四年级抽屉原理

合集下载

四年级奥数抽屉原理

四年级奥数抽屉原理

一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

抽屉原理有时也被称为鸽巢原理(“如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子”)。

它是组合数学中一个重要的原理。

(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.四、应用抽屉原理解题的具体步骤知识框架抽屉原理 发现不同第二步:构造抽屉。

这是个关键的一步,这一步就是如何设计抽屉,根据题目的结论,结合有关的数学知识,抓住最基本的数量关系,设计和确定解决问题所需的“苹果”及其个数,为使用抽屉铺平道路。

第三步:运用抽屉原理。

观察题设条件,结合第二步,恰当运用各个原则或综合几个原则,将问题解决。

例题精讲【例 1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子.对吗?【巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业试说明:这5名学生中,至少有两个人在做同一科作业.【例 2】向阳小学有730个学生,问:至少有几个学生的生日是同一天?【巩固】人的头发平均有12万根,如果最多不超过20万根,那么13亿中国人中至少有人的头发的根数相同。

四年级:抽屉原理

四年级:抽屉原理

专题四:抽屉原理姓名简单来说:桌上有5个苹果,要把这5个苹果放到4个抽屉里,有的抽屉可以放一个,有的可以放两个、三个,甚至放五个,但无论怎样放,至少有一个抽屉里面至少放两个苹果。

这个道理就是我们所说的抽屉原理。

抽屉原理的内容简明朴素,易于接受,应用广泛,在数学问题的解决和证明中有着重要的作用。

在实际问题中,“抽屉”和“物体”的表述往往不明确,需认真分析题目中的条件和问题,精心制造出“抽屉”,制造“抽屉”是解决问题的关键。

要让孩子通过一些练习,积累经验,学会制造“抽屉”。

抽屉原理也称为鸽巢原理:如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子。

它是德国数学家狄利克雷首先明确的提出来的,也称为狄利克雷原理。

它是组合数学中一个重要的原理。

1、某班32名小朋友是在5月份出生的,能否找到两个生日是在同一天的小朋友?为什么?2、某校中年级有367名学生,都是1992年出生的,老师不用查学生登记表,就能断言:“至少有2名学生在同一天过生日”,你知道为什么吗?3、三个小朋友在一起玩,其中必有两个小朋友是男孩或者是女孩,你知道这是为什么吗?4、在一条长50米的小路一旁栽51棵树(小路有一端不栽树)。

有人说:“不管怎么栽,我一定能找到两棵树,它们之间的距离不超过1米。

”他说得对吗?5、把54朵小红花分给10个小朋友,能不能使每个小朋友都有花,但花的朵数互不相同,为什么?6、学校买来历史、文艺、科普3种图书各若干本,每名学生从中任意借2本,那么最少在多少名学生中,才一定能找到两人所借图书的种类完全相同?7、班上有50名小朋友,老师至少要拿几本书,随意分给小朋友,才能保证至少有一个小朋友能得到不少于两本的书?8、在1,2,3,…,99,100这100个整数中,选出一些数,使得任意两数的差都不等于1, 2,6,那么,从中最多能选出几个数?9、泡泡糖出售机内有各种颜色的糖,有红色糖10颗、白色糖15颗、蓝色糖3颗、黄色糖20颗。

