∈〞是“x A ∈〞的必要不充分条件 应选:B【点睛】此题考察的是一元二次不等式和指数不等式的解法,考察了必要不充分条件的判断,属于根底题. 10.函数()ln f x x ax =-恰有两个零点1x ,2x ,且12x x <,那么1x 所在区间为〔〕A.310,e ⎛⎫ ⎪⎝⎭B.2311,e e ⎛⎫⎪⎝⎭C.211,e e ⎛⎫⎪⎝⎭D.1,1e ⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】结合导数分析函数的特征性质,然后结合函数图象的根本趋势及零点断定定理进展求解即可.【详解】当0a ≤时不符合题意;当0a>时,考察函数()ln g x x =与()h x ax =图象易知,()gx 与()h x 图象在区间()0,1上必有一个交点那么在区间()1,+∞上有且仅有一个公一共点, 当()1,x ∈+∞时,()ln f x x ax =-,()1ax f x x ='-,那么()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减, 所以()max 11ln 1f x f a a ⎛=⎫=- ⎪⎝⎤⎣⎦⎭⎡,那么只需1ln10a -=,故1ea =, 当()0,1x ∈时,()1ln ef x x x =--, 易知21110e e f ⎛⎫=-> ⎪⎝⎭,()110f e =-<,可知11,1e x ⎛⎫∈ ⎪⎝⎭.应选:D【点睛】此题考察对数函数的概念与性质,考察学生的逻辑推理才能、运算求解才能以及综合运用数学知识灵敏解决问题的才能,考察数形结合的思想. 11.以下说法正确的选项是〔〕 A.21x =,那么1x ≠21x =,那么1x =〞B.0x R ∃∈,2000x x -<〞的否认是“x R ∀∈,20x x ->〞C.“()y f x =在0x 处有极值〞是“0()0f x '=〞的充要条件D.2()1f x x ax =-+有零点,那么“2a ≥或者2a ≤-【答案】D 【解析】 【分析】 选项ABC ,()y f x =在0x 处有极值,既要满足0()0f x '=,也要满足函数在0x 两边的单调性要相反;选项D ,假设函数2()1f x x ax =-+有零点,等价于0∆≥【详解】选项A“假设21x =,那么1x ≠〞21x ≠,那么1x =〞,错误;选项B“0x R ∃∈,2000x x -<〞的否认是“x R ∀∈,20x x -≥〞,错误;选项C ,0()0f x '=不能得到()y f x =在0x 处有极值,例如3()f x x =在0x =时,导数为0,但0x =不是函数极值点,错误;选项D ,假设函数2()1f x x ax =-+有零点,即方程210x ax -+=有解,所以0∆≥,解得2a ≥或者2a ≤-2a ≥或者2a ≤-【点睛】12.函数()232,3,x x x mf x x x m⎧-+≤=⎨-+>⎩,假设()f x 恰好有2个零点,那么m 的取值范围是〔〕A.(]2,3B.[)2,3C.[)[)1,23,+∞D.(][)1,23,+∞【答案】C 【解析】 【分析】 根据题意,作出函数21232,3y x x y x =-+=-+的图象,利用数形结合的思想求出使()f x 恰好有2个零点的m 的取值范围即可.【详解】令21232,3y x x y x =-+=-+,因为方程2320x x -+=的两根为121,2x x ==,所以在同一直角坐标系下作出函数21232,3y x x y x =-+=-+的图象如下列图:由图可知,当12m ≤<时,函数()f x 恰有两个零点,图象如下列图:当3m ≥时,函数()f x 恰有两个零点,图象如下列图: 综上可知,所务实数m 的取值范围为[)[)1,23,+∞.应选:C【点睛】此题考察利用分段函数的图象和函数零点的个数求参数的取值范围;考察运算求解才能和数形结合思想;纯熟掌握分段函数图象的画法和零点的概念是求解此题的关键;属于中档题. 二.填空题〔一共4小题〕13.假设1cos 3α=,那么sin()2πα-=________. 【答案】13- 【解析】 【分析】根据诱导公式可知sin cos 2παα⎛⎫-=- ⎪⎝⎭ 【详解】1sin cos 23παα⎛⎫-=-=- ⎪⎝⎭ 故答案为13-. 【点睛】此题考察根据诱导公式求值,属于简单题型. 14.函数1()()1x f x x R x -=∈+的图象对称中心是___. 【答案】(1,1)- 【解析】【分析】 首先将函数变形为211y x --=+,设1y y '=-,1x x '=+,得到2y x -'=',根据反比例函数和奇函数的性质即可求出答案. 【详解】因为12()111x y f x x x -===-++, 即211y x --=+,可设1y y '=-,1x x '=+,得到2y x -'=', 所以y '与x '成反比例函数关系且为奇函数,那么对称中心为(0,0),即0y '=,0x '=,得到1y =,1x =-所以函数()y f x =的对称中心为(1,1)-.故答案为:(1,1)-【点睛】此题主要考察学生灵敏运用奇偶函数对称性的才能,同时考察学生推理才能,属于中档题. 15.()()7210axa ->的展开式中第6项的系数为-189,那么展开式中各项的系数和为______.【答案】128 【解析】 【分析】根据二项展开式的通项公式得出77717(1)kkk k k T aC x ---+=-,从而得出第六项系数57527(1)189a C --=-,求出3a =,最后利用赋值法求展开式中各项的系数和. 【详解】解:由题意,通项为:7777177()(1)(1)kkk k k k k k T C ax a C x ----+=-=-,由于()()7210axa ->的展开式中第6项的系数为-189,那么第六项系数为:57527(1)189a C --=-,解得:3a =,故该二项式为27(31)x -,令1x =得展开式各项系数的和为:72128=.故答案为:128.【点睛】此题考察二项展开式的通项公式得应用和指定项的系数,以及利用赋值法求展开式中各项的系数和. 16.函数()f x 是定义在R 上的奇函数,且对于任意x ∈R ,恒有(1)(1)f x f x -=+成立,当[]1,0x ∈-时,()21x f x =-,那么(2013)f =___.【答案】12【解析】 【分析】根据抽象函数关系式可确定函数周期,结合奇偶性可知()()()201311f f f ==--,利用解析式求得()1f -后即可得到结果.【详解】由()()11f x f x -=+得:()()2f x f x +=,即函数()f x 的周期是2,()()()20132100611f f f ∴=⨯+=, ()f x 是定义在R 上的奇函数,()()11f f ∴-=-,又当[]1,0x ∈-时,()21x f x =-,()111121122f -∴-=-=-=-, ()()1112f f ∴=--=,()()1201312f f ∴==. 