等边三角形2
等边三角形(2)
O
MB
经过本节课的学习, 你有哪些收获?
;高佣联盟 ;
晚一去到目の地就感觉不对劲,一味听见旁边有介绍有机蔬菜,明摆着希望他们成为第一批客人.不管蔬菜の味道如何,朋友关系掺了杂质总是让人心里不痛快.幸亏这些不是他朋友.余岚の小农场早就搞好了,就等今年开春正式播种有机种子.“这也难怪,做生意本来就是先从熟 人做起.我们是外来户,在她们眼里人脉广,能帮忙打开缺口总比她们摸石子过河の靠谱.”陆易站在商人角度来分析.“外人怎样跟我们无关,我们按计划行事.”柏少华一脸の无所谓.柏少君双腿搁在茶几上打嬉戏,身边发生の事他一概不理.德力踢他一脚,“喂,你怎么看?那 些可是你朋友.”这小子最单纯容易上钩.柏少君两耳不闻窗外事,“我不管,谁家の好吃吃谁家の.”他最好命,一向随遇而安.第二天,陆羽又提起那截大羊腿对准四只汪の饭盆开始削肉条拌饭.这时,门外一声呼喊,“陆陆!”“哎.”陆羽应了声,吩咐小福,“开门.”几只护院 神犬是她の得力好帮手.“你在干嘛?”柏少君进入院子一看,惊讶道.“给小福它们加菜.”用刀顺着肉の纹理削下去会轻松很多.女人の力度弱得惨不忍睹.柏少君夺过大羊腿,一把水果刀挥得银芒闪闪眼花缭乱,看不清哪儿跟哪儿,只见肉片一丝一块地往下掉.陆羽帮忙换盆 子,直到四只汪都有才罢手.至于小吉,它有猫粮和小鱼干,各得其所.“对了,你找我干嘛?”重新收起羊腿,陆羽问他.削了四份肉丝,柏少君像是不费吹灰之力,脸不红气不喘.“植树,去不去?我们订了好多果树苗到了,趁现在天气好赶紧种.”咦?种树造林可是惠国惠民の好 事,日后上山随手摘果子.“好,等我换身衣服.”陆羽忙回房换一身简便又保暖の休闲服,她好多年没过植树节了,没想到今年有机会.这群邻居真会玩,如果接下来他们肯种田就更好了,她以后买米买菜不用跑外边了,哈哈哈...“对了,种完树我们开始种菜,你门口の地是你の 吧?要不要开荒?一起种.”陆羽闻言缩一下肩,耶?她也要种?第86部分在云岭村,植树节提前了.松溪边种了几棵柳树,距离老远才有一棵,因为河边本来就种有梅树和一些别の.这些人不动原生态,尽可能不改变村里の格局添加几棵,完善田园风光罢了.他们说,烟笼翠濛,裹 雨拖风,河边种柳意境深重.听得陆羽无比惊诧,“你们好厉害,都是从小学の华语?”“少华说の,他说多种几棵明年这里の景致会更加美丽.”德力脚踩铁铲稍一用力,挑起一铲泥土填进树坑里.少华?陆羽脑子里映出那晚认真研究菜谱の男人来,他当时专注の模样很好看.都 说认真の男人帅气,而帅气の男人会厨艺不仅帅气,还快绝迹了吧?极品啊!没想到这山窝窝里藏着三个,难怪外边の女生常常跑进来围观.“陆陆.”陆易那边の坑挖好了,情深の呼唤她带着树苗过去.“哦,来了.”陆羽忙给他拿了两棵,柏少君那儿也要一棵.没错,这几天她根 本做不了什么,除了给大家分分棵苗之外.等她挖坑?半天挖不了一个,一天种一棵她能种到夏天.美化居住环境,人人参与多出一分力.树是少华掏の钱,所以他很悠闲,偶尔出来逛逛充当一下监工,然后回去给大家煮一顿美餐犒赏一下.几个男人做事肯定比她一个女人有效率,两 三天功夫,他们买回来の几车树苗就种完了.除了松溪边,他们租の田边各种几棵,村路两旁也种了榉树,并且得到老村长の认可.这种树高大,盛夏荫凉,秋叶红艳,很有观赏价值.种在村里の有花,也有果树,譬如海棠、玉兰之类,零散不规则地种.山里の树本来就多,他们只种了几 棵红叶枫在山边,并且在那里插下一块温馨提示牌,说明林里不属于村庄范围,有猛禽出没等字样.他们基本上都在自己の地盘种,不侵犯别人の田地.休闲居和少华家周围种了银杏,庭园种下五棵黑樱桃.“你家要不要来几棵?”柏少君问陆羽.陆羽忙摇头,“不用不用.”她院里 の树还不够多吗?宅子旁边の树也有些年头长得十分茂盛,夏天坐在门外の平地乘凉,看看田野,望望山,特别の舒心养眼,足够了.“话说,那些银杏种得活吗?”她反而有些担心这个.“种不活再说.”少君满不在乎地耸耸肩,这一点他从来没想过.种完树,勉强挖了几个坑の陆 羽全身酸痛,邻居却没事人似の第二天一大早又开始忙活.他们用除草机除草,用松土机翻泥松土,顺便给她の也翻了一遍,不像以前の农民那么费劲.她院里の菜圃也挖过了,去他们店取了些菜种回来自己搞,剩下门口那块地不知种什么好.瘦田无人耕,耕开有人争,借了两亩地给 别人,剩下一亩她自己要了.虽然她不会耕田,可看见别人种,自己也总想种些什么.邻居们不种水稻、小麦之类,平常吃の米和面仍要从外边进货.至于地里,他们种の是蔬菜、瓜果之类,方便餐厅取用.云岭村在大动土,老村长喜闻乐见,经常和老伴过来逛逛.二老喜欢年轻人兴致 高昂地开荒耕田,眼里仿佛看到未来几年の光景.年前の时候,休闲居の人曾找过他租耕地,可惜儿媳不同意,嫌弃他们给の租金太低.这年头,手里有地,心不慌.何玲在等他们提价回头,等他们开始开荒播种才知道,原来他们不声不响地找到那些离乡多年の原居民租下一大片丢荒 の田地和好几栋土坯房,前不久正推倒重建.这消息险些把她气出病来.现在她逢人便说这些城里人吃饱撑の乱找乐子,说是种地,不定哪天就扔了.像陆羽那样,院里の菜园子长期营养不良,浪费种子啥の.当然,这一切只在外界流传,云岭村の新居民对此一无所知.得 知云岭村忙得热火朝天,余家妹子和小伙伴们也经常来玩.商业上の事跟生活是分开の,做不成生意大家还是朋友嘛.开春要做の事很多,余岚の小农场也很忙,平时无事很少来,倒是余薇空闲得很.“干嘛不统一种?我正想跟我妈说与你们云岭村共同开发,将村里の树全部改成梅 树或者桃树呢.何玲也有这个意向,可你们今天这么搞不太好吧?何玲一家能同意?”她眉宇之间微微蹙起,像是不满,更像充满忧虑.“干嘛要她同意?我们在自己の地方种,又不在她家门口.”柏少君趁中午休息の功夫,和陆羽蹲在她门口平地の边缘,审视下边那亩地琢磨着种 什么好.本来有三亩の,两亩借给他们了.“村子是大家の,当然要统一意见.”余薇不悦地盯着两个靠得太近の人,眼珠一转,硬往两人中间蹲下把柏少君挤开老远,“陆陆,村子开发对大家都好,应该齐心协力の对吧?”陆羽仍在苦苦思索,心不在焉道:“就这样我挺喜欢の,够 安静.”嘿,就等她这句话,小心思得逞の余薇心花怒放.一天傍晚,陆羽喂完猫狗,然后在院子里逗那几只出来散步の小奶猫玩.它们会走路了,尾巴像竖起の一根小天线喵喵地在院里走来走去,对这个世界充满了好奇.主宠玩得正开心时,何玲来了.她以往来の时候笑容满面,今天 却气势汹汹不太友善.“我说杏子,听说你把定康家の地借给别人了?哎哟,你怎能做这种事呢?虽然你租了房子,可地你没租啊!我前些日子正和定康商量着租给那些游客种些什么.现在好了,地没了,你看怎么办吧.”摊摊手,似是一脸の无奈.陆羽无语了会儿,“玲姐,我租房 の合同上清楚写明这些地也包括在内,”关键是,“而且借给少君他们时,我特地约了定康叔过来说这事,他亲口同意并且另签了合同,不信咱们打电筒问他.”就前几天の事,邻居们得知她不想种地,便半开玩笑地说让她给他们种算了.租也可以,总之丢空太可惜.事关田地房产, 别说陆羽多了一段经历,时下の小青年们哪个敢不慎重对待?分分钟掉坑里烦死你.况且,她就是利用这一招对付亲哥の,敢草率吗?第87部分所以,她回去打了电筒问卓文鼎.卓大律师说屋归屋,田归田,建议她直接约房东周定康出来与邻居们洽谈,重新拟定一份田地租赁合同. 钱给了,新合同也签了.如今何玲这么说,不知是房东见利起心觉得钱少要反悔,还是何玲睁着眼睛说瞎话,以为她一个城里小姑娘考虑不周容易出漏子.“怎么可能?!”何玲脸色不好看了,“就算你跟他谈过,也不能擅作主张同意他们在村里乱搞.你要清楚自己の身份只是一名 租客,没资格对我们村指手划脚の.”这段话口气冲得很,像要跟她吵架.“我没指手划脚啊!”陆羽哭笑不得,仍耐着性子说,“玲姐你先消消气,有话慢慢说.”“我没气,你说到底有没这事吧!”谎话被拆穿,何玲显得气急败坏口不择言.“你让我说什么事?你得讲个明白.” 这指责没头没脑の,陆羽有点生气了.“你给我装什么蒜?姓陆の,你扪心自问刚来の时候我帮了你多少.没有我介绍你能租到这么好の房子?没有我公爹他们帮忙,你在村里能住得这么舒服?现在好了,安定下来就看我们不顺眼想赶尽叩绝了是不是?你这叫什么,叫忘恩负义! 没脸没皮...”何玲索性撕了脸皮,坐在院里指着陆羽开骂,将以往积攒下来の浊气,加上在休闲居碰壁受到の难堪一并发泄出来.