抽屉原理十个例题

抽屉原理十个例题

抽屉原理十个例题1.有5个红球和7个蓝球放在一个抽屉里,如果随机取出3个球,那么至少会拿到两个是同色球的概率是多少?解析:使用反面计算。

首先,计算取出3个球都是不同色球的概率。

当第一个球被取出后,有5个红球和7个蓝球剩下。

那么取出第二个球时就只剩下4个红球和7个蓝球,概率为(5/12)*(7/11)。

同理,取出第三个球时只剩下3个红球和7个蓝球,概率为(5/12)*(4/11)。

因此,取出3个球都是不同色球的概率为(5/12)*(7/11)*(4/11)。

所以,至少会拿到两个是同色球的概率为1-(5/12)*(7/11)*(4/11)。

2.一组音乐会有10个乐手,其中3个会弹钢琴,4个会吹号,2个会弹吉他,1个会敲鼓。

从中随机选出4个人组成一个小号乐队,求至少会有一位会弹钢琴和一位会吹号的概率是多少?解析:首先,计算四个人都不弹钢琴的概率。

在10个乐手中,只能选出7个人(除去3个弹钢琴的乐手),然后从这7个人中选出4个组成小号乐队,概率为(7选择4)/(10选择4)。

同理,计算四个人都不会吹号的概率为(6选择4)/(10选择4)。

然后计算四个人都不弹钢琴且不会吹号的概率为(4选择4)/(10选择4)。

所以,至少会有一位会弹钢琴和一位会吹号的概率为1-[(7选择4)/(10选择4)+(6选择4)/(10选择4)-(4选择4)/(10选择4)]。

3.有一个箱子里有10双袜子,其中5双是黑色的,3双是蓝色的,2双是灰色的。

如果从箱子中随机取出3只袜子,那么至少会拿到一双是蓝色的概率是多少?解析:计算没有蓝色袜子的概率。

当从箱子中取出第一只袜子后,有10只袜子剩下,其中3只是蓝色的。

所以,没有蓝色袜子的概率为(7/10)*(6/9)*(5/8)。

所以,至少会拿到一双是蓝色的概率为1-(7/10)*(6/9)*(5/8)。

4.一个袋子里有20个糖果,其中3个是巧克力的,7个是草莓味的,10个是薄荷味的。

如果从袋子中随机取出5个糖果,那么至少会拿到两个是草莓味的概率是多少?解析:计算没有草莓味糖果的概率。

抽屉原理小学数学教案

抽屉原理小学数学教案

抽屉原理小学数学教案
教学内容:抽屉原理
年级:小学四年级
教学目标:
1. 理解抽屉原理的概念和基本原理。

2. 能够应用抽屉原理解决实际问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学准备:
1. 教师准备教材《小学数学》四年级教材相关内容。

2. 准备黑板、彩色粉笔和教具。

3. 预先准备好相关的练习题和考题。

教学过程:
第一步:导入(5分钟)
教师引导学生回顾前几节课所学的内容,提出一个问题:“如果有5只猴子,只有4只马桶,那么至少有一只猴子会用同一只马桶吗?”让学生思考并讨论。

第二步:概念讲解(10分钟)
教师向学生解释抽屉原理的概念:“抽屉原理是指如果有n+1个物品放进n个抽屉里,至少会有一个抽屉里有两个或两个以上的物品。

”让学生理解这个概念。

第三步:例题演练(15分钟)
教师给学生举例:“如果有7个苹果,只有6个篮子,那么至少会有一个篮子里会有两个或两个以上的苹果。

”让学生根据这个例子自己尝试解答其他类似问题。

第四步:练习巩固(10分钟)
教师发放练习题让学生独立完成,并在课堂上讲解答案,让学生自行纠正并加强记忆。

第五步:拓展应用(10分钟)
教师引导学生思考如何在不同的问题中应用抽屉原理来解决,让学生举一些例子并进行讨论。

第六步:课堂总结(5分钟)
教师总结本节课的内容,强调抽屉原理的重要性,并鼓励学生多加练习,加深理解。

教学反思:本节课主要通过例题演练和练习巩固的方式,让学生对抽屉原理有一个初步的理解,并能够灵活运用。

教学中要注重引导学生思考和探索,培养其解决问题的能力。

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理

2024最新小学奥数抽屉原理小学生奥数中的抽屉原理是指一种将物品分配到有限的空间中的方法。

这个原理是由数学家所提出的,因为它的应用广泛,并且在解决问题中非常有用。

抽屉原理简单来说就是:如果你有独立的n个抽屉,并且有n+1个物品要放入这些抽屉中,那么必然存在一个抽屉里至少放了两个物品。

这个原理的证明也很简单。

假设每个抽屉里最多只能放一个物品,那么最多只能放n个物品,因为有n个抽屉。

但是题目中说有n+1个物品要放入这些抽屉,所以最少会有一个抽屉里放了两个物品。

抽屉原理的应用非常广泛,包括组合数学、概率论等领域。

在小学奥数中,它通常用于解决物品分配、排列组合等问题。

以下是一些抽屉原理在小学奥数中的具体应用举例:1.分配问题:假设有10个苹果要分给5个人吃,那么必然有至少一个人吃到的苹果数量大于等于2个。

这是因为10个苹果无法平均分给5个人,所以必然有人会多吃一些。

2.字母出现次数问题:假设一个字符串中有11个字母,那么至少有两个字母出现的次数相同。

这是因为只有26个字母,无论如何排列,最多只能给每个字母分配到一个位置,所以肯定有至少两个字母分配到了同一个位置。

3.图形排列问题:假设有10个正方形图案要排列在5个位置上,那么必然有至少一个位置上排列了两个图案。

这是因为10个图案无法完全填满5个位置,所以必然会有至少一个位置上放置了两个图案。

总结起来,抽屉原理告诉我们,在一些有限的情况下,物品的分配不可能完全均匀,必然会有一些位置或者人会多分配到一些物品。

这个原理在解决问题时可以帮助我们快速找到可能的解答,避免不必要的计算和尝试。

所以,在小学奥数中,掌握抽屉原理可以帮助学生更好地理解和解决各种问题,提高问题解决能力和思维逻辑能力。

希望以上内容对您有所帮助。

抽屉原理十个例题四年级

抽屉原理十个例题四年级

抽屉原理——十个例题(四年级)引言抽屉原理是数学中的重要概念之一,也被称为鸽巢原理。

它指出:如果有n+1个物体放入n个容器中,则至少有一个容器中放有两个物体。

这个原理常常应用于数学、计算机科学、统计学等领域。

抽屉原理在解决问题时可以起到很大的帮助。

下面我们将给出十个抽屉原理的例题,帮助四年级的同学巩固和理解这个重要的数学概念。

例题一:小明有8支彩色铅笔,要将它们放入5个铅笔盒中。

请问,至少会有几个铅笔盒中的铅笔个数相同?解答:根据抽屉原理,如果要将8支铅笔放入5个铅笔盒中,由于铅笔的数量多于铅笔盒的数量,所以至少会有两个铅笔盒中的铅笔个数相同。

