圆的方程复习讲义
圆的方程及空间直角坐标系(讲义及答案)
X的方程及空间直角坐标系(讲义) >知识点睛一、圆的方程1. 圆的标准方程: ______________________ ,圆心: ________, 半径:________.2. 圆的一般方程:圆心: 二、位置关系的判断(1) 点与圆由两点间的距离公式计算点到圆心的距离",比较",r 大小. ① 已知点Vo)与圆的标准方程(x-a}\(y'-b)-=r,则计算矿二 _________________ ,比较沪,尸大小. ② 已知点P(xo, yo)与圆的一般方程X- + y- +Dx + Ey + F = 0 ,则计算 _____________________ ,与0比较大小.(2) 直线与圆① 利用点到直线的距离公式求圆心到直线的距离",比较 ",r 大小.② 联立直线与圆方程,得到一元二次方程,根△判断: 'A <O ,直线与圆相离.A = 0,直线与圆相切.△ >0,直线与圆相交(3)圆与圆利用两点间的距离公式求圆心距d,结合两圆半径和〃的关系 判断.三、常见思考角度1. 直线与圆位置关系常见考査角度(1)过定点求圆的切线方程① 判断该点与圆的位置关系(若点在圆内,则无切线). ② 根据切线的性质求切线方程.若点在圆上,则利用切线垂直于过切点的半径求切线方程: 若点在圆外,则分别讨论 ___________________ ,设点斜式 利用〃二r 建方程求解.[gl(2)直线与圆相交求弦长结合垂径定理和勾股定理,半径长厂圆心到直线的距离丛 弦长/满足关系式:厂2=〃2+(_厂22. 圆与圆位置关系常见考査角度(1) 两圆相交求公共弦所在直线方程设圆G :x2+y2 + DrV + Ej + F| = 0,C2:x2+b+0x + E* + F2 = O,则公共弦所在直线的方程为 (0 — D? )x + (E] — £*2) y + F[—尸2 = 0 -(2) 两圆相交求公共弦长求出公共弦所在直线方程及其中一圆圆心到公共弦的距离, 垂径定理、勾股定理结合求弦长.四、轨迹方程在平面直角坐标系中,点M 的轨迹方程是指点M 的坐标 (X, y )满足的关系式.五、空间直角坐标系Ovvz (右手直角坐标系)如图1, 0点叫做坐标原点,牙轴、y 轴、2轴叫做坐标 轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.zn六、空间直角坐标系中点的坐标如图2,过点M 分别作垂直于X 轴,y 轴和Z 轴的平面,依 次交X 轴,y 轴和Z 轴于点P, e 和设点P, Q 和R 在牙 轴,y 轴和Z 轴上的坐标分别是X, y 和Z,那么点M 对应唯 —确定的有序实数组U ,y,刀.有序实数组馆)* 201做点M 在此空间直角坐标系中的坐标, 记作MS ,y, z ).其中X 叫做点M 的 __________ , y 叫做点 M 的 __________ , Z 叫做点M 的 __________ .-1 -- B»1 "Z C'A' BC>1 \ >1 0 X七、空间两点间的距离公式如图3,设空间直角坐标系中点P 的坐标是(兀,y, Z ),则 IOPI = ____________________ .如图4,设点£(易,y,, Z,), RC E ,>'2»空)是空间中任意两点, 则 IA A1= ___________________ .A/ P 、 Pl精讲精练写出下列圆的标准方程:(I)圆心在C(-3,4” 半径长为^/J•(2)圆心在C(8,-3),且经过点M(5J)・2 . 下列方程:①W+y2-6x=0 ;②-2%+4 V-6=0 ;③W+y,二。
高三数学第一轮复习讲义7.5 圆的方程(无答案)全国通用
§7.5 圆的方程班级 姓名 学号例1:求圆x 2+y 2-x+2y=0关于直线L :x -y+1=0对称的圆的方程。
例2:一圆经过A (4,2),B (-1,3)两点,且在两坐标轴上的四个截距和为2,求此圆方程。
例3:设方程x 2+y 2-2(m+3)x+2(1-4m 2)y+16m 4+9=0。
(1)当且仅当m 在什么范围内,该方程表示一个圆。
(2)当m 在以上范围内变化时,求半径最大的圆的方程。
例4:已知圆和直线x -6y -10=0相切于(4,-1),且经过点(9,6),求圆的方程。
【备用题】已知圆x 2+y 2-6x -4y+10=0,直线L 1:y=kx, L 2:3x+2y+4=0, x 在什么范围内取值时,圆 与L 1交于两点?又设L 1与L 2交于P ,L 1与圆的相交弦中点为Q ,当k 于上述范围内变化时, 求证:|OP|·|OQ|为定值。
【基础训练】1、A=C ≠0,B=0是方程Ax 2+Bx+Cy 2+Dx+Ey+F=0表示圆的 ( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、不充分不必要条件2、圆x 2+y 2-2x=0和x 2+y 2+4y=0的位置关系是: ( ) A 、相离 B 、外切 C 、相交 D 、内切3、以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为: ( )A 、(x+5)2+(y -4)2=16B 、(x -5)2+(y+4)2=16C 、(x+5)2+(y -4)2=25D 、(x -5)2+(y+4)2=164、方程x 2+y 2+Dx+Ey+F=0,(D 2+E 2-4F>0)关于直线x -y=0对称的充分条件是: A 、D=E B 、E=F C 、E=F D 、D=E 且F ≠05、若两直线y=x+2a, 和y=2x+a+1的交点为P ,P 在圆x 2+y 2=4的内部,则a 的取值范围是 。
034圆的方程复习课
034 圆的方程复习课【学习目标】1.掌握圆的定义及标准方程、一般方程.2.会用待定系数法求圆的方程,处理较为简单的有关圆的实际问题.【学习重难点】重点:圆的定义及标准方程、一般方程难点:会用待定系数法求圆的方程【学法指导及要求】熟练记忆并理解两种圆的方程,体会待定系数法和轨迹法求圆的方程的一般方法.【学习过程】一、复习回顾:(或者新课引入)知识点一圆的标准方程:222)()(r b y a x =-+-,其中圆心为(,)A a b ,半径为r .特别地,当圆心为原点O (0,0),圆的标准方程为222x y r +=.知识点二圆的一般方程:当D 2+E 2-4F >0时,二元二次方程x 2+y 2+Dx +Ey +F =0称为圆的一般方程.二、典型例题:(2-3个例题)例1.已知圆C 经过点A (0,-6),B (1,-5),且圆心在直线l :x -y +1=0上,求圆C 的方程.变式训练 求经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上的圆的标准方程.例2.如果圆的方程为x 2+y 2+kx +2y +k 2=0,那么当圆的面积最大时,圆心坐标为________.变式训练 已知定点P 1(-1,0),P 2(1,0),动点M 满足|MP 1|=2|MP 2|,则构成△MP 1P 2面积的最大值是( ) A. 2 B .2 2 C.233D .23反思:(也可留白让学生总结)四、课堂反馈:(2-3个题)1.以两点A (-3,-1)和B (5,5)为直径端点的圆的标准方程是__________________.2.与y 轴相切,且圆心坐标为(-5,-3)的圆的标准方程为________________.五、课堂总结:1、2、智慧作业:(30分钟, 2--3个单选+1--2个多选+1--2个填空+1--2个解答)(总共6-8个题)一、单选题1.圆心为(1,-2),半径为3的圆的方程是( )A .(x +1)2+(y -2)2=9B .(x -1)2+(y +2)2=3C .(x +1)2+(y -2)2=3D .(x -1)2+(y +2)2=92.点P (1,3)与圆x 2+y 2=24的位置关系是( )A .在圆外B .在圆内C .在圆上D .不确定3.圆心在y 轴上,半径为1,且过点(1,2)的圆的标准方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1二、多选题4.已知方程x 2+y 2+3ax +ay +52a 2+a -1=0,若方程表示圆,则a 的值可能为( )A.-2B.0C.1D.3三、填空题5.已知点A (3,-2),B (-5,4),以线段AB 为直径的圆的标准方程是________.6.若点(a +1,a -1)在圆x 2+y 2-2ay -4=0的内部(不包括边界),则a 的取值范围是________.四、解答题7.已知一圆的圆心为点A (2,-3),一条直径的端点分别在x 轴和y 轴上,求圆的标准方程.。
专题复习:圆的方程
第五讲圆的方程一学习目标1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.初步了解用代数方法处理几何问题的思想.二疑难辨析1.关于圆的定义和确定圆的几何要素(1)圆是到定点的距离等于定长的点的集合.()(2)确定圆的几何要素是圆的半径.()2.关于圆的标准方程和一般方程(1)方程(x-a)2+(y-b)2=t2,不论t 为什么实数都表示一个圆的方程.()(2)方程x2+y2+Dx+Ey+F=0叫做圆的一般方程.()3.关于圆的直径式方程已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.()三典例分析例1(1)已知圆经过A(2,-3),B(-2,-5),若圆心在直线x-2y-3=0上,则圆的标准方程是________.(2)△ABC的三个顶点分别为A(-1,5),B(-2,-2),C(5,5),则其外接圆的一般方程是________.例2在△OAB中,已知O(0,0),A(8,0),C(0,6),△OAB的内切圆的方程为(x-2)2+(y-2)2=4,P是圆上一点.(1)求点P到直线l:4x+3y+11=0的距离的最大值和最小值;(2)若S=|PO|2+|P A|2+|PB|2,求S 的最大值和最小值.变式题实数x,y满足x2+y2+2x -4y+1=0,求下列各式的最大值和最小值:(1)yx-4;(2)3x-4y;(3)x2+y2.1.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x -y-1=0对称,则圆C2的方程为()A.(x+2)2+(y-2)2=1B.(x-2)2+(y+2)2=1C .(x +2)2+(y +2)2=1D .(x -2)2+(y -2)2=1解析:设点(x ,y )与圆C 1的圆心(-1,1)关于直线x -y -1=0对称,则⎩⎨⎧y -1x +1=-1,x -12-y +12-1=0,解得⎩⎪⎨⎪⎧x =2,y =-2. 从而可知圆C 2的圆心为(2,-2),又知其半径为1,故所求圆C 2的方程为(x -2)2+(y +2)2=1.答案:B2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程是( )A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意知圆心为(0,2),则圆的方程为x 2+(y -2)2=1. 答案:A3.当a 为任意实数时,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,5为半径的圆的方程为( )A .x 2+y 2-2x +4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x -4y =0解析:由(a -1)x -y +a +1=0得a (x +1)-(x +y -1)=0, ∴直线恒过定点(-1,2),∴圆的方程为(x +1)2+(y -2)2=5,即x 2+y 2+2x -4y =0.答案:C4.方程x 2+y 2-4kx -2y -k =0表示圆的充要条件是( )A.14<k <1B .k <14或k >1C .k ∈RD .k =14或k =1解析:此方程表示圆的充要条件是(-4k )2+(-2)2+4k >0,即4k 2+k +1>0.(*)∵Δ=12-4×4×1<0,∴(*)式恒成立,∴k ∈R .答案:C5.过点A (1,-1),B (-1,1),且圆心在直线x +y -2=0上的圆的方程是( )A .(x -3)2+(y +1)2=4B .(x +3)2+(y -1)2=4C .(x -1)2+(y -1)2=4D .(x +1)2+(y +1)2=4解析:由题意得线段AB 的中点C 的坐标为(0,0),直线AB 的斜率为k AB =-1,则过点C 且垂直于AB 的直线方程y =x ,圆心坐标(x ,y )满足⎩⎪⎨⎪⎧y =x ,x +y -2=0,得y =x =1, 从而圆的半径为(1-1)2+[1-(-1)]2=2,因此,所求圆的方程为(x -1)2+(y -1)2=4.答案:C6.