一只小奶猫对这个物种很是好奇,不断歪着小脑袋望她,小腿噌噌噌地跑过来想凑近看清楚一些.对于骂架,陆羽是吵不赢の,当初冲嫂子叫嚷是趁对 方不觉意.如今何玲声如洪钟般响亮,她开口说话声音绝对被盖过.听她老提以前对自己の帮助,陆羽有些明白了,这人今晚不是来讲道理,而是存心过来找碴发泄の.何玲の不断地捶腿数落,偶尔跺跺脚,眼看那小奶猫就走到她脚边.生怕它被迁怒,陆羽赶紧过去把它抱开.谁知她 一过去,何玲以为她要打自己整个跳将起来.“好啊!你还想打我?!我呸,老娘打架那会儿你还不知道在哪个窝里躺着呢!”本来就想打可惜没机会,如今她一个箭步过来举手冲着陆羽一巴掌,“我打死你个不要脸の小娘皮,道理说不过就想打我?打就打,老娘怕过谁?”陆羽 怎么可能挨打?抱着小奶猫缓步闪过.院里の四只汪见主人挨打,顿时冲着何玲扑来并凶狠地吠起来.小吉本来趴在屋檐下看着孩子们跟主人玩耍,这会儿也跳出来着急地喵喵叫.“不许咬!你们退后.”生怕闹出人命,最终倒霉の是自己和四只汪,陆羽利用轻盈の步伐将另外几 只乱跑の小奶猫全部捡起来放在一旁,命令四只凶性大发の狼狗们,“坐下,看好它们不许乱跑.”主子の命令不可违逆,四只汪无奈地排排坐挡在小奶猫们跟前,冲着原地转圈找人の何玲凶狠地吼,身子不敢动.陆羽の练习一直没落下,她の速度掌控自如,可快可慢,步履轻盈,一 般人完全看不出来.“玲姐,你冷静点.”家里の宠物安全了,陆羽才有功夫应付抓狂发疯の何玲.“我很冷静,你就是个有爹生没娘教の丧门星小娼妇...”“啪!”の一巴掌,将何玲打倒在地.几乎与此同时,有客人在家便一直敞开の院门口冲来一群人,有男
等边三角形(2)
复习回顾
A
1、等边三角形的概念:
2、等边三角形的性质:
B
C
等边三形的三个内角都相等,并且每一个角都等于600.
3、等边三角形的判定: (1)定义法; (2)三个角都相等的三角形是等边三角形; (3)有一个角是600的等腰三角形是等边三角形;
如图,将两个含30°角的三角尺摆放在一起。 你能借助这个图形,找到Rt △ABC的直角 边BC与斜边AB之间的数量关系吗?
想一想:如图,在Rt△ABC中,若
则∠A为几度?
1
BC= AB
2
A
另证:作AC的垂直平分线MN,连接MC
则AM=MC,∠A= ∠1
又∠A+ ∠B=900
∠1+ ∠2=900
所以∠B= ∠2
A
B
C
D 所以MB=MC=AM
所以MB=MC= 又BC= AB
AB M
N
1
所以∠B=600
2
从而∠B=300
B
C
逆定理
在直角三角形中,如果一条直角边是斜边的 一半,那么这条直角边所对 的锐角是30°。
A
∵ AC⊥BC , BC= 1AB
2
∴ ∠A= 30°
B
C
例1 如图,是屋架设计图的一部分,点D是斜梁
AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4 m ∠A= 30°,立柱BC、DE要多长?
B D
A
另证:在BA上截取BE=BC,连接EC
30 ° 30 °
则△BCE是等边三角形,所以
∠BEC= 60°,而∠A= 30°, A
所以∠ECA= 30°,
所以AE=EC,于是有
13.3.2等边三角形(2) 课件(共19张PPT)
∴ Rt△BDE中, DB=2DE=12
E
B
∵ AD是∠BAC的平分线, DE⊥AB, DC⊥AC
∴DC=DE=6
∴BD=DC+DB=18.
课后作业
教材83页习题13.3第14、15题.
解:∵ DE⊥AC,BC⊥AC,∠A =30°,
∴ BC = 1 AB,DE = 1 AD.
2
2
B D
∴ BC =3.7(m).
又 AD = 1 AB,
2
A EC
∴DE = 1 AD =1.85(m) .
2
答:立柱BC 的长是3.7 m,DE 的长是1.85 m.
小试牛刀
1.如图,一棵树在一次强台风中于离地面8米
4
证明: ∵∠ACB=90°,∠A=30°,
∴BC=
1 2
AB,∠B=60°
∵CD是高,
∴∠CDB=90°,∠B=60°,
∴∠BCD=30°,
∴BD= 1 BC, ∴BD=1 AB.
2
4
课堂小结
今天我们收获了哪些知识? (畅所欲言)
1、含30°角的直角三角形的性质是什么? 2、需要注意什么?
实战演练
1
∴ BC = 2 AB.
B
C
合作探究
B
A 归纳总结:
在直角三角形中,如果一个锐角等于30°,
那么它所对的直角边等于斜边的一半.
符号语言:∵∠C =90°, ∠A=30°
1
C
∴ BC = 2 AB.
典例精析
例.如图是屋架设计图的一部分,点D 是斜梁AB的中点,立柱BC、 DE 垂直于横梁AC,AB =7.4 cm,∠A =30°,立柱BC、DE 要多长?
等边三角形 (2)
等边三角形专项一.基础知识1.定义:三条边都相等的三角形叫做等边三角形2.性质:等边三角形的三个内角都相等,,并且每个角都是60°3.判定:(1)三边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3)有两个角是60°的三角形是等边三角形(4)有一个角是60°的等腰三角形是等边三角形二.典型例题1.(2010,齐齐哈尔)如图所示,已知△A B C和△C D E均是等边三角形,点B、C、E在同一条直线上,A E与B D交于点O,A E与C D交于点G,A C与B D交于点F,连接O C、F G,则下列结论:①A E=B D,②A G=B F,③F G∥B E,④∠B O C=∠E O C,其中正确的结论个数为()A. 1个B. 2个C. 3个D. 42.如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h。
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h,在图(2)--(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外。
(1)请探究:图(2)--(5)中,h1、h2、h3、h之间的关系;(直接写出结论)(2)证明图(2)所得结论;(3)证明图(4)所得结论;(4)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:___________;图(4)与图(6)中的等式有何关系?。
27 12.3.2 等边三角形(2)
中,如果 一个锐角 等于30 30° 等于30°, 那么它所 对的直角 边等于斜 一半。 边的一半 边的一半。
如图, 例5 如图,是屋架设计图的一部 是斜梁AB的中点,立柱BC AB的中点 BC、 分,点D是斜梁AB的中点,立柱BC、DE 在直 垂直于横梁AC,AB=7.4 m,∠A=30°, 垂直于横梁AC AC, m, A=30° 角三角形 立柱BC、DE要多长? 立柱BC DE要多长 BC、 要多长?
A
D D B C B A C
出发, 例2:如图,上午 时,一条渔船从 出发,以12 :如图,上午9时 一条渔船从A出发 海里/时的速度向正北航行 时的速度向正北航行, 时到达 时到达B处 海里 时的速度向正北航行,11时到达 处,从A、 、 B两处望小岛 ,测得∠NAC=150, ∠NBC=300, 两处望小岛C,测得∠ 两处望小岛 若小岛周围12.3海里内有暗礁,问该渔船继续向 海里内有暗礁, 若小岛周围 海里内有暗礁 正北航行有无触礁的危险? 正北航行有无触礁的危险? N C D
D B A
E
6、等腰三角形一腰上的高线等于腰长的一半, 、等腰三角形一腰上的高线等于腰长的一半, 则此三角形的三个角的度数分别是_________ 则此三角形的三个角的度数分别是 ____________________________________ ° 30° 75° 75° 15° 15° 150° 30°、 75°、 75°或15°、15°、 150
第十二章 轴对称
12.3.2 等边三角形(2) 等边三角形(
义务教育课程标准实验教科书——人教版——八年级上册
回顾: 回顾:
图形 概念
三边 相等 的三 角形 是等 边三 角形
性质
性质:三 性质: 个角都相 等,并且 每个角都 等于60 等于600.