例题二:小明想要将他的10本漫画书放入3个抽屉里,每个抽屉至少要放1本书。

请问,至少会有几个抽屉里放有2本书?解答:根据抽屉原理,将10本书放入3个抽屉中,由于抽屉的数量少于书的数量,所以至少会有两个抽屉里放有2本书。

例题三:小强有12个苹果,要将它们放入4个篮子中。

请问,至少会有几个篮子里的苹果数量相同?解答:根据抽屉原理,将12个苹果放入4个篮子中,由于苹果的数量多于篮子的数量,所以至少会有两个篮子里的苹果数量相同。

例题四:小红有15双袜子,要将它们放入6个抽屉中。

请问,至少会有几个抽屉中放有3双袜子?解答:根据抽屉原理,将15双袜子放入6个抽屉中,由于袜子的数量多于抽屉的数量,所以至少会有两个抽屉中放有3双袜子。

例题五:小刚抽奖得到了20个糖果,要将它们放入7个口袋中。

请问,至少会有几个口袋中的糖果数量相同?解答:根据抽屉原理,将20个糖果放入7个口袋中,由于糖果的数量多于口袋的数量,所以至少会有两个口袋中的糖果数量相同。

例题六:小明参加了一场抽奖活动,一共有12个奖品,要将它们放入4个礼品袋中。

请问,至少会有几个礼品袋中放有3个奖品?解答:根据抽屉原理,将12个奖品放入4个礼品袋中,由于奖品的数量多于礼品袋的数量,所以至少会有两个礼品袋中放有3个奖品。

抽屉原理四个知识点

抽屉原理四个知识点
如果有n个抽屉,要保证至少a个物体放进同一个抽屉,那么物体的总个数至少是(a-1)n+1
例1、把16个玻璃球最多放进几个盒子里,才能保证至少有一个盒子里有4个玻璃球?
〖针对性练习〗
1、某小学有1千多名学生,从学生中最少选取( )人,才能使得这些人中有3人属相
相同。
2、某校六年级有3个班,在一次数学竞赛中,至少有( )人获奖才能保证龄最大的同学是13岁,最小的6岁,从( )个同学中挑选,一定可 以找到两个同学岁数相同
4啦啦队有28位同学,至少要准备( )套队服,才能保证至少有一个队员能分到 两套队服
知识点四;最不利原则解决抽屉问题
抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。对这个知识点的 考查很少去求“抽屉”的数量,而是求抽屉中至少放多少苹果。基本的题型特征为“至 少,,,,才能保证,,”。“保证”后面的情况是一种必然发生的情况。针对这类抽屉问题, 我们常用的解题方法为:最不利原则,即考虑最差的情况,让最差的情况都发生,则其 他情况也就一定会发生
例1、7个苹果放进6个抽屉里,总有一个抽屉里至少放有2个苹果。为什么?
〖针对性练习〗
1、在班级里任选15名同学,其中至少有2名同学的属相是相同的。为什么?
2、衣柜里有10件绿色的衣服,6件白色的衣服,7件红色的衣服,2件蓝色的衣服,如 果闭着眼睛取衣服,那么至少要取( )件,才能保证使取出的衣服最少有两件 颜色是相同的
2、阳光实验小学六年级(2)班一共有42人,那么至少有几人在同一个月内过生日?
3 18个小朋友中,至少有( )个小朋友在同一个月出生。760人中至少有( )人的
生日在同一天.
4六年级有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、二种或三种,至 少有( )名学生订阅的杂志种类相同。

