2018-2019学年高中数学苏教版必修3:课时跟踪检测(三) 选择结构-含解析

合集下载

推荐学习2018-2019学年高中数学苏教版必修3:阶段质量检测(三) 概率-含解析

推荐学习2018-2019学年高中数学苏教版必修3:阶段质量检测(三) 概率-含解析

阶段质量检测(三) 概 率(时间120分钟 满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填在题中横线上) 1.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100.其中__________是必然事件;__________是不可能事件;__________是随机事件.(填序号) 答案:④ ② ①③2.设A ,B 是两个事件,给出以下结论: ①若P (A )+P (B )=1,则A ,B 一定是对立事件.②“若P (A )=0.3,则P (B )=0.7”,则A ,B 一定是对立事件. ③P (A +B )>P (A ).④事件A 与B 互斥,则有P (A )=1-P (B ). 其中正确命题的序号是________. 答案:②3.口袋内有一些大小相同的红球、白球和黑球,从中任意摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是________.解析:由于摸出红球、白球和黑球事件互斥. ∴摸出黑球的概率为1-0.42-0.28=0.3. 答案:0.34.已知函数y =x nm ,其中m ,n 是取自集合{1,2,3}的两个不同值,则该函数为偶函数的概率为________.解析:∵y =x nm ,m ,n ∈{1,2,3},∴若函数为偶函数,则n =2. ∴该函数为偶函数的概率为13.答案:135.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是________.解析:记4听合格饮料为A 1,A 2,A 3,A 4,2听不合格饮料为B 1,B 2;基本事件为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,B 1},{A 1,B 2},{A 2,A 3},{A 2,A 4},{A 2,B 1},{A 2,B 2},{A 3,A 4},{A 3,B 1},{A 3,B 2},{A 4,B 1},{A 4,B 2},{B 1,B 2},共15件.至少有一听不合格饮料为{A 1,B 1},{A 1,B 2},{A 2,B 1},{A 2,B 2},{A 3,B 1},{A 3,B 2},{A 4,B 1},{A 4,B 2},{B 1,B 2}共9个基本事件,至少有一听不合格饮料的概率为915=35.答案:356.抛掷一枚骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,则P (A +B )=________. 解析:P =12+16=23.答案:237.如果在一个5×104 km 2的海域里有表面积达40 km 2的大陆架贮藏着石油,假如在这海域里随意选定一点钻探,问钻到石油的概率是________.解析:P =4050×104=8×10-4=0.08%. 答案:0.08%8.从一箱苹果中任取一个,如果其重量小于200 g 的概率为0.2,重量在[200,300]内的概率为0.5,那么重量超过300 g 的概率为________.解析:记重量小于200 g 为事件A ,重量在[200,300]内记为事件B ,则所求概率P =1-P (A +B )=1-P (A )-P (B )=0.3.答案:0.39.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.解析:基本事件{2.5,2.6},{2.5,2.7},{2.5,2.8},{2.5,02.9},{2.6,2.7},{2.6,2.8},{2.6,2.9},{2.7,2.8},{2.7,2.9},{2.8,2.9},共10个,其中长度恰好相差0.3 m 的{2.5,2.8},{2.6,2.9}共2个.∴P =210=15.答案:1510.已知正三棱锥S -ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P -ABC <12V S -ABC的概率是________.解析:由V P -ABC <12V S -ABC 知,P 点在三棱锥S -ABC 的中截面A 0B 0C 0的下方,P =1-VS -A 0B 0C 0V S -ABC =1-18=78. 答案:7811.已知函数f (x )=6x -4(x =1,2,3,4,5,6)的值域为集合A ,函数g (x )=2x -1(x =1,2,3,4,5,6)的值域为集合B ,任取x ∈A ∪B ,则x ∈A ∩B 的概率是________.解析:A ={2,8,14,20,26,32};B ={1,2,4,8,16,32},A ∪B ={1,2,4,8,14,16,20,26,32}共9个元素. A ∩B ={2,8,32}共3个元素. ∴P =39=13.答案:1312.在矩形ABCD 中,AB =2,AD =3.如果向该矩形内随机投一点P ,那么使得△ABP 与△CDP 的面积都不小于1的概率为________.解析:设P 点到AB 的距离为x , 则S △ABP =12×2×x =x ,S △CDP =12×2×(3-x )=3-x ,要使它们面积都不小于1,则1≤x ≤2, 所以所求概率为13.答案:1313.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是________.解析:点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,故概率为29.答案:2914.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如图所示,圆周上使AM 的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1AM 2的长度为2,B 点落在优弧M 1AM 2上就能使劣弧AB 的长度小于1,所以劣弧AB的长度小于1的概率为23.答案:23二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)某地医院一天派出医生下乡医疗,派出医生人数及其概率如下:(1)(2)求派出医生至少2人的概率.解:设事件A ={不派医生},事件B ={派出1名医生},事件C ={派出2名医生},事件D ={派出3名医生},事件E ={派出4名医生},事件F ={派出5名及5名以上医生}.(1)∵事件A ,B ,C ,D ,E ,F 彼此互斥,且P (A )=0.1,P (B )=0.26,P (C )=0.1, ∴P (A +B +C )=0.1+0.26+0.1=0.46. 故派出医生至多2人的概率为0.46. (2)设G ={派出医生至少2人},则G ={派出医生最多1人},∴G =A ∪B . ∴P (G )=P (A )+P (B )=0.36.∴P (G )=1-0.36=0.64.故派出医生至少2人的概率为0.64.16.(本小题满分14分)已知函数f (x )=-x 2+ax -b .(1)若a ,b 都是从0,1,2,3,4五个数中任取的一个数,求f (x )有零点的概率; (2)若a ,b 都是从区间[0,4]上任取的一个数,求f (1)>0的概率.解:(1)a ,b 都是从0,1,2,3,4五个数中任取的一个数,则基本事件的总数为5×5=25.f (x )有零点的条件为Δ=a 2-4b ≥0.即a 2≥4b ;而事件“a 2≥4b ”包含12个基本事件:(0,0),(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),(4,0),(4,1),(4,2),(4,3),(4,4).所以f (x )有零点的概率P 1=1225.(2)a ,b 都是从区间[0,4]上任取的一个数,f (1)=-1+a -b >0,即a -b >1,由右图可知f (1)>0的概率P 2=12×3×34×4=932.17.(本小题满分14分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A 1,A 2和1个白球B 的甲箱与装有2个红球a 1,a 2和2个白球b 1,b 2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.解:(1)所有可能的摸出结果是{A 1,a 1},{A 1,a 2},{A 1,b 1},{A 1,b 2},{A 2,a 1},{A 2,a 2},{A 2,b 1},{A 2,b 2},{B ,a 1},{B ,a 2},{B ,b 1},{B ,b 2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A 1,a 1},{A 1,a 2},{A 2,a 1},{A 2,a 2},共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13,故这种说法不正确.18.(本小题满分16分)口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲胜,否则算乙胜.(1)求甲胜且编号的和为6的事件发生的概率; (2)这种游戏规则公平吗?试说明理由.解:(1)设“甲胜且两数字之和为6”为事件A ,事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个.又甲、乙二人取出的数字共有5×5=25(个)等可能的结果,所以P (A )=525=15.(2)这种游戏规则不公平.设“甲胜”为事件B ,“乙胜”为事件C ,则甲胜即两数字之和为偶数所包含的基本事件数有13个:(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲胜的概率P (B )=1325,从而乙胜的概率P (C )=1-1325=1225,由于P (B )≠P (C ),所以这种游戏规则不公平.19.(本小题满分16分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解:(1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得 P (A )=1501 000=0.15,P (B )=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔为4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆,所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.20.(本小题满分16分)一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回,求取出的两个球上编号之积为奇数的概率;(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测,这10个球的弹性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.解:(1)设“取出的两个球上编号之积为奇数”为事件B ,Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),…,(5,1),(5,2),(5,3),(5,4)…},共包含20个基本事件;其中B ={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包含6个基本事件,则P (B )=620=310.(2)样本平均数为x =110(8.7+9.1+8.3+9.6+9.4+8.7+9.7+9.3+9.2+8.0)=9,设B 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则包含6 10=3 5.{8.7,9.1,9.4,8.7,9.3,9.2}6个基本事件,所以P(B)=。

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABC­A′B′C′,沿A′BC截去三棱锥A′­ABC,则剩余部分是________.解析:在图中截去三棱锥A′­ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′­BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCD­A1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCD­A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ­ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ­ABCDEF 的直观图六棱锥P ­A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCD­A1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。