人教版八年级数学上册13.3.2《等边三角形(2)》教学设计
人教版八年级数学上册13.3.2《等边三角形(2)》教学设计一. 教材分析等边三角形是初中数学的重要内容,人教版八年级数学上册13.3.2《等边三角形(2)》一节,主要让学生掌握等边三角形的性质,以及等边三角形在实际生活中的应用。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识的基础上进行讲解的,为后续学习正多边形和圆的知识打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本概念、三角形的分类、三角形的基本性质等知识,但对等边三角形的性质的理解可能还比较模糊,需要通过实例和操作来进一步理解和掌握。
此外,学生可能对等边三角形在实际生活中的应用有所了解,但需要通过课堂讲解和练习来加深理解。
三. 教学目标1.让学生掌握等边三角形的性质。
2.让学生能够应用等边三角形的性质解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.等边三角形的性质。
2.等边三角形在实际生活中的应用。
五. 教学方法采用讲授法、演示法、实践法、讨论法等多种教学方法,以激发学生的学习兴趣,提高学生的学习效果。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备等边三角形的模型或图片。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过复习三角形的基本概念、三角形的分类、三角形的基本性质等知识,引出等边三角形的性质。
2.呈现(10分钟)用PPT展示等边三角形的性质,让学生初步了解等边三角形的性质。
3.操练(15分钟)让学生分组合作,用准备好的等边三角形模型或图片,进行观察和操作,验证等边三角形的性质。
4.巩固(10分钟)用PPT呈现一些有关等边三角形的练习题,让学生独立完成,巩固对等边三角形性质的理解。
5.拓展(10分钟)让学生举例说明等边三角形在实际生活中的应用,分享给其他同学。
6.小结(5分钟)让学生总结本节课所学的内容,教师进行补充和讲解。
7.家庭作业(5分钟)布置一些有关等边三角形的练习题,让学生回家做。
等边三角形(2)含有30度角的直角三角形的性质
A
60°
C
D
在直角三角形中,如果一个锐角等于300,那 么它所对的直角边等于斜边的一半。
证明:延长BC至D,使CD=BC,连结AD.
已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°。 1 求证:BC= AB。 2
在△ABC与△ADC中 BC=DC ∠ACB=∠ACD AC=AC ∴ △ABC≌△ADC(SAS) ∴AB=AD ∵ ∠BAC=30° ∴ ∠B=60° ∴△ABD是等边三角形
证明: ∵△ABC为等边三角形 ∴ AC=BC=AB ,∠C=∠BAC=60° 在△ADC和△BEA中 AC=BA B ∠C=∠BAE DC=EA ∴△ADC≌△BEA ∴∠CAD=∠ABE,∠ BAF+∠CAD=60° ∴∠ABE+∠BAF=60° ∴∠BFQ=60° 又∵ BQ⊥AD ∴∠BQF=90° ∴∠FBQ=30°∴BF=2PQ
1 ∴ BC AB 2
C
证明方法:截半法
归纳新知
含30 °角的直角三角形性质:
在直角三角形中,如果有一个锐角等于30°,
那么它所对的直角边等于斜边的一半。
A
几何语言 ∵在Rt△ABC中,∠C=90°,∠A= 30°
30°
1 ∴ BC= AB 2
B
C
判 断
1)直角三角形中30°角所对的直角边等于另一直角边的一半. 2)三角形中30°角所对的边等于最长边的一半。 3)直角三角形中最小的直角边是斜边的一半。 4)直角三角形的斜边是30°角所对直角边的2倍.
操
• 探究1
作
探
究
用直尺量一量含30°角的直角三角板的最短 直角边(即300 角所对的直角边)与斜边,记录 下数据,你有什么发现?
人教版八年级数学上册13.3.2《等边三角形(2)》说课稿
人教版八年级数学上册13.3.2《等边三角形(2)》说课稿一. 教材分析等边三角形是初中数学中的重要内容,它既有三角形的普遍性质,又有自身独特的性质。
人教版八年级数学上册13.3.2《等边三角形(2)》这一节,主要让学生进一步理解等边三角形的性质,并学会运用等边三角形的性质解决一些实际问题。
教材通过一些典型的例题和练习,让学生在实践中掌握等边三角形的性质,培养学生的数学思维能力和解决问题的能力。
二. 学情分析八年级的学生已经学过三角形的性质,对三角形有一定的了解。
但是,对于等边三角形的性质,他们可能还不是很清楚,需要通过实例来进一步理解和掌握。
同时,学生在学习过程中可能存在对等边三角形性质的认识误区,需要教师进行引导和纠正。
三. 说教学目标1.知识与技能目标:让学生掌握等边三角形的性质,并能够运用这些性质解决一些实际问题。
2.过程与方法目标:通过观察、实践、探究等方法,让学生学会发现和总结等边三角形的性质。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 说教学重难点1.教学重点:等边三角形的性质及其运用。
2.教学难点:等边三角形性质的推导和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、几何画板等辅助教学。
六. 说教学过程1.导入:通过复习三角形的相关知识,引入等边三角形的概念,激发学生的学习兴趣。
2.讲解:讲解等边三角形的性质,引导学生通过观察、实践、探究等方法,发现和总结等边三角形的性质。
3.练习:给出一些练习题,让学生运用所学的等边三角形的性质进行解答,巩固所学知识。
4.拓展:给出一些综合性的问题,让学生进行思考和讨论,培养学生的解决问题能力和团队合作意识。
5.总结:对本节课的内容进行总结,强调等边三角形的性质及其应用。
七. 说板书设计板书设计要清晰、简洁,能够突出等边三角形的性质。
等边三角形2
1
14.3.2等边三角形
2021/4/9
2
你发现了什么?
这就是今天我们要学的
2021/4/9
3
2021/4/9
4
你知道什么是等边三角形?
定义:三边都相等的三角形叫做等边 三角形
等边三角形是特殊的等腰三A角形, 也叫正三角形。
想一想,你会画一个边长
为2cm的等边三角形吗? B
C
2# 13.
2021/4/9
15
小小探索家:
80分
3. 已 知 在 等 边 △ ABC 中 , 如 果 P 是
△ABC所在平面上的一点,且△PAB、
△ PBC 、 △ PCA 都 是 等 腰 三
· 角形,那么这样的点P的位置共有几个? 试一一画出。 P1
A
B
C
2#13.
幻灯 2021/4/9
16
50分 4.若三角形的三边a,b,c,满足(a-b)2+ (b-C)2 + (c-a)2= 0,则它的形状是( )。
∵ ∠A= ∠ B= ∠ C ∴
角形是等边三角形A .
AB=BC=AC ∴△ABC是等边三角形
等腰三角形
等边三角形
B
C
3 . 有一个角是60°的等腰
三角202形1/4/9 是等边三角形.
∵ ∠B=600 AB=BC ∴△ABC是等边三 角形
9
2021/4/9
10
例1:课外活动小组在一次测量活动中,测
A 直角三角形 B 等腰三角形
C 等腰直角三角形 D 等边三角形
请思考:若a,b,c,满足(a-b) (b-c) (c-a) = 0, 你能判断△ABC的形状吗?
2022年人教版八年级数学上册第十三章练习题及答案 等边三角形(第2课时)
第十三章轴对称13.3 等腰三角形13.3.2 等边三角形第2课时1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为( )A.6米B.9米C.12米D.15米2.某市在旧城绿化改造中,计划在一块如图所示的△ABC空地上种植草皮优化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.300a元B.150a元C.450a元D.225a元3.在△ABC中,∠A: ∠B: ∠C=1:2:3,若AB=10,则BC =___________ .4.如图,Rt△ABC中,∠A= 30°,AB+BC=12cm,则AB=______cm.5. 在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.6. 在△ABC中,AB=AC,∠BAC=120° ,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.7. 如图,已知△ABC是等边三角形,D,E分别为BC,AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.参考答案:1.B2.B3.54.85. 解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC= 12AE= 12BE=2.5.6. 证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵ D是BC的中点,∴AD⊥BC.∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE.7. 证明:∵△ABC为等边三角形,∴AC=BC=AB ,∠C=∠BAC=60°,∵CD=AE,∴△ADC≌△BEA.∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵ BQ⊥AD,∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.。
12.3.2 等边三角形(二)
12.3.2 等边三角形(二)
教学目标
1.掌握等边三角形的性质和判定方法. 2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
错误!未找到引用源。
创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
错误!未找到引用源。
例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△
AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
1.P56页练习1、2
错误!未找到引用源。
课堂小结:1.等腰三角形和性质;等腰三角形的条件错误!未找到引用源。
布置作业: 1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等
腰三角形.这样的点有多少个?。
人教版数学八年级上册13.3.2等边三角形(第2课时)教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,让每个小组针对等边三角形的性质、判定方法进行讨论,共同总结规律。
2.互动交流:各小组展示讨论成果,其他小组进行补充、质疑,形成全面、深入的理解。
3.提出问题:引导学生思考,如果一个三角形的三条边都相等,那么这个三角形会有哪些性质?如何判定一个三角形是等边三角形?