四年级奥数抽屉原理

四年级奥数抽屉原理

四年级奥数抽屉原理抽屉原理一、知识点介绍抽屉原理,又称鸽笼原理或XXX原则,是德国数学家XXX首先提出的数学原理,用于解决组合数学中的问题。

该原理可以解决许多看似复杂的问题,常常能够起到令人惊奇的作用。

二、抽屉原理的定义1)举例如果将十个苹果放到九个抽屉里,无论怎样放,必定会有至少一个抽屉里面至少放两个苹果。

这种现象被称为抽屉原理,也被称为鸽巢原理。

2)定义将n+1或多于n+1个物品放到n个抽屉里,其中必定至少有一个抽屉里至少有两个物品。

三、抽屉原理的解题方案一)利用公式进行解题将物品数量除以抽屉数量,得到商和余数。

余数为1时,至少有(商+1)个物品在同一个抽屉里;余数为x时,至少有(商+1)个物品在同一个抽屉里;余数为0时,至少有“商”个物品在同一个抽屉里。

二)利用最值原理解题通过极限讨论,将复杂的问题变得简单,利用特殊值方法解决问题。

四、应用抽屉原理解题的具体步骤第一步:分析题意,确定“物品”和“抽屉”。

第二步:构造抽屉,根据题目结论和数学知识,设计和确定解决问题所需的“物品”及其数量。

第三步:运用抽屉原理,结合题设条件,恰当运用原理或综合多个原理,解决问题。

例题精讲例1】6只鸽子要飞进5个笼子,每个笼子里都必须有1只,一定有一个笼子里有2只鸽子。

解析】将6只鸽子放入5个笼子,至少有一个笼子里有2只鸽子。

因为6只鸽子减去5个笼子最多只能放1只鸽子,所以必定有一个笼子里有2只鸽子。

巩固】教室里有5名学生正在做作业,现在只有数学、英语、语文、地理四科作业。

这5名学生中,至少有两个人在做同一科作业。

解析】将5名学生分配到4个科目的作业中,至少有两个人在做同一科作业。

因为5名学生减去4个科目最多只能有1个人没有做作业,所以必定有两个人在做同一科作业。

例2】XXX有730个学生,至少有几个学生的生日是同一天?解析】将730个学生的生日分配到365个天数中,至少有两个学生的生日是同一天。

因为730减去365最多只能有365个不同的生日,所以必定有两个学生的生日是同一天。

四年级奥数之抽屉原理

四年级奥数之抽屉原理

四年级奥数之抽屉原理知识概要:抽屉原理1:把多于n个的物体放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的物体原理2 :把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。

一、填空1、四年级2班共有54名学生,他们年龄都相同,至少有()个同学在同一周出生,至少有()个同学在同一月出生。

2、在2007年出生的1000个孩子当中,至少有()个孩子是在同一天出生的。

至少有()个孩子将来不单独过生日。

3、班上有50个学生,老师至少拿()本书,随意分给学生才能保证至少有一个学生分到不少于两本书。

4、黑、白、黄筷子各8根,混杂在一起,黑暗中起从这些筷子中取出颜色不同的两双筷子,问至少要取()根才能保证达到要求。

5、一只鱼缸里有很多条鱼,共有5个品种,问至少要捞出()鱼,才能保证有5条相同品种的鱼。

6、参加元旦文艺演出的合唱队中,最小的队员8岁,最大的队员14岁,从这些队员中任选()位就一定能保证其中有两位队员的年龄相同。

7、有红、黄、蓝三色的球各10个,混在一个布袋中,一次摸出13个球,其中至少有()个球是同色的。

8、学校图书室里有甲乙丙丁四类书,规定每个同学最多可以借2本书,在借书的86名同学中,至少有()个人所借书的类型是完全一样的。

9、第一组有16名学生至少有()个学生在同一个月过生日。

10、某班有个小图书库,有诗歌、童话、小人书三类课外读物。

规定每位同学最多可以借阅两本书,问至少有()位同学来借阅图书才一定有两名同学借阅书的类型相同。

二、论述题1、三位同学在操场上玩,其中必有两位同学都是男的或都是女的,这话对吗2、五(1)班有59名学生,那么至少有两名同学的生日在同一星期,为什么3、数学兴趣小组中有13名同学老师说,你们当中至少有两个人在同一月过生日,为什么4、五年级四个班去春游,活动时,有6个同学聚在一起做游戏,这6个同学中至少有2人是同一个班的,为什么5、在一条长20米的小路一旁种21棵树,请说明,不管怎么种,至少有两棵树间的距离不超过1米作业:1、三只鸽子飞进了两个鸟巢,,则总有一个鸟巢中至少有()只鸽子;2、把三本书放进两个书架,则总有一个书架上至少放着()本书;3、把三封信投进两个邮筒,则总有一个邮筒投进了不止()封信。

四年级秋季班第五讲简单抽屉原理、最不利原则

四年级秋季班第五讲简单抽屉原理、最不利原则

第五讲简单抽屉原理、最不利原则知识框架一、对抽屉原理两个版本的认识抽屉原理1:将n+1个物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