故答案为:12. 【点睛】此题考察利用函数奇偶性和周期性求解函数值的问题,关键是可以利用奇偶性和周期性将所求自变量转化到解析式的自变量所在区间内. 三.解答题〔一共6小题〕17.函数()32134132f x x x x =--+.〔1〕求函数()f x 的单调区间;〔2〕当[]25x ∈-,时,求函数()f x 的最大值和最小值. 【答案】〔1〕单调递增区间是(),1-∞-和()4,+∞;单调递减区间是()1,4-〔2〕最大值为196,最小值为533-. 【解析】 【分析】 〔1〕先求导,()()()41f x x x '=-+,那么0fx 的解集对应的是增区间,0f x 的解集对应的是减区间.〔2〕根据〔1〕知,当[]2,1x ∈--时,0fx,当[]1,4x ∈-时,0fx,当[]4,5x ∈时,0f x ,求出极值点,再加上端点值,其中最大的为最大值,最小的为最小值.【详解】〔1〕()()()41f x x x '=-+,当1x <-或者4x >时,0fx ,当14x -<<时,0f x ,所以函数()f x 单调递增区间是(),1-∞-和()4,+∞,函数()f x 单调递减区间是()1,4-.〔2〕由〔1〕知,当[]2,1x ∈--时,0fx ,当[]1,4x ∈-时,0fx,当[]4,5x ∈时,0fx,所以()123f -=,()1916f -=,()5343f =-,()8956f =-, 当1x =-时,函数()f x 的最大值为196,当4x =时,函数()f x 的最小值为533-. 【点睛】此题主要考察了导数法研究函数的单调性与最值问题,还考察了数形结合的思想和运算求解的才能,属于中档题.18.随着新高考HY 的不断深化,高生生涯规划越来越受到社会的关注.一些高中已经开场尝试开设学生生涯规划选修课程,并获得了一定的成果.下表为某高中为了调查学生成绩与选修生涯规划课程的关系,随机抽取50名学生的统计数据.〔Ⅰ〕根据列联表运用HY 性检验的思想方法分析:能否有99%的把握认为“学生的成绩是否优秀与选修生涯规划课有关〞,并说明理由;〔Ⅱ〕假设从全校选修生涯规划课的学生中随机地抽取3名学生,求抽到成绩不够优秀的学生人数ξ的分布列和数学期望〔将频率当作概率计算〕. 参考附表:参考公式()()()()()22n ad bc Ka b a c b d c d -=++++,其中n a b c d =+++.【答案】〔Ⅰ〕有把握,理由见解析;〔Ⅱ〕分布列见解析,65. 【解析】 【分析】〔Ⅰ〕根据题中所给的公式求出2K 的值,然后根据参考附表进展判断即可;〔Ⅱ〕由题意可以求出在全校选修生涯规划课的学生中随机抽取1名学生成绩优秀的概率,成绩不优秀的概率,可以判断ξ可取值为0,1,2,3,根据二项分布的性质进展求解即可.【详解】〔Ⅰ〕由题意知,2K 的观测值()2501519610 6.650 6.63521292525k ⨯⨯-⨯=≈>⨯⨯⨯. 所以有99%的把握认为“学生的成绩优秀与是否选修生涯规划课有关〞.〔Ⅱ〕由题意知在全校选修生涯规划课的学生中随机抽取1名学生成绩优秀的概率为35,成绩不优秀的概率为25, ξ可取值为0,1,2,3.所以ξ的分布列为2~3,5B ξ⎛⎫⎪⎝⎭,26355E ξ∴=⨯=.【点睛】此题考察了2K 的计算,考察了二项分布的性质应用,考察了离散型随机变量分布列和数学期望,考察了数学运算才能.19.根据某地某条河流8月份的水文观测点的历史统计数据所绘制的频率分布直方图如图〔甲〕所示;根据当地的地质构造,得到水位与灾害等级的频率分布条形图如图〔乙〕所示. 〔1〕以此频率作为概率,试估计该河流在8月份发生1级灾害的概率;〔2〕该河流域某企业,在8月份,假设没受1、2级灾害影响,利润为500万元;假设受1级灾害影响,那么亏损100万元;假设受2级灾害影响那么亏损1000万元. 现此企业有如下三种应对方案:试问,如仅从利润考虑,该企业应选择这三种方案中的哪种方案?说明理由. 【答案】〔1〕0.155〔2〕应选方案二.【解析】【详解】〔1〕根据甲图,记该河流8月份“水位小于40米〞为事件1A ,“水位在40米至50米之间〞为事件2A ,“水位大于50米〞为事件3A ,它们发生的概率分别为:()()()()120.020.050.0650.65,0.040.0250.30P A P A =++⨯==+⨯=, ()30.0150.05P A =⨯=.记该地8月份“水位小于40米且发生1级灾害〞为事件1B ,“水位在40米至50米之间且发生1级灾害〞为事件2B ,“水位大于50米且发生1级灾害〞为事件3B , 所以()()()1230.1,0.2,0.6PB P B P B ===.记“该河流在8月份发生1级灾害〞为事件B .那么0.650.100.300.200.050.600.155=⨯+⨯+⨯=.估计该河流在8月份发生1级灾害的概率为0.155. 〔2〕以企业利润为随机变量, 选择方案一,那么利润1X 〔万元〕的取值为:500,100,1000--,由〔1〕知()110000.6500.300.050.050.400.035P X =-=⨯+⨯+⨯=.1X 的分布列为那么该企业在8月份的利润期望()()()15000.811000.15510000.035354.5E X =⨯+-⨯+-⨯=〔万元〕.选择方案二,那么2X 〔万元〕的取值为:460,1040-,由〔1〕知,()()224600.810.1550.965,10400.035P X P X ==+==-=,2X 的分布列为:那么该企业在8月份的平均利润期望()()24600.96510400.035407.5EX =⨯+-⨯=〔万元〕选择方案三,那么该企业在8月份的利润为:()3500100400EX =-=〔万元〕由于()()()231E X E X E X >>,因此企业应选方案二.20.函数()22ln f x x a x x=++,a R ∈. 〔Ⅰ〕假设4a =-,求曲线()y f x =在点()()1,1A f 处的切线方程;〔Ⅱ〕假设函数()f x 在[)1,+∞上单调递增,务实数a 的取值范围. 【答案】〔I 〕470x y +-=;〔Ⅱ〕[)0,+∞.【解析】 【分析】 〔I 〕对函数()f x 进展求导得到()f x ',把4a =-和1x =分别代入()f x 和()f x ',求出()1f 、()1f ',利用导数的几何意义即可求解;〔Ⅱ〕对函数()f x 进展求导,再由()0f x '≥在[)1,+∞上恒成立得到关于a 的不等式,利用别离参数法和构造函数法求出实数a 的取值范围即可.