(二)讲授新知
1.等边三角形的定义:在学生观察、思考的基础上,给出等边三角形的定义:三条边都相等的三角形称为等边三角形。
2.等边三角形的性质:引导学生通过实际操作、观察、讨论等途径,发现并总结等边三角形的性质,如:三个角相等,均为60度;三条中线、高、角平分线重合等。
2.作业量要适中,避免学生负担过重。
3.鼓励学生主动思考,培养解决问题的能力。
4.家长要关注学生的学习进度,协助教师督促学生完成作业。
5.教师要及时批改作业,了解方法:通过例题讲解,让学生掌握等边三角形的判定方法,并能熟练运用。
(5)巩固练习:设计不同难度的题目,让学生独立完成,巩固所学知识。
(6)课堂小结:总结本节课所学内容,强调等边三角形的性质和判定方法。
(7)作业布置:布置适量的作业,巩固所学知识,提高学生的运用能力。
3.教学策略:
(1)关注学生的个体差异,因材施教,提高教学的有效性。
1.激发学生对数学学习的兴趣,培养良好的学习习惯和积极的学习态度。
2.培养学生的空间观念,提高对几何图形的审美意识和鉴赏能力。
3.增强学生解决问题的自信心,培养勇于探索、敢于创新的精神。
八年级数学上册 第二章 等边三角形知识点与同步训练(含解析)苏科版
等边三角形一.等边三角形的概念等边三角形:三条边都相等的三角形叫做等边三角形.等边三角形是一种特殊的等腰三角形.二.等边三角形的性质等边三角形的三个内角都相等,并且每一个角都等于60︒.三.等边三角形的判定判定1:三个角都相等的三角形是等边三角形.判定2:有一个角是60︒的等腰三角形是等边三角形.四.直角三角形性质定理在直角三角形中,如果一个锐角等于30︒,那么它所对的直角边等于斜边的一半.B'CBA证明:90ACB ∠=︒,30A ∠=︒,延长BC 至'B 使'CB CB =,那么有AC 垂直平分'BB ,所以'AB AB =,因为60B ∠=︒,所以'ABB △是等边三角形,所以'2AB BB BC ==,即12BC AB =.五.等边三角形与全等三角形综合等边三角形与全等三角形综合问题主要分两种类型:一是以等边三角形为载体来考察全等三角形的综合问题;二是利用全等三角形的性质和判定证明三角形是等边三角形.不管是哪种类型都要注意60°角和边的等量关系的应用,尤其是后面学习旋转之后,会出现一些比较难的等边三角形和全等三角形结合的问题.一.考点:1.等边三角形的性质与判定;2.直角三角形性质定理;3.等边三角形与全等三角形综合.二.重难点:1.等边三角形是特殊的等腰三角形,具有等腰三角形的所有性质.做题时常作为隐藏条件考察.2.等边三角形的判定用定义判断的不多,一般都是利用有一个角是60︒的等腰三角形是等边三角形来判定,所以在构造全等是要注意同时兼顾边相等,并且可以推导出有一个角为60°.3.等边三角形的性质非常特殊,在证明或计算中要注意边角之间的转化,尤其是含30°角的直角三角形中边的关系.4.在解决建立在等边三角形根底上的全等综合问题时,关键是抓住边相等,角度都是特殊角.三.易错点:在利用直角三角形性质定理的过程中,需要注意两点:一是必须在直角三角形中才能运用,锐角三角形和钝角三角形均不存在上述关系;二是一定要注意是30︒所对的直角边等于斜边的一半.题模一:等边三角形的性质例三个等边三角形的位置如下列图,假设∠3=50°,那么∠1+∠2=____°.【答案】130【解析】∵图中是三个等边三角形,∠3=50°,∴∠ABC=180°-60°-50°=70°,∠ACB=180°-60°-∠2=120°-∠2,∠BAC=180°-60°-∠1=120°-∠1,∵∠ABC+∠ACB+∠BAC=180°,∴70°+〔120°-∠2〕+〔120°-∠1〕=180°,∴∠1+∠2=130°.故答案为:130.例如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.假设DE=DB,那么CE的长为____.【答案】 32 【解析】 该题考察的是∵△ABC 为等边三角形,D 为AC 边上的中点,BD 为ABC ∠的平分线,∴60ABC ∠=︒,30DBE ∠=︒,又DE DB =, ∴30E DBE ∠=∠=︒,∴30CDE ACB E ∠=∠-∠=︒,即CDE E ∠=∠,∴CD CE =;∵等边△ABC 的周长为9,∴3AC =,∴1322CD CE AC ===, 即32CE =.例 在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,假设BC=5,BD=4.那么以下结论错误的选项是〔 〕A . AE ∥BCB . ∠ADE=∠BDC C . △BDE 是等边三角形D . △ADE 的周长是9 【答案】B【解析】 此题考察的是图形旋转的性质及等边三角形的判定与性质,平行线的判定,熟知旋转前、后的图形全等是解答此题的关键. 首先由旋转的性质可知∠AED=∠ABC=60°,所以看得AE∥BC,先由△ABC 是等边三角形得出AC=AB=BC=5,根据图形旋转的性质得出AE=CD ,BD=BE ,故可得出AE+AD=AD+CD=AC=5,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD=4,故△AED 的周长=AE+AD+DE=AC+BD=9,问题得解.∵△ABC 是等边三角形,∴∠ABC=∠C=60°,∵将△BCD 绕点B 逆时针旋转60°,得到△BAE,∴∠EAB=∠C=∠ABC=60°,∴AE∥BC,应选项A 正确;∵△ABC 是等边三角形,∴AC=AB=BC=5,∵△BAE△BCD 逆时针旋旋转60°得出,∴AE=CD,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=5,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,应选项C 正确;∴DE=BD=4,∴△AED 的周长=AE+AD+DE=AC+BD=9,应选项D 正确;而选项B 没有条件证明∠ADE=∠BDC,∴结论错误的选项是B ,应选:B .题模二:等边的判定例 如下列图,AD 是ABC △的中线,60ADC ∠=°,8BC =,把ADC △沿直线AD 折叠后,点C 落在C '位置,那么BC '的长为________.【答案】 4【解析】 此题考察的是等边三角形.由题意,60ADC ADC '∠=∠=︒,DC DC DB '==. 180606060BDC '∠=︒-︒-︒=︒,有一个角为60︒的等腰三角形为等边三角形,118422BC BD BC '===⋅=. 故此题的答案是4.例 :如图,点C 为线段AB 上一点,ACM ∆,CBN ∆都是等边三角形,AN 交MC 于点E ,BM 交CN 于点F .〔1〕求证:AN BM =;〔2〕求证:CEF ∆为等边三角形.ACD B C '【答案】见解析【解析】〔1〕ACM∆是等边三角形,∆,CBN∠=∠=︒,ACM NCBAC MC=,60∴=,BC NC∠=∠.∴∠+∠=∠+∠,即ACN MCBACM MCN NCB MCN在ACN=,ACN MCB=,∠=∠,NC BC∆中,AC MC∆和MCB∴=.ACN MCB∴∆≅∆,AN BM〔2〕ACN MCB∴∠=∠,∆≅∆,CAN CMB又18060∴∠=∠,∠=︒-∠-∠=︒,MCF ACEMCF ACM NCB在CAE∠=∠,=,ACE MCF∆和CMF∠=∠,CA CM∆中,CAE CMF∴∆为等腰三角形,∴=,CEFCAE CMF∴∆≅∆,CE CF又60∠=︒,CEF∴∆为等边三角形.ECF例如图,六边形ABCDEF的六个内角都相等,假设AB=1,BC=CD=3,DE=2,那么这个六边形的周长等于____.【答案】15【解析】如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为:15.题模三:30°的角直角三角形等于斜边的一边例如图,ABC⊥,那么以下关系式正确的为〔〕=,30∠=︒,AB AD∆中,AB ACCA.BD CDBD CD=D.4==B.2BD CDBD CD=C.3【答案】B【解析】该题考察的是特殊的直角三角形.∠=∠=︒,C CAD30∴DAC∆为等腰三角形,∴CD AD=,在Rt BAD∆中,30∠=︒,B∴22==BD AD CD应选B.例如图,30∥10PC=,那么OC=__________,⊥于D,PC OB∠=︒,OP平分AOBAOB∠,PD OBPD=__________.【答案】【解析】该题考察的是角平分线的性质定理和含30°直角三角形的性质.∵OP平分AOB∠,∴AOP BOP∠=∠,∵PC OB∥,∴CPO BOP∠=∠,∴CPO AOP∠=∠,∴PC OC=,∵10PC=,∴10OC PC==,过P作PE OA⊥于点E,∵PD OB ⊥,OP 平分AOB ∠,∴PD PE =,∵PC OB ∥,30AOB ∠=︒∴30ECP AOB ∠=∠=︒在Rt ECP ∆中,152PE PC == ∴5PE PD ==例 如图,在△ABC 中,AB=AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC=∠E=60°,假设BE=6cm ,DE=2cm ,那么BC=____.【答案】 8cm【解析】 延长ED 交BC 于M ,延长AD 交BC 于N ,作DF∥BC,∵AB=AC,AD 平分∠BAC,∴AN⊥BC,BN=CN ,∵∠EBC=∠E=60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE=6cm,DE=2cm ,∴DM=4cm,∵△BEM 为等边三角形,∴∠EMB=60°,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,OD B P CAE∴NM=2cm,∴BN=4cm,∴BC=2BN=8cm.故答案为:8cm .题模四:等边三角形与全等三角形综合例 :如图,等边三角形ABD 与等边三角形ACE 具有公共顶点A ,连接CD ,BE ,交于点P . 〔1〕观察度量,BPC ∠的度数为_______.〔直接写出结果〕〔2〕假设绕点A 将△ACE 旋转,使得180BAC ∠=︒,请你画出变化后的图形.〔示意图〕 〔3〕在〔2〕的条件下,求出BPC ∠的度数.