原理要点:(1)物品数比抽屉数多1。

只有物品数比抽屉数多时抽屉原理才会成立。

(2)物品是“任意放”到抽屉中。

(3)其中“物品不少于2件”的抽屉是一定存在的,但是不确定是哪一个。

(4)原理的结论是:“至少有一个抽屉中的物品数不少于2件”,也可以这么说,“至少有2件物品在同一个抽屉中”。

原理讲解:只要有一个抽屉中的物品数不少于2件,抽屉原理1 就是成立的。

当我们可以往抽屉中任意放物品时,最不利的情形就是“平均分”,这样所有抽屉中的物品数都不会太多。

n+1个物品平均地放入n个抽屉,每个抽屉放一个,由于物品数比抽屉数多,就会余出一个物品。

最后,余出的这个物品放入某个抽屉,这个抽屉中就有了2个物品。

此外,其它情形,只要有一个抽屉是空的,那么就一定会有另外的抽屉中有2个或2个以上的物品。

例子:4只鸽子飞回三个鸟笼,有几种方法?1号鸟笼2号鸟笼3号鸟笼方法一400方法二310每种方法中,都会有一个鸟笼中的鸽子数不少于2。

在有些地方抽屉原理又叫做“鸽笼原理”。

抽屉原理2(加强版的抽屉原理)将m件物品任意放入n个抽屉(m>n),(1)当m是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于m÷n 件;(2)当m不是n的整数倍时,那么至少有一个抽屉中的物品件数是不少于[m÷n]+1件。

注:若m÷n =a…b,那么就说[m÷n]=a,也就是只要商,余数不要了。

称这个过程为取整。

原理要点:(1)物品数比抽屉数多,抽屉原理1的情形包含于这个原理中;(2)解决的是抽屉的存在性;(3)在解题时,遇到“有一个抽屉中的物品数不少于A件”,其中A>2时,应使用抽屉原理2。

(4)原理的结论也可以理解为:“总有不少于m÷n件(或[m÷n]+1件)物品在同一个抽屉中。

第五单元——《抽屉原理》教案

第五单元——《抽屉原理》教案
五、教学反思
在本次《抽屉原理》的教学中,我发现学生们对这一数学概念表现出很大的兴趣。通过生活中的实例导入,他们能够更直观地理解抽屉原理的应用。在讲授过程中,我注意到了几个值得反思的方面。
首先,抽屉原理的抽象性对学生来说是一个挑战。我意识到,通过实物演示和案例分析,学生能更好地将抽象概念与具体情境联系起来。在今后的教学中,我需要更多地运用这种直观的教学方法,帮助学生降低理解难度。
在实践活动方面,我发现学生们非常喜欢通过实验操作来验证抽屉原理。这不仅提高了他们的动手能力,还增强了他们对数学知识的兴趣。因此,我认为在今后的教学中,应更多地设计此类实践活动,让学生在操作中学习,提高他们的实践能力。
同时,我也注意到部分学生在小组讨论中表现较为内向,发言不够积极。为了提高这部分学生的参与度,我计划在下一节课中采用一些激励措施,如表扬积极发言的学生,以激发他们的积极性。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解抽屉原理的基本概念。抽屉原理又称鸽巢原理,是指如果有n个抽屉和n+1个或更多的物品,那么至少有一个抽屉里至少有两个物品。它是基本的数学原理,有助于我们解决生活中的分配问题。
2.案例分析:接下来,我们来看一个具体的案例。假设有10本书要放入9个书架,如何保证至少有一个书架上至少有2本书?这个案例展示了抽屉原理在实际中的应用,以及它如何帮助我们解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《抽屉原理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物品分配不均的情况?”比如,如果你有7颗糖果,要平均分给3个朋友,该如何分配?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索抽屉原理的奥秘。

小学四年级奥数(抽屉原理)

小学四年级奥数(抽屉原理)

小学四年级奥数第6讲抽屉原理知识方法…………………………………………………桌上有3个苹果,要把这3个革果放到2个抽屉里,无论怎样放,有的抽屉可以方1个,有的可以放2个,也可以把3个苹果放在1个抽屉里,但最终我们会发现至少有一个抽屉里面至少放2个苹果。

这一现象就是我们所说的抽屉原理。

根据题目中的条件设想出“抽屉”,并确定抽屉的准确数目,当然抽屉的种类很多,要我们具体问题具体分析;再把题目中的另一个条件当作“苹果”,从而结合抽屉原理求出最终的结果。

重点点拨…………………………………………………【例1】任意三个自然数,其中至少有两个是偶数或奇数,为什么?分析与解自然数可以分成两类:奇数与偶数。

我们把奇数与偶数看成两个“推屉”,把这三个自然数比作三个“苹果”,把三个“苹果”放入两个抽屉,根据抽屉原则,至少有一个抽屉放有两个或两个以上的“苹果”,也就是说至少有两个数是奇数或偶数。