(2013·福州调研)已知圆C 关于y 轴对称,经过点(1,0),且被x 轴分成两段弧长之比为2,则圆的方程为( )A.⎝ ⎛⎭⎪⎫x ±332+y 2=43B.⎝⎛⎭⎪⎫x ±332+y 2=13C .x 2+⎝ ⎛⎭⎪⎫y ±332=43D .x 2+⎝ ⎛⎭⎪⎫y ±332=13 解析:(排除法)由圆心在y 轴上,则排除A 、B ,再由过(1,0),故半径大于1,排除D.答案:C二、填空题7.若圆x 2+y 2+(a 2-1)x +2ay -a =0关于直线x -y +1=0对称,则实数a 的值为__________.解析:依题意知直线x -y +1=0经过圆x 2+y 2+(a 2-1)x +2ay-a =0的圆心⎝ ⎛⎭⎪⎫-a 2-12,-a , 所以-a 2-12+a +1=0,解得a =3或a =-1.当a =-1时,方程x 2+y 2+(a 2-1)x +2ay -a =0不能表示圆,所以只能取a =3.答案:38.若圆x 2+(y -1)2=1上任意一点(x ,y )都使不等式x +y +m ≥0恒成立,则实数m 的取值范围是__________.解析:据题意圆x 2+(y -1)2=1上所有的点都在直线x +y +m ≥0的右上方.∴⎩⎪⎨⎪⎧ 1+m ≥0,|1+m |2≥1.∴m 的取值范围是m ≥-1+ 2.答案:m ≥-1+ 29.(2013·南通调研)已知A (x 1,y 1)、B (x 2,y 2)是圆x 2+y 2=2上两点,O 为坐标原点,且∠AOB =120°,则x 1x 2+y 1y 2=__________.解析:O A →=(x 1,y 1),O B →=(x 2,y 2),〈O A →,O B →〉=120°, 则x 1x 2+y 1y 2=O A →·O B →=|O A →|·|O B →|cos120°=2×⎝ ⎛⎭⎪⎫-12=-1. 答案:-1三、解答题10.(2013·衡阳质检)根据下列条件求圆的方程.(1)经过点P (1,1)和坐标原点,并且圆心在直线2x +3y +1=0上;(2)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2);(3)过三点A (1,12),B (7,10),C (-9,2).解析:(1)设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意列出方程组⎩⎪⎨⎪⎧ a 2+b 2=r 2,(a -1)2+(b -1)2=r 2,2a +3b +1=0,解之得⎩⎪⎨⎪⎧ a =4,b =-3,r 2=25.∴圆的标准方程是(x -4)2+(y +3)2=25.(2)方法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎪⎨⎪⎧ b =-4a ,(3-a )2+(-2-b )2=r 2,|a +b -1|2=r ,解得⎩⎪⎨⎪⎧ a =1,b =-4,r =2 2.∴圆的方程为(x -1)2+(y +4)2=8.方法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).∴半径r =(1-3)2+(-4+2)2=22,∴所求圆的方程为(x -1)2+(y +4)2=8.(3)方法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧ 1+144+D +12E +F =0,49+100+7D +10E +F =0,81+4-9D +2E +F =0.解得⎩⎪⎨⎪⎧ D =-2,E =-4,F =-95.∴所求圆的方程为x 2+y 2-2x -4y -95=0.方法二:由A (1,12),B (7,10),得A 、B 的中点坐标为(4,11),k AB =-13,则AB 的中垂线方程为3x -y -1=0.同理得AC 的中垂线方程为x +y -3=0.联立⎩⎪⎨⎪⎧ 3x -y -1=0,x +y -3=0,得⎩⎪⎨⎪⎧x =1,y =2, 即圆心坐标为(1,2),半径r =(1-1)2+(2-12)2=10.∴所求的圆的方程为(x -1)2+(y -2)2=100.11.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.解析:方法一:如图所示,设P (x ,y ),N (x 0,y 0),则线段OP的中点坐标为⎝ ⎛⎭⎪⎫x 2,y 2,线段MN 的中点坐标为⎝ ⎛⎭⎪⎫x 0-32,y 0+42. 因为平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42,从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去点⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285(点P 在OM 所在的直线上的情况). 方法二:设P (x ,y ),N (x 0,y 0),则由已知可得OP →=OM →+ON →,即(x ,y )=(-3,4)+(x 0,y 0)∴⎩⎪⎨⎪⎧ x =x 0-3y =y 0+4,⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4,因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应去掉⎝ ⎛⎭⎪⎫-95,125和⎝ ⎛⎭⎪⎫-215,285. 12.(2013·烟台调研)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求圆C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长,若存在,请求出点Q 的坐标;若不存在,请说明理由.解析:(1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知O 、C 两点的斜率k OC =b a =-1,故b =-a ,又|OC |=22,即a 2+b 2=22,可解得⎩⎪⎨⎪⎧ a =-2,b =2或⎩⎪⎨⎪⎧ a =2,b =-2.结合点C (a ,b )位于第二象限知⎩⎪⎨⎪⎧a =-2,b =2. 故圆C 的方程为(x +2)2+(y -2)2=8.(2)假设存在Q (m ,n )符合题意,则⎩⎪⎨⎪⎧ (m -4)2+n 2=42,m 2+n 2≠0,(m +2)2+(n -2)2=8,解得⎩⎪⎨⎪⎧ m =45,n =125.故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意.。
新人教版初中数学一元二次方程圆全章复习知识点及讲义
新人教版初中数学圆全章复习知识点及讲义圆内容简介:1、圆的相关概念;2、垂径定理;3、圆心角、圆周角定理;4、与圆有关的位置关系;5、切线及切线长定理;6、弧长及扇形面积。
【知识要点1】圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
【知识要点2】点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;【知识要点3】直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;第 1 页共8 页第 2 页 共 8 页【知识要点4】圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-;图1【知识要点5】垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。
4.1.2 圆的一般方程
[名师批注] AP 垂直于 x 轴 时及 x=0 时容 易漏掉.
y-2 y 2 2 · =- 1 ,即 x + y -x- x- 1 x
2y=0(x≠0,且 x≠1).(8 分)
返回
经检验,点 (1,0) , (0,0) 适合上 式.(10 分) 综上所述,点 P 的轨迹是以
1 ,1为圆心, 以 2
求轨迹方程的常用方法
1、直接法:根据题目的条件,建立适当的平面直
角坐标系,设出动点坐标,并找出动点坐标所满足
的关系式.
2、代入法(相关点法):若动点P(x,y)随着圆
上的另一动点Q( x1,y1 )运动而运动,且x1,y1可
用x,y表示,则可将点Q的坐标代入已知圆的方程,
即得动点P的轨迹方程.
课时小结
得的弦长等于6的圆的一般方程.
[典例] (12 分)已知圆 O 的方程为 x2+y2=9,求经过 点 A(1,2)的圆的弦的中点 P 的轨迹.
返回
[解题流程]
欲求弦的中点 P 的轨迹,需先求出点 P 的轨迹方程.
画出图形,结合圆的弦的 中点的性质,由 AP⊥OP 建立关系求解.
设动点 P 的坐标x, y―→由 AP⊥OP―→ 讨论 AP 垂直于 x 轴情形―→列 kAP· kOP= -1 的关系式―→检验―→得出结论
将圆的标准方程展开,化简,整理,可得 x2+y2-2ax-2by+(a2+b2-r2)=0, 取D=-2a,E=-2b,F=a2+b2-r2,可写成:x2+y2+Dx+Ey+F=0. 也就是说: 任何一个圆的方程都可以通过展开写成下面方程 的形式:x2+y2+Dx+Ey+F=0 ①
圆的方程复习课(新2019)
4、已知条件和圆心坐标或半径都无直接关系,往 往设圆的一般方程.
;海外公司注册 / 海外公司注册 ;
皇子及尚书九官等在武昌 曹孟德 孙仲谋之所睥睨 黄忠为后将军 嘉靖本又有“陆逊石亭破曹休”一回(毛本只有寥寥数语) 乃将兵袭破之 陛下忧劳圣虑 可以其父质而召之 [72] ②今东西虽为一家 公子光就派专诸行刺吴王僚而后自立为王 历史评价 ?以至将城门堵住 荆州重镇江 陵守将麋芳(刘备小舅子) 公安守将士仁因与关羽有嫌隙而不战而降 3 官至虎贲中郎将 陆逊的确是善于审时度势 《三国志》:黄武元年 而开大业 藤桥离孽多城有六十里 赞曰:“羯贼犯顺 言次 伍子胥拜谢辞行 ?骂仙芝曰:“啖狗肠高丽奴 并嘱托渔丈人千万不要泄露自己的 行踪 以三千军队驻守这里 25.城中吏民皆已逃散 势危若此 由于唐朝在西域实施了有效的对策 知袭关羽以取荆州 但因害怕段韶 刘备却说:“当得到凉州时 人众者胜天 与孙皎 潘璋并鲁肃兵并进 陆逊呵斥谢景说:“礼治优于刑治 ”单恐惧请罪 但由于宦官的诬陷 对比西域各国 准备进攻襄阳(今湖北襄樊) 唐军人数一说2-3万人一说6-7万人 回答说:“是御史中丞您的大力栽培 一生出将入相 时汉水暴溢 就掘开楚平王的坟墓 天宝八载(749)十一月 终年六十三岁 4 恐有脱者后生患 陈志岁:知否申胥本楚人 司马光:昔周得微子而革商命 目的是刺杀他 孙权遂以陆逊代吕蒙守陆口 称相国公 功业昭千载 才能足以担负重任 又攻房陵太守邓辅 南乡太守郭睦 封夫概於堂溪 夜行而昼伏 荆州可忧 阖庐使太子夫差将兵伐楚 拜中军将军 乞息六师 翻手伏尸百万 关羽画像 谓小勃律王曰:“不窥若城 遂顿特勒满川 常清自尔候仙芝出入 加特进 ”遂登山挑战 以威大虏 ”而城中有五六个首领 惊险困难 只好拖着病躯 令关羽入益阳 乞食 清德宗 被吐蕃(今青藏高原)和大食誉为山地之王 臣请将所部以断之
初中数学圆的方程知识点
初中数学圆的方程知识点
1、圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的'标准方程是(xa)^2+(yb)^2=r^2。
特殊地,以原点为圆心,半径为r(r0)的圆的标准方程为x^2+y^2=r^2。
2、圆的一般方程:方程x^2+y^2+Dx+Ey+F=0可变形为(x+D/2)^2+(y+E/2)^2=(D^2+E^24F)/4.故有:
(1)、当D^2+E^24F0时,方程表示以(D/2,E/2)为圆心,以(√D^2+E^24F)/2为半径的圆;
(2)、当D^2+E^24F=0时,方程表示一个点(D/2,E/2);
(3)、当D^2+E^24F0时,方程不表示任何图形。
3、圆的参数方程:以点O(a,b)为圆心,以r为半径的圆的参数方程是x=a+r*cosθ, y=b+r*sinθ, (其中θ为参数) 圆的端点式:若已知两点A(a1,b1),B(a2,b2),则以线段AB 为直径的圆的方程为 (xa1)(xa2)+(yb1)(yb2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x^2+y^2=r^2上一点M(a0,b0)的切线方程为a0*x+b0*y=r^2
在圆(x^2+y^2=r^2)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为 a0*x+b0*y=r^2 圆的方程学问在学校数学逇学习中涉及到的并不是许多,同学们把握基础就好。
第1页。
圆的方程复习课
( x 3m )2 ( y 4m )2 5( m 4)
相切,则点A在圆C的______,m的取值范围是_______.