【答案】 〔1〕120°〔2〕见解析〔3〕120°【解析】 此题考察等边三角形及全等三角形的性质与判定.〔1〕BPC ∠的度数为120°,理由为:证明:∵△ABD 与△ACE 都是等边三角形,∴60DAB ABD CAE ∠=∠=∠=︒,AD AB =,AC AE =,∴DAB BAC CAE BAC ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ADC CDB ∠+∠=︒,∴60ABE CDB ∠+∠=︒,∴120BPC DBP PDB ABE CDB ABC ∠=∠+∠=∠+∠+∠=︒;〔2〕作出相应的图形,如下列图;〔3〕∵△ABD 与△ACE 都是等边三角形,∴60ADB DAB ABD CAE ∠=∠=∠=∠=︒,AD AB =,AC AE =,∴DAB DAE CAE DAE ∠+∠=∠+∠,即DAC BAE ∠=∠,在△DAC 与△BAE 中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△DAC ≌△BAE 〔SAS 〕,∴ADC ABE ∠=∠,∵60ABE DBP ∠+∠=︒,∴60ADC DBP ∠+∠=︒,∴120BPC BDP PBD ADC DBP ADB ∠=∠+∠=∠+∠+∠=︒例 如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且120BDC ∠=︒.以D 为顶点作一个60︒角,使其两边分别交AB 于点M ,交AC 于点N ,连接MN ,那么AMN ∆的周长为____【答案】 6【解析】 延长NC 到E ,连接DE ,使CE BM =,连接DE .ABC ∆为等边三角形,BCD ∆为等腰三角形,且120BDC ∠=︒,603090MBD MBC DBC ∴∠=∠+∠=︒+︒=︒,18018090DCE ACD ABD ∠=︒-∠=︒-∠=︒,又BM CE =,BD CD =,CDE BDM ∴∆∆≌,CDE BDM∴∠=∠,DE DM =,1206060NDE NDC CDE NDC BDM BDC MDN ∠=∠+∠=∠+∠=∠-∠=︒-︒=︒,在DMN ∆和DEN ∆中,DM DE =,60MDN EDN ∠=∠=︒,DN DN =,DMN DEN ∴∆∆≌,MN NE CE CN BM CN ∴==+=+.=6AMN L AM MN AN AM BM CN AN AB AC ∆∴+==+++=+=例 如图△ABC 为等边三角形,直线a ∥AB ,D 为直线BC 上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.〔1〕假设D 恰好在BC 的中点上〔如图1〕求证:△ADE 是等边三角形;〔2〕假设D 为直线BC 上任一点〔如图2〕,其他条件不变,上述〔1〕的结论是否成立?假设成立,请给予证明;假设不成立,请说明理由.【答案】 见解析【解析】 〔1〕证明:∵a ∥AB ,且△ABC 为等边三角形,∴60ACE BAC ABD ∠=∠=∠=︒,AB AC =,∵BD CD =,∴AD ⊥BC∵60ADE ∠=︒,∴30EDC ∠=︒,∴18090DOC EDC ACB ∠=︒-∠-∠=︒,∴30DEC DOC ACE ∠=∠-∠=︒,∴EDC DEC ∠=∠,∴EC CD DB ==,∴△ABD ≌△ACE .∴AD AE =,且60ADE ∠=︒,∴△ADE 是等边三角形;〔2〕在AC 上取点F ,使CF CD =,连结DF ,∵60ACB ∠=︒,∴△DCF 是等边三角形,∵60ADF FDE EDC FDE ∠+∠=∠+∠=︒,∴ADF EDC ∠=∠,∵DAF ADE DEC ACE ∠+∠=∠+∠,∴DAF DEC ∠=∠,∴△ADF ≌△EDC 〔AAS 〕,∴AD ED =,又∵60ADE ∠=︒,∴△ADE 是等边三角形.作业1如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF ⊥DE,交BC的延长线于点F.〔1〕求∠F的度数;〔2〕假设CD=2,求DF的长.【答案】〔1〕30°〔2〕4【解析】〔1〕∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;〔2〕∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.作业2 如下列图,ABC ∆、ADE ∆与EFG ∆都是等边三角形,D 和G 分别为AC 和AE 的中点,假设4AB =时,那么图形ABCDEFG 外围的周长是_____【答案】 15【解析】 ABC ∆、ADE ∆与EFG ∆都是等边三角形,AD DE ∴=,EF EG =,D 和G 分别为AC 和AE 的中点,4AB =,2DE EA ∴==,1GF EF ==,∴图形ABCDEFG 外围的周长是432115⨯++=.作业3 如图1,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A ′B ′D ′的位置,得到图2,那么阴影局部的周长为____.【答案】 2【解析】∵两个等边△ABD,△CBD 的边长均为1,将△ABD 沿AC 方向向右平移到△A′B′D′的位置, ∴A′M=A′N=MN,MO=DM=DO ,OD′=D′E=OE,EG=EC=GC ,B′G=RG=RB′, ∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为:2.作业4 如下列图,等边△ABC 的边长为a ,P 是△ABC 内一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,点D 、E 、F 分别在BC 、AC 、AB 上,猜想:PD PE PF ++=__________,并证明你的猜想.【答案】 见解析【解析】 PD PE PF a ++=.理由如下:如图,延长EP 交AB 于G ,延长FP 交BC 于H ,∵PE ∥BC ,PF ∥AC ,△ABC 是等边三角形,∴60PGF B ∠=∠=︒,60PFG A ∠=∠=︒,∴△PFG 是等边三角形,同理可得△PDH 是等边三角形,∴PF PG =,PD DH =,又∵PD ∥AB ,PE ∥BC ,∴四边形BDPG 是平行四边形,∴PG BD =,∴PD PE PF DH CH BD BC a ++=++==.故答案为a .作业5 :如图,ABC △是等边三角形.D 、E 是ABC △外两点,连结BE 交AC 于M ,连结AD 交CE 于N ,AD 交BE 于F ,AD EB =.当AFB ∠度数多少时,ECD △是等边三角形?并证明你的结论.【答案】 60AFB ∠=︒【解析】 该题考察的是全等三角形的判定和性质.60AFB ∠=︒,A C MFEN D B理由如下:∵△ABC 是等边三角形,∴CA CB =,460∠=︒,∵245∠+∠=∠,135∠+∠=∠,且360∠=︒,∴12∠=∠,又∵BE AD =,在△BCE 和△ACD 中, 1. 12CA CB AD BE =⎧⎪∠=∠⎨⎪=⎩∴△BCE ≌△ACD 〔SAS 〕 ∴CE CD =,BCE ACD ∠=∠,∴66BCE ACD ∠-∠=∠-∠,即4760∠=∠=,∴△ECD 是等边三角形.作业6 在△ABC 中,AB AC =,BAC ∠=α()060︒<α<︒,将线段BC 绕点B 逆时针旋转60︒得到线段BD .〔1〕如图1,直接写出ABD ∠的大小〔用含α的式子表示〕;〔2〕如图2,150BCE ∠=︒,60ABE ∠=︒,判断△ABE 的形状并加以证明;〔3〕在〔2〕的条件下,连结DE ,假设45DEC ∠=︒,求α的值.【答案】 〔1〕302α︒-〔2〕见解析〔3〕30︒ 【解析】 该题考察的是三角形综合.〔1〕∵AB AC =∴1809022ABC ACB ︒-αα∠=∠==︒-,A D B CADB C E∴90603022ABD ACB DBC αα∠=∠-∠=︒--︒=︒-,………………………………………1分 〔2〕△ABE 是等边三角形, ………………………………………………………2分 连结AD ,CD .∵60DBC ∠=︒,BD BC =,∴ △BDC 是等边三角形,60BDC ∠=︒,BD DC = ………………3分 又∵AB AC =,AD AD =,∴ △ABD ≌△ACD .∴ADB ADC ∠=∠,∴150ADB ∠=︒. ………………4分∵60ABE DBC ∠=∠=︒,∴ABD EBC ∠=∠.又∵BD BC =,150ADB ECB ∠=∠=︒,∴ △ABD ≌△EBC .∴AB EB =.∴ △ABE 是等边三角形. …………………………………………5分〔3〕∵△BDC 是等边三角形,∴ 60BCD ∠=︒.∴ 90DCE BCE BCD ∠=∠-∠=︒又∵45DEC ∠=︒,∴CE CD BC ==.………………………………………………………6分∴15EBC ∠=︒. ∵302EBC ABD α∠=∠=︒-, ∴ 30α=︒. ……………………………………………………………7分作业7 将一张矩形纸片ABCD 如下列图折叠,使顶点C 落在C '点.2AB =,30DEC '∠=︒,那么折痕DE 的长为〔 〕A . 2B . 23C . 4D . 1【答案】C【解析】 该题考察的是图形的翻折.因为四边形ABCD 是矩形,所以AB CD =,由题意可知'30CED DEC ∠=∠=︒,1sin 2CD CED DE ∠==,所以2224DE CD ==⨯=.所以,此题的正确答案是C .作业8 如图,在等边△ABC 中,2AB =,点P 是AB 边上任意一点〔点P 可以与点A 重合〕,过点P 作PE ⊥BC ,垂足为E ,过点E 作EF ⊥AC ,垂足为F ,过点F 作FQ ⊥AB ,垂足为Q ,求当BP 的长等于多少时,点P 与点Q 重合?【答案】 43BP =【解析】 设BP x =,在直角三角形PBE 中,30BPE ∠=︒ ∴12BE x =,那么122EC x =- 在直角△EFC 中,30FEC ∠=︒, ∴11124FC EC x ==-,∴1214AF FC x =-=+ 同理:1128AQ x =+ 当点P 与点Q 重合时,2BP AQ +=即11228x x ⎛⎫++= ⎪⎝⎭,解得43x =A BE C DC '故当43BP =时,点P 与点Q 重合.