【例2】试解释400人中至少有2人的生日相同。

分析与解将一年中的366天(间年)视为366个抽屉,400个人看作400个苹果,由抽屉原理可以得知,至少有2人的生日相同。

【例3】五(1)中队第一小队共有14个少先队员,试解释其中至少有2位同学的生肖是相同的。

分析与解生肖有:鼠、牛、虎、兔、龙、蛇、马、羊猴、鸡、狗、猪共12个。

我们把12个生肖看作12个抽屉,把14个少先队员看作14个苹果,把14个苹果放进12个抽屉中去,至少有一个抽屉放了不止一个苹果,也就是14个队员中至少有2位同学的生肖是相同的。

【例4】停车场上有40辆客车,各种车辆的座位数不同,最少的有26座,最多的有44座,那么在这些客车中,至少有几辆客车的座位数是相同的?分析与解已知客车的座位数最少有26座,最多有4座,可知这40辆客车中有26,27,28,…,44座共19种不同座位数的客车。

把19种座位看作19个抽屉,40辆客车当作40个“苹果”,苹果放进抽屉里,根据抽屉原理,因为40=19×2+2,可知,在这些客车中,至少有3辆客车的座位数是相同的。

四年级-抽屉原理

四年级-抽屉原理
40个人,至少有多少人在同一月出生?
37人中至少有多少人在同一个月出生?
扑克牌54张,至少取出多少张能保证:
1.其中有4张花色相同?
至少取出多少张才能4张花色相同,即考虑最恶劣的情况:先取出2张大小王,再取出了4张花色各不同的牌,再取出4张花色不同的牌,再取出4张花色不同的牌,此时,每种花色已经有3张,那么再取出1张,则可以保证有4张花色相同:2+4×3+1=15(张)
2.其中有4种花色?
至少取出多少张,保证有4种花色,即考虑最恶劣的情况:先摸到了2张大小王,然后取出13张红桃,然后取出13张同花,然后取出了13张方片,最后取出1张黑桃,才凑齐了4种花色。
2+ 13×3+ 1 = 42(张)
抽屉原理
n+1个物品放入n个抽屉,那么至少有一个抽屉有2个物体;
n个物体放入m个抽屉(nห้องสมุดไป่ตู้m):
n能被m整除: ;n不能被m整除: +1
5个菜瓜放入4个篮子,那至少有个篮子至少有_____个。
12个苹果放入4个抽屉,那至少有个抽屉至少有_____个。
12个苹果放入5个抽屉,至少有个抽屉至少有_____个。

学而思四年级第五讲(抽屉原理)

学而思四年级第五讲(抽屉原理)

学而思四年级第五讲(抽屉原理)第五讲抽屉原理与最不利原则一、解决存在性问题即解决“符合某种条件的选择方法一定有”或“一定没有”这类问题。

在确定“选择方法一定有”后,还可以解决“至少”或“至多”有多少个的问题。

二、抽屉原理1、基本型将n+1个苹果任意放到n个抽屉中,至少有一个抽屉中有不少于2个苹果(即至少有2个苹果在同一个抽屉中)2、加强型将m个苹果任意放到n个抽屉中(m>n),(1)m÷n是整数,至少有一个抽屉中的苹果不少于m÷n个;(2)m÷n有余数,至少有一个抽屉中的苹果不少于[m÷n]+1个,即“m÷n的商再加1”个。

注:基本型其实是加强型中的一种特殊形式。

三、做题关键——如何找抽屉和苹果想象抽屉原理的场景,即把2个苹果放进相同的一个抽屉里。

那么具体到题中重点体会是把“谁谁谁”放进相同的什么东西里。

相同的这个东西就是抽屉,“谁”和“谁”就是苹果。

注意:找抽屉的个数时往往考察到同学们的计数知识。

对于简单的用枚举法,对于稍微复杂的要会熟练运用加乘原理。

四、答题步骤1、说明什么是抽屉,什么是苹果,以及各自的数量2、抽屉原理的结论——“根据抽屉原理,至少……”3、回答题目问题——“即……”五、常见题型1、考察存在性例1:雷锋小组由13人,张老师说:“你们这个小组至少有2个人在同一个月过生日。

”你知道为什么张老师这么说吗?解析:结论是“至少有2个人在同一个月过生日”。

即把2个人放进同一个月里。

那么“月”就是抽屉,人就是苹果。

答:将月份看做抽屉,一年共有12个月,将人看做苹果,共有13人。

将每人根据生日对应的月份放进相应的“抽屉”中。

根据抽屉原理,至少有2个苹果在同一个抽屉中,即至少有2个人在同一个月过生日。

例2 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友在一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样。

四年级抽屉原理

四年级抽屉原理

抽屉原理知识结构一、知识点介绍抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1) 举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。