【详解】〔I 〕因为函数()22ln f x x a x x =++,a R ∈,所以()222a f x x x x'=-+, 当4a =-时,()224ln f x x x x=+-,()11203f =+-=. ()2242f x x x x'=--,()12244f '=--=-. ∴曲线()y f x =在点()()1,1A f 处的切线方程为()341y x -=--,所以470x y +-=即为所求;〔Ⅱ〕函数()f x 在[)1,+∞上单调递增,()2220a f x x x x'∴=-+≥,可得222a x x ≥-, 令()222x x gx -=,[)1,x ∈+∞, 因为函数2y x=为[)1,+∞上的减函数,函数22y x =为[)1,+∞上的增函数,所以,函数()gx 在[)1,+∞上单调递减.当1x =时,函数()gx 获得最大值为()10g =,因此,实数a 的取值范围为[)0,+∞.【点睛】此题考察利用导数的几何意义求函数在某点处的切线方程、利用导数判断函数的单调性求参数的取值范围,考察运算求解才能和转化与化归才能,纯熟掌握导数的几何意义和利用导数判断函数的单调性的方法是求解此题的关键,属于中档题、常考题型.21.2020年1月10日,引发新冠肺炎疫情的COVID -9病毒基因序列公布后,科学家们便开场了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,312,假设每次接种后当天是否出现抗体与上次接种无关. 〔1〕求一个接种周期内出现抗体次数k 的分布列; 〔2〕每天接种一次花费100元,现有以下两种试验方案:①假设在一个接种周期内连续2次出现抗体即终止本周期试验,进展下一接种周期,试验持续三个接种周期,设此种试验方式的花费为X元;②假设在一个接种周期内出现2次或者3次抗体,该周期完毕以后终止试验,试验至多持续三个接种周期,设此种试验方式的花费为Y 元. 比较随机变量X 和Y 的数学期望的大小.【答案】〔1〕分布列答案见解析.〔2〕()()E X E Y >【解析】 【分析】〔1〕由题意可知,随机变量k 服从二项分布13,2B ⎛⎫ ⎪⎝⎭,故3311()(0,1,2,3)22k kkP k C k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,然后列出分布列即可 〔2〕根据题意分别算出X 和Y 的期望即可.【详解】〔1〕由题意可知,随机变量k 服从二项分布13,2B ⎛⎫ ⎪⎝⎭, 故3311()(0,1,2,3)22kkk P k C k -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.那么k 的分布列为〔2〕①设一个接种周期的接种费用为ξ元,那么ξ可能的取值为200,300,因为1(200)4P ξ==,3(300)4P ξ==, 所以13()20030027544E ξ=⨯+⨯=.所以三个接种周期的平均花费为()3()3275825E X E ξ==⨯=.②随机变量Y 可能的取值为300,600,900,设事件A 为“在一个接种周期内出现2次或者3次抗体〞,由〔1〕知,311()882P A =+=.所以1(300)()2P Y P A ===,1(600)[1()]()4P Y P A P A ==-⨯=,1(900)[1()][1()]14P Y P A P A ==-⨯-⨯=,所以111()300600900525244E Y =⨯+⨯+⨯=.所以()()E X E Y >.【点睛】此题考察二项分布以及离散型随机变量的分布列与数学期望,属于根底题.22.函数)f x =(a e 2x +(a ﹣2)e x ﹣x .〔1〕讨论()f x 的单调性;〔2〕假设()f x 有两个零点,求a 的取值范围. 【答案】〔1〕见解析;〔2〕(0,1). 【解析】试题分析:〔1〕讨论()f x 单调性,首先进展求导,发现式子特点后要及时进展因式分解,再对a 按0a ≤,0a >进展讨论,写出单调区间;〔2〕根据第〔1〕问,假设0a ≤,()f x 0a >,当ln x a =-时,()f x 获得最小值,求出最小值1(ln )1ln f a a a-=-+,根据1a =,(1,)∈+∞a ,(0,1)a ∈进展讨论,可知当(0,1)a ∈()f x 在(,ln )a -∞-有一个零点;设正整数0n 满足03ln(1)n a>-,那么00000000()e (e 2)e 20n n n n f n a a n n n =+-->->->.由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞a 的取值范围为(0,1).试题解析:〔1〕()f x 的定义域为(),-∞+∞,()()()()2221121x x x x f x ae a e ae e =+---'=+,〔ⅰ〕假设0a ≤,那么()0f x '<,所以()f x 在(),-∞+∞单调递减.〔ⅱ〕假设0a >,那么由()0f x '=得ln x a =-.当(),ln x a ∈-∞-时,()0f x '<;当()ln ,x a ∈-+∞时,()0f x '>,所以()f x 在(),ln a -∞-单调递减,在()ln ,a -+∞单调递增.〔2〕〔ⅰ〕假设0a ≤,由〔1〕知,()f x 至多有一个零点.〔ⅱ〕假设0a>,由〔1〕知,当ln x a =-时,()f x 获得最小值,最小值为()1ln 1ln f a a a-=-+.①当1a =时,由于()ln 0f a -=,故()f x 只有一个零点;②当()1,a ∈+∞时,由于11ln 0a a-+>,即()ln 0f a ->,故()f x 没有零点; ③当()0,1a ∈时,11ln 0a a-+<,即()ln 0f a -<.又()()4222e 2e 22e 20f a a ----=+-+>-+>,故()f x 在(),ln a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>- ⎪⎝⎭,那么()()00000000e e 2e 20n n n n f n a a n n n =+-->->->.由于3ln 1ln a a ⎛⎫->-⎪⎝⎭,因此()f x 在()ln ,a -+∞有一个零点. 综上,a 的取值范围为()0,1.()f x 有2个零点求参数a 的取值范围,第一种方法是别离参数,构造不含参数的函数,研究其单调性、极值、最值,判断y a =与其交点的个数,从而求出a 的取值范围;第二种方法是直接对含参函数进展研究,研究其单调性、极值、最值,注意点是假设()f x 有2个零点,且函数先减后增,那么只需其最小值小于0,且后面还需验证最小值两边存在大于0的点.。