2017-2018学年高中数学苏教版必修3:课时跟踪检测(三)+选择结构

2017-2018学年高中数学苏教版必修3:课时跟踪检测(三)+选择结构

课时跟踪检测(三) 选择结构[层级一 学业水平达标]1.下列函数求值算法中需要用到选择结构的是________. ①f (x )=x 2-1;②f (x )=2x +1;③f (x )=⎩⎪⎨⎪⎧x 2+1,x >1,x 2-1,x ≤1;④f (x )=2x.答案:③2.指出流程图的运行结果,若输入-4,则输出结果为________.答案:是负数3.如图是求某函数值的流程图,则满足该流程图的函数是______________.答案:y =⎩⎪⎨⎪⎧x -2,x ≥3,4-x ,x <34.如图所示的流程图,若a =5,则输出b =________.解析:这是一个分段函数b =⎩⎪⎨⎪⎧a 2+1,a ≤5,2a ,a >5,的求值问题.根据条件易知,b =52+1=26.答案:265.设计一个判断正整数p 是否是正整数q 的约数的算法,并画出其流程图. 解:算法如下: S1 输入p ,q ;S2 判断p 除q 的余数r 是否为零,如果r =0,则输出“p 是q 的约数”;否则,输出“p 不是q 的约数”.流程图:[层级二 应试能力达标]1.如图所示的流程图的功能是________.解析:根据条件结构的定义, 当a ≥b 时,输出a -b ; 当a <b 时,输出b -a . 故输出|a -b |. 答案:计算|a -b |2.阅读如图所示的流程图,若运行该程序后输出的y 值为18,则输入的实数x 的值为________.解析:由流程图知:令2x 2-1=18(x >0),则x =34,令⎝ ⎛⎭⎪⎫12x =18(x ≤0),无解,∴输入的实数x =34.答案:343.已知函数y =|x -3|,如流程图表示的是给定x 的值,求其相应函数值的算法,请将该流程图补充完整.其中①处应填________,②处应填________.解析:由y =|x -3|=⎩⎪⎨⎪⎧x -3,x ≥3,3-x ,x <3.∴①处应填“x <3”,②处应填“y ←x -3”. 答案:x <3 y ←x -34.阅读如图所示的流程图,若输入值x =3,则输出的结果是________.答案:1.55.对任意非零实数a ,b ,若a ⊗b 的运算原理如流程图所示,则3⊗2=________.解析:由于a =3,b =2,则a ≤b 不成立, 则输出a +1b =3+12=2. 答案:26.如图,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分,当x 1=6,x 2=9,p =8.5时,x 3等于________.解析:x 1=6,x 2=9,|x 1-x 2|=3≤2不成立,即为“N”, 所以再输入x 3;由绝对值的意义(数轴上一个点到另一个点的距离)和不等式|x 3-x 1|<|x 3-x 2|知, 点x 3到点x 1的距离小于点x 3到x 2的距离,所以当x 3<7.5时,|x 3-x 1|<|x 3-x 2|成立,即为“Y”, 此时x 2=x 3, 所以p =x 1+x 32,即6+x 32=8.5,解得x 3=11>7.5,不合题意;当x 3≥7.5时,|x 3-x 1|<|x 3-x 2|不成立,即为“N”, 此时x 1=x 3, 所以p =x 3+x 22,即x 3+92=8.5,解得x 3=8>7.5,符合题意.答案:87.下图的流程图,如果输入三个实数a ,b ,c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入__________________.答案:c >x8.给定下面的流程图,要使输出的结果在区间[-1,0]上,则输入的x 的取值范围是__________.解析:此流程图对应函数为y =⎩⎪⎨⎪⎧x 2,x <0,4-2x ,x ≥0,若y ∈[-1,0],则⎩⎪⎨⎪⎧-1≤x 2≤0,x <0或⎩⎪⎨⎪⎧-1≤4-2x ≤0,x ≥0,解得2≤x ≤52.答案:⎣⎢⎡⎦⎥⎤2,52 9.求方程ax 2+(a +1)x +1=0根的算法流程图如图所示,根据流程图,回答下列问题:(1)本题中所给的流程图正确吗?它表示的是哪一个问题的算法流程图? (2)写出一个正确的算法,并画出流程图.解:(1)本题中给出的流程图不正确.因为它没有体现出对a 的取值的判断,它只解决了算法中的一部分,即a ≠0时的情形,这样是达不到求解的目的.(2)算法如下: S1 输入a ;S2 如果a =0,则x ←-1,输出x , 否则x 1←-1,x 2←-1a,输出x 1,x 2.流程图如图所示.10.已知下列算法: S1 输入x ;S2 若x >0,执行S3,否则执行S4; S3 y ←2x +1,转S7;S4 若x =0,执行S5,否则执行S6; S5 y ←12,转S7;S6 y ←-x ,转S7; S7 输出y ;S8 结束.(1)指出其功能(用算式表示); (2)画出该算法的流程图.解:(1)求函数y =⎩⎪⎨⎪⎧2x +1,x >0,12,x =0,-x ,x <0的函数值.(2)流程图如下:。

【配套K12】2018-2019学年高中数学苏教版必修三 阶段质量检测(三) 概 率-含答案

【配套K12】2018-2019学年高中数学苏教版必修三 阶段质量检测(三) 概 率-含答案

阶段质量检测(三) 概率[考试时间:90分钟试卷总分:120分]一、填空题(本大题共14小题,每小题5分,共70分)1.下列事件属于必然事件的有________.①长为2,2,4的三条线段,组成等腰三角形②电话在响一声时就被接到③实数的平方为正数④全等三角形面积相等2.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是__________.3.在坐标平面内,已知点集M={(x,y)|x∈N,且x≤3,y∈N,且y≤3)},在M中任取一点,则这个点在x轴上方的概率是________.4.某人随机地将标注为A,B,C的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则标注为B的小球放入编号为奇数的盒子中的概率等于________.5.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)的概率为________.6.抛掷一颗骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=12,P(B)=16,则出现奇数点或2点的概率之和为________.7.某部三册的小说,任意排放在书架的同一层上,各册从左到右或从右到左恰好为第1,2,3册的概率为________.8.函数f(x)=x2-x-2,x∈[-5,5],那么任意x0∈[-5,5]使f(x0)≤0的概率为________.9.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________.10.同时抛掷两枚质地均匀的骰子,所得的点数之和为6的概率是________.11.从分别写有ABCDE的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为________.12.如图,半径为10 cm的圆形纸板内有一个相同圆心的半径为1 cm的小圆.现将半径为2 cm的一枚铁片抛到此纸板上,使铁片整体随机落在纸板内,则铁片落下后把小圆全部覆盖的概率为________.13.(安徽高考改编)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.14.从含有两件正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率为________.二、解答题(本大题共4小题,共50分)15.(本小题满分12分)除了电视节目中的游戏外,我们平时也会遇到很多和概率有关的游戏问题,且看下面的游戏:如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1)在第一轮到达“车站”的概率是多少?(2)假设你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?16.(辽宁高考)(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.17.(本小题满分12分)某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少?18.(本小题满分14分)一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回,求取出的两个球上编号之积为奇数的概率;(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测,这10个球的弹性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.答案1.解析:①2+2=4,不能组成三角形,为不可能事件;②为随机事件;③中0的平方为0,为随机事件;④为必然事件.答案:④2.解析:共出现4种结果其两正面向上只有1种, 故P =14.答案:143.解析:集合M 中共有16个点,其中在x 轴上方的有12个,故所求概率为1216=34.答案:344.解析:随机地将标注为A ,B ,C 的三个小球放入编号为1,2,3的三个盒子中共有6种情况,而将标注为B 的小球放入编号为奇数的盒子中有B ,A ,C ;B ,C ,A ;A ,C ,B ;C ,A ,B ,共4种情况,因此所求概率等于23.答案:235.解析:以上事件为互斥事件,故命中6环以下(含6环)的概率为1-0.5-0.2-0.1=0.2. 答案:0.26.解析:出现奇数点或2点的概率为P =12+16=23.答案:237.解析:所有基本事件为:123,132,213,231,312,321共6个.其中“从左到右或从右到左恰好为第1,2,3册”包含2个基本事件,故P =26=13.答案:138.解析:f (x )=x 2-x -2=⎝ ⎛⎭⎪⎫x -122-94,x ∈[-5,5],区间长度为10,∵f (x 0)=⎝⎛⎭⎪⎫x 0-122-94≤0, ∴-1≤x 0≤2,区间长度为3,∴概率为310.答案:3109.解析:甲不输为两个事件的和事件,其一为甲获胜(事件A ),其二为甲获平局(事件B ),并且两事件是互斥事件.∵P (A +B )=P (A )+P (B ),∴P (B )=P (A +B )-P (A )=90%-40%=50%. 答案:50%10.解析:掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,故所得的点数之和为6的概率是P =536.答案:53611.解析:随机抽取两张可能性有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,BA ,CA ,DA ,EA ,CB ,DB ,EB ,DC ,EC ,ED ,共20种.卡片字母相邻:AB ,BA ,BC ,CB ,CD ,DC ,DE ,ED 共8种. ∴概率为820=25.答案:2512.解析:铁片整体随机落在纸板内的测度D =πR 2=64π;而铁片落下后把小圆全部覆盖的测度d =πr 2=π,所以所求的概率P =d D =π64π=164. 答案:16413.解析:由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.答案:91014.解析:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2)和(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 包含(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即事件A 由4个基本事件组成,因而,P (A )=46=23.答案:2315.解:(1)第一轮要到“车站”,则必须掷出的点数之和为5,而用2颗骰子掷出5会有4种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1,4),(2,3),(3,2),(4,1)4种组合,而抛掷两颗骰子共有36种可能结果,所以第一轮到达“车站”的概率为436=19.(2)需要掷出的点数之和为6或8或9,而要得出这3种结果共有下列14种组合:(5,1),(4,2),(3,3),(2,4),(1,5),(6,2),(5,3),(4,4),(3,5),(2,6),(6,3),(5,4),(4,5),(3,6),所以到达这一区域的概率为1436=718.16.解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6,任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1).用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.17.解:(1)设事件“电话响第k 声时被接”为A k (k ∈N),那么事件A k 彼此互斥,设“打进的电话在响5声之前被接”为事件A ,根据互斥事件概率加法公式,得P (A )=P (A 1+A 2+A 3+A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=0.1+0.2+0.3+0.35=0.95.(2)事件“打进的电话响4声而不被接”是事件A“打进的电话在响5声之前被接”的对立事件,记为A;根据对立事件的概率公式,得P(A)=1-P(A)=1-0.95=0.05.18.解:(1)设“取出的两个球上编号之积为奇数”为事件B,Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(5,1),(5,2),(5,3),(5,4)…},共包含20个基本事件;其中B={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包含6个基本事件,则P(B)=620=310.(2)样本平均数为x=110(8.7+9.1+8.3+9.6+9.4+8.7+9.7+9.3+9.2+8.0)=9,设B表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则包含{8.7,9.1,9.4,8.7,9.3,9.2}6个基本事件,所以P(B)=610=35.。