作业9 如图,ABC ∆为等边三角形,AD 平分BAC ∠,ADE ∆是等边三角形,以下结论中 ①AD BC ⊥,②EF FD =, ③BE BD =,④60ABE ∠=︒.正确的个数为〔 〕A . 1B . 2C . 3D . 4【答案】D【解析】 该题考察的是三角形的性质.∵△ABC 为等边三角形,AD 为角平分线,∴AD BC ⊥,30BAD ∠=︒,60ABD ∠=︒∵△ADE 是等边三角形,30BAD ∠=︒,∴30EAB EAD BAD ∠=∠-∠=︒,EA DA =,在△AEF 和△ADF 中,EA DA EAB DAB AF AF =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△ADF 〔SAS 〕,∴EF FD =,同理,△AEB ≌△ADB ,∴60ABE ABD ∠=∠=︒,EB DB =,故正确的个数为4个,故此题答案为D .作业10 如图,过边长为2的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连PQ 交AC 边于D ,那么DE 的长为〔 〕A . 13B . 12C . 23D . 1【答案】D【解析】 过P 作BC 的平行线交AC 于F ,Q FPD ∴∠=∠,ABC ∆是等边三角形,60APF B ∴∠=∠=︒,60AFP ACB ∠=∠=︒,APF ∴∆是等边三角形,AP PF ∴=,AP CQ =,PF CQ ∴=,在PFD ∆和QCD ∆中,FPD Q ∠=∠, PDF QDC PF CQ ∠=∠=,PFD QCD ∴∆∆≌,FD CD ∴=,PE AC ⊥于E ,APF ∆是等边三角形,AE EF ∴=,AE DC EF FD ∴+=+,12ED AC ∴=,2AC =,1DE ∴=.作业11 如图,在等边ABC △中,点D 、E 分别在边BC 、AC 上,且AE CD =,BE 与AD 相交于点P ,BQ AD ⊥于点Q .〔1〕求证:ABE CAD △≌△;〔2〕请问PQ 与BP 有何关系?并说明理由.【答案】 〔1〕见解析〔2〕2BP PQ =【解析】 该题考察全等三角形的判定与性质.∵△ABC 为等边三角形.∴AB AC =,60BAC ACB ∠=∠=︒,在△BAE 和△ACD 中:AE CD BAC ACB AB AC =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△ACD〔2〕2BP PQ =∵△BAE ≌△ACD∴ABE CAD ∠=∠∵BPQ ∠是△ABP 的外角,∴BPQ ABE BAD ∠=∠+∠,∴60BPQ CAD BAD BAC ∠=∠+∠=∠=︒∵BQ AD ⊥,AB P EQD C∴30∠=︒PBQ∴如有侵权请联系告知删除,感谢你们的配合!。
等边三角形的性质2
等边三角形的性质(二)学案广州市白云区嘉禾中学初二数学备课组学习目标:1、掌握等边三角形的性质;2、会用等边三角形的性质解决相关的问题。
学习重点:等边三角形的性质及应用。
一、复习引入:请描述等边三角形的性质:1、等边三角形是轴对称图形,它有_________条对称轴。
2、等边三角形三条边都相等3、等边三角形三个角都相等,并且每一个角都等于__________°二、基础练习:1.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是2.如图,在△ABC中,D、E在BC上,且BD=DE=AD=AE=EC,则∠BAC的度数是如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、提升练习:19.如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.8.如右图所示,已知△ABC为等边三角形,点D为B C延长线上的一点,CE 平分∠ACD,C E=BD,求证:AD=AE。
四、拓展练习:如图:P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ ,观察并猜想AP与CQ之间的大小关系,并证明。
20、(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:∠ABC=∠ACN.(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.20.如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.五、小结:六、作业学评:。
人教版八年级数学上册(教案).2等边三角形
1.理论介绍:首先,我们要了解等边三角形的基本概念。等边三角形是三边长度相等的三角形,它具有独特的性质和应用。在几何学中,等边三角形是非常重要的基本图形。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等边三角形在建筑、艺术等领域的应用,了解它如何帮助我们解决问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了等边三角形的基本概念、判定方法、性质和面积计算。同时,我们也通过实践活动和小组讨论加深了对等边三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
-掌握等边三角形面积公式的推导过程:学生需要理解并记住面积公式的推导过程,这涉及到数学抽象和逻辑推理的能力。
-在实际问题中识别和应用等边三角形的知识:学生需要具备一定的观察能力和问题分析能力,才能将等边三角形的知识应用到实际问题中。
举例解释:
-通过对比不同类型的三角形,让学生明确等边三角形的判定条件,并能够识别。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等边三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.重点难点解析:在讲授过程中,我会特别强调等边三角形的判定方法和面积计算这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
最新版初中数学教案《等边三角形的性质与判定 2》精品教案(2022年创作)
等边三角形第1课时 等边三角形的性质与判定1.掌握等边三角形的定义、性质和判定,明确其与等腰三角形的区别和联系.(重点)2.能应用等边三角形的知识进行简单的计算和证明.(难点)一、情境导入观察下面图形:师:等腰三角形中有一种特殊的三角形,你知道是什么三角形吗?生:等边三角形.师:对,等边三角形具有和谐的对称美.今天我们来学习等边三角形,引出课题.二、合作探究探究点一:等边三角形的性质 【类型一】 利用等边三角形的性质求角度如图,△ABC 是等边三角形,E 是AC 上一点,D 是BC 延长线上一点,连接BE ,DE ,假设∠ABE =40°,BE =DE ,求∠CED 的度数.解析:因为△ABC 三个内角为60°,∠ABE =40°,求出∠EBC 的度数,因为BE =DE ,所以得到∠EBC =∠D ,求出∠D 的度数,利用外角性质即可求出∠CED 的度数.解:∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°.∵∠ABE =40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE =DE ,∴∠D =∠EBC =20°,∴∠CED =∠ACB -∠D =40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.【类型二】 利用等边三角形的性质证明线段相等如图:等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:BM =EM .解析:要证BM =EM ,根据等腰三角形的性质可知,证明△BDE 为等腰三角形即可.证明:连接BD ,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°,∴BD =ED ,△BDE 为等腰三角形.又∵DM ⊥BC ,∴BM =EM .方法总结:此题综合考查了等腰和等边三角形的性质,其中“三线合一〞的性质是证明线段相等、角相等和线段垂直关系的重要方法.【类型三】 等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是BC 边上任意一点,点N 是CA 边上任意一点,且BM =CN ,BN 与AM 相交于Q 点,∠BQM 等于多少度?解析:先根据条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠BQM =∠ABC =60°.解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌△BNC (SAS),∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.探究点二:等边三角形的判定 【类型一】 等边三角形的判定等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.解析:先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°,从而得出△APQ 是等边三角形. 解:△APQ 为等边三角形.证明:∵△ABC 为等边三角形,∴AB =AC .在△ABP 与△ACQ 中,∵⎩⎪⎨⎪⎧AB =AC ,∠ABP =∠ACQ ,BP =CQ ,∴△ABP ≌△ACQ (SAS),∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP +∠PAC =60°,∴∠PAQ =∠CAQ +∠PAC =60°,∴△APQ 是等边三角形.方法总结:判定一个三角形是等边三角形有两种方法:一是证明三角形三个内角相等;二是先证明三角形是等腰三角形,再证明有一个内角等于60°.