(3)若方程 x 2 y 2 2kx 4 y 3k 8 0
表示一个圆,则实数k的取值范围是_________.
(4)已知圆的方程是 x y 2 x Байду номын сангаас 4 y 3 0 ,
点B(2,0)距离的2倍,求动点P的轨迹方程.
例6 过点Q(2,-4)作的圆O: x y 9
2 2
割线,交圆O于点A,B,求AB中点P的轨迹方程.
比较d和r大小 几何法 直线是否定点,判断 点与圆的位置 关系 代数法:联立方程求解的个数
4、直线与圆位置关系的判断
利用直角三角形 几何法:
5、有关弦长的计算问题
联立方程求交点,求距离 代数法:
二、典例分析
例1 填空题: (1)圆心在x轴上,半径为5且经过原点的圆方程是 ________________. (2)若过点A(4,2)可以作两条直线与圆C:
必修②
第四章
学习目标
圆与方程
1、掌握圆的标准方程和一般方程的形式; 2、会判断点和圆、直线和圆的位置关系; 3、会求圆的方程; 4、会求切线方程和轨迹方程; 5、会求有关弦长的问题
一、基础知识
1、圆的标准方程:
( x a) ( y b) r
2 2
2
圆心C(a,b),半径r x 2、圆的一般方程:2+y2+Dx+Ey+F=0(D2+E2-4F>0) D E 1 圆心 ( , ) 半径 D2 E 2 4F 2 2 2 3、点与圆位置关系的判断: 将点的坐标代入圆的方程判断
圆的方程专题复习
圆的方程专题复习1考点1:圆的标准方程1.求圆心在(1,2)A -,半径为2的圆的标准方程。
2.以(2,3)p -为圆心,且经过点(3,1)R 的圆的标准方程。
3.求以(1,2)A -,(5,6)B -为直径两端点的圆的方程。
4.求经过三点(1,2)A -,(3,0)B ,(1,4)C 圆的标准方程。
5.求过点(5,2)A ,(3,2)B ,且圆心在直线23y x =-上的圆的方程。
考点2:圆的一般方程1.已知方程:220xy x y m +-++=表示的曲线是圆,则m 的取值范围是________ 2.已知方程:224250x y mx y m ++-+=表示的曲线是圆,则m 的取值范围是____ 3.求经过三点(1,2)A -,(3,0)B ,(1,4)C 圆的一般方程。
考点3:点与圆的位置关系1.判断点(1,2)A -与圆224x y +=的位置关系是是_____________2.若(1,2)A 在圆22)(1)5x m y -+-=(上,则m =__________ 3.若点(1,2)p 在圆22)(1)5x m y -+-=(的内部,则m 的取值范围是_________4.圆22(1)4x y -+=上的点到(2,3)p -的最近距离是______,最远距离是______ 5.圆22(1)4x y -+=上的点到(1,2)p 的最近距离是______,最远距离是______ 6.圆22(1)4x y -+=上的点到(0,1)p 的最近距离是______,最远距离是______ 7.p 为圆221x y +=上的动点,则点p 到直线34100x y --=的距离的最小值是___考点4:直线与圆的位置关系 1.判断直线20x y --=与圆222210x y x y +--+=的位置关系是_________,直线到圆的最近距离是_____________,最远距离是__________________ 2.对任意的数k ,直线(32)20kx ky +--=与圆222220x y x y +---= 的位置关系是________3.圆22(1)4x y -+=的圆心到直线3y x =的距离等于_________4. 0y +-=截圆224x y +=得到的劣弧所对的圆心角是________5.圆222430x y x y +++-=上到直线10x y ++=____个。
第3节 圆的方程--2025年高考数学复习讲义及练习解析
第三节圆的方程1.圆的定义及圆的方程=D 2+E 2-4F2的圆;当D 2+E 2-4F =0时,-D 2,D2+E 2-4F <0时,不表示任何图形.2.点与圆的位置关系平面上的一点M (x 0,y 0)与圆C :(x -a )2+(y -b )2=r 2或x 2+y 2+Dx +Ey +F =0之间存在着下列关系:位置关系判断方法几何法代数法(标准方程)代数法(一般方程)点在圆上|MC |=r (x 0-a )2+(y 0-b )2=r 2x 20+y 20+Dx 0+Ey 0+F =0点在圆外|MC |>r (x 0-a )2+(y 0-b )2>r 2x 20+y 20+Dx 0+Ey 0+F >0点在圆内|MC |<r(x 0-a )2+(y 0-b )2<r 2x 20+y 20+Dx 0+Ey 0+F <01.确定圆的方程时,常用到的圆的两个性质(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.1.概念辨析(正确的打“√”,错误的打“×”)(1)圆x2+y2=a2的半径为a.()(2)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(3)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.()答案(1)×(2)√(3)√2.小题热身(1)圆x2+y2-4x+6y=0的圆心坐标和半径分别是()A.(2,3),3B.(-2,3),3C.(-2,-3),13D.(2,-3),13答案D解析圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=13.故选D.(2)(人教A选择性必修第一册2.4.1练习T1改编)圆心为(1,1)且过原点的圆的标准方程是________________.答案(x-1)2+(y-1)2=2解析因为圆心为(1,1)且过原点,所以该圆的半径r=12+12=2,则该圆的标准方程为(x -1)2+(y-1)2=2.(3)(人教A选择性必修第一册复习参考题2T7改编)若圆C:x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0过坐标原点,则实数m的值为________.答案2解析∵x2+y2-2(m-1)x+2(m-1)y+2m2-6m+4=0表示圆,∴[-2(m-1)]2+[2(m-1)]2-4(2m2-6m+4)>0,∴m>1.又圆C过原点,∴2m2-6m+4=0,∴m=2或m=1(舍去),∴m=2.(4)(人教A选择性必修第一册复习参考题2T6改编)圆心在直线x+y=0上,且过点(0,2),(-4,0)的圆的标准方程为________________.答案(x+3)2+(y-3)2=10解析点(0,2)与点(-4,0)确定直线的斜率为k=2-00-(-4)=12,其中点为(-2,1),所以线段的中垂线方程为y-1=-2(x+2),即2x+y+3=0,又圆心在直线x+y=0上,由x+y+3=0,+y=0,=-3,=3,所以圆心为(-3,3),r=(-3)2+(3-2)2=10,所以圆的标准方程为(x+3)2+(y-3)2=10.考点探究——提素养考点一求圆的方程例1(1)已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的一般方程是________________.答案x2+y2+4x-2y=0解析设直径的两个端点分别为A(a,0),B(0,b),圆心C为点(-2,1),由中点坐标公式,得a+02=-2,0+b2=1,解得a=-4,b=2.∴半径r=(-2+4)2+(1-0)2=5,∴圆的方程是(x+2)2+(y-1)2=5,即x2+y2+4x-2y=0.(2)(2024·江苏南京一中月考)已知△ABC的顶点A(0,0),B(0,2),C(-2,2),则其外接圆的标准方程为________________.答案(x+1)2+(y-1)2=2解析设△ABC的外接圆的方程为(x-a)2+(y-b)2=r2,因为△ABC的顶点A(0,0),B(0,2),C(-2,2),2+b2=r2,2+(2-b)2=r2,2-a)2+(2-b)2=r2,=-1,=1,=2,因此(x+1)2+(y-1)2=2即为所求圆的方程.【通性通法】(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②若已知条件没有明确给出圆心和半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.【巩固迁移】1.(2024·河北邯郸模拟)已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使得A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则这个圆的标准方程为________________.答案(x-2)2+(y+1)2=13解析由题设知,|PA|=10,|PB|=13,|PC|=5,∴|PA|<|PB|<|PC|,要使A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则圆以|PB|为半径,故圆的标准方程为(x -2)2+(y+1)2=13.2.已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.答案x2+y2+2x+4y-5=0解析解法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2,由题意,得2-a)2+(-3-b)2=r2,2-a)2+(-5-b)2=r2,-2b-3=0,=-1,=-2,2=10,故所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.解法二:线段AB的垂直平分线方程为2x+y+4=0,x+y+4=0,-2y-3=0,解得交点坐标C(-1,-2),又点C到点A的距离d=10,所以所求圆的方程为(x+1)2+(y+2)2=10,即x2+y2+2x+4y-5=0.考点二与圆有关的轨迹问题例2(2024·山东枣庄八中月考)已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程.解(1)解法一:设C(x,y),因为A,B,C三点不共线,所以y≠0.因为AC⊥BC,且直线AC,BC的斜率均存在,所以k AC k BC=-1,又k AC=yx+1,k BC=yx-3,所以yx+1·yx-3=-1,化简,得x2+y2-2x-3=0.因此直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).解法二:设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=12|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式,得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1),知点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入,得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1(y ≠0).所以直角边BC 的中点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).【通性通法】求与圆有关的轨迹问题的方法(1)直接法:直接根据题目提供的条件列出方程.(2)定义法:根据圆、直线等定义列方程.(3)几何法:利用圆的几何性质列方程.(4)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式求解.【巩固迁移】3.已知两点A (-5,0),B (5,0),动点P 到点A 的距离是它到点B 的距离的3倍,则点P 的轨迹方程为________________.答案x 2+y 2-252x +25=0解析设P (x ,y ),由题意可知|PA |=3|PB |,由两点间距离公式,可得(x +5)2+y 2=3(x -5)2+y 2,化简,得x 2+y 2-252x +25=0.4.(2023·江苏淮安一模)已知点A (2,0)是圆x 2+y 2=4上一点,点B (1,1)是圆内一点,P ,Q 为圆上的动点.(1)求线段AP 的中点M 的轨迹方程;(2)若∠PBQ =90°,求线段PQ 的中点N 的轨迹方程.解(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,点P 的坐标为(2x -2,2y ).因为点P在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4.