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学 课时跟踪检测(全一册) 苏教版必修

高一数学课时跟踪检测(全一册)苏教版必修课时跟踪检测一棱柱棱锥和棱台课时跟踪检测二圆柱圆锥圆台和球课时跟踪检测三直观图画法课时跟踪检测四平面的基本性质课时跟踪检测五空间两条直线的位置关系课时跟踪检测六直线与平面平行课时跟踪检测七直线与平面垂直课时跟踪检测八两平面平行课时跟踪检测九两平面垂直课时跟踪检测十空间几何体的表面积课时跟踪检测十一空间几何体的体积课时跟踪检测十二直线的斜率课时跟踪检测十三直线的点斜式方程课时跟踪检测十四直线的两点式方程课时跟踪检测十五直线的一般式方程课时跟踪检测十六两条直线的平行课时跟踪检测十七两条直线的垂直课时跟踪检测十八两条直线的交点课时跟踪检测十九平面上两点之间的距离课时跟踪检测二十点到直线的距离课时跟踪检测二十一圆的标准方程课时跟踪检测二十二圆的一般方程课时跟踪检测二十三直线与圆的位置关系课时跟踪检测二十四圆与圆的位置关系课时跟踪检测二十五空间直角坐标系课时跟踪检测二十六空间两点间的距离课时跟踪检测(一)棱柱、棱锥和棱台层级一学业水平达标1.关于如图所示的4个几何体,说法正确的是( )A.只有②是棱柱B.只有②④是棱柱C.只有①②是棱柱D.只有①②④是棱柱解析:选D 解决这类问题,要紧扣棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行.图①②④满足棱柱的定义,正确;图③不满足侧面都是平行四边形,不正确.2.下面结论是棱台具备的性质的是( )①两底面相似;②侧面都是梯形;③侧棱都相等;④侧棱延长后都交于一点.A.①③B.①②④C.②④D.②③④解析:选B 用棱台的定义可知选B.3.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:选 C 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.4.下列图形中,不能折成三棱柱的是( )解析:选C C中,两个底面均在上面,因此不能折成三棱柱,其余均能折为三棱柱.5.一个棱锥的各条棱都相等,那么这个棱锥一定不是( )A.三棱锥B.四棱锥C.五棱锥D.六棱锥解析:选D 若满足条件的棱锥是六棱锥,则它的六个侧面都是正三角形,侧面的顶角都是60°,其和为360°,则顶点在底面内,与棱锥的定义相矛盾.6.一个棱柱至少有________个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.答案:5 4 37.两个完全相同的长方体,长、宽、高分别为5 cm,4 cm,3 cm,把它们重叠在一起组成一个新长方体,在这些新长方体中,表面积最大的长方体的表面积为________ cm2.解析:将两个长方体侧面积最小的两个面重合在一起,得到的长方体的表面积最大,此时,所得的新长方体的长、宽、高分别为10 cm,4 cm,3 cm,表面积的最大值为2×(10×4+3×4+3×10)=164.答案:1648.如图,三棱台ABC­A′B′C′,沿A′BC截去三棱锥A′­ABC,则剩余部分是________.解析:在图中截去三棱锥A′­ABC后,剩余的是以BCC′B′为底面,A′为顶点的四棱锥.答案:四棱锥A′­BCC′B′9.如图,观察并分别判断①中的三棱镜,②中的螺杆头部模型有多少对互相平行的平面,其中能作为棱柱底面的分别有几对.解:图①中有1对互相平行的平面,只有这1对可以作为棱柱的底面.图②中有4对互相平行的平面,只有1对可以作为棱柱的底面.10.在一个长方体的容器中,里面装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中.(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?(2)水的形状也不断变化,可以是棱柱,也可能变为棱台或棱锥,对吗?(3)如果倾斜时,不是绕着底部的一条棱,而是绕着其底部的一个顶点,上面的第(1)题和第(2)题对不对?解:(1)不对;水面的形状是矩形,不可能是其他非矩形的平行四边形.(2)不对;此几何体是棱柱,水比较少时,是三棱柱,水多时,可能是四棱柱,或五棱柱;但不可能是棱台或棱锥.(3)用任意一个平面去截长方体,其截面形状可以是三角形,四边形,五边形,六边形,因而水面的形状可以是三角形,四边形,五边形,六边形;水的形状可以是棱锥,棱柱,但不可能是棱台.层级二 应试能力达标1.下列命题正确的是( )A .有两个面互相平行,其余各面都是四边形的几何体叫做棱柱B .棱柱中互相平行的两个面叫做棱柱的底面C .棱柱的侧面是平行四边形,底面不是平行四边形D .棱柱的侧棱都相等,侧面都是平行四边形解析:选D 根据棱柱的定义可知D 正确.2.下列说法正确的是( )A .有2个面平行,其余各面都是梯形的几何体是棱台B .多面体至少有3个面C .各侧面都是正方形的四棱柱一定是正方体D .九棱柱有9条侧棱,9个侧面,侧面为平行四边形解析:选D 选项A 错误,反例如图1;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B 错误;选项C 错误,反例如图2,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D 正确.3.用一平行于棱锥底面的平面截某棱锥,截得的棱台上、下底面面积比为1∶4,截去的棱锥的高是3 cm,则棱台的高是( )A .12 cmB .9 cmC .6 cmD .3 cm解析:选D 设原棱锥的高为h cm,依题意可得⎝ ⎛⎭⎪⎫3h 2=14,解得h =6,所以棱台的高为6-3=3(cm).4.五棱柱中,不同在任何侧面,且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱共有对角线( )A .20条B .15条C .12条D .10条解析:选D 由题意,知五棱柱的对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条,所以五棱柱共有对角线2×5=10(条).故选D.5.在正方体上任意选择4个顶点,则可以组成的平面图形或几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,另一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.解析:如图,在正方体ABCD­A1B1C1D1上,若取A,B,C,D四个顶点,可得矩形;若取D,A,C,D1四个顶点,可得③中所述几何体;若取A,C,D1,B1四个顶点,可得④中所述几何体;若取D,D1,A,B四个顶点,可得⑤中所述几何体.故填①③④⑤.答案:①③④⑤6.如图,M是棱长为2 cm的正方体ABCD­A1B1C1D1的棱CC1的中点,沿正方体表面从点A到点M的最短路程是________ cm.解析:由题意,若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.答案:137.根据下列关于空间几何体的描述,说出几何体的名称.(1)由6个平行四边形围成的几何体.(2)由7个面围成,其中一个面是六边形,其余6个面都是有一个公共顶点的三角形.(3)由5个面围成的几何体,其中上、下两个面是相似三角形,其余3个面都是梯形,并且这些梯形的腰延长后能相交于一点.解:(1)这是一个上、下底面是平行四边形,四个侧面也是平行四边形的四棱柱.(2)这是一个六棱锥,其中六边形面是底面,其余的三角形面是侧面.(3)这是一个三棱台,其中相似的两个三角形面是底面,其余三个梯形面是侧面.8.如图在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)若正方形边长为2a ,则每个面的三角形面积为多少?解:(1)如图折起后的几何体是三棱锥.(2)S △PEF =12a 2,S △DPF =S △DPE =12×2a ×a =a 2, S △DEF =32a 2. 课时跟踪检测(二) 圆柱、圆锥、圆台和球层级一 学业水平达标1.有下列四个说法,其中正确的是( )A .圆柱的母线与轴垂直B .圆锥的母线长等于底面圆直径C .圆台的母线与轴平行D .球的直径必过球心解析:选D A :圆柱的母线与轴平行;B :圆锥的母线长与底面圆的直径不具有任何关系;C :圆台的母线延长线与轴相交.故D 正确.2.如图所示的图形中有( )A .圆柱、圆锥、圆台和球B .圆柱、球和圆锥C .球、圆柱和圆台D .棱柱、棱锥、圆锥和球解析:选B 根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台,故应选B.3.下列说法中正确的个数是( )①用一个平面去截一个圆锥得到一个圆锥和一个圆台;②圆锥中过轴的截面是一个等腰三角形;③分别以矩形(非正方形)的长和宽所在直线为旋转轴,旋转一周得到的两个几何体是两个不同的圆柱.A .0B .1C.2 D.3解析:选C ①中,必须用一个平行于底面的平面去截圆锥,才能得到一个圆锥和一个圆台,故①说法错误;显然②③说法正确.故说法正确的有2个.4.如图所示的几何体是由下列哪个平面图形通过旋转得到的( )解析:选A 由题图知平面图应是一个直角三角形和一个直角梯形构成,故A正确.5.一个直角三角形绕斜边旋转360°形成的空间几何体是( )A.一个圆锥B.一个圆锥和一个圆柱C.两个圆锥D.一个圆锥和一个圆台答案:C6.将一个直角梯形绕其较短的底边所在的直线旋转一周得到一个几何体,则该几何体的结构特征是________________________________.答案:一个圆柱被挖去一个圆锥后所剩的几何体7.