开学入学考试高二数学试卷含详解答案

开学入学考试高二数学试卷含详解答案

含1980 年与1989 年)出生, 90 后是指在1990 1999 年(包含1990 年与1999 年)出生,
80 前是指在1979 年及以前出生)( )
A.互联网行业从业人员中 80 后的人数不超过一半 B.互联网行业中 90 后从事技术岗位的人数超过所有年龄从业者总人数的 20%
试卷第 2页,总 6页
x2 2 ,则 t
2

f
(t)
t
1

t
设 t1 t2
2
,所以
f
(t1 )
f
(t2 )
t1
1 t1
t2
1 t2
t1
t2
t1t2 1 , t1t2
因为 t1 t2
0 , t1t2
1
0 ,所以 t1
t2
t1t2 t1t2
1
0,
f
(t1 )
f
(t2 ) ,
所以 f (t) 在 t 2 上是单调递增函数,所以 f (t) f 2 3 2 , 2
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这
个定值就不是所求的最值,这也是最容易发生错误的地方.
3.B
【分析】
设直角三角形较短的直角边长为 a ,可得出较长直角边长为 a ,由此可计算出小正方形 tan
和大正方形的边长,进而可得出关于 的三角等式,进而可解得 tan 的值.
的 2 2 列联表.请将列联表补充完整,并判断是否有 99% 的把握认为选择科目与性别有
关,说明理由; (3)在抽取的选择地理的学生中用分层抽样的方法再抽取 6 名学生,然后从这 6 名学 生中抽取 2 名学生了解学生对地理的选课意向情况,求这 2 名学生中至少有 1 名男生的 概率.

湖南省长沙市长郡中学2024-2025学年高二上学期入学考试数学试题(含答案)

湖南省长沙市长郡中学2024-2025学年高二上学期入学考试数学试题(含答案)