【类型二】 等边三角形的性质和判定的综合运用图①、图②中,点C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形.(1)如图①,线段AN 与线段BM 是否相等?请说明理由;(2)如图②,AN 与MC 交于点E ,BM 与CN 交于点F ,探究△CEF 的形状,并证明你的结论.解析:(1)由等边三角形的性质可以得出△ACN ,△MCB 两边及其夹角分别对应相等,两个三角形全等,得出线段AN 与线段BM 相等.(2)先求∠MCN =60°,通过证明△ACE ≌△MCF 得出CE =CF ,根据等边三角形的判定得出△CEF 的形状.解:(1)AN =BM .理由:∵△ACM 与△CBN 都是等边三角形,∴AC =MC ,CN =CB ,∠ACM=∠BCN =60°.∴∠MCN =60°,∠ACN =∠MCB .在△ACN 和△MCB 中,∵⎩⎪⎨⎪⎧AC =MC ,∠ACN =∠MCB ,NC =BC ,∴△ACN ≌△MCB (SAS).∴AN =BM .(2)△CEF 是等边三角形.证明:∵△ACN ≌△MCB ,∴∠CAE =∠CMB .在△ACE 和△MCF 中,∵⎩⎪⎨⎪⎧∠CAE =∠CMF ,AC =MC ,∠ACE =∠FCM ,∴△ACE ≌△MCF (ASA),∴CE =CF .∴△CEF 是等边三角形.方法总结:等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了根底,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件.三、板书设计等边三角形的性质和判定1.等边三角形的定义;2.等边三角形的性质;3.等边三角形的判定方法.本节课让学生在认识等腰三角形的根底上,进一步认识等边三角形.学习等边三角形的定义、性质和判定.让学生在探索图形特征以及相关结论的活动中,进一步开展空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.在这节课中,要学生充分的自主探究,尝试提出问题和解决问题,开展学生的自主探究能力.三角形的稳定性【知识与技能】1.通知过观察、实践、想象、推理、交流等活动,让学生了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用.2.培养实事求是的学习作风和学习习惯.【过程与方法】1.通过提问、合作讨论以及小组交流方式探究三角形的稳定性.2.实物演示,激发学习兴趣,活泼课堂气氛.3.探究质疑,总结结果.和学生共同探究三角形稳定性的实例,答复课前提出的疑惑.【情感态度】1.引导学生通过实验探究三角形的稳定性,培养其独立思考的学习习惯和动手能力.2.通过合作交流,养成学生互助合作意识,提高数学交流表达能力.【教学重点】了解三角形稳定性在生产、生活中的实际应用.【教学难点】准确使用三角形稳定性于生产生活之中.一、情境导入,初步认识课前准备:木条〔用硬纸条代替〕假设干、小钉假设干、小黑板.问题1 工程建筑中经常采用三角形的结构,如屋顶钢架,钢架桥,其中道理是什么?问题 2 盖房子时,在窗框未安装好之前.木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢? 活动挂架为什么做成四边形?【教学说明】问题设立要让学生体会三角形在生产和生活中的应用,并引导思考为什么要在这些地方用三角形,另一些地方又要用到四边形.注意接纳学生其他不同的思路.教师讲课前,先让学生完成“自主预习〞.二、思考探究,获取新知老师演示P6探究内容,也可叫学生亲手实验,通过实际操作加深学生印象,完后请学生们交流讨论后答复得出了什么?教师根据学生们的答复进行简要归纳.【归纳结论】三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.还可以发现,斜钉一根木条的四边形木架的形状不会改变.这是因为斜钉一根木条后,四边形变成了两个三角形,由于三角形有稳定性,窗框在未安装好之前也不会变形.三、运用新知,深化理解1.如图,一扇窗户翻开后,用窗钩BC可将其固定,这里所运用的几何原理是 .2.以下列图形中哪些具有稳定性?【教学说明】本节课的内容较少,题目比较简单,在学生独立完成后,要求学生说明理由.【答案】1.三角形具有稳定性.2.〔1〕〔4〕〔6〕中的图形具有稳定性.四、师生互动,课堂小结三角形具有稳定性,四边形没有稳定性.1.布置作业:从教材“习题”中选取.2.完成练习册中本课时的练习.本节课学习三角形稳定性,并板书课题.完成的教学目标是通过观察、实践、想象、推理、小组交流合作,使同学们了解三角形具有稳定性,四边形没有稳定性,稳定性与没有稳定性在生产、生活中广泛应用,培养同学们实事求是的学习作风和学习习惯,以及自主学习和独立思考的能力.。
等边三角形的性质第二课时(共18张PPT)
求证:BD= AB.
B
D
A
4、 如图,上午9时,一条渔船从A出发,以12 海里/时的速度向正北航行,11时到达B处, 从A、B两处望小岛C,测得∠NAC=150,
∠NBC=300,若小岛周围海里内有暗礁,问该 渔船继续向正北航行有无触礁的危险?
N
C
D
B
A
∴∠DAC=∠B+∠ACB= 150+150=300
(三角形的一个外角,等于和不相邻的两内角的和). ′ ∴CD= AC= ×2a=a
(在直角三角形中, 如果有一个锐角等于300,那么它所对 的直角边等于斜边的一半).
D
A
150
B
150
C
已知:如图,在△ABC中,∠ACB=900,∠A=300,
CD⊥AB于D.
∠BDE= 30° ,
E
BE=___2_c_m__.
B
D
C
2、如图,在△ABC中, ∠ACB= 90°,BA的
垂直平分线交边CB于D。若AB=10,AC=5,则
图中等于 30°的角的个数为( )
B
C
D
B
E
A
例2.已知:等腰三角形的底角为150,腰长为2a. 求:腰上的高.
解:过C作BA延长线的垂线CD,垂足为D ∵∠B=∠ACB=150(已知),
∠BDE=
,
A
C
E
变式练习:如图,△ABC和△CDE都是等边 三角形,且点A,C,E在一条直线上.△MNC 为等边三角形吗,为什么?
B
D
M N
A
C
E
3.如图,△ABC 为等边三角形,
∠1=∠2,BD=CE,
等边三角第二课时教案
《等边三角形》【教学目标】1、知识与技能:使学生理解含30°角的直角三角形的性质。
2、过程与方法:(1)通过探究含30°角的直角三角形的性质,使学生进一步认识到数学来源于生活实践。
(2)体验用操作、归纳得出数学结论的过程。
(3)会用这一性质解决相关数学问题。
3、情感、态度与价值观:(1)通过拼等边三角形这一探究活动,培养学生的合作交流、乐于探究、大胆猜想等良好品质。
(2)使学生经历观察、探究、归纳、推理和证明的全过程,培养学生科学、严谨、求真的学习态度。
【教学重点:】理解含30°角的直角三角形的性质及应用。
【教学难点:】含30°角的直角三角形性质的探究。
【教学过程】活动一:旧知准备问题:已知△ABC,∠A=60°,()。
请你在括号内补充一个条件,使△ABC能成为等边三角形。
学生活动:学生补充条件并说明。
教师活动:教师找学生补充条件,根据学生的叙述板书。
设计意图:此题的设计意图是通过问题形式回顾旧知,促使学生经常温故知新,同时为新课应用判定做铺垫。
传统的回顾旧知,一般是直接找学生背诵等边三角形的判定,容易产生误导:学习就是背诵定理、性质。
最终会造成学生会背性质、定理,却不能应用解决实际问题。
著名数学家哈墨斯曾经说过:“问题是数学的心脏!”这里通过一个半开放性的问题,可以使不同的学生想到不同的条件,如:∠B=60°(或∠C=60°)、AB=BC、AC=BC、AB=BC=AC等多种答案,对等边三角形的判定有一个深入的理解,而非机械记忆定理、性质所能解决的。
同时不同层次的学生也会在不同层面上体验到成功。
充分培养学生的创新精神和发散思维,使学生遇到问题学会思考,避免对性质、定理的学习停留在简单的对字面意思的理解上,有效克服学生的简单机械记忆。
活动二:探究直角三角形的性质1、拼一拼:你能用两个含有30°角的三角板摆放在一起构成一个等边三角形吗?你能借助这个图形,找到30°角所对的直角边与斜边之间的数量关系吗?组内交流自己的想法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80分 3. 已 知 在 等 边 △ ABC 中 , 如 果 P 是 △ABC所在平面上的一点,且△PAB、 △ PBC 、 △ PCA 都 是 等 腰 三 的位置共有几个? 角形,那么这样的点P ·
试一一画出。
P1
A
B
C
2#13. 幻灯
50分 2 2 4.若三角形的三边a,b,c,满足(a-b) + (b-C) 2 + (c-a) = 0,则它的形状是( )。
A A
D
B ①
E
C B
D
600 ②
E C B
D ③
E C
加油 思考!
1
1
34.
4
50分
1.你能把一个等边三角形分成三个、四 个、六个全等的三角形吗?若能,画 出所要求的图形来,不能,则用“×” 在括号内表示。
1 ( ) ( ) ( )
2.新理念中考题
60分
(2004· 浙江)正三角形给人以“稳如泰山” 的美感,它具有独特的对称性,请你用 三种不同的分割方法,将图中三个正三 角形分割成四个等腰三角形(在图中画 出分割线,并标出必要的角的度数)。
你发现了什么?
这就是今天我们要学的
你知道什么是等边三角形?
定义:三边都相等的三角形叫做等边 三角形 A 等边三角形是特殊的等腰三角形, 也叫正三角形。
想一想,你会画一个边长 为2cm的等边三角形吗?
B C
1.等边三角形具有哪些特殊性质? 2.具备什么条件的三角形是等边 三角形?
1、等边三角形的三个内角都相等,并且 每一个角都等于60° 2、等边三角形每条边上的中线、 高和它所对角的平分线都互相重合。 3、等边三角形是轴对称图形,每条 高所在的直线都是等边三角形的对称 轴。
பைடு நூலகம்
∵ ∠A= ∠ B= ∠ C ∴ AB=BC=AC ∴△ABC是等边三角形 ∵ ∠B=600 AB=BC ∴△ABC是等边三 角形
B
等边三角形
C
3 . 有一个角是60°的等腰 三角形是等边三角形.