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这个截面把圆锥的母线分为两段的比是________.解析:∵截面面积与底面面积的比为1∶3,故小圆锥与大圆锥的相似比为1∶3,故小圆锥与大圆锥的母线长之比为1∶3,故小圆锥与所得圆台的母线长比为1∶(3-1).答案:1∶(3-1)8.将边长为4 cm和8 cm的矩形纸片卷成一个圆柱的侧面,则圆柱的轴截面的面积为________cm2.解析:当以4 cm为母线长时,设圆柱底面半径为r,则8=2πr,∴2r=8π.∴S轴截面=4×8π=32π(cm)2.当以8 cm为母线长时,设圆柱底面半径为R,则2πR=4,2R=4π.∴S轴截面=8×4π=32π(cm)2.综上,圆锥的轴截面面积为32πcm 2. 答案:32π9.将长为4宽为3的矩形ABCD 沿对角线AC 折起,折起后A ,B ,C ,D 在同一个球面上吗?若在求出这个球的直径.解:因为对角线AC 是直角三角形ABC 和直角三角形ADC 的公共斜边,所以AC 的中点O 到四个点的距离相等,即O 为该球的球心.所以AC 为球的一条直径,由勾股定理得AC =42+32=5.10.如图所示,直角梯形ABCD 中,AB ⊥BC ,绕着CD 所在直线l 旋转,试画出立体图并指出几何体的结构特征.解:如图①,过A ,B 分别作AO 1⊥CD ,BO 2⊥CD ,垂足分别为O 1,O 2,则Rt △CBO 2绕l 旋转一周所形成的曲面围成几何体是圆锥,直角梯形O 1ABO 2绕l 旋转一周所形成的曲面围成的几何体是圆台,Rt△ADO 1绕l 旋转一周所形成的曲面围成的几何体是圆锥.① ② 综上,所得几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.(如图②所示).层级二 应试能力达标1.下列结论正确的是( )A .用一个平面去截圆锥,得到一个圆锥和一个圆台B .经过球面上不同的两点只能作一个最大的圆C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是正六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D 须用平行于圆锥底面的平面截才能得到圆锥和圆台,故A 错误;若球面上不同的两点恰为最大的圆的直径的端点,则过此两点的大圆有无数个,故B错误;正六棱锥的侧棱长必然要大于底面边长,故C错误.故选D.2.若圆柱体被平面截成如图所示的几何体,则它的侧面展开图是( )解析:选D 结合几何体的实物图,从截面最低点开始高度增加缓慢,然后逐渐变快,最后增加逐渐变慢,不是均衡增加的,所以A、B、C错误.3.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是( )A.①②B.②④C.①②③D.②③④解析:选C 当截面平行于正方体的一个侧面时得③,当截面过正方体对角面时得②,当截面不平行于任何侧面也不过对角面时得①,但无论如何都不能得出④.4.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为( )A.1 B.2C.1或7 D.2或6解析:选C 由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3,故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.5.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r,母线为l,则2πr=πl,∴l=2r.故两条母线的夹角为60°.答案:60°6.圆锥底面半径为1 cm,高为 2 cm,其中有一个内接正方体,则这个内接正方体的棱长为________ cm.解析:圆锥的轴截面SEF、正方体对角面ACC 1A1如图.设正方体的棱长为x cm,则AA1=x cm,A1C1=2x cm.作SO ⊥EF 于点O ,则SO = 2 cm,OE =1 cm.∵△EAA 1∽△ESO ,∴AA 1SO =EA 1EO ,即x 2=1-22x1.∴x =22,即该内接正方体的棱长为22 cm. 答案:227.一个圆锥的底面半径为2,高为6,在其中有一个高为x 的内接圆柱.(1)用x 表示圆柱的轴截面面积S ;(2)当x 为何值时,S 最大?解:(1)如图,设内接圆柱的底面圆半径为r , 由已知得6-x 6=r2,∴r =6-x3,∴S =2×6-x3×x =-23x 2+4x (0<x <6).(2)当x =-42×⎝ ⎛⎭⎪⎫-23=3时,S 最大.8.如图所示,已知圆柱的高为80 cm,底面半径为10 cm,轴截面上有P ,Q 两点,且PA =40 cm,B 1Q =30 cm,若一只蚂蚁沿着侧面从P 点爬到Q 点,问:蚂蚁爬过的最短路径长是多少?解:将圆柱侧面沿母线AA 1展开,得如图所示矩形.∴A 1B 1=12·2πr =πr =10π(cm).过点Q 作QS ⊥AA 1于点S ,在Rt △PQS 中,PS =80-40-30=10(cm),QS =A1B 1=10π(cm).∴PQ=PS2+QS2=10π2+1(cm).即蚂蚁爬过的最短路径长是10π2+1 cm.课时跟踪检测(三)直观图画法层级一学业水平达标1.根据斜二测画法的规则画直观图时,把Ox,Oy,Oz轴画成对应的O′x′,O′y′,O′z′,则∠x′O′y′与∠x′O′z′的度数分别为( ) A.90°,90°B.45°,90°C.135°,90° D.45°或135°,90°解析:选D 根据斜二测画法的规则,∠x′O′y′的度数应为45°或135°,∠x′O′z′指的是画立体图形时的横轴与纵轴的夹角,所以度数为90°.2.已知一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,长方体的长、宽、高分别为20 m,5 m,10 m,四棱锥的高为8 m,如果按1∶500 的比例画出它的直观图,那么在直观图中,长方体的长、宽、高和棱锥的高应分别为( ) A.4 cm,1 cm,2 cm,1.6 cmB.4 cm,0.5 cm,2 cm,0.8 cmC.4 cm,0.5 cm,2 cm,1.6 cmD.4 cm,0.5 cm,1 cm,0.8 cm解析:选C 直观图中长、宽、高应分别按原尺寸的1500,11 000,1500计算,最后单位转化为 cm.3.利用斜二测画法画边长为1 cm的正方形的直观图,可能是下面的( )解析:选C 正方形的直观图是平行四边形,且边长不相等,故选C项.4.如右图所示的水平放置的三角形的直观图,D′是△A′B′C′中B′C′边的中点,且A′D′平行于y′轴,那么A′B′,A′D′,A′C′三条线段对应原图形中线段AB,AD,AC中( )A.最长的是AB,最短的是ACB.最长的是AC,最短的是ABC.最长的是AB,最短的是ADD.最长的是AD,最短的是AC解析:选C 因为A′D′∥y′轴,所以在△ABC中,AD⊥BC,又因为D′是B′C′的中点,所以D是BC中点,所以AB=AC>AD.5.水平放置的△ABC ,有一边在水平线上,用斜二测画法作出的直观图是正三角形A ′B ′C ′,则△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .任意三角形解析:选C 将△A ′B ′C ′还原,由斜二测画法知,△ABC 为钝角三角形. 6.利用斜二测画法得到 ①三角形的直观图是三角形; ②平行四边形的直观图是平行四边形; ③正方形的直观图是正方形; ④矩形的直观图是矩形.以上结论,正确的是________(填序号).解析:斜二测画法得到的图形与原图形中的线线相交、相对线线平行关系不会改变,因此三角形的直观图是三角形,平行四边形的直观图是平行四边形.答案:①②7.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6,O ′C ′=3,B ′C ′∥x ′轴,则原平面图形的面积为________.解析:在直观图中,设B ′C ′与y ′轴的交点为D ′,则易得O ′D ′=32,所以原平面图形为一边长为6,高为62的平行四边形,所以其面积为6×62=36 2.答案:36 28.如图,一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是________.解析:由题意知平面图形为直角梯形ABCD ,其中,AD =AD ′=1,BC =B ′C ′=1+2,AB =2,即S 梯形ABCD =(1+1+2)2×2=2+ 2.答案:2+ 29.如图所示,梯形ABCD 中,AB ∥CD ,AB =4 cm,CD =2 cm,∠DAB =30°,AD =3 cm,试画出它的直观图.解:(1)如图(a)所示,在梯形ABCD 中,以边AB 所在的直线为x 轴,点A 为原点,建立平面直角坐标系xOy .如图(b)所示,画出对应的x ′轴,y ′轴,使∠x ′O ′y ′=45°.(2)在图(a)中,过D 点作DE ⊥x 轴,垂足为E .在x ′轴上取A ′B ′=AB =4 cm,A ′E ′=AE =3×32≈2.598 (cm);过点E ′作E ′D ′∥y ′轴,使E ′D ′=12ED ,再过点D ′作D ′C ′∥x ′轴,且使D ′C ′=DC =2 cm.(3)连结A ′D ′,B ′C ′,并擦去x ′轴与y ′轴及其他一些辅助线,如图(c)所示,则四边形A ′B ′C ′D ′就是所求作的直观图.10.已知底面是正六边形,侧面都是全等的等腰三角形的六棱锥.请画出它的直观图. 解:作法:(1)画六棱锥P ­ABCDEF 的底面.①在正六边形ABCDEF 中,取AD 所在直线为x 轴,对称轴MN 所在直线为y 轴,两轴交于点O .