长郡中学2024年高二暑假作业检测试卷数学得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页。

时量120分钟。

满分150分。

第Ⅰ卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.命题“对任意,”的否定为A .对任意, B .存在,C .对任意,D .存在,2.已知,,则A . B .C .D .3.已知,则A .2B .C .4D .★4.已知函数f (x )是定义在R 上的偶函数,且在(-∞,0]上单调递增,若对任意的,不等式恒成立,则a 的取值范围是A .B .C .(-2,2) D .(-∞,-2)∪(2,+∞)5.已知,,则A.B .C .D .★6.若函数有两个零点,则实数m 的取值范围是A .(-1,2)B .(-1,1)C .(0,1)D .(-1,0)7.如图,圆锥底面半径为3,母线,,一只蚂蚁从A 点出发,沿圆锥侧面绕行一周,到达B 点,最短路线长度为x ∈R 2240x x -+≤x ∈R 2240x x -+≥0x ∈R 200240x x -+>x ∉R 2240x x -+≥0x ∉R 200240x x -+>{}|43A x x =-≤≤(){}|lg 10B x x =->A B = {}|42x x -<≤{}|42x x -≤≤{}|23x x <<{}|23x x <≤3i1iz +=-|1|z +=x ∈R ()()21f ax f x >+11,22⎛⎫-⎪⎝⎭11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭π1tan 44α⎛⎫-= ⎪⎝⎭()2tan 5αβ+=πtan 4β⎛⎫+=⎪⎝⎭3221318161322()|e 1|xf x m =-+12PA =23AB AP =A .B .16C .D .128.在△ABC 中,,O 是△ABC 的外心,M 为BC 的中点,,N 是直线OM 上异于M ,O 两点的任意一点,则A .3B .6C .7D .9二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知事件A ,B 发生的概率分别为,,则A .若,则事件与B 相互独立 B .若A 与B 相互独立,则C .若A 与B 互斥,则 D .若B 发生时A10.,,若在上的投影向量为,则A . B . C . D .11.已知,,且,则A . B .C .的最大值为2D .选择题答题卡题号1234567891011得分答案第Ⅱ卷三、填空题(本题共3小题,每小题5分,共15分)12.已知函数则________.AC =8AB AO ⋅=AN BC ⋅=()13P A =()16P B =()19P AB =A ()49P A B = ()49P A B =(),1a λ= ()1,1b =-a b b 3λ=a b P ()a ab ⊥- ||a b -=1x >1y >4xy =45x y +<≤220log log 1x y <⋅≤2log yx21log log 2x x y -+<≤()()3,0,2,0,x x f x f x x ⎧>⎪=⎨+⎪⎩≤31log 16f ⎛⎫= ⎪⎝⎭13.一组数据42,38,45,43,41,47,44,46的第75百分位数是________.★14.直三棱柱的各顶点都在同一球面上,若,,,则此球的表面积等于________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)★15.(13分)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为,,,已知,.(1)求△ABC 的面积;(2)若b .16.(15分)已知函数,.(1)解不等式;(2)若对任意的恒成立,求m 的取值范围.★17.(15分)如图,已知四棱锥P-ABCD 的底面ABCD 是菱形,,,E 为AD 的中点,点F 在PA 上,.(1)证明:;(2)若,且PD 与平面ABCD 所成的角为45°,求平面AEF 与平面BEF 夹角的余弦值.18.(17分)已知函数f (x )满足:,,且当时,,函数.(1)求实数m 的值;111ABC A B C -1AB =12AC AA ==2π3BAC ∠=1S 2S 3S 123S S S -+=1sin 3B=sin sin A C =()πcos 1224x x f x ⎛⎫=++ ⎪⎝⎭()sin 2g x x =()1f x ≥()()mf x g x ≤π0,4x ⎡⎤∈⎢⎥⎣⎦PBC ABCD ⊥平面平面30ACD ∠=︒3AP AF =PC BEF 平面P PDC PDB ∠=∠x ∀∈R ()()132f x f x +=-[]0,3x ∈()2f x x x m =--+()()21xg x =-(2)若,且,求x 的取值范围;(3)已知,其中,是否存在实数λ,使得恒成立?若存在,求出实数λ的取值范围;若不存在,请说明理由.19.(17分)设整数集合,其中,且对任意i ,j (),若,则.(1)请写出一个满足条件的集合A ;(2)证明:对任意,;(3)若,求满足条件的集合A 的个数.长郡中学2024年高二暑假作业检测试卷数学参考答案一、二、选择题题号1234567891011答案BDBCADCBABADABC8.B 【解析】因为O 是△ABC 的外心,M 为BC 的中点,设AC 的中点为D ,连接OD ,所以,,设,则,又O 是△ABC 的外心,所以,所以.故选B .(0,3]x ∈()()0g x f x ->()223h x x x λλ=-+-+[]0,1x ∈()()()()g h x f h x >{}12100,,,A a a a = 121001205a a a <<< ≤≤1100i j ≤≤≤i j A +∈i j a a A +∈{}101,102,,200x ∈ x A ∉100205a =OM BC ⊥OD AC ⊥ON OM λ= ()AN BC AO ON BC AO BC OM BCλ⋅=+⋅=⋅+⋅ ()AO BC AO BA AC=⋅=⋅+AO BA AO AC AO AB AO AC =⋅+⋅=-⋅+⋅ ()(2211||||cos ||cos ||||1422AO AC AO AC CAO AO CAO AC AC ⋅=⋅∠=∠⋅==⨯= 8146AN BC AO AB AO AC ⋅=-⋅+⋅=-+=11.ABC 【解析】因为,所以,因为所以,对于A ,,令,,由双勾函数的性质可得函数f (x )在(1,2)上单调递减,在(2,4)上单调递增,所以,又,,所以,即,故A 正确;对于B ,,由,得,所以,即,故B 正确;对于C ,令,则,即,即,则,由,得,所以当时,lg k 取得最大值lg2,所以k 的最大值为2,即的最大值为2,故C 正确;对于D ,,令,,则,4xy =4y x=1,41,x y x >⎧⎪⎨=>⎪⎩14x <<4x y x x +=+()4f x x x=+14x <<()()min 24f x f ==()15f =()45f =()[4,5)f x ∈45x y +<≤()()222222224log log log log log 2log log 11x y x x x x x⋅=⋅=⋅-=--+14x <<20log 2x <<()220log 111x <--+≤220log log 1x y <⋅≤2log yxk =224log log log x y k x==4lglg lg 2lg k x x =2lg 2lg lg lg 2lg x kx -=()()()22lg 2lg 2lg lg lg 2lg 2lg lg 2lg 2x x x k -+⋅--+==14x <<0lg 2lg 2x <<lg lg 2x =2log yx2224log log log log log 2log 21x xx x y x x x+=+=+-2log t x ∈()0,2t ∈1log 2x t=则,令,,由双勾函数的性质可得函数g (t )在上单调递减,在上单调递增所以,当x →0时,g (t )→+∞,所以,即,故D 错误.