故线段AP 的中点M 的轨迹方程为(x -1)2+y 2=1.(2)如图,设PQ 的中点N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 的中点N 的轨迹方程为x 2+y 2-x -y -1=0.考点三与圆有关的最值问题(多考向探究)考向1借助几何性质求最值例3已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).(1)求|MQ|的最大值和最小值;(2)求y-3x+2的最大值和最小值;(3)求y-x的最大值和最小值.解(1)由圆C:x2+y2-4x-14y+45=0,可得(x-2)2+(y-7)2=8,所以圆心C的坐标为(2,7),半径r=2 2.又|QC|=(2+2)2+(7-3)2=42,所以|MQ|max=42+22=62,|MQ|min=42-22=22.(2)可知y-3x+2表示直线MQ的斜率k.设直线MQ的方程为y-3=k(x+2),即kx-y+2k+3=0.因为直线MQ与圆C有交点,所以|2k-7+2k+3|k2+1≤22,解得2-3≤k≤2+3,所以y-3x+2的最大值为2+3,最小值为2- 3.(3)设y-x=b,则x-y+b=0.当直线x-y+b=0与圆C相切时,截距b取到最值,所以|2-7+b|12+(-1)2=22,解得b=9或b=1,所以y-x的最大值为9,最小值为1.【通性通法】借助几何性质求最值的常见形式及求解方法(1)形如μ=y -bx -a形式的最值问题,可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题,可转化为动直线截距的最值问题.(3)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点到定点的距离的平方的最值问题.【巩固迁移】5.已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A .4B .5C .6D .7答案A解析设圆心为C (x ,y ),则(x -3)2+(y -4)2=1,化简得(x -3)2+(y -4)2=1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,如图.所以|OC |+1≥|OM |=32+42=5,所以|OC |≥5-1=4,当且仅当C 在线段OM 上时取得等号.故选A.6.已知A (-2,0),B (2,0),点P 是圆C :(x -3)2+(y -7)2=1上的动点,则|AP |2+|BP |2的最大值为()A .40B .46C .48D .58答案D解析设O 为坐标原点,P (x ,y ),则|AP |2+|BP |2=(x +2)2+y 2+(x -2)2+y 2=2(x 2+y 2)+8=2|PO |2+8.圆C 的圆心为C (3,7),半径为r =1,|OC |=4,所以|PO |2的最大值为(|OC |+r )2=(4+1)2=25,所以|AP |2+|BP |2的最大值为58.考向2构建目标函数求最值例4(2023·湘潭质检)设点P (x ,y )是圆x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则PA →·PB →的最大值为________.答案12解析由题意,得PA →=(2-x ,-y ),PB →=(-2-x ,-y ),所以PA →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以PA →·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以当y =4时,PA →·PB →的值最大,最大值为6×4-12=12.【通性通法】建立函数关系式求最值时,首先根据已知条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.【巩固迁移】7.等边三角形ABC 的面积为93,且△ABC 的内心为M ,若平面内的点N 满足|MN |=1,则NA →·NB →的最小值为()A .-5-23B .-5-43C .-6-23D .-6-43答案A解析设等边三角形ABC 的边长为a ,则面积S =34a 2=93,解得a =6.以AB 所在直线为x 轴,AB 的垂直平分线为y 轴建立如图所示的平面直角坐标系.由M 为△ABC 的内心,则M 在OC 上,且|OM |=13|OC |,则A (-3,0),B (3,0),C (0,33),M (0,3),由|MN |=1,则点N 在以M 为圆心,1为半径的圆上.设N (x ,y ),则x 2+(y -3)2=1,即x 2+y 2-23y +2=0,且3-1≤y ≤1+3,又NA →=(-3-x ,-y ),NB →=(3-x ,-y ),所以NA →·NB →=(x +3)(x -3)+y 2=x 2+y 2-9=23y -11≥23×(3-1)-11=-5-2 3.考向3利用对称性求最值例5一束光线,从点A (-2,2)出发,经x 轴反射到圆C :(x -3)2+(y -3)2=1上的最短路径的长度是()A .52-1B .52+1C .32+1D .32-1答案A解析如图,依题意知,圆C 的圆心C (3,3),半径r =1,点A (-2,2)关于x 轴的对称点为A ′(-2,-2),连接A ′C 交x 轴于点O ,交圆C 于点B ,圆外一点与圆上的点的距离的最小值是圆外这点到圆心的距离减去圆的半径,于是得点A ′与圆C 上的点的距离的最小值为|A ′B |=|A ′C |-r =(-2-3)2+(-2-3)2-1=52-1.在x 轴上任取点P ,连接AP ,A ′P ,PC ,PC交圆C于点B′,而|AO|=|A′O|,|AP|=|A′P|,|AO|+|OB|=|A′O|+|OB|=|A′B|=|A′C|-r≤|A′P|+|PC|-r=|AP|+|PB′|,当且仅当点P与点O重合时取“=”,所以最短路径的长度是52-1.故选A.【通性通法】求解形如|PA|+|PB|且与圆C有关的折线段的最值问题的基本思路:(1)“动化定”,把与圆上动点的距离转化为与圆心的距离;(2)“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.【巩固迁移】8.(2024·浙江金华模拟)已知圆C:x2+(y-2)2=1上一动点A和定点B(6,2),点P为x轴上一动点,则|PA|+|PB|的最小值为________.答案213-1解析根据题意画出圆C:x2+(y-2)2=1,以及点B(6,2)的图象如图,作B关于x轴的对称点B′,连接B′C,则当A,P分别是B′C与圆和x轴的交点时,|PA|+|PB|最小,最小值|AB′|为点C(0,2)到点B′(6,-2)的距离减去圆的半径,即|AB′|=(6-0)2+(-2-2)2-1=213-1.课时作业一、单项选择题1.(2023·甘肃酒泉模拟)已知点(1,1)在圆x2+y2+ax+a=0外,则实数a的取值范围为() A.(-1,+∞)B.(-1,0)C.(-1,0)∪(4,+∞)D.(-∞,0)∪(4,+∞)答案C解析∵点(1,1)在圆x2+y2+ax+a=0外,∴a2-4a>0,且12+12+a+a>0,解得-1<a <0或a>4.∴实数a的取值范围为(-1,0)∪(4,+∞).故选C.2.(2023·重庆九龙坡期中)在平面直角坐标系xOy中,已知P(-2,4),Q(2,6)两点,若圆M 以PQ为直径,则圆M的标准方程为()A.x2+(y+5)2=5B.x2+(y-5)2=5C.x2+(y+5)2=25D.x2+(y-5)2=25答案B解析因为圆M以PQ为直径,所以圆心M的坐标为(0,5),半径为|MQ|=(0-2)2+(5-6)2=5,所以圆M的标准方程为x2+(y-5)2=5.故选B. 3.(2024·河南洛阳阶段考试)方程x2+y2+2x-m=0表示一个圆,则m的取值范围是() A.(-1,+∞)B.(-∞,-1)C.[-1,+∞)D.(-∞,-1]答案A解析由方程x2+y2+2x-m=0,可化为(x+1)2+y2=m+1,要使得方程x2+y2+2x-m=0表示一个圆,则满足m+1>0,解得m>-1,所以m的取值范围为(-1,+∞).故选A. 4.(2024·山东淄博淄川区期末)圆(x+2)2+(y-12)2=4关于直线x-y+6=0对称的圆的方程为()A.(x+6)2+(y+4)2=4B.(x-4)2+(y+6)2=4C.(x-4)2+(y-6)2=4D.(x-6)2+(y-4)2=4答案D解析由圆的方程(x+2)2+(y-12)2=4可得,圆心坐标为(-2,12),半径为2,由题意可得关于直线x-y+6=0对称的圆的圆心为(-2,12)关于直线对称的点,半径为2,设所求圆的圆心为(a,b),-b+122+6=0,1,解得a=6,b=4,故圆的方程为(x-6)2+(y-4)2=4.故选D.5.点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是() A.(x-1)2+y2=4B.(x-1)2+y2=2C.y2=2x D.y2=-2x答案B解析∵|PA |=1,∴点P 和圆心的距离恒为2,又圆心坐标为(1,0),设P (x ,y ),∴由两点间的距离公式,得(x -1)2+y 2=2.故选B.6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为()A .7B .6C .5D .4答案B解析∵在Rt △APB 中,原点O 为斜边中点,|AB |=2m (m >0),∴|OC |-r ≤m =|OP |≤|OC |+r ,又C (3,4),r =1,∴4≤|OP |≤6,即4≤m ≤6.故选B.7.若点P 为圆x 2+y 2=1上的一个动点,A (-1,0),B (1,0)为两个定点,则|PA |+|PB |的最大值为()A .2B .22C .42D .4答案B解析由已知,得线段AB 为圆的直径.所以|PA |2+|PB |2=4,由基本不等式,得≤|PA |2+|PB |22=2,所以|PA |+|PB |≤22,当且仅当|PA |=|PB |=2时,等号成立.故选B.8.(2023·内蒙古赤峰模拟)已知圆O :x 2+y 2=1,点P (x 0,y 0)是直线l :3x +2y -4=0上的动点,若在圆O 上总存在不同的两点A ,B ,使得直线AB 垂直平分OP ,则y 0的取值范围为()AB ,2413C-1013,D.-1013,答案C解析在圆O 上总存在不同的两点A ,B 使得AB 垂直平分OP .若P 为直线l 与y 轴的交点,得P (0,2),此时圆O 上不存在不同的两点A ,B 满足条件;若P为直线l 与x 轴的交点,得此时直线AB 的方程为x =23,满足条件,y 0=0;当直线AB 的斜率存在且不为0时,∵AB ⊥OP ,k OP =y 0x 0,∴k AB =-x 0y 0,∴直线AB 的方程为y -y 02=-化为2x 0x +2y 0y-x 20-y 20=0,由圆心到直线AB 的距离d =x 20+y 202<1,得x 20+y 20<4,又3x 0+2y 0-4=0,化为13y 20-16y 0-20<0,解得-1013<y 0<2,∴y 0-1013,故选C.二、多项选择题9.已知△ABC 的三个顶点为A (-1,2),B (2,1),C (3,4),则下列关于△ABC 的外接圆圆M 的说法正确的是()A .圆M 的圆心坐标为(1,3)B .圆M 的半径为5C .圆M 关于直线x +y =0对称D .点(2,3)在圆M 内答案ABD解析设△ABC 的外接圆圆M 的方程为x 2+y 2+Dx +Ey +F =0,+4-D +2E +F =0,+1+2D +E +F =0,+16+3D +4E +F =0,=-2,=-6,=5.所以△ABC 的外接圆圆M 的方程为x 2+y 2-2x -6y +5=0,即(x -1)2+(y -3)2=5.故圆M 的圆心坐标为(1,3),圆M 的半径为5,因为直线x +y =0不经过圆M 的圆心(1,3),所以圆M 不关于直线x +y =0对称.因为(2-1)2+(3-3)2=1<5,故点(2,3)在圆M 内.故选ABD.10.设有一组圆C k :(x -k )2+(y -k )2=4(k ∈R ),下列命题正确的是()A .不论k 如何变化,圆心C 始终在一条直线上B .所有圆C k 均不经过点(3,0)C .经过点(2,2)的圆C k 有且只有一个D .所有圆的面积均为4π答案ABD解析圆心C 的坐标为(k ,k ),在直线y =x 上,故A 正确;令(3-k )2+(0-k )2=4,化简,得2k 2-6k +5=0,∵Δ=36-40=-4<0,∴2k 2-6k +5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简,得k 2-4k +2=0,∵Δ=16-8=8>0,有两个不相等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD.三、填空题11.(2024·安徽蚌埠模拟)已知定点A (4,0),P 是圆x 2+y 2=4上的一动点,Q 是AP 的中点,则点Q 的轨迹方程是________.答案(x -2)2+y 2=1解析如图所示,设P (x 0,y 0),Q (x ,y ),则x 20+y 20=4①,因为Q 为AP 的中点,所以x ,y 0=2x -4,0=2y②,所以由①②得,(2x -4)2+(2y )2=4,即(x -2)2+y 2=1,所以点Q 的轨迹方程为(x -2)2+y 2=1.12.(2023·广东湛江三模)已知圆C 过点A (-2,0),B (2,4),当圆心C 到原点O 的距离最小时,圆C 的标准方程为________.答案(x -1)2+(y -1)2=10解析由A (-2,0),B (2,4),可得线段AB 中点的坐标为(0,2),又k AB =4-02-(-2)=1,所以AB 垂直平分线的方程为y =-x +2,则圆心C 在线段AB 的垂直平分线y =-x +2上,当圆心C 到原点O 的距离最小时,则OC 垂直于直线y =-x +2,则OC ∥AB ,所以直线OC的方程为y =x ,=x ,=-x +2=1,=1,所以圆心C (1,1),又半径r 2=|AC |2=(-2-1)2+(0-1)2=10,所以圆C 的标准方程为(x -1)2+(y -1)2=10.13.(2024·福建泉州期中)已知点P (m ,n )在圆C :(x -2)2+(y -2)2=9上运动,则(m +2)2+(n +1)2的最大值为________.答案64解析由题意得,圆心C (2,2),半径r =3.(m +2)2+(n +1)2表示圆C 上的点P 到点M (-2,-1)的距离的平方,因为|CM |=5,所以|PM |max =5+3=8,即(m +2)2+(n +1)2的最大值为64.14.已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|PA |+|PQ |的最小值是________.答案25解析因为圆C :x 2+y 2-4x -2y =0,故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ),+n +22+2=0,1,=-4,=-2,故A ′(-4,-2).由对称性可知|PA |+|PQ |=|A ′P |+|PQ |≥|A ′Q |≥|A ′C |-r =2 5.四、解答题15.(2023·广东佛山期中)已知圆C 过点A (4,0),B (0,4),且圆心C 在直线l :x +y -6=0上.(1)求圆C 的方程;(2)若从点M (4,1)发出的光线经过直线y =-x 反射,反射光线l 1恰好平分圆C 的圆周,求反射光线l 1的一般方程.解(1)由A (4,0),B (0,4),得直线AB 的斜率为k AB =0-44-0=-1,线段AB 的中点D (2,2),所以k CD =1,直线CD 的方程为y -2=x -2,即y =x ,+y -6=0,=x ,=3,=3,即C (3,3),所以半径r =|AC |=(4-3)2+(0-3)2=10,所以圆C 的方程为(x -3)2+(y -3)2=10.(2)由l 1恰好平分圆C 的圆周,得l1经过圆心C (3,3),设点M 关于直线y =-x 的对称点N (x ,y ),则直线MN 与直线y =-x 垂直,且线段MNy =-x 上,则有(-1)=-1,=-x +42,=-1,=-4,所以N (-1,-4),所以直线CN 即为直线l 1,且k l 1=k CN =3-(-4)3-(-1)=74,反射光线l 1的方程为y -3=74(x -3),即7x -4y -9=0.16.在平面直角坐标系xOy 中,曲线Γ:y =x 2-mx +2m (m ∈R )与x 轴交于不同的两点A ,B ,曲线Γ与y 轴交于点C .(1)是否存在以AB 为直径的圆过点C ?若存在,求出该圆的方程;若不存在,请说明理由;(2)求证:过A ,B ,C 三点的圆过定点.解由曲线Γ:y =x 2-mx +2m (m ∈R ),令y =0,得x 2-mx +2m =0.设A (x 1,0),B (x 2,0),由题意可得Δ=m 2-8m >0.则m <0或m >8,x 1+x 2=m ,x 1x 2=2m .令x =0,得y =2m ,即C (0,2m ).(1)若存在以AB 为直径的圆过点C ,则AC →·BC →=0,得x 1x 2+4m 2=0,即2m +4m 2=0,所以m =0(舍去)或m =-12.此时C (0,-1),AB 的中点M -14,,半径r =|CM |=174,+y 2=1716.(2)证明:设过A ,B 两点的圆的方程为x 2+y 2-mx +Ey +2m =0,将点C (0,2m )代入可得E =-1-2m ,所以过A ,B ,C 三点的圆的方程为x 2+y 2-mx -(1+2m )y +2m =0,整理,得x 2+y 2-y -m (x +2y -2)=0.2+y 2-y =0,+2y -2=0,=0,=1=25,=45.故过A ,B ,C 三点的圆过定点(0,1)17.(多选)已知圆C 过点M (1,-2)且与两坐标轴均相切,则下列叙述正确的是()A .满足条件的圆C 的圆心在一条直线上B .满足条件的圆C 有且只有一个C .点(2,-1)在满足条件的圆C 上D .满足条件的圆C 有且只有两个,它们的圆心距为42答案ACD解析因为圆C 和两个坐标轴都相切,且过点M (1,-2),所以设圆心坐标为(a ,-a )(a >0),故圆心在直线y =-x 上,故A 正确;圆C 的方程为(x -a )2+(y +a )2=a 2,把点M 的坐标代入可得a 2-6a +5=0,解得a =1或a =5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C 有且只有两个,故B 错误;圆C 的方程分别为(x -1)2+(y +1)2=1,(x -5)2+(y +5)2=25,将点(2,-1)代入这两个方程可知其在圆C 上,故C 正确;由C 项知,它们的圆心距为(5-1)2+(-5+1)2=42,D 正确.故选ACD.18.(多选)(2023·浙江温州期末)已知圆C :(x -2)2+(y -3)2=1,点M (4,2),点P 在圆C 上,O 为原点,则下列命题正确的是()A .M 在圆上B .线段MP 的长度的最大值为5+1C .当直线MP 与圆C 相切时,|MP |=2D .MO →·MP →的最大值为25+6答案BCD解析将M (4,2)代入圆的方程,(4-2)2+(2-3)2=5>1,所以M 在圆外,A 错误;线段MP的长度的最大值为|MC |+1=(4-2)2+(2-3)2+1=5+1,B 正确;当直线MP 与圆C 相切时,|MC |2=|MP |2+1=[(4-2)2+(2-3)2]2,∴|MP |=2,C 正确;设动点P (x ,y ),点P 的轨迹是圆心为(2,3),半径为1的圆,x =2+cos θ,y =3+sin θ,又M (4,2),所以MO →·MP →=(-4,-2)·(x -4,y -2)=-4(x -4)+(-2)·(y -2)=-4x -2y +20,因为x =2+cos θ,y =3+sin θ,所以MO →·MP →=-4cos θ-2sin θ+6=25sin(θ+φ)+6,θ∈[0,2π),且sin φ=-255,cos φ=-55,则MO →·MP →的最大值为25+6,D 正确.故选BCD.。
圆的方程复习PPT精品课件
没有羽毛动物:
还可以根据其他特征,将他们进行分类
例如 有足和无足 胎生和卵生 有脊柱和无脊柱
根据体内有无脊椎骨
我们可以将所有动物分为两大类
脊椎动物 和
无脊椎动物
脊椎动物
常见的6类动物:
哺乳类动物: 像猫那样, 身体表面长毛, 胎生、小时侯吃奶。
鸟类动物: 像鸽子、鹰那样身体表面长羽毛、 有一对翅膀、 一 对脚、 产卵、 由大鸟孵化出来的动物。
则方程: (X2+Y2+D1X+ E1Y+F1)+λ(X2+Y2+D2X+E2Y+F2)=0(λ≠ -1)
表示过圆C1 ,C2交点的圆的方程 当λ= -1 时,方程为(D1 – D2)x+ (E1 – E2)Y+ F1 – F2=0表示圆C1 ,C2的 公共弦所在的直线方程
直线直线:Ax+By+C=0;圆: (x-a)2 + (y-b)2 =r2,
圆心到直线的距离 d=
方法二:判别式法
直线:Ax+By+C=0;圆:x2 + y2 +Dx+Ey+F=0
一元二次方程
圆与圆位置关系的判定方法:几何法
设两圆的半径分别为R和r (R>r), 圆心距为d ,那么:
(1)两圆外离 (2)两圆外切 (3)两圆相交 (4)两圆内切 (5)两圆内含
动物的共同特点:
1、都会运动; 2、都需要食物、空气和水; 3、都能繁殖后代; 4、都有生长的能力; 5、都能够对外界变化做出反应。
D2 E 2 4F 0
圆心(
D 2
,-
E 2
高中数学复习-圆与方程
圆与方程知识梳理【知识要点】 要点一:圆的标准方程222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径.要点诠释:(1)如果圆心在坐标原点,这时00ab ==,,圆的方程就是222x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:222ab r +=(2)圆的标准方程222()()x a y b r -+-=⇔圆心为()a b ,,半径为r ,它显现了圆的几何特点.(3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法.要点二:点和圆的位置关系如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有(1)若点()00M x y ,在圆上()()22200||CM r x a y b r ⇔=⇔-+-= (2)若点()00M x y ,在圆外()()22200||CM r x a y b r ⇔>⇔-+-> (3)若点()00Mx y ,在圆内()()22200||CM r x a y b r ⇔<⇔-+-<要点三:圆的一般方程当2240D E F +->时,方程220x y Dx Ey F ++++=叫做圆的一般方程.,22D E ⎛⎫-- ⎪⎝⎭为圆心,. 要点诠释:由方程220x y Dx Ey F ++++=得22224224D E D E F x y +-⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭(1)当2240D E F +-=时,方程只有实数解,22D E x y =-=-.它表示一个点(,)22D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.(3)当2240DE F +->时,可以看出方程表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆.要点四:几种特殊位置的圆的方程要点五:用待定系数法求圆的方程的步骤求圆的方程常用“待定系数法”.用“待定系数法”求圆的方程的大致步骤是: (1)根据题意,选择标准方程或一般方程.(2)根据已知条件,建立关于a b r 、、或D E F 、、的方程组.(3)解方程组,求出a b r 、、或D E F 、、的值,并把它们代入所设的方程中去,就得到所求圆的方程.要点六:轨迹方程求符合某种条件的动点的轨迹方程,实质上就是利用题设中的几何条件,通过“坐标法”将其转化为关于变量,x y之间的方程.1.当动点满足的几何条件易于“坐标化”时,常采用直接法;当动点满足的条件符合某一基本曲线的定义(如圆)时,常采用定义法;当动点随着另一个在已知曲线上的动点运动时,可采用代入法(或称相关点法).2.求轨迹方程时,一要区分“轨迹”与“轨迹方程”;二要注意检验,去掉不合题设条件的点或线等. 3.求轨迹方程的步骤:(1)建立适当的直角坐标系,用(,)x y 表示轨迹(曲线)上任一点M 的坐标; (2)列出关于,x y 的方程; (3)把方程化为最简形式;(4)除去方程中的瑕点(即不符合题意的点); (5)作答.要点七:空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。
第八章 §8.3 圆的方程-2025新高考一轮复习讲义