画相应的x ′轴和y ′轴、z ′轴,三轴交于点O ′,使∠x ′O ′y ′=45°,∠x ′O ′z ′=90°.②以O ′为中点,在x ′轴上取A ′D ′=AD ,在y ′轴上取M ′N ′=12MN ,以N ′为中点画B ′C ′,使B ′C ′∥O ′x ′,B ′C ′=BC ;再以M ′为中点画E ′F ′,使E ′F ′∥O ′x ′,E ′F ′=EF .③连结A ′B ′,C ′D ′,D ′E ′,F ′A ′,得到正六边形ABCDEF 水平放置的直观图A ′B ′C ′D ′E ′F ′.(2)画六棱锥的顶点.在O ′z ′上截取点P ,使PO ′=PO .(3)成图,连结PA ′,PB ′,PC ′,PD ′,PE ′,PF ′,并擦去辅助线,改被遮挡部分为虚线,即得六棱锥P ­ABCDEF 的直观图六棱锥P ­A ′B ′C ′D ′E ′F ′.层级二 应试能力达标1.已知水平放置的△ABC 按斜二测画法得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A ′O ′=32,那么原△ABC 是一个( ) A .等边三角形 B .直角三角形C .三边中有两边相等的等腰三角形D .三边互不相等的三角形解析:选A 根据斜二测画法的原则,得BC =B ′C ′=2,OA =2A ′O ′=2×32=3,AO ⊥BC ,∴AB =AC =BC =2,∴△ABC 是等边三角形. 2.用斜二测画法画出的某平面图形的直观图如图所示,AB 边平行于y 轴,BC ,AD 平行于x 轴.已知四边形ABCD 的面积为2 2 cm 2,则原平面图形A ′B ′C ′D ′的面积为( )A .4 cm 2B .4 2 cm 2C .8 cm 2D .8 2 cm 2解析:选C 依题意,可知∠BAD =45°,则原平面图形A ′B ′C ′D ′为直角梯形,上、下底边分别为B ′C ′,A ′D ′,且长度分别与BC ,AD 相等,高为A ′B ′,且长度为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.3.如图是利用斜二测画法画出的△ABO 的直观图,已知O ′B ′=4,A ′B ′∥y ′ 轴,且△ABO 的面积为16,过A ′作A ′C ′⊥x ′轴,则A ′C ′的长为( )A .2 2 B. 2 C .16 2D .1解析:选A 因为A ′B ′∥y ′轴,所以在△ABO 中,AB ⊥OB .又△ABO 的面积为16,所以12AB ·OB =16.所以AB =8,所以A ′B ′=4.如图,作A ′C ′⊥O ′B ′于点C ′,所以B ′C ′=A ′C ′,所以A ′C ′的长为4sin 45°=2 2.4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为 2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm解析:选D 圆锥顶点到底面的距离即圆锥的高,故两顶点间距离为2+3=5 cm,在直观图中与z 轴平行的线段长度不变,仍为5 cm.5.有一个长为5,宽为4 的矩形,则其直观图的面积为________. 解析:由于该矩形的面积为S =5×4=20,所以由公式S ′=24S ,得其直观图的面积为S ′=24S =5 2. 答案:5 26.水平放置的△ABC 的斜二测直观图如图所示,已知A ′C ′=3,B ′C ′=2,则AB 边上的中线的实际长度为________.解析:由直观图知,原平面图形为直角三角形,且AC =A ′C ′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.答案:2.57.在水平位置的平面M内有一边长为1的正方形A′B′C′D′.如图,其中对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示.∵A′C′为水平位置,∴四边形ABCD中,DA⊥AC.∵DA=2D′A′=2,AC=A′C′=2,∴S四边形ABCD=AC·AD=2 2.8.如图,正方形O′A′B′C′的边长为1 cm,它是水平放置的一个平面图形的直观图.请画出原来的平面图形的形状,并求原图形的周长与面积.解:如图,建立直角坐标系xOy,在x轴上取OA=O′A′=1 cm;在y轴上取OB=2O′B′=2 2 cm;在过点B的x轴的平行线上取BC=B′C′=1 cm.连结O,A,B,C各点,即得到了原图形.由作法可知,OABC为平行四边形,OC=OB2+BC2=8+1=3 cm,∴平行四边形OABC的周长为(3+1)×2=8 cm,面积为S=1×22=2 2 cm2.课时跟踪检测(四)平面的基本性质层级一学业水平达标1.如果直线a⊂平面α,直线b⊂平面α,M∈a,N∈b,M∈l,N∈l,则( )A.l⊂αB.l⊄αC.l∩α=M D.l∩α=N解析:选A ∵M∈a,a⊂α,∴M∈α,同理,N∈α,又M∈l,N∈l,故l⊂α.2.下列命题中正确命题的个数是( )①三角形是平面图形;②梯形是平面图形;③四边相等的四边形是平面图形;④圆是平面图形.A.1个B.2个C.3个D.4个解析:选C 根据公理1可知①②④正确,③错误.故选C.3.已知直线m⊂平面α,P∉m,Q∈m,则( )A.P∉α,Q∈αB.P∈α,Q∉αC.P∉α,Q∉αD.Q∈α解析:选D 因为Q∈m,m⊂α,所以Q∈α.因为P∉m,所以有可能P∈α,也可能有P∉α.4.如果两个平面有一个公共点,那么这两个平面( )A.没有其他公共点B.仅有这一个公共点C.仅有两个公共点D.有无数个公共点解析:选D 根据公理2可知,两个平面若有一个公共点,则这两个平面有且只有一个经过该点的公共直线.故选D.5.若直线l上有两个点在平面α外,则( )A.直线l上至少有一个点在平面α内B.直线l上有无穷多个点在平面α内C.直线l上所有点都在平面α外D.直线l上至多有一个点在平面α内解析:选D 由已知得直线l⊄α,故直线l上至多有一个点在平面α内.6.过同一点的4条直线中,任意3条都不在同一平面内,则这4条直线确定平面的个数是________.解析:设四条直线为a,b,c,d,则这四条直线中每两条都确定一个平面,因此,a与b,a 与c,a与d,b与c,b与d,c与d都分别确定一个平面,共6个平面.答案:67.已知α,β是不同的平面,l,m,n是不同的直线,P为空间中一点.若α∩β=l,m⊂α,n⊂β,m∩n=P,则点P与直线l的位置关系用符号表示为________.解析:因为m⊂α,n⊂β,m∩n=P,所以P∈α且P∈β.又α∩β=l,所以点P在直线l上,所以P∈l.答案:P∈l8.空间有四个点,如果其中任意三个点不共线,则经过其中三个点的平面有________个.解析:用平面四边形和三棱锥的四个顶点判断,经过其中三个点的平面有1或4个.答案:1或49.如图,在正方体ABCD­A1B1C1D1中,判断下列命题是否正确,并说明理由.(1)由点A,O,C可以确定一个平面;(2)由点A,C1,B1确定的平面为平面ADC1B1.解:(1)不正确.因为点A,O,C在同一条直线上,故不能确定一个平面.(2)正确.因为点A,B1,C1不共线,所以可确定一个平面.又因为AD∥B1C1,所以点D∈平面AB1C1.所以由点A,C1,B1确定的平面为平面ADC1B1.10.如图,已知平面α,β,且α∩β=l.设梯形ABCD中,AD∥BC,且AB⊂α,CD⊂β,求证:AB,CD,l共点(相交于一点).证明:∵在梯形ABCD中,AD∥BC,∴AB,CD是梯形ABCD的两条腰.∴AB,CD必定相交于一点,设AB∩CD=M.又∵AB⊂α,CD⊂β,∴M∈α,且M∈β.∴M∈α∩β.又∵α∩β=l,∴M∈l,即AB,CD,l共点.层级二应试能力达标1.能确定一个平面的条件是( )A.空间三个点B.一个点和一条直线C.无数个点D.两条相交直线解析:选D 不在同一条直线上的三个点可确定一个平面,A,B,C条件不能保证有不在同一条直线上的三个点,故不正确.2.下列推理错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α与β重合解析:选C 当l⊄α,A∈l时,也有可能A∈α,如l∩α=A,故C错.3.如图,已知平面α∩平面β=l,P∈β且P∉l,M∈α,N∈α,又MN∩l=R,M,N,P三点确定的平面记为γ,则β∩γ是( )A.直线MP B.直线NPC.直线PR D.直线MR解析:选C 因为MN⊂γ,R∈MN,所以R∈γ.又α∩β=l,MN∩l=R,所以R∈β.又P ∈β,P∈γ,所以P,R均为平面γ与β的公共点,所以β∩γ=PR.4.在空间四边形ABCD中,在AB,BC,CD,DA上分别取E,F,G,H四点,如果GH,EF交于一点P,则( )A.P一定在直线BD上B.P一定在直线AC上C.P在直线AC或BD上D.P既不在直线BD上,也不在AC上解析:选B 由题意知GH⊂平面ADC.因为GH,EF交于一点P,所以P∈平面ADC.同理,P ∈平面ABC.因为平面ABC∩平面ADC=AC,由公理2可知点P一定在直线AC上.5.三条直线两两相交,它们可以确定________个平面.解析:若三条直线两两相交,且不共点,则只能确定一个平面;若三条直线两两相交,且共点,则可以确定1个或3个平面.答案:1或36.三个平面两两相交,则将空间分成________个部分.解析:三个平面两两相交(1)若交于同一条直线,则将空间分成6个部分;(2)若交于三条交线①三条交线交于一点,则将空间分成8个部分;②若三条交线互相平行,则将空间分成7个部分;所以,三个这样的平面将空间分成6或7或8个部分.答案:6或7或87. 如图,直角梯形ABDC中,AB∥CD,AB>CD,S是直角梯形ABDC所在平面外一点,画出平面SBD和平面SAC的交线.解:延长AC,BD交于T, 连结ST,∵T∈AC,AC⊂平面SAC,。