故选ABC .三、填空题12.13.45.5 14.四、解答题15.【解析】(1)由题意得,,,则,即,由余弦定理得,整理得,则,又,所以,即,则.(2)由正弦定理得,则,222log log log 2log 211x xx y x t t+=+-=+-()21g t t t=+-()0,2t ∈()2()min 1g t g==()1,)g t ∈-+∞2log log 1x x y +≥811640π322112S a =⋅=22S =23S =222123S S S a -+=-+=2222a c b +-=222cos 2a c b B ac+-=cos 1ac B =cos 0B >1sin 3B =cos B ==1cos ac B ==1sin 2ABC S ac B ==△sin sin sin b a cB A C==229sin sin sin sin sin 4b a c ac B A C A C =⋅===则,所以.16.【解析】(1)依题意,,由,得则,,解得,,所以不等式的解集为().(2)由,得,由,得,令,,原不等式化为,即,显然函数在上单调递增,则当时,,因此,所以m 的取值范围为.17.【解析】(1)设AC ,BE 的交点为O ,连接FO ,易知O 为△ABD 的重心,所以,而,所以在△APC 中,,所以,又,,所以.(2)因为,所以,所以△DCB 为等边三角形,所以,又因为,所以,所以,取BC 的中点为H ,连接PH ,则,3sin 2b B =31sin 22b B ==()212sin cos 12sin 222222x x x x x x f x ⎫=-+=+-⎪⎪⎭πsin cos 4x x x ⎛⎫=+=+ ⎪⎝⎭()1f x ≥πsin 4x ⎛⎫+⎪⎝⎭ππ3π2π2π444k x k +++≤≤k ∈Z π2π2π2k x k +≤≤k ∈Z ()1f x ≥π2π,2π2k k ⎡⎤+⎢⎥⎣⎦k ∈Z ()()mf x g x ≤()sin cos sin 2m x x x +≤π0,4x ⎡⎤∈⎢⎥⎣⎦πππ442x +≤≤πsin 14x ⎛⎫+ ⎪⎝⎭≤πsin cos 4t x x x ⎛⎫=+=+∈ ⎪⎝⎭2sin 22sin cos 1x x x t ==-21mt t -≤211t mt t t t-=-≤1y t t =-1t =min 0y =0m ≤0m ≤12AO OC =12AF FP =12AO AF OC FP ==FO PC P FO BEF ⊂平面PC BEF ⊄平面PCBEF 平面P 30ACD ∠=︒30ACB ∠=︒DC DB =PDC PDB ∠=∠PDB PDC △≌△PB PC =PH BC ⊥因为,,所以,以H 为坐标原点,HD ,HB ,HP 为x ,y ,z 轴,建立如图所示的空间直角坐标系,因为PD 与平面ABCD 所成的角为,所以,设菱形ABCD 的边长为2,则,B (0,1,0),,,,因为,所以,,,,设平面AEF 的法向量为,则令,,,所以,设平面BEF 的法向量为,则令,,所以,则PBC ABCD ⊥平面平面PBC ABCD BC = 平面平面PH ABCD ⊥平面45PDH ∠=︒PH DH =PH DH ==(P )2,0A )D)E3AP AF = 43F 13EF ⎛= ⎝ ()0,1,0AE =-)BE =(),,n x y z =0,0,10,03y n AE x y z n EF -=⎧⎧⋅=⎪⎪⇒⎨⎨++=⋅=⎪⎪⎩⎩ 1x =0y =1z =()1,0,1n =()222,,m x y z =22220,0,100,3m BE m EF x y z =⎧⋅=⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩ 2y =20x =21z =-()1m =-cos ,||||m n m n m n ⋅==所以平面AEF 与平面BEF.18.【解析】(1)由题意得,即,解得.(2)时,,即,令,定义域为,可以看出,又在上单调递增,在上单调递增,所以在上单调递增,故的解集为(2,3].(3)的定义域为(0,+∞),要使恒成立,首先满足在上恒成立,由于开口向下,只需解得,此时,故当时,对任意时恒成立,令,则恒成立,即恒成立,由(2)可知,的解集为(2,3],故只需解得,综上,存在满足条件.19.【解析】(1)答案不唯一.如.()()1302f f =-21332m m --+=-8m =(0,3]x ∈()()0g x f x ->()22180xx x -++->()()2218xu x x x =-+-(0,3]x ∈()234280u =++-=()()21xg x =-(0,3]x ∈22133824y x x x ⎛⎫=+-=+- ⎪⎝⎭(0,3]x ∈()()2218xu x x x =-++-(0,3]x ∈()()0g x f x ->()()21xg x =-()()()()g h x f h x >()0h x >[0,1]x ∈()223h x x x λλ=-+-+()()22030,1130,h h λλλ⎧=-+>⎪⎨=-+-+>⎪⎩1λ-<<()22233333244h x x λλλ⎛⎫=---+-+ ⎪⎝⎭≤≤1λ-<<()03h x <≤[0,1]x ∈()()03s h x s =<≤()()g s f s >()()0g s f s ->()()0g s f s ->()()22032,1132,h h λλλ⎧=-+>⎪⎨=-+-+>⎪⎩01λ<<01λ<<{}1,2,3,,100A =(2)假设存在一个使得,令,其中且,由题意,得,由为正整数,得,这与为集合A 中的最大元素矛盾,所以对任意.(3)设集合中有个元素,,由题意,得,,由(2)知,.假设,则.因为,由题设条件,得,因为,所以由(2)可得,这与为A 中不超过100的最大元素矛盾,所以,又因为,,所以.任给集合{201,202,203,204}的元子集B ,令,以下证明集合符合题意:对于任意i ,j (),则.若,则有,所以,,从而.故集合符合题意,所以满足条件的集合A 的个数与集合{201,202,203,204}的子集个数相同,{}0101,102,,200x ∈ 0x A ∈0100x s =+s ∈N 1100s ≤≤100s a a A +∈s a 100100s a a a +>100a {}101,102,,200x ∈ x A ∉{}201,202,,205A ()15m m ≤≤100m a b -=12100200m a a a -<<< ≤10011002100200m m a a a -+-+<<<< 100100m a b -=≤100b m >-1000b m -+>10010010055100b m m -+-+=<-≤100100m b m a a A --++∈100100100100200m b m a a --+++=≤100100100m b m a a --++≤100m a -100100m a m --≤121001m a a a -<<< ≤i a ∈N ()1100i a i i m =-≤≤1m -{}{}01,2,,100205A m B =- 0A 1100i j ≤≤≤200i j +≤0i j A +∈100i j m +-≤i a i =j a j =0i j a a i j A +=+∈0A故满足条件的集合A 有个.4216。