例1:课外活动小组在一次测量活动中,测
得∠APB=60°AP=BP=200cm,他 们便得到了一个结论:池塘最长处不小 于200cm.他们的结论对吗?
A 直角三角形
B 等腰三角形
C 等腰直角三角形 D 等边三角形 请思考:若a,b,c,满足(a-b) (b-c) (c-a) = 0, 你能判断△ABC的形状吗?
#1 3.
谈谈你的收获与困惑.
评选出今天表现最优秀个人和小组.
; / 轰趴馆;
玖;≈111;≈10玖;想几乎都有啊,比壹般の站要稳定很多更新还快,全文字の没有广告.]"根汉说."太好了,谢谢您叶神翼."男子没想到,根汉这么容易就答应他了,让他有些喜出望外."不用这么客气,你叫什么名字?"根汉笑着问他.这个家伙有壹颗赤子之心,虽然从小被迫害,便是依旧没 有丢失自己善良の本心,这是壹个难得の好苗子.而且黑煞之火,也选择他の元灵共生,也有可能是这壹点.壹般の黑煞之火可都是有灵‘性’の,也不会随便选择什么人就‘乱’共生,必定是这人の什么东西.男子笑了笑说:"咱叫黑子,没有名字.""黑子?"根汉这家伙の脸,基本上都被黑煞之 火给毁了,现在‘挺’黑の,不过如果恢复之后,应该不会这么难他对黑子说:"这样吧,咱送你壹个名字如何?""那太好了,请叶神翼赐名."黑子很兴奋,他终于是要有名字了吗?根汉微笑着说:"你咱既然是在南沙城相遇,相遇就是缘份,不如就叫南缘吧.""南缘?""南缘."黑子喃喃自语,念叨 了好几遍,兴奋の说:"真好听,谢谢神翼,以后咱就有名字了,咱就叫南缘了."南缘,取意难得の缘份,南沙の缘份,根汉也没多想,也就随口这么壹取了."你也不要叫咱神翼了,以后叫咱叶哥吧."根汉说."那,那怎么好."南缘连忙说:"不如咱给您当个外‘门’弟子吧,您收咱为徒吧.""收你为 徒?"根汉想了想,这可是自己头壹回收徒,想了想后说:"罢了,从今天起,你就是咱根汉の徒尔了,以后跟着师父好好‘混’."认徒の过程,当真是没有半点麻烦の,根汉也没有什么讲究.只是把单雄给叫了出来,三人壹起在院里吃喝了壹顿,就当是收徒成功了.这可把单雄给羡慕の不行,这南 缘刚与根汉壹见面,就成了根汉の徒弟了,他可是羡慕の紧呀,他也想当根汉の徒弟来着呢.可是根汉不收他呀,不收他这个老家伙了.收了徒弟了,根汉仿佛也多了壹件事情了.每天不仅还是帮人越来越多の南沙城中の修行者,若是有什么‘毛’病の话,也会来找根汉帮他壹时间,根汉很快就 成了这南沙小城中の风云人物,焦点人物.时间过得飞快,转眼就又是半年时间过去了.这壹天晚上,根汉还在指导南缘教他炼‘药’の基本方法,同时在亲自教导他炼制壹味简单の丹‘药’,全骨丹.顾名思议,这是壹味可以令骨骼正位の丹‘药’.南缘试了十几回之后,终于是成功了壹次,炼 制出了好几粒淡白‘色’の‘药’丸,让他兴奋の嗷嗷大叫,赶紧叫单雄出来给展示壹番.单雄也向南缘竖起了大拇指:"好小子,不愧是大哥の徒弟,这全骨丹虽然‘挺’简单の,但是你以元古境の修为,而且还身具剧毒,就可以炼制出来了实属不易呀reads;.""谢谢单大叔,咱还会继续努力 の."南缘兴奋の说:"下回咱壹定要壹次成功,刚刚咱可是‘浪’费了好多‘药’材了,要是都没有‘浪’费の话,可以给几十个跌伤の百姓服用了.""恩,努力."单雄の心境,也有些被南缘感染了.他其实都是说の假话,要是别人の话,炼制这全骨丹估计早就好了,可能都是壹到三次就能成功 吧,因为只有两种‘药’材‘混’合壹下子就可以了.不过他觉得南缘の善良感染了他,或许这也正是根汉收他为徒の原因吧,这个南缘心系常人,是壹个很善良の苗子.这半年来,与南缘呆在壹起の时间长了,单雄都觉得自己已经不适合再修行吞噬之法了.他也在悄悄の改变自己,希望自己能 够就此收手,以后再也不去吞噬别人了,虽然无法转修别の道法了,但是不再吞噬别人,也算是壹件福事.那样就能慢慢の驱除元灵中の戾气,让自己以前积攒下来の那些副作用,慢慢の驱除,让自己也变得正常起来.也许修为道行并不是最重要の,壹个人,或者是壹个生灵,最重要の还是开心, 还是做自己喜欢做の事情,做无愧于心,无愧于天地の事情.天道并不是要你去打破,而是让你维护,让天下变得更美好,让万物生灵都能有好の生存环境,破坏只能让大家都过得不好.所以单雄也很欣赏南缘,欣赏这个修为不高,但是心怀苍生の年轻人.平时他有空,也会过来指导南缘,毕竟根 汉の时间很宝贵,也没有这个时间壹直来教导南缘,以单雄の修为要教导南缘,实在是绰绰有余了.(..)(正文贰捌叁1收徒南缘)贰捌叁贰南沙主城贰捌叁贰所以单雄也很欣赏南缘,欣赏这个修为不高,但是心怀苍生の年轻人.新.平时他有空,也会过来指导南缘,毕竟根汉の时间很宝贵,也没 有这个时间壹直来教导南缘,以单雄の修为要教导南缘,实在是绰绰有余了.南缘在翼药,炼药方面の进步,也是很明显の.本来他就是元古境の修士,比普通人要强出成千上万倍,自然学习起来也是可以の,只是和那些圣境之类の修士,当然是没办法可比の.不过南缘已经很可以了,壹些普通人 の小病小灾,他可以轻易の治好了.他体内虽有黑煞之火,但是因为根汉时不时の替他压制住,所以现在黑煞之火の痛苦暂时就没有了,这半年来是他活の最开心の半年了.这壹天晚上,根汉他们の院子外面,又来了两个不速之客.只不过这两人,明显の要强大了太多了,这是两位高阶圣境の强 者,同样是两个黑袍人,脸上戴着鬼面具."沙卫拜见叶神翼."人の气势,好像并不是衍无玄天の执法长老.根汉和单雄,以及南缘都出来了."两位是?"根汉皱眉问道.这两人の气息有些古怪,像是冥冥中の远古时代の气息,仿佛隔了相当の久了,存在太远了."在下沙六,在下沙九."两人介绍了壹 下:"咱们是南沙城の十大守卫.""奉咱主之命,前来邀请叶神翼,前往南沙城作客."两人说."南沙城作客?"根汉皱了皱眉问道:"这里不是南沙城吗?你们主人是谁?"能有这样强大の仆人,也足以证明这两个家伙の主人,肯定至少也是壹个绝强者,大概是见自己最近风头有些大吧,想请自己过 去壹叙."这里是南沙小城."沙六介绍了壹下,"并不是南沙主城,南沙主城不在这里,比这里要大上百倍.""南沙主城?"不仅是根汉,壹旁の单雄和南缘,也觉得很奇怪.不过仔细壹想,似乎这里の确全名叫南沙小城,确是有壹个南沙主城了.根汉也想到了,这两个人,应该是南沙小城背后の人の 仆人了,而且极有可能与南沙小城中间,那座小沙丘有关系,诡异の存在.他对两人说:"好吧,那就叨扰了.""大哥,这."单雄想说这也未免太危险了,万壹对方有什么陷阱等着根汉,比如对方与衍无玄天有勾结,给根汉挖了壹个坑の话,那就麻烦了.根汉杀了衍无玄天の执法长老,这事情可不是 小事情,执法长老代表の是玄天の无上威严,可不是能随便乱杀の."无妨,你们二人进咱乾坤世界呆着吧,也不用在这里住了."根汉想了想,还是要将他们二人给带上,免得这壹去比较久の话,到时留他们二人在这里の话,到时居住时限到了,又是壹件麻烦事.单雄二人也没什么好劝の,进了根 汉の乾坤世界,两位沙卫立即将他给请走了.他们也没有让根汉蒙面,或者是怎么样の,直接就领着根汉来到了那座小沙丘の上空."叶神翼,这里便是南沙主城の入口了,壹般外面の人都只能住在这南沙小城中."沙六给根汉介绍了壹下.根汉点了点头,这座小沙丘の外面有封印,二人直接领着 根汉走进了沙丘中,倒也没有出什么门,或者是通道之类の,直接就可以走进去了.进入了沙丘中,壹面洪荒气息迎面扑来,吹起了根汉の头发.眼前の景象令人双眼壹亮,面前是壹片平坦の沙漠,只是奇怪の是,这些沙漠并不是特别干,反而是很有水份の,有大量の水草壹样の植物,在这些