2018-2019学年高中数学苏教版必修3章末综合测评3

2018-2019学年高中数学苏教版必修3章末综合测评3

章末综合测评(三)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在横线上)1.以下事件:①口袋里有壹角、伍角、壹元硬币各若干枚,随机地摸出一枚是壹角;②在标准大气压下,水在90 ℃沸腾;③射击运动员射击一次命中10环;④同时掷两枚质地均匀的骰子,出现的点数之和不超过12.其中是随机事件的有________.(填序号)【解析】 ②为不可能事件,④是必然事件,①③为随机事件.【答案】 ①③2.利用简单随机抽样从含有6个个体的总体中抽取一个容量为3的样本,则总体中每个个体被抽到的概率是________.【解析】 总体个数为N ,样本容量为M ,则每一个个体被抽得的概率为P ===.MN 3612【答案】 123.一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为________.【解析】 记“任取一球为白球”为事件A ,“任取一球为黑球”为事件B ,则P (A +B )=P (A )+P (B )=+=.102052034【答案】 344.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,则参加联欢会的教师共有920________人.【解析】 设男教师为n 人,则女教师为(n +12)人,∴=.n2n +12920∴n =54.∴参加联欢会的教师共有120人.【答案】 120图15.如图1,矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为________.【解析】 利用几何概型的概率计算公式,得阴影部分的面积约为×(5×2)=.138300235【答案】 2356.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A ={摸出黑球},B ={摸出白球},C ={摸出绿球},D ={摸出红球},则P (A )=________;P (B )=________;P (C ∪D )=________.【解析】 由古典概型的算法可得P (A )==,P (B )=,P (C ∪D )82025320=P (C )+P (D )=+=.420520920【答案】 253209207.向图2中所示正方形内随机地投掷飞镖,则飞镖落在阴影部分的概率为________.图2【解析】 直线6x -3y -4=0与直线x =1交于点,与直线y =-1交(1,23)于点,易知阴影部分面积为××=.所以P ===.(16,-1)1256532536S 阴影S 正方形2536425144【答案】 251448.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件A +发生的概率为________.(表示B B - B-的对立事件) 【导学号:90200084】【解析】 事件A 包含的基本事件为“出现2点”或“出现4点”;表B-示“大于等于5的点数出现”,包含的基本事件为“出现5点”或“出现6点”.显然A 与是互斥的,故P (A +)=P (A )+P ()=+=.B - B - B- 131323【答案】 239.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点.若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则1214去打篮球;否则,在家看书,则小波周末不在家看书的概率为________.【解析】 ∵去看电影的概率P 1==.π×12-π×(12)2π×1234去打篮球的概率P 2==.π×(14)2π×12116∴不在家看书的概率为P =+=.341161316【答案】 131610.口袋中装有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出1个球,摸出白球的概率是0.23,则摸出黑球的概率是________.【解析】 ∵摸出白球的概率是0.23,∴口袋中白球的个数为0.23×100=23个,∴袋中黑球共100-45-23=32个.∴从袋中摸出1个球,摸出黑球的概率为=0.32.32100【答案】 0.3211.如图3,在一个棱长为2的正方体鱼缸内放入一个倒置的无底圆锥形容器,圆锥的上底圆周与鱼缸的底面正方形相切,圆锥的顶点在鱼缸的缸底上,现在向鱼缸内随机地投入一粒鱼食,则“鱼食能被鱼缸内在圆锥外面的鱼吃到”的概率是________.图3【解析】 鱼缸的体积为23=8,圆锥的体积为π×12×2=,故所求概132π3率为P ==1-.8-2π38π12【答案】 1-π1212.在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概710率的事件是________.(填序号)①恰有1件一等品;②至少有一件一等品;③至多有一件一等品;④都不是一等品.【解析】 将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故35恰有2件一等品的概率为P 2=,其对立事件是“至多有一件一等品”,概率310为P 3=1-P 2=1-=,至少有一件一等品的概率为P 4=+=,都不31071035310910是一等品的概率为P 5=1-=.910110【答案】 ③13.随机掷两枚质地均匀的骰子,他们向上的点数之和不超过5的概率为p 1,点数之和大于5的概率为p 2,点数之和为偶数的概率为p 3,则p 1,p 2,p 3的大小顺序是________.【解析】 随机掷两枚质地均匀的骰子,所有可能的结果共有36种.事件“向上的点数之和不超过5”包含的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1)共10种,其概率p 1==.事件“向上的点数1036518之和大于5”与“向上的点数之和不超过5”是对立事件,所以“向上的点数之和大于5”的概率p 2=.因为朝上的点数之和不是奇数就是偶数,所以“点数1318之和为偶数”的概率p 3=.故p 1<p 3<p 2.12【答案】 p 1<p 3<p 214.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n (2≤n ≤5,n ∈N )上”为事件C n ,若事件C n 的概率最大,则n 的所有可能值为________.【解析】 总的基本事件个数为2×3=6.只要求出当n =2,3,4,5时事件C n 的基本事件个数,并使其最大即可.当n =2时,落在直线x +y =2上的点为(1,1);当n =3时,落在直线x +y =3上的点为(1,2)、(2,1);当n =4时,落在直线x +y =4上的点为(1,3)、(2,2);当n =5时,落在直线x +y =5上的点为(2,3);显然当n =3或4时,事件C n 的概率最大为.13【答案】 3或4二、解答题(本大题共6个小题,共90分)15.(本小题满分14分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是.12(1)求n 的值;(2)记从袋中随机取出一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.【解】 (1)由题意可得=,解得n =2.n1+1+n 12(2)设红球为a ,黑球为b ,白球为c 1,c 2,从袋子中取出2个小球的所有基本等可能事件为:(a ,b ),(a ,c 1),(a ,c 2),(b ,c 1),(b ,c 2),(c 1,c 2),共有6个,其中得2分的基本事件有(a ,c 1),(a ,c 2),所以总得分为2分的概率为=.261316.(本小题满分14分)已知关于x 的一次函数y =mx +n . 【导学号:90200085】(1)设集合P ={-2,-1,1,2,3}和Q ={-2,3},分别从集合P 和Q 中随机取一个数作为m 和n ,求函数y =mx +n 是增函数的概率;(2)实数m ,n 满足条件Error!求函数y =mx +n 的图象经过第一、二、三象限的概率.【解】 (1)抽取的全部结果的基本事件有:(-2,-2),(-2,3),(-1,-2),(-1,3),(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共10个基本事件,设使函数为增函数的事件为A ,则A 包含的基本事件有:(1,-2),(1,3),(2,-2),(2,3),(3,-2),(3,3),共6个基本事件,所以P (A )==.61035(2)m 、n 满足条件Error!的区域如图所示.要使函数的图象过第一、二、三象限,则m >0,n >0,故使函数图象过第一、二、三象限的(m ,n )的区域为第一象限的阴影部分,所以所求事件的概率为P ==.12721717.(本小题满分14分)甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.【解】 (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以P (A )==.52515(2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13个,即(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为,乙赢的概率为.所以这种游戏规则不公平.1325122518.(本小题满分16分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b .(1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.【解】 先后2次抛掷一枚骰子,将得到的点数分别记为a ,b ,包含的基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个.(1)∵直线ax +by +5=0与圆x 2+y 2=1相切,∴=1,整理得a 2+b 2=25.由于a ,b ∈{1,2,3,4,5,6},∴满足条件的5a 2+b 2情况只有a =3,b =4或a =4,b =3两种情况.∴直线ax +by +5=0与圆x 2+y 2=1相切的概率是=.236118(2)∵三角形的一边长为5,三条线段围成等腰三角形,∴当a =1时,b =5,共1个基本事件;当a =2时,b =5,共1个基本事件;当a =3时,b =3,5,共2个基本事件;当a =4时,b =4,5,共2个基本事件;当a =5时,b =1,2,3,4,5,6,共6个基本事件;当a =6时,b =5,6,共2个基本事件.∴满足条件的基本事件共有1+1+2+2+6+2=14个.∴三条线段能围成等腰三角形的概率为=.143671819.(本小题满分16分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.【解】 (1)标号为1,2,3的三张红色卡片分别记为A ,B ,C ,标号为1,2的两张蓝色卡片分别记为D ,E ,从五张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E ),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且他们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且他们的标号之和小于4的概率为.310(2)记F 是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且他们的标号之和小于4的结果为(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且他们的标号之和小于4的概率为.81520.(本小题满分16分)某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.第一批次第二批次第三批次女教职工196x y 男教职工204156z(1)求x 的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?(3)已知y ≥96,z ≥96,求第三批次中女教职工比男教职工多的概率.【解】 (1)由=0.16,解得x =144.x900(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则=,m2005490012解得m =12.∴应在第三批次中抽取12名教职工.(3)设第三批次中女教职工比男教职工多为事件A ,第三批次女教职工和男教职工数记为数对(y ,z ),由(2)知y +z =200,(y ,z ∈N *,y ≥96,z ≥96),则基本事件总数有:(96,104),(97,103),(98,102),(99,101),(100,100),(101,99),(102,98),(103,97),(104,96),共9个,而事件A 包含的基本事件有:(101,99),(102,98),(103,97),(104,96),共4个.∴P (A )=.故第三批次中女职工比男职工多的概率为.4949。