高二数学暑假开学考试测试试题

高二数学暑假开学考试测试试题

高二数学试题开学考试制卷人:打自企; 成别使; 而都那。

审核人:众闪壹; 春壹阑; 各厅…… 日期:2022年二月八日。

本套试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两局部.满分是150分.考试时间是是120分钟.第I 卷一、选择题:本大题一一共12小题,每一小题5分,一共60分.1、某为了理解某年龄段学生的体质状况,现采用系统抽样方法按1:20的比例抽取一个样本进展体质测试,将所有200名学生依次编号为1、2、…、200,那么其中抽取的4名学生的编号可能是〔 〕A .3、23、63、113B .31、61、81、121C .23、123、163、183D .17、87、127、167 2、3sin 35x π⎛⎫-= ⎪⎝⎭,那么5cos 6x π⎛⎫- ⎪⎝⎭等于〔 〕A .35B .45C .35-D .45-3、,,O A B 是平面上的三点,直线AB 上有一点C ,满足2+=0AC CB ,那么OC =( ) A .2OA OB -B.2OA OB -+C.2133OA OB - D .1233OA OB -+ 4、如下图的程序框图输出的结果为30,那么判断框内的条件是〔 〕A .5n ≤B .5n <C .6n ≤D .4n < 5、假设1sin 3=α,那么cos2=α〔 〕A .89 B .79 C .79- D .89- 6、向量,a b 满足||1,1a a b =⋅=-,那么(2)a a b ⋅-=〔 〕A .4B .3C .2D .07、在区间,22ππ⎡⎤-⎢⎥⎣⎦上随机选取一个实数x ,那么事件“sin x ≥ 〕A .1B .14 C .13 D .168、将函数sin(2)5y x =+π的图象向右平移10π个单位长度,所得图象对应的函数〔 〕A. 在区间[,]44-ππ 上单调递增B. 在区间[,0]4π上单调递减C. 在区间[,]42ππ 上单调递增D. 在区间[,]2ππ 上单调递减9、假设(,),()a 54b 3,2==,那么与2a 3b -平行的单位向量为( )A. B.(或-C.(或-D. 10、对具有线性相关关系的变量y x ,有一组观测数据)8,,2,1)(, =i y x i i (,其回归直线 方程是a x y+=21ˆ且5,2821821=+++=+++y y y x x x ,那么实数a 是〔 〕 A.21 B. 41 C. 81 D. 161 11、函数()()sin 03f x x ωωπ⎛⎫=+> ⎪⎝⎭,63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,且()f x 在区间,63ππ⎛⎫⎪⎝⎭上有最小值, 无最大值,那么ω的值是〔 〕 A .23 B .113 C .143 D .7312、如图,ABC ∆中,90A ︒=,30B ︒=,点P 在BC 上运动且满足CP CB λ=,当PA PC ⋅取到最小值时,λ的值是〔 〕 A.14 B.15 C. 16 D.18第II 卷二、填空题:本大题一一共4小题,每一小题5分,一共20分.13、现有2名女老师和1名男老师参加说题比赛,一共有2道备选题目,假设每位选手从中有放回地随机选出一道题进展说题,其中恰有一男一女抽到同一道题的概率为______. 14、3cos 25=θ,那么44sin cos +=θθ . 15、点()()()()1,1,1,2,2,1,3,4A B C D ---,那么AB 在CD 方向上的投影为 . 16、给出以下命题:①方程8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程; ②函数5sin 22y x π⎛⎫=-⎪⎝⎭是偶函数; ③在锐角ABC ∆中,B A B A cos cos sin sin >; ④设21,x x 是关于x 的方程log a x k =(0,a >1,a ≠0)k >的两根,那么121x x =; ⑤假设αβ、是第一象限角,且αβ>,那么sin sin αβ>;正确命题的序号是_____.三、解答题:解容许写出文字说明、证明过程或者演算步骤.17.〔此题一共10分〕,αβ为锐角, 45tan ,cos()35=+=-ααβ .〔Ⅰ〕求cos2α;〔Ⅱ〕求tan()-αβ.18.〔此题一共12分〕某车间为了规定工时定额,需要确定加工零件花费的时间是,为此做了四次试验,所得数据如表:〔Ⅰ〕画出表中数据的散点图;〔Ⅱ〕求出y 关于x 的线性回归方程ˆˆy bxa =+, 并在坐标系中画出回归直线;〔Ⅲ〕试预测加工10个零件需要多少时间是?19.〔此题一共12分〕以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(满分是为100分) .乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.〔Ⅰ〕假设甲,乙两个小组的数学平均成绩一样,求a 的值; 〔Ⅱ〕求乙组平均成绩超过甲组平均成绩的概率; 〔Ⅲ〕当a =2时,分别从甲,乙两组同学中各随机选取一名同学,求这两名同学的数学成绩之差的绝对值为2分的概率.20.〔此题一共12分〕,,a b c 在同一平面内,且(1,2)a =.〔Ⅰ〕假设||25c =,且//c a ,求c ;〔Ⅱ〕假设5||2b =且(2)(2)a b a b +⊥-,求a 与b 的夹角;21.〔此题一共12分〕设向量]2,0[),23cos ,23(sin ),2sin ,2(cos π∈==x x x b x x a .零件的个数x (个) 2345加工的时间是y (h )34〔Ⅰ〕求b a ⋅及||b a+;〔Ⅱ〕假设函数||2)(b a b a x f++⋅=,求)(x f 的最小值.22.〔此题一共12分〕函数()()()sin 0,,f x A x A o ωϕωϕ=+>><π,在同一周期内,当12x π=时,()f x =获得最大值3;当712x π=时()f x =获得最小值3-. 〔Ⅰ〕求函数()f x =的解析式; 〔Ⅱ〕求函数()f x =的单调递减区间;〔Ⅲ〕假设,36x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()()21h x f x m =+-有两个零点,务实数m 的范围.答案:制卷人:打自企;成别使;而都那。

高二数学生暑假返校测试题 试题

高二数学生暑假返校测试题  试题

卜人入州八九几市潮王学校戚墅堰实验高二数学新生暑假返校测试题2006-8-21一、填空题:1、假设集合{}32<-=x x A ,集合⎭⎬⎫⎩⎨⎧>-=03x x x B ,那么=⋂B A 。

2、函数()()32log 31≥+=x x x f 的反函数的定义域是。

3、椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,假设线段1PF 的 中点在y 轴上,那么=21:PF PF 。

4、化简:()()=--xx x x x 2sin sin csc cos sec 。

5、()()2,1,1,1-==OB OA ,以OB OA ,为边作平行四边形OACB ,那么OC 与AB 的夹角为。

6、在集合⎭⎬⎫⎩⎨⎧==10,,3,2,1,6 n n x xπ中任取一个元素,所取元素恰好满足方程21cos =x 的概率是。

7、正方体1111D C B A ABCD -中,与1AD 异面,且与1AD 所成角为︒60的面对角线一共有__条。

8、曲线()142≤--=x x y 的长度是____。

9、假设复数z 满足()i a z ai +=+1,且z 在复平面内所对应的点位于x 轴的上方,那么实数a 的取值范围是。

10、一质点在直角坐标平面上沿直线匀速行进,上午7时和9时该动点的坐标依次为()2,1和()2,3-,那么下午5时该点的坐标是。

11、假设对任意实数y x ,都有()55442y a y y x a +++,那么=+++++543210a a a a a a 。

12、对于各数互不相等的正数数组()n i i i ,,,21 〔n 是不小于2的正整数〕,假设在q p <时有q pi i >,那么称p i 与q i 是该数组的一个“逆序〞,一个数组中所有“逆序〞的个数称为此数组的“逆序数〞。