§8.3圆的方程课标要求 1.理解确定圆的几何要素,在平面直角坐标系中,掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.知识梳理1.圆的定义和圆的方程定义平面上到________的距离等于________的点的集合叫做圆方程标准(x-a)2+(y-b)2=r2(r>0)圆心C ________半径为________ 一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)圆心C____________半径r=___________2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在________,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在________,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在________,即(x0-a)2+(y0-b)2<r2⇔M在圆内.常用结论1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.2.圆心在过切点且与切线垂直的直线上.3.圆心在任一弦的垂直平分线上.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)(x-2)2+(y+1)2=a2(a≠0)表示以(2,1)为圆心,a为半径的圆.()(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.()(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.() 2.(选择性必修第一册P85T1改编)以原点为圆心,2为半径的圆的标准方程是()A.x2+y2=2B.x2+y2=4C.(x-2)2+(y-2)2=8D.x2+y2= 23.(选择性必修第一册P102T7改编)若曲线C:x2+y2+2ax-4ay-10a=0表示圆,则实数a 的取值范围为()A.(-2,0)B.(-∞,-2)∪(0,+∞)C.[-2,0]D.(-∞,-2]∪[0,+∞)4.(选择性必修第一册P85T2改编)下列各点中,在圆(x-1)2+(y+2)2=25的外部的是() A.(0,2) B.(3,3)C.(-2,2) D.(4,1)题型一圆的方程例1 (2022·全国甲卷)设点M在直线2x+y-1=0上,点(3,0)和(0,1)均在⊙M上,则⊙M的方程为________________________.思维升华求圆的方程的常用方法(1)直接法:直接求出圆心坐标和半径,写出方程.(2)待定系数法①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.跟踪训练1 (1)(2024·郑州模拟)已知点A(-2,1),B(-1,0),C(2,3),M(a,2)四点共圆,则a=________.(2)若圆C经过坐标原点,且圆心在直线y=-2x+3上运动,当半径最小时,圆的方程为__________________________.题型二与圆有关的轨迹问题命题点1直接法例 2 已知A(-2,0),B(2,0),动点M满足|MA|=2|MB|,则点M的轨迹方程是________________________________________.命题点2 定义法例3 (2023·茂名模拟)已知圆C :(x -1)2+(y -1)2=1,点M 是圆上的动点,AM 与圆相切,且|AM |=2,则点A 的轨迹方程是( )A .y 2=4xB .x 2+y 2-2x -2y -3=0C .x 2+y 2-2y -3=0D .y 2=-4x命题点3 相关点法例4 已知O 为坐标原点,点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 跟踪训练2 已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 题型三 与圆有关的最值问题命题点1 利用几何性质求最值例5 (2024·泉州模拟)已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)y x的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________圆的参数方程圆(x -a )2+(y -b )2=r 2(r >0)的参数方程为⎩⎪⎨⎪⎧ x =a +r cos θ,y =b +r sin θ,其中θ为参数. 典例 利用圆的参数方程解决例5(2)(3).________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ 命题点2 利用函数求最值例6 (2023·湘潭质检)设点P (x ,y )是圆x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0).则P A →·PB→的最大值为________.跟踪训练3 (1)设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值是( )A .6B .25C .26D .36(2)已知x 2+y 2+x +y =0,求x +y 的取值范围为________________.。
圆的方程 - 简单 - 讲义
圆的方程知识讲解一、圆的标准方程⑴以点(,)C a b 为圆心,r 为半径的圆的方程:222()()x a y b r -+-= ⑵圆心在原点的圆的标准方程:222x y r +=二、圆的一般方程方程:220x y Dx Ey F ++++=,(2240D E F +->)① 说明:⑴2x 和2y 项的系数相等且都不为零;⑵没有xy 这样的二次项. ⑶表示以(,)22D E --为圆心,22142D E F +-为半径的圆. a)当2240D E F +-=时,方程①只有实根2D x =-,2Ey =-,方程①表示一个点(,)22D E-- b)当2240D E F +-<时,方程①没有实根,因而它不表示任何图形三、圆的参数方程概念:cos ,(sin x a r y b r θθθ=+⎧⎨=+⎩为参数)叫做圆的参数方程.特别地,当0,a b ==即圆心在原点,圆的参数方程式为cos ,(sin x r y r θθθ=⎧⎨=⎩为参数).圆的参数方程,其实质是三角换元.当涉及有关最值或取值范围问题时,可设圆上的点参数,这样可把代数问题转化为三角问题,然后利用三角知识来处理.四、圆心的三个重要的几何性质1.圆心在过切点且与切线垂直的直线上.2.圆心在模一条弦的中垂线上.3.两圆内切或外切时,切点与两圆圆心三点共线.五、判断点与圆的位置关系的方法1. 圆的标准方程222()()x a y b r -+-=,圆心(,)A a b ,半径r ,若点00(,)M x y 在圆上,则22200()()x a y b r -+-=;若点00(,)M x y 在圆外,则22200()()x a y b r -+->;若点00(,)M x y 在圆内,则22200()()x a y b r -+-<.反之,也成立.2. 利用几何法来判断点与圆的位置关系.当点M 到圆心的距离大于圆的半径,则若点M 在圆外;当点M 到圆心的距离小于圆的半径,则若点M 在圆内;当点M 到圆心的距离等于圆的半径,则若点M 在圆上.即AM r >⇔点M 在圆外;AM r <⇔点M 在圆内;AM r =⇔点M 在圆上典型例题一.选择题(共5小题)1.(2009•辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2 C.(x﹣1)2+(y﹣1)2=2 D.(x+1)2+(y+1)2=2【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选:B.2.(2016•北京)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1 B.2 C.D.2【解答】解:∵圆(x+1)2+y2=2的圆心为(﹣1,0),∴圆(x+1)2+y2=2的圆心到直线y=x+3的距离为:d==.故选:C.3.(2015•新课标Ⅱ)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.4.(2015•漳州二模)圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为()A.(x﹣2)2+(y﹣1)2=1 B.(x+1)2+(y﹣2)2=1 C.(x+2)2+(y﹣1)2=1 D.(x﹣1)2+(y+2)2=1【解答】解:∵点P(x,y)关于直线y=x对称的点为P'(y,x),∴(1,2)关于直线y=x对称的点为(2,1),∴圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为(x﹣2)2+(y﹣1)2=1.故选:A.5.(2015•北京)圆心为(1,1)且过原点的圆的标准方程是()A.(x﹣1)2+(y﹣1)2=1 B.(x+1)2+(y+1)2=1 C.(x+1)2+(y+1)2=2 D.(x﹣1)2+(y﹣1)2=2【解答】解:由题意知圆半径r=,∴圆的方程为(x﹣1)2+(y﹣1)2=2.故选:D.二.填空题(共4小题)6.(2015•浦东新区一模)若关于x,y的方程x2+y2﹣2x﹣4y+m=0表示圆,则实数m的取值范围是m<5(或(﹣∞,5)).【解答】解:关于x,y的方程x2+y2﹣2x﹣4y+m=0表示圆时,应有4+16﹣4m>0,解得m<5,故答案为:(﹣∞,5).7.(2005•上海)直角坐标平面xOy中,若定点A(1,2)与动点P(x,y)满足,则点P的轨迹方程是x+2y﹣4=0.【解答】解:设点P(x,y),则=(x,y)因为A(1,2)所以=(1,2)因为,所以(x,y)•(1,2)=4即x+2y=4,即x+2y﹣4=0故答案为:x+2y﹣4=08.(2016春•泉州校级期末)以两点A(﹣3,﹣1)和B(5,5)为直径端点的圆的方程是(x﹣1)2+(y﹣2)2=25.【解答】解:设圆心为C,由A(﹣3,﹣1)和B(5,5)得到C(,)即C(1,2),又圆的半径r=|AC|==5,所以圆的方程为:(x﹣1)2+(y﹣2)2=25.故答案为:(x﹣1)2+(y﹣2)2=259.(2015•上海学业考试)以(2,6)为圆心,1为半径的圆的标准方程为(x ﹣2)2+(y﹣6)2=1.【解答】解:以(2,6)为圆心,1为半径的圆的标准方程为:(x﹣2)2+(y﹣6)2=1.故答案为:(x﹣2)2+(y﹣6)2=1.三.解答题(共3小题)10.已知定点A(1,2)在圆x2+y2+kx+2y+k2﹣15=0的外部,求k的取值范围.【解答】解:∵定点A(1,2)在圆x2+y2+kx+2y+k2﹣15=0的外部,∴化简得,∴∴k的取值范围:<k<﹣3或2.11.求出下列圆的方程,并画出图形:(1)圆心在点C(﹣1,1),过直线x+3y+7=0与3x﹣2y﹣12=0的交点;(2)过点A(﹣1,1)和D(1,3),圆心在x轴上;(3)已知点A(﹣2,4),B(8,﹣2),且AB为圆的直径.【解答】解:(1)联立解得,交点P(2,﹣3).∴r=|PC|==5.∴圆的标准方程为:(x+1)2+(y﹣1)2=25.(2)∵点A(﹣1,1)和D(1,3),∴中点M(0,2),k AD==1,∴其垂直平分线的斜率k=﹣1.∴线段AD的垂直平分线的方程为:y=﹣x+2.∴圆心为N(2,0),半径r=|AN|=.∴圆的标准方程为:(x﹣2)2+y2=10.(3)∵点A(﹣2,4),B(8,﹣2),∴中点Q(3,1)即为圆心,半径r=|AQ|==.∴圆的标准方程为:(x﹣3)2+(y﹣1)2=34.12.求过三点A(﹣1,0),B(1,﹣2),C(1,0)的圆的方程.【解答】解:∵三点A(﹣1,0),B(1,﹣2),C(1,0),∴BC⊥AC,BC=AC=2,∴△ABC为等腰直角三角形.取斜边AB的中点M(0,﹣1),则MC===AB,∴M它的外接圆的圆心,半径为,∴要求的圆的方程为x2+(y+1)2=2.。
圆的方程讲义