2018-2019学年高中数学苏教版必修3学业分层测评2 顺序结构

2018-2019学年高中数学苏教版必修3学业分层测评2 顺序结构

学业分层测评(二)(建议用时:45分钟)[学业达标]一、填空题1.下列关于流程图的说法正确的是________.(填序号)①用流程图表示算法直观、形象,容易理解;②流程图能清楚地展现算法的逻辑结构,是算法的一种表现形式;③在流程图中,起止框是任何流程不可少的;④输入和输出框可用在算法中任何需要输入、输出的位置.【解析】 由流程图的概念知①②③④都正确.【答案】 ①②③④2.如图1­2­9所示的流程图最终输出结果是________.图1­2­9【解析】 第二步中y=2,第三步中y=22+1=5.【答案】 53.如图1­2­10所示的流程图表示的算法意义是________.图1­2­10【解析】 由平面几何知识知r为三边长分别为3,4,5的直角三角形内切圆半径,S表示内切圆面积.【答案】 求边长为3,4,5的直角三角形内切圆面积4.如图1­2­11所画流程图是已知直角三角形两条直角边a、b求斜边c的算法,其中正确的是________.(填序号)图1­2­11【解析】 根据流程图的功能知,对于②计算顺序不对,对于③输入、输出框不对,对于④处理框不对,所以只有①对.【答案】 ①5.给出下列流程图1­2­12:图1­2­12若输出的结果为2,则①处的处理框内应填的是________.【解析】 由题意知,处理框中应是x 的值,由(2x +3)-3=2,得x =1.故应填x ←1.【答案】 x ←16.阅读下列流程图1­2­13,若输出结果为6,则图中的x =________.图1­2­13【解析】 由流程图可得(x +2)+3=6,解得x =1.【答案】 17.已知两点A (7,-4),B (-5,6),完成下面所给的求线段AB 垂直平分线方程的算法.S1求线段AB 的中点C 的坐标,得C 点坐标为________;S2求线段AB 的斜率,得k AB ←________;S3求线段AB 中垂线的斜率,得k ←________;S4求线段AB 的垂直平分线方程为_________________________.【解析】 (1)由中点坐标公式:设C (x 0,y 0),则x 0==1,y 0=7+(-5)2=1,∴C 点坐标为(1,1).-4+62(2)由斜率公式知:k AB ==-.6-(-4)-5-756(3)直线AB 的中垂线的斜率与直线AB 的斜率互为负倒数,∴k =.65(4)由点斜式方程得y -1=(x -1),即6x -5y -1=0.65【答案】 (1,1) - 6x -5y -1=056658.流程图1­2­14结束时x 、y 的值分别是________.图1­2­14【解析】 当x =1,y =2时y =x +y =3,x =y +1=3+1=4,y =x +1=4+1=5,t =x =4,x =y =5,y =t =4.【答案】 5,4二、解答题9.已知函数y =2x +3,设计一个算法,若给出函数图象上任一点的横坐标x (由键盘输入),求该点到坐标原点的距离,并画出流程图..【解】 算法如下:S1 输入横坐标的值x .S2 计算y ←2x +3.S3 计算d ←.x 2+y 2S4 输出d.流程图如图:10. 如图1­2­15所示的流程图,当输入的x的值为0和4时,输出的值相等,根据该图和下列各小题的条件回答下面几个问题.图1­2­15(1)该流程图解决的是一个什么问题?(2)当输入的x的值为3时,求输出的f(x)的值;(3)要想使输出的值最大,求输入的x的值..【解】 (1)该流程图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.因为f(3)=-32+4×3=3,所以当输入的x 的值为3时,输出的f (x )的值为3.(3)因为f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,所以要想使输出的值最大,输入的x 的值应为2.[能力提升]1.写出流程图1­2­16的运行结果. 【导学号:90200006】图1­2­16(1)S =________.(2)若R =8,则a =________.【解析】 (1)由流程图知S =+=,故应填.24425252(2)由流程图可得a =32×=32×2=64.故填64.82【答案】 (1) (2)64522.如图1­2­17是计算图中的阴影部分面积的一个流程图,则①中应该填________.图1­2­17【解析】 设阴影部分面积为M ,则M =x 2-π·2=x 2.(x 2)(1-π4)【答案】 M ←x 2(1-π4)3.已知一个三角形三条边长分别为a ,b ,c ,利用海伦—秦九韶公式(令p =,则三角形的面积S =).图1­2­18是一个用海伦—a +b +c2p(p -a )(p -b )(p -c )秦九韶公式求三角形面积的流程图.图1­2­18则当a =5,b =6,c =7时,输出的S =________.【解析】 由流程图的意义知p ==9,5+6+72所以S ===6.9×(9-5)×(9-6)×(9-7)2166【答案】 64.有关专家猜测,在未来几年内,中国的通货膨胀率保持在3%左右,这对我国经济的稳定有利无害.所谓通货膨胀率为3%,指的是每年消费品的价格增长率为3%.在这种情况下,某种品牌的钢琴2015年的价格是10 000元,请用流程图描述这种钢琴今后四年的价格变化情况,并输出四年后的价格..【解】 用P表示钢琴的价格,则有:2016年P=10 000×(1+3%)=10 300;2017年P=10 300×(1+3%)=10 609;2018年P=10 609×(1+3%)=10 927.27;2019年P=10 927.27×(1+3%)≈11 255.09.因此,价格的变化情况表为:年份2015年2016年2017年2018年2019年钢琴的价10 00010 30010 60910 927.2711 255.09格P/元流程图如图:。

【K12教育学习资料】2018-2019学年高中数学苏教版必修3:课时跟踪检测(十)系统抽样分层抽样

【K12教育学习资料】2018-2019学年高中数学苏教版必修3:课时跟踪检测(十)系统抽样分层抽样

课时跟踪检测(十) 系统抽样 分层抽样层级一 学业水平达标1.下列抽样是系统抽样的是________.(填序号)①从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i 0,以后i 0+5,i 0+10(超过15则从1再数起)号入样;②工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5 min 抽一件产品进行检验;③搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定的人数为止;④电影院调查观众的某一指标,通知每排(每排人数相同)座位号为14的观众留下座谈. 答案:①②④2.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是________.解析:为等距抽样,即为系统抽样. 答案:系统抽样3.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为________.解析:分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.答案:364.在学生人数比例为2∶3∶5的A ,B ,C 三所学校中,用分层抽样方法招募n 名志愿者,若在A 学校恰好选出了6名志愿者,那么n =________.解析:由22+3+5=6n ,得n =30.答案:305.某企业共有3 200名职工,其中中、青、老年职工的比例为5∶3∶2.(1)若从所有职工中抽取一个容量为400的样本,应采用哪种抽样方法更合理?中、青、老年职工应分别抽取多少人?(2)若从青年职工中抽取120人,试求所抽取的样本容量.解:(1)由于中、青、老年职工有明显的差异,采用分层抽样更合理. 按照比例抽取中、青、老年职工的人数分别为: 510×400=200,310×400=120,210×400=80, 因此应抽取的中、青、老年职工分别为200人、120人、80人.(2)由题设可知青年职工共有310×3 200=960人. 设抽取的样本容量为n ,则有n3 200×960=120.∴n =400,因此所抽取的样本容量为400.层级二 应试能力达标1.从2 016个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的分段间隔为________.解析:先从2 016个个体中剔除16个,则分段间隔为2 00020=100. 答案:1002.将参加数学竞赛的1 000名学生编号如下:0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,0003,…,0020,第一部分随机抽取一个号码为0015,则抽取的第40个号码为________.解析:由题意系统抽样的组距为20, 则15+39×20=795,故第40个号码为0795. 答案:07953.某校共有2 000名学生参加跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a ∶b ∶c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个容量为200的样本进行调查,则高三年级参加跑步的学生中应抽取________人.解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取110×450=45(人).答案:454.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是________.解析:了解学生的健康情况,男、女生抽取比例应该相同,因此应用分层抽样法.由题意,25500=20400,∴本题采用的抽样方法是分层抽样法.答案:分层抽样5.经问卷调查,某班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度.其中执“一般”态度的比“不喜欢”的多12人.按分层抽样方法从全班选出部分学生座谈摄影,如果选出的是5位“喜欢”摄影的同学,1位“不喜欢”摄影的同学和3位执“一般”态度的同学.那么全班学生中“喜欢”摄影的比全班学生人数的一半还多________人.解析:本班学生对摄影分别执“喜欢”、“不喜欢”和“一般”三种态度的人数比例为5∶1∶3,可设三种态度的人数分别是5x ,x,3x ,则3x -x =12,∴x =6.即人数分别为30,6,18.∴30-30+6+182=3.故结果是3人.答案:36.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 小组中抽取的号码个位数字与m +k 的个位数字相同,若m =6,则在第7组中抽取的号码是________.解析:m +k =6+7=13,由规定知抽取号码的个位数字为3,第7组中号码的十位数字为6.所以抽取号码为63.答案:637.一工厂生产了某种产品16 800件,它们来自甲、乙、丙三条生产线,为检查这批产品的质量,决定采用分层抽样的方法进行抽样,已知甲、丙二条生产线抽取的个体数和为乙生产线抽取的个体数的两倍,则乙生产线生产了________件产品.解析:甲、乙、丙抽取的个体数为x ,y ,z ,由题意x +z =2y ,即乙占总体的13,故乙生产线生产了16 800×13=5 600.答案:5 6008.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表:由于不小心,表格中A ,C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10.根据以上信息,可得C 产品的数量是______件.解析:设C 产品的数量为x ,则A 产品的数量为1 700-x ,C 产品的样本容量为a ,则A 产品的样本容量为10+a ,由分层抽样的定义可知1 700-x a +10=x a =1 300130,解得x =800.答案:8009.下面给出某村委会调查本村各户收入情况所作的抽样过程,阅读并回答问题. 本村人口:1 200人,户数:300,每户平均人口数4人; 应抽户数:30户; 抽样间隔:1 20030=40;确定随机数字:取一张人民币,编码的后两位数为12; 确定第一样本户:编码为12的户为第一样本户;确定第二样本户:12+40=52,编号为52的户为第二样本户; ……(1)该村委会采用了何种抽样方法? (2)说明抽样过程中存在哪些问题,并修改. (3)抽样过程中何处应用了简单随机抽样? 解:(1)系统抽样.(2)本题是对该村各户收入情况进行抽样而不是对该村个人收入情况抽样,故抽样间隔应为30030=10.其他步骤相应改为:确定随机数字:任取一张人民币,编号的最后一位为2; 确定第一样本户:编号为002的户为第一样本户;确定第二样本户:2+10=12,编号为012号的户为第二样本户; ……(3)在确定随机数字时,应用的是简单随机抽样,即任取一张人民币,记下编号的最后一位.10.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36·6=n6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。