(2) 定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。

我们称这种现象为抽屉原理。

三、抽屉原理的解题方案(一)、利用公式进行解题 苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里 (2)余数=x ()()11xn -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里 (二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.例题精讲一、直接利用公式进行解题【例 1】 “六一”儿童节,很多小朋友到公园游玩,在公园里他们各自遇到了许多熟人.试说明:在游园的小朋友中,至少有两个小朋友遇到的熟人数目相等.【考点】抽屉原理【难度】3星 【题型】解答【解析】略.【答案】假设共有n个小朋友到公园游玩,我们把他们看作n个“苹果”,再把每个小朋友遇到的熟人数目看作“抽屉”,那么,n个小朋友每人遇到的熟人数目共有以下n种可能:0,1,2,……,1n-.其中0的意思是指这位小朋友没有遇到熟人;而每位小朋友最多遇见1n-个熟人,所以共有n个“抽屉”.下面分两种情况来讨论:⑴如果在这n个小朋友中,有一些小朋友没有遇到任何熟人,这时其他小朋友最多只能遇上2n-个熟人,这样熟人数目只有1n-.这样,“苹果”数(n个小朋友)超过“抽屉”数(1n-种n-种可能:0,1,2,……,2熟人数目),根据抽屉原理,至少有两个小朋友,他们遇到的熟人数目相等.⑵如果在这n个小朋友中,每位小朋友都至少遇到一个熟人,这样熟人数目只有1n-种可能:1,2,3,……,n-.这时,“苹果”数(n个小朋友)仍然超过“抽屉”数(1n-种熟人数目),根据抽屉原理,至少有两个小朋1友,他们遇到的熟人数目相等.总之,不管这n个小朋友各遇到多少熟人(包括没遇到熟人),必有两个小朋友遇到的熟人数目相等【巩固】五年级数学小组共有20名同学,他们在数学小组中都有一些朋友,请你说明:至少有两名同学,他们的朋友人数一样多.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】数学小组共有20名同学,因此每个同学最多有19个朋友;又由于他们都有朋友,所以每个同学至少有1个朋友.因此,这20名同学中,每个同学的朋友数只有19种可能:1,2,3,……,19.把这20名同学看作20个“苹果”,又把同学的朋友数目看作19个“抽屉”,根据抽屉原理,至少有2名同学,他们的朋友人数一样多【例 2】证明:任取8个自然数,必有两个数的差是7的倍数.【考点】抽屉原理【难度】3星【题型】解答【解析】略.【答案】在与整除有关的问题中有这样的性质,如果两个整数a、b,它们除以自然数m的余数相同,那么它们的差a b-是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0、1、2、3、4、5、6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数【巩固】 证明:任取6个自然数,必有两个数的差是5的倍数。

四年级数学秋季班-简单抽屉原理与最不利原则(上)

四年级数学秋季班-简单抽屉原理与最不利原则(上)

【例4】(★★★) 17名同学参加一次考试,考试题是3道判断题(答案只 有对错之分),每名同学都在答题纸上依次写上了3道 题目的答案。试说明至少有3名同学的答案是一样的?
【例5】(★★★) 在一只口袋中有红色、黄色、蓝色球若干个,小聪 明和其他九个小朋友一起做游戏,每人可以从口袋 中随意取出2个球,那么不管怎样挑选,总有两个小 朋友取出的两个球的颜色完全一样。你能说明这是 为什么吗?
简单抽屉原理与最不利原则(上)
抽屉原理1:将n+1个苹果任意放到n个抽屉中,那么 保证至少有一个抽屉中的苹果不少于2个。
特别关注:⑴物品数比抽屉数多 ⑵关键词:任意,保证,不少于
【例1】(★) 三个小朋友在一起玩,试说明其中必有两个小朋 友都是男孩或者都是女孩。
【例1改编】三年级一班学雷锋小组有13人。教数学的张老 师说:“你们这个小组至少有2个人在同一月 过生日。”你知道张老师为什么这样说吗?
抽屉原理2:(升级版) 将m个苹果任意放到n个抽屉中,那么保 证至少有一个抽屉中的物品的件数不少 于m÷n+1个。
【例2】(★ ★) 18个小朋友中,至少有多少个小朋友在同一个月出生。
1ห้องสมุดไป่ตู้
【例3】(★★★) 用红、蓝两种颜色将一个2×5方格图中的小方格随 意涂色(见下图),每个小方格涂一种颜色。试说明至 少存在两列,它们的小方格中涂的颜色完第 全第 相同第 ?第 第 一 二 三四五 列 列 列列列 第一行 第二行
【例6】(★★★) 任意写一个由数字1、2组成的六位数,从这个六位 数中任意截取相邻两位,可得到一个两位数,请证 明:在从各个不同位置截得的所有两位数中,一定 有两个相等。
2

4年级-22-抽屉原理-难版

4年级-22-抽屉原理-难版

第22讲抽屉原理知识梳理如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。

如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。

如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。

这些简单内的例子就是数学中的“抽屉原理”。

抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。

假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。

这样n个抽屉中所放物品的总数就不会超过n件。

这与有多于n个物品的假设相矛盾。

说明抽屉原理1成立。

抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。

假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。

这与多于m×n件物品的假设相矛盾。

说明原来的假设不成立。

所以抽屉原理2成立。

运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。

运用原理1还是原理2要看题目的问题和哪一个更直观。

抽屉原理2实际上是抽屉原理1的变形。

典型例题【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么?【解析】平年一年有365天,闰年一年有366天。