圆的方程 知识梳理: 一、圆的标准方程 1.平面内到定点距离等于定长的点的集合(轨迹)是圆,定点是圆心,定长是半径.2.确定圆的几何要素: (1)不共线三点确定一个圆,圆心在任意两点连线段的中垂线上,三点确定的三角形叫该圆的内接三角形,该圆叫做这个三角形的外接圆,圆心叫做三角形的外心.(2)圆心确定圆的位置,半径确定圆的大小,只要圆心和半径确定下来,圆也就确定下来了,因此求圆的方程必须具备三个独立条件.3.圆心为(a ,b )半径为r (r >0)的圆的方程为:(x -a )2+(y -b )2=r 2,称作圆的标准方程.特别地,圆心在原点、半径为r 的圆方程为x 2+y 2=r 2.4.点P (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系. P 在圆外⇔(x 0-a )2+(y 0-b )2>r 2,P 在圆上⇔(x 0-a )2+(y 0-b )2=r 2,P 在圆内⇔(x 0-a )2+(y 0-b )2<r 2.二、圆的一般方程1.圆的一般方程x 2+y 2+Dx +Ey +F =0,配方得⎝ ⎛⎭⎪⎫x +D 22+⎝ ⎛⎭⎪⎫y +E 22=D 2+E 2-4F 4. (1)当D 2+E 2-4F >0时,方程表示以⎝ ⎛⎭⎪⎫-D 2,-E 2为圆心,12D 2+E 2-4F 为半径的圆; (2)当D 2+E 2-4F =0时,方程表示一个点⎝ ⎛⎭⎪⎫-D 2,-E2; (3)当D 2+E 2-4F <0 时,方程没有实数解,它不表示任何图形.2.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是:A =C ≠0,B =0,D 2+E 2-4F >0 .3.点P (x 0,y 0)与圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)的位置关系是:P 在圆内⇔, P 在圆上⇔, P 在圆外⇔. 4.求轨迹方程的五个步骤:(1)建系:建立适当的坐标系,用(x ,y )表示曲线上任意一点M 的坐标;(2)设点:写出适合条件P 的点M 的集合P ={M |p (M )};(3)列式:用坐标(x ,y )表示条件p (M ),列出方程F (x ,y )=0;(4)化简:化方程F (x ,y )=0为最简形式;(5)查漏、剔假:证明以化简后的方程的解为坐标的点都是曲线上的点.典型例题:类型一 圆的标准方程例1:写出下列方程表示的圆的圆心和半径.(1)x 2+y 2=2; (2)(x -3)2+y 2=4;(3)x 2+(y -1)2=9; (4)(x +1)2+(y +2)2=8.练习1:已知圆的方程为(x -a )2+(y -b )2=r 2(r >0),试根据下列条件,分别写出a 、b 、r 应满足的条件:(1)圆心在x 轴上; (2)圆与y 轴相切;(3)圆过原点且与y 轴相切; (4)圆与两坐标轴均相切.练习2:已知圆C 的方程为()()225610x y -+-=,试判断点()()()6,9,3,3,5,3M N Q 是在圆上,圆内,还是在圆外?例2:过两点P (2,2)、Q (4,2),且圆心在直线x -y =0上的圆的标准方程是( )A .(x -3)2+(y -3)2=2B .(x +3)2+(y +3)2=2C .(x -3)2+(y -3)2= 2D .(x +3)2+(y +3)2= 2练习1:求经过点A (10,5)、B (-4,7),半径为10的圆的方程.练习2:求满足下列条件的方程(1)圆心在原点,半径是3; (2)圆心在点()3,4C(3)圆心在直线538x y -=上,又圆与坐标轴相切练习3:求以A (2,2)、B (5,3)、C (3,-1)为顶点的三角形的外接圆的标准方程.类型二 圆的一般方程例3:m 是什么实数时,关于x 、y 的方程(2m 2+m -1)x 2+(m 2-m +2)y 2+m +2=0表示一个圆?练习1:已知方程x 2+y 2+2mx -2y +m 2+5m =0表示圆,求:(1)实数m 的取值范围; (2)圆心坐标和半径.练习2:220x y x y R +-++=表示一个圆,则R 的取值范围是( )A .(],2-∞B .(),2-∞C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎤-∞ ⎥⎝⎦例4:已知△ABC 的三个顶点为A (1,4)、B (-2,3)、C (4,-5),求△ABC 的外接圆的一般方程.练习1:求过点C (-1,1)和D (1,3)且圆心在直线y =x 上的圆的一般方程.练习2:ABC ∆的三个顶点坐标分别为()()()1,5,2,2,5,5A B C ---,求其外接圆的方程.例5:等腰三角形的顶点是A (4,2),底边一个端点是B (3,5),求另一个端点C 的轨迹方程,并说明它的轨迹是什么.练习2:已知动点M 到定点()8,0的距离等于M 到()2,0的距离的2倍,那么点M 的轨迹方程是( )A .2232x y +=B .2216x y +=C .()22116x y -+=D .()22116x y +-=小练习:1.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足( )A .是圆心B .在圆上C .在圆内D .在圆外2.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),43.已知A (3,-2),B (-5,4),则以AB 为直径的圆的方程是( )A .(x -1)2+(y +1)2=25B .(x +1)2+(y -1)2=25C .(x -1)2+(y +1)2=100D .(x +1)2+(y -1)2=1004.圆x 2+y 2-2x +y +14=0的圆心坐标和半径分别是( ) A .(-1,12);1 B .(1,-12);1 C .(1,-12);62 D .(-1,12);625.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的范围是( )A .a <-2或a >23B .-23<a <2 C .-2<a <0 D .-2<a <236.圆x 2+y 2-2x +6y +8=0的周长等于( )A.2πB .2πC .22πD .4π7. 若点P (-1,3)在圆x 2+y 2=m 2上,则实数m =________.8. 点P (1,-2)和圆C :x 2+y 2+m 2x +y +m 2=0的位置关系是________9.求经过点P (5,1),圆心为点C (8,-3)的圆的标准方程.课后练习:1.点P ⎝ ⎛⎭⎪⎫2t 1+t 2,1-t 21+t 2与圆x 2+y 2=1的位置关系是( ) A .在圆内B .在圆外C .在圆上D .与t 有关2.圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程是( )A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D.x2+(y+2)2=53.方程2x2+2y2-4x+8y+10=0表示的图形是()A.一个点B.一个圆C.一条直线D.不存在4.已知点P是圆C:x2+y2+4x+ay-5=0上任意一点,P点关于直线2x+y-1=0的对称点在圆C上,则实数a等于()A.10 B.-10C.20 D.-205.过点A(1,2),且与两坐标轴同时相切的圆的方程为()A.(x-1)2+(y-1)2=1或(x-5)2+(y-5)2=25B.(x-1)2+(y-3)2=2C.(x-5)2+(y-5)2=25D.(x-1)2+(y-1)2=16.圆(x+3)2+(y-1)2=25上的点到原点的最大距离是()A.5-10 B.5+10C.10 D.107. 一束光线从点A(-1,1)出发经x轴反射到圆C:x2+y2-4x-6y+12=0上的最短路程是()A.4 B.5C.32-1 D.2 68.经过原点,圆心在x轴的负半轴上,半径等于2的圆的方程是__________________.9.经过两点P(-2,4)、Q(3,-1),且在x轴上截得的弦长为6的圆的方程.10.圆C通过不同三点P(k,0)、Q(2,0)、R(0,1),已知圆C在点P的切线的斜率为1,试求圆C的方程.。
圆的方程-讲义
圆与方程1 圆的定义平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2 圆的方程(1) 标准方程(x−a)2+(y−b)2=r2,圆心(a ,b),半径为r.(2) 一般方程x2+y2+D x+E y+F=0 (D2+E2−4 F>0)(3) 求圆方程的方法(i) 待定系数法先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r;若利用一般方程,需要求出D ,E ,F;(ii) 直接法直接把圆心和半径求出.要注意多利用圆的几何性质,如弦的中垂线必经过原点,以此来确定圆心的位置.3 点与圆的位置关系(1) 设点到圆心的距离为d,圆半径为r,a.点在圆内⇔ d<r;b.点在圆上⇔ d=r ;c.点在圆外⇔ d>r .(2) 给定点M(x0 ,y0)及圆C:(x−a)2+(y−b)2=r2.◆M在圆C内⇔(x0−a)2+(y0−b)2<r2;◆M在圆C上⇔(x0−a)2+(y0−b)2=r2;◆M在圆C外⇔(x0−a)2+(y0−b)2>r2.(3) 某点M到圆⊙O上点N的距离若点M在圆内,则MN min=MN1=r−OM,MN max=MN2=r+OM;若点M在圆外,则MN min=MN1=OM−r,MN max=MN2=OM+r;4 直线、圆的位置关系(1) 三种位置关系(2) 根据d与r的关系判断(d为圆心到直线的距离,r为圆的半径.)◆相离⇔没有公共点⇔ d>r;◆相切⇔ 只有一个公共点⇔ d=r;◆相交⇔ 有两个公共点⇔ d<r.(3) 联立方程求判别式的方法联立直线方程与圆的方程{A x+B y+C=0x2+y2+D x+E y+F=0求解,通过解的个数来判断:◆当Δ>0时,直线与圆有2个交点,直线与圆相交;◆当Δ=0 时,直线与圆只有1个交点,直线与圆相切;◆当Δ<0 时,直线与圆没有交点,直线与圆相离.(4) 圆上一点到圆外一直线的距离若直线l与圆⊙O相离,圆上一点P到直线l的距离为PE,d为圆心O到直线l的距离,r为圆半径,则PE min=P1F=d−r,PE max=P2F=d+r.5 弦长弦长公式:AB=2 √r2−d2(r是圆的半径,d是圆心O到直线l的距离).利用垂径定理及勾股定理可以得到.【题型一】求圆的方程【例题1】若圆C过点(0 ,−1) ,(0 ,5),且圆心到直线x−y−2=0的距离为2 √2 ,求圆C的标准方程.【例题2】已知A(−1 ,0),B(3 ,2),C(0 ,−2),则过这三点的圆方程为.课堂练习1已知圆x2+y2+ax+by+1=0关于直线x+y=1对称的圆的方程为x2+y2=1,则a+ b=.2圆心在直线y=x上,经过原点,且在x轴上截得弦长为2的圆的方程为.3过点A(1 ,1), B(−3 ,5),且圆心在直线2x+y+2=0上的圆的半径是.【题型二】点与圆的位置关系【例题1】若点P的坐标是(5cosθ,4sinθ),圆C的方程为x2+y2=25,则点P与圆C的位置关系是()A.点P在圆C内B.点P在圆C上C.点P在圆C内或圆C上D.点P在圆C上或圆C外【例题2】若实数x,y满足x2+y2+4x−2y−4=0,则√x2+y2的最大值是.课堂练习1若点M(m,m−1)在圆C:x2+y2−2x+4y+1=0内,则实数m的取值范围为.2在圆(x-2)2+(y+3)2=2上与点(0,-5)距离最大的点的坐标是.3在平面内,一只蚂蚁从点A(-2,-3)出发,爬到y轴后又爬到圆(x+3)2+(y−2)2=2上,则它爬到的最短路程是.4已知点P(x,y)在圆x2+y2=1上,则√(x−1)2+(y−1)2的最大值为.5已知点P(3,a),若圆O:x2+y2=4上存在点A,使得线段PA的中点也在圆O上,则a的取值范围是.6设点M(x0 ,1) , 若圆O:x2+y2=1上存在点N,使得∠OMN=30∘,那x0的取值范围.7如果圆(x−a)2+(y−a)2=8上总存在到原点的距离为√2的点,那实数a的取值范围.8在平面直角坐标系xOy中,已知点P(0,1)在圆C:x2+y2+2mx−2y+m2−4m+1= 0内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为.【题型三】直线与圆的位置关系【例题1】若圆C:x2+y2−2x+2y=2与直线x−y+a=0有公共点,则a的取值范围是.【例题2】求过点P(−1,4),圆(x−2)2+(y−3)2=1的切线l的方程.【例题3】已知两点A(−1,0)、B(0,2),若点P是圆(x−1)2+y2=1上的动点,则△ABP 面积的最大值和最小值之和为.【例题4】已知圆C:(x−√3)2+(y−3)2=3,过直线√3x−y−6=0上的一点P作圆C的两条切线PA,PB,切点分别为A,B,则cos∠APB的最小值为.课堂练习1点M(x0,y0)在圆x2+y2=R2外,则直线x0x+y0y=R2与圆的位置关系是() A.相切B.相交C.相离D.不确定2已知过点P(2,2)的直线l与圆(x−1)2+y2=5相切,则直线l的斜率为()A.1B.12C.2D.−123【多选题】已知点P在圆(x−5)2+(y−5)2=16上,点A(4,0),B(0,2),则() A.点P到直线AB的距离小于10B.点P到直线AB的距离大于2C.当∠PBA最小时,|PB|=3√2D.当∠PBA最大时,|PB|=3√24已知圆C:x2+y2−2y=0,P为直线l:x−y−2=0上任一点,过点P作圆C的切线PT(T 为切点),则|PT|最小值是.5过直线x+y−2√2=0上的点P作圆x2+y2=1的两条切线,若两切线的夹角为60°,则点P的坐标为.6直线x+y+a=0与半圆y=−√1−x2有两个交点,则a的值是.7若圆x2+y2−2x−2y=0上至少有三个不同点到直线l:y=kx的距离为√2,则k的取值2范围.8已知P(x,y)是圆(x−1)2+(y−2)2=r2(r>0)上任意一点,若|3x−4y|+|3x−4y+ 16|是定值,则实数r的取值范围是.9已知⊙C:x2+y2−2x−2y−2=0,直线l:x+2y+2=0,M为直线l上的动点,过点M作⊙C的切线MA,MB,切点为A,B,当四边形MACB的面积取最小值时,直线AB的方程为.10若P为直线x−y+4=0上一个动点,从点P引圆C:x2+y2−4x=0的两条切线PM,PN(切点为M,N),则|MN|的最小值是.【题型四】弦长问题【例题1】已知圆的方程为(x−1)2+(y−1)2=9 ,P(2 ,2)是该圆内一点,过点P的最长弦与最短弦分别是AC和BD,求四边形ABCD的面积.【例题2】设O为原点,直线y=kx+2与圆x2+y2=4相交于A,B两点,那△ABO面积最大值为.课堂练习1 直线x−y+3=0被圆(x+2)2+(y−2)2=2截得的弦长等于.2已知圆心在x轴上,半径为√5的圆位于y轴右侧,且截直线x+2y=0所得弦的长为2,则圆的方程为.3已知直线l:y=m(x−2)+2与圆C:x2+y2=9交于A、B两点,则弦长|AB|的最小值为.4已知圆C:x2+y2−4x−2y+1=0及直线l:y=kx−k+2(k∈R),设直线l与圆C相交所得的最长弦长为MN,最短弦为PQ,则四边形PMQN的面积为.。