例如,数组()1,3,4,2中有逆序“2,1”,“4,3”,“4,1”,“3,2”,其“逆序数〞等于4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高二数学暑假开学考试测试试题
数学试题
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.
第I 卷
一、选择题:本大题共12小题,每小题5分,共60分.
1、某学校为了了解某年龄段学生的体质状况,现采用系统抽样方法按1:20的比例抽取一个样本进行体质测试,将所有200名学生依次编号为1、
2、…、200,则其中抽取的4名学生的编号可能是( )
A .3、23、63、113
B .31、61、81、121
C .23、123、163、183
D .17、87、127、167
2、已知,则等于( )3sin 35x π⎛⎫-= ⎪⎝⎭5cos 6x π⎛⎫- ⎪⎝⎭ A . B . C . D .354535-45
- 3、已知是平面上的三点,直线上有一点,满足,则=
( ),,O A B AB C 2+=0AC CB OC
A . B. C. D .2OA O
B -2OA OB -+2133OA OB -1233OA OB -+
4、如图所示的程序框图输出的结果为30,则判断框内的条件是( )
A .
B .
C .
D .5n ≤5n <6n ≤4n <
5、若,则( )1sin 3
=αcos 2=α A . B . C . D .
897979-89-
6、已知向量满足,则( ),a b ||1,1a a b =⋅=-(2)a a b ⋅-=
A .4
B .3
C .2
D .0
7、在区间上随机选取一个实数,则事件“”发生的概率为( )
,22ππ⎡⎤-⎢⎥⎣⎦x sin x ≥ A . B . C . D .1141316
8、将函数的图象向右平移个单位长度,所得图象对应的函数( )sin(2)5y x =+π10
π A. 在区间 上单调递增 B. 在区间 上单调递减
[,]44-ππ[,0]4π
C. 在区间 上单调递增
D. 在区间 上单调递减[,]42ππ[,]2π
π 9、若,则与平行的单位向量为( )(,),()a 54b 3,2==2a 3b -
A. B.
(或
C. D.(或 10、对具有线性相关关系的变量有一组观测数据,其回归直线y x ,)8,,2,1)(, =i y x i i (
方程是且,则实数是( )a x y +=2
1
ˆ A. B. C. D. 8116
1 11、函数,,且在区间上有最小值,
()()sin 03f x x ωωπ⎛⎫=+> ⎪⎝⎭63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭()f x ,63ππ⎛⎫ ⎪⎝⎭
无最大值,则的值为( )ω
A .
B .
C .
D .2311314373
12、如图,已知中,点在上运动ABC ∆90A ︒=,
30B ︒=,P BC 且满足当取到最小值时,的值为( )CP CB λ=,
PA PC ⋅λ A. B. C. D.
14151618
第II 卷
二、填空题:本大题共4小题,每小题5分,共20分.
13、现有2名女教师和1名男教师参加说题比赛,共有2道备选题目,若每位选手从中有
放回地随机选出一道题进行说题,其中恰有一男一女抽到同一道题的概率为______.
14、已知,则 .3cos 25=θ44sin cos +=θθ
15、点,则在方向上的投影为 .()()()()1,1,1,2,2,1,3,4A B C D ---AB CD
16、给出下列命题:①方程是函数的图象的一条对称轴方程;8x π=5sin 24y x π⎛⎫=+ ⎪⎝⎭
②函数是偶函数; ③在锐角中,;
5sin 22y x π⎛⎫=- ⎪⎝⎭
ABC ∆B A B A cos cos sin sin > ④设是关于的方程的两根,则;21,x x x log a x k =(0,a >1,a ≠0)k >121x x = ⑤若是第一象限角,且,则;正确命题的序号是_____.αβ、αβ>sin sin αβ>
三、解答题:解答应写出文字说明、证明过程或演算步骤.
17.(本题共10分)已知为锐角, .,α
β4tan ,cos()3=+=ααβ(Ⅰ)求;(Ⅱ)求.cos 2αtan()-αβ
18.(本题共12分)某车间为了规定工时定额,需要确定加工零件花费的时间,为此做了
四次试验,所得数据如表:
(Ⅰ)画出表中数据的散点图;
(Ⅱ)求出y 关于x 的线性回归方程,ˆˆy bx
a =+ 并在坐标系中画出回归直线;
(Ⅲ)试预测加工10个零件需要多少时间?
19.(本题共12分)以下茎叶图记录了甲,乙两组各三名同学在期末考试中的数学成绩(满分
为100分) .乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a 表示.
(Ⅰ)若甲,乙两个小组的数学平均成绩相同,求a 的值; (Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当a =2时,分别从甲,乙两组同学中各随机选取一
名同学,求这两名同学的数学成绩之差的绝对值为2分的概率.
20.(本题共12分)已知在同一平面内,且.,,a b c (1,2)a = (Ⅰ)若,且,求;||25c =//c a c
(Ⅱ)若且,求与的夹角;
5||2
b =(2)(2)a b a b +⊥-a b 21.(本题共12分)设向量.]2
,0[),23cos ,23(sin ),2sin ,2(cos π∈==x x x b x x a (Ⅰ)求及;b a ⋅||b a +
(Ⅱ)若函数,求的最小值.||2)(b a b a x f ++⋅=)(x f
22.(本题共12分)函数,在同一周期内,()()()sin 0,,f x A x A o ωϕωϕ
=+>><π 当时,取得最大值3;当时取得最小值.12x π=
()f x =712
x π=()f x =3- (Ⅰ)求函数的解析式;()f x =
(Ⅱ)求函数的单调递减区间; ()f x =
(Ⅲ)若时,函数有两个零点,求实数的范围.,36x ππ⎡⎤∈-⎢⎥⎣⎦
()()21h x f x m =+-m 答案:。

相关文档
最新文档