把天数看做抽屉,共366个抽屉。

把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。

【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。

【例2】★某班学生去买语文书、数学书、外语书。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽屉原理
绿色圃中小学教育网
教学目标
• 1.初步理解“抽屉原理”的一般形式,会 用假设法解决抽屉问题,通过分析,推理 解决这类抽屉问题。 • 2.通过实验、观察、分析、推理等数学活 动,经历“抽屉原理”的探究过程,提高 同学们推理的能力。
绿色圃中小学教育网
绿色圃中小学教育网
给一个正方体木块的6个面分别 涂上蓝、黄两种颜色。不论怎么涂至 少有3个面涂的颜色相同。为什么?
理由: 把两种颜色当作两个抽屉,把正方 体6个面当作物体,要把6个面分配给两 个抽屉,6÷2=3,至少有3个面要涂上 相同的颜色。
数学小知识:抽屉原理的由来。 最先发现这些规律的人是谁 呢?最先是由19世纪的德国数学 家狄里克雷运用于解决数学问题 的,后人们为了纪念他从这么平 凡的事情中发现的规律,就把这 个规律用他的名字命名,叫“狄 里克雷原理”,又把它叫做“鸽 巢原理”,还把它叫做 “抽屉原 理”。
绿色圃中小学教育网
总有 不管怎么放总有一个文具盒 至少 里至少放进 2枝铅笔 。
绿色圃中小学教育网
( 2 , 1, 1) ( 4, 0, 0) ( 3, 1, 0) ( 2, 2, 0)
4÷3= 1……1
至少数:1+1=2
绿色圃中小学教育网
至少
老师任意点13位同学 就可以肯定,至少有2 个同学的生日是在同 一个月,你们信吗?
绿色圃中小学教育网
把4枝铅笔放进3个 ★你的猜想对 文具盒里,不管怎 吗?和组内同学 总有 么放,总有一个文 说一说你的理由。 至少 2 具盒里至少放进() 枝铅笔。
绿色圃中小学教育网
从扑克牌中取出两张王牌,在剩下的52张扑克 牌任意抽牌。 (1)从中抽出18张牌,至少有几张是同花色? 18÷4=4(张)… …2 (张) 4+1=5(张) 答:至少有5张是同花色。 (2)从中抽出20张牌,至少有几张数字相同? 20÷13=1(张)… …7(张) 1+1=2(张) 答:至少有2张数字相同。
绿色圃中小学教育网
抽屉原理:
… … m÷n=a b
( m>n>1)
把m个物体放进n个抽屉里 ( m>n>1),不管怎么放总有 一个抽屉至少放进( +1 )个 物体。
a4间屋子,至少有( 9)个小朋 友要进同一间屋子。 2、13个同学坐5张椅子,至少有( 3 )个同学坐在 同一张椅子上。 3、新兵训练,战士小王6枪命中了43环,战士小王 总有一枪至少打中( 8 )环。 4、咱们班上有58个同学,至少有(5 )人在同一个 月出生。 5、从街上人群中任意找来20个人,可以确定,至少 有( )个人属相相同。
我把情况记 录下来.
0
2 2, ( 2, 2 0)
绿色圃中小学教育网
我把情况记 录下来.
( 2,1,1)
绿色圃中小学教育网
共四种情况:
(4,0, 0 ) ( 3,1 , 0 ) (2,2, 0 ) (2,1 , 1 )
★先猜一猜, 再动手放一放, 看看有哪些不同 放法?
假设增加 四 三 二一 总结
我把情况记 录下来.
4 ( 4 , 0 , 0 ) 0
0
绿色圃中小学教育网
我把情况记 录下来.
0
3 1,0) ( 3,
绿色圃中小学教育网
2
绿色圃中小学教育网
拓展应用
一副扑克牌(除去大小王)52张中有四种花 色,从中随意抽5张牌,无论怎么抽,总有一种 花色至少有2张牌.你能说明其中的道理吗?
四种花色
理由: 我们把4种花色当作4个抽屉,把5张扑克牌放
进4个抽屉中,必有一个抽屉至少有2张扑克牌,即 至少有2张是同花色的。
绿色圃中小学教育网
例2、把5本书放进2个抽屉中,不管怎么 放,总有一个抽屉至少放进3本书。为什 么?如果一共有7本书会怎样?9本呢?
绿色圃中小学教育网
做一做: 45只鸽子飞回8个鸽舍,至少有多少 只鸽子要飞进同一个鸽舍?为什么?
相关文档
最新文档