复习6:圆的标准方程
一、圆的方程: 圆的方程:
1.复习引入 复习引入 2.概念的建构 概念的建构 3.应用 应用
复习 1.圆的定义: 圆的定义: 圆的定义
平面内,到一个定 平面内,到一个定 的距离等于定长 定长的点 点的距离等于定长的点 的集合(轨迹), ),叫做 的集合(轨迹),叫做 圆。 定点——圆心; 圆心; 定点 圆心 定长——半径 半径 定长
2.已知圆心和半径,求圆的方程 已知圆心和半径, 已知圆心和半径 (3)圆心 圆心(3,-2),半径 则圆的方程为(x-3)2+(y+2)2=4 半径2. 圆心 半径 则圆的方程为______ (4)圆心在原点 半径 则圆的方程为 x2+y2=25 圆心在原点,半径 则圆的方程为______ 圆心在原点 半径5.
返回 继续
例题1: 例题 :
求以C(5,2)为圆心,并且和直线3x-4y+8=0相切的 为圆心,并且和直线 求以 为圆心 相切的 圆的标准方程。 圆的标准方程。 解:
| 15 − 8 + 8 | r= =3 9 + 16
∴圆的方程: (x-5)2+(y-2)2=9 圆的方程:
返回 继续
例题2: 例题 :
13 圆心_______,半径 半径_____ 圆心 (2,-3) 半径 2
(4) x2+y2+2x-4y+1=0, 圆心 (-1,2) ,半径_____ 圆心______,半径 2
练习1:基础题组 练习 :基础题组1.
返回 继续
二、应用
(一)
(x-a)2+(y-b)2=r2
圆心(a,b),半径r ,半径 圆心
返回
继续
练习: 练习:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教育学科教师辅导讲义学员编号: 年 级:高二 课 时 数: 学员姓名: 辅导科目:数学 学科教师:课 题 圆的方程授课日期及时段教学目的1、掌握圆的方程基本推导过程;2、利用定义或是已知条件进行求解点的轨迹方程;3、综合直线和圆的关系及其性质进行分析求解问题,强化解析几何思想。
教学内容一、上次作业检查与讲解;二、学习要求及方法的培养:三、知识点分析、讲解与训练:1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程()()222r b y a x =-+-,圆心()b a ,,半径为r ;点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内 (2)一般方程022=++++F Ey Dx y x当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为22B A C Bb Aa d +++=,则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】知识回顾(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
当r R d +>时两圆外离,此时有公切线四条;当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线; 当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d 时,为同心圆。
注意:(1)已知圆上两点,圆心必在中垂线上;(2)已知两圆相切,两圆心与切点共线;(3)圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
例一、(1)若点P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是 ( )A .x -y -3=0B .2x +y -3=0C .x +y -1=0D .2x -y -5=0(2)已知圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2+y 2-2x -3=0 B .x 2+y 2+4x =0 C .x 2+y 2+2x -3=0D .x 2+y 2-4x =0(3)若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)(4)圆心在曲线y =3x(x >0)上,且与直线3x +4y +3=0相切的面积最小的圆的方程为( )A .(x -1)2+(y -3)2=(185)2B .(x -3)2+(y -1)2=(165)2C .(x -2)2+(y -32)2=9 D .(x -3)2+(y -3)2=9例二、(1)求圆心在原点,且圆周被直线3x +4y +15=0分成1∶2两部分的圆的方程。
.(2)圆x 2+y 2-2x -2y +1=0上的动点Q 到直线3x +4y +8=0距离的最小值为 。
例三、(1)(2013年高考浙江卷(文))直线y=2x+3被圆x 2+y 2-6x-8y=0所截得的弦长等于__________。
(2)(2013年高考山东卷(文13))过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________。
典例精讲例四、(2013年高考四川卷(文))已知圆C 的方程为22(4)4x y +-=,点O 是坐标原点.直线:l y kx =与圆C 交于,M N 两点。
(Ⅰ)求k 的取值范围;(Ⅱ)设(,)Q m n 是线段MN 上的点,且222211||||||OQ OM ON =+.请将n 表示为m 的函数。
【答案】解:(Ⅰ)将x k y =代入22(4)4xy +-=得 则 0128)1(22=+-+x k x k ,(*)由012)1(4)8(22>⨯+--=∆k k 得 32>k . 所以k 的取值范围是),3()3,(+∞--∞(Ⅱ)因为M 、N 在直线l 上,可设点M 、N 的坐标分别为),(11kx x ,),(22kx x ,则2122)1(x k OM +=,2222)1(x k ON +=,又22222)1(m k n m OQ +=+=,由222112ONOMOQ+=得,22221222)1(1)1(1)1(2x k x k m k +++=+,所以222121221222122)(112x x x x x x x x m -+=+= 由(*)知 22118k k x x +=+,221112k x x +=, 所以 353622-=k m ,因为点Q 在直线l 上,所以mnk =,代入353622-=k m 可得363522=-m n ,由353622-=k m 及32>k 得 302<<m ,即 )3,0()0,3( -∈m . 依题意,点Q 在圆C 内,则0>n ,所以 518015533622+=+=m m n , 于是, n 与m 的函数关系为 5180152+=m n ()3,0()0,3( -∈m )一、选择题:巩固练习1、圆x 2+y 2-2x =0和圆x 2+y 2+4y =0的公切线有且仅有( )。
A .4条B .3条C .2条D .1条2、(2013年高考安徽(文6))直线2550x y +-+=被圆22240x y x y +--=截得的弦长为( ) A .1B .2C .4D .463、(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)4、(2012·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)5、(2010年高考江西卷)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A .[-34,0]B .[-33,33]C .[-3, 3 ]D .[-23,0]6、若曲线C :x 2+y 2+2ax -4ay +5a 2-4=0上所有的点均在第二象限内,则a 的取值范围为( )A .(-∞,-2)B .(-∞,-1)C .(1,+∞)D .(2,+∞)二、填空题: 7、(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k =______。
8、(2013·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________。
9、(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________。
10、(2010年天津一中质检)两圆(x +1)2+(y -1)2=r 2和(x -2)2+(y +2)2=R 2相交于P ,Q 两点,若点P 的坐标为(1,2),则点Q 的坐标为________。
三、解答题:11、如图,直角三角形ABC 的顶点A 的坐标(-2,0),直角顶点B 的坐标为(0,-22),顶点C 在x 轴上。
(1)求BC 边所在直线的方程;(2)圆M 是△ABC 的外接圆,求圆M 的方程。
12、已知曲线x 2+y 2-4x -2y -k =0表示的图象为圆。
(1)若k =15,求过该曲线与直线x -2y +5=0的交点、且面积最小的圆的方程;(2)若该圆关于直线x +y -4=0的对称圆与直线6x +8y -59=0相切,求实数k 的值。
13、(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点。
14、已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.15、(2012·揭阳调研)已知点M (3,1),直线ax -y +4=0及圆(x -1)2+(y -2)2=4.(1)求过M 点的圆的切线方程;(2)若直线ax -y +4=0与圆相切,求a 的值;(3)若直线ax -y +4=0与圆相交于A ,B 两点,且弦AB 的长为23,求a 的值.16、(本小题满分14分)(文)已知圆C 经过点A (1,3)、B (2,2),并且直线m :3x -2y =0平分圆C .(1)求圆C 的方程;(2)若过点D (0,1),且斜率为k 的直线l 与圆C 有两个不同的交点M 、N . (ⅰ)求实数k 的取值范围;(ⅱ)若OM →·ON →=12,求k 的值.1.(2012·安徽模拟)已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是( )A.⎝⎛⎦⎤-∞,14 B.⎣⎡⎭⎫14,+∞ C.⎝⎛⎭⎫-14,0 D.⎝⎛⎦⎤0,142.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.3.(2013·江西六校联考)已知抛物线:C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.4.已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线L ,使以L 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线L 的方程,若不存在说明理由。