2018-2019学年高中新三维一轮复习理数江苏专版:课时

2018-2019学年高中新三维一轮复习理数江苏专版:课时

课时跟踪检测(三十三) 基本不等式及其应用一抓基础,多练小题做到眼疾手快 1.“a >b >0”是“ab <a 2+b 22”的________条件.解析:由a >b >0得,a 2+b 2>2ab ;但由a 2+b 2>2ab 不能得到a >b >0,故“a >b >0”是“ab <a 2+b 22”的充分不必要条件.答案:充分不必要 2.当x >0时,f (x )=2xx 2+1的最大值为________. 解析:因为x >0,所以f (x )=2x x 2+1=2x +1x≤22=1, 当且仅当x =1x,即x =1时取等号.答案:13.若a ,b 都是正数,则⎝⎛⎭⎪⎫1+b a ⎝⎛⎭⎪⎫1+4a b的最小值为______.解析:因为a ,b 都是正数,所以⎝ ⎛⎭⎪⎫1+b a ⎝ ⎛⎭⎪⎫1+4a b =5+b a +4a b≥5+2b a ·4ab=9,当且仅当b =2a 时取等号.答案:94.当3<x <12时,函数y =x --xx的最大值为________. 解析:y =x --x x=-x 2+15x -36x=-⎝⎛⎭⎪⎫x +36x +15≤-2 x ·36x+15=3.当且仅当x =36x,即x =6时,y max =3.答案:35.(2018·扬州中学测试)已知a >b >1且2log a b +3log b a =7,则a +1b -1的最小值为________.解析:因为2log a b +3log b a =7,所以2(log a b )2-7log a b +3=0,解得log a b =12或log a b=3,因为a >b >1,所以log a b ∈(0,1),故log a b =12,从而b =a ,因此a +1b 2-1=a +1a -1=(a -1)+1a -1+1≥3,当且仅当a =2时等号成立. 答案:36.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品________件.解析:每批生产x 件,则平均每件产品的生产准备费用是800x元,每件产品的仓储费用是x 8元,则800x +x 8≥2 800x ·x 8=20,当且仅当800x =x8,即x =80时“=”成立,所以每批生产产品80件.答案:80二保高考,全练题型做到高考达标1.(2018·启东中学调研)已知ab =14,a ,b ∈(0,1),则11-a +21-b 的最小值为________.解析:由题意得b =14a ,所以0<14a <1,即a ∈⎝ ⎛⎭⎪⎫14,1,得11-a +21-b =11-a +8a 4a -1=11-a +24a -1+2. 4(1-a )+(4a -1)=3,记S =11-a +24a -1,则S =44-4a +24a -1=13[(4-4a )+(4a -1)]⎝ ⎛⎭⎪⎫44-4a +24a -1=2+23⎣⎢⎡⎦⎥⎤4-4a 4a -1+a -4-4a≥2+423,当且仅当4-4a 4a -1=a -4-4a时等号成立,所以所求最小值为4+423.答案:4+4232.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b,则m +n 的最小值是________.解析:由题意知ab =1,所以m =b +1a =2b ,n =a +1b=2a ,所以m +n =2(a +b )≥4ab=4,当且仅当a =b =1时取等号.答案:43.若2x+2y=1,则x +y 的取值范围是________.解析:因为2x +2y ≥22x ·2y =22x +y(当且仅当2x =2y 时等号成立),所以2x +y≤12,所以2x +y≤14,得x +y ≤-2. 答案:(-∞,-2]4.(2018·湖北七市(州)协作体联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是________.解析:将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,所以a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a=2b =3时等号成立,即ab 的最大值是92.答案:925.某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑到防洪堤的坚固性及水泥用料等因素,要求设计其横断面的面积为9 3 m 2,且高度不低于 3 m ,记防洪堤横断面的腰长为x m ,外周长(梯形的上底与两腰长的和)为y m ,若要使堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =________.解析:设横断面的高为h ,由题意得AD =BC +2·x 2=BC +x ,h =32x ,所以93=12(AD +BC )h =12(2BC +x )·32x ,故BC =18x -x2,由⎩⎪⎨⎪⎧h =32x ≥ 3,BC =18x -x2>0,得2≤x <6,所以y =BC +2x =18x+3x2(2≤x <6), 从而y =18x +3x2≥218x ·3x2=63, 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.答案:2 36.(2018·苏州期末)已知正数x ,y 满足x +y =1,则4x +2+1y +1的最小值为________.解析:令x +2=a ,y +1=b ,则a +b =4(a >2,b >1),所以4x +2+1y +1=4a +1b =14(a +b )⎝ ⎛⎭⎪⎫4a +1b =14⎝ ⎛⎭⎪⎫5+4b a +a b ≥14(5+4)=94,当且仅当a =83,b =43,即x =23,y =13时取等号.则4x +2+1y +1的最小值为94. 答案:947.(2017·南通三模)若正实数x ,y 满足x +y =1,则y x +4y的最小值是________.解析:因为正实数x ,y 满足x +y =1,所以y x +4y =yx+x +y y =y x +4xy +4≥2y x ·4xy+4=8,当且仅当y x =4x y ,即x =13,y =23时取“=”,所以y x +4y的最小值是8. 答案:88.已知实数x ,y 满足x 2+y 2-xy =1,则x +y 的最大值为________. 解析:因为x 2+y 2-xy =1, 所以x 2+y 2=1+xy .所以(x +y )2=1+3xy ≤1+3×⎝⎛⎭⎪⎫x +y 22,即(x +y )2≤4,解得-2≤x +y ≤2. 当且仅当x =y =1时右边等号成立. 所以x +y 的最大值为2. 答案:29.(1)当x <32时,求函数y =x +82x -3的最大值;(2)设0<x <2,求函数y =x-2x的最大值.解:(1)y =12(2x -3)+82x -3+32=-⎝ ⎛⎭⎪⎫3-2x 2+83-2x +32.当x <32时,有3-2x >0,所以3-2x 2+83-2x≥23-2x 2·83-2x=4, 当且仅当3-2x 2=83-2x ,即x =-12时取等号.于是y ≤-4+32=-52,故函数的最大值为-52.(2)因为0<x <2,所以2-x >0, 所以y =x-2x=2·x-x≤ 2·x +2-x2=2,当且仅当x =2-x ,即x =1时取等号, 所以当x =1时,函数y =x-2x 的最大值为 2.10.已知x >0,y >0,且2x +8y -xy =0,求: (1)xy 的最小值; (2)x +y 的最小值.解:(1)由2x +8y -xy =0,得8x +2y=1,又x >0,y >0, 则1=8x +2y ≥28x ·2y=8xy,得xy ≥64,当且仅当x =16,y =4时,等号成立. 所以xy 的最小值为64.(2)由2x +8y -xy =0,得8x +2y=1,则x +y =⎝ ⎛⎭⎪⎫8x +2y (x +y )=10+2x y +8y x≥10+22xy·8yx=18.当且仅当x =12且y =6时等号成立, 所以x +y 的最小值为18.三上台阶,自主选做志在冲刺名校1.(2018·淮安高三期中)在锐角三角形ABC 中,9tan A tan B +tan B tan C +tan C tanA 的最小值为________.解析:不妨设A =B ,则C =π-2A ,因为三角形ABC 是锐角三角形,所以π4<A <π2,所以tan A >1,所以9tan A tan B +tan B tan C +tan C tan A =9tan 2A +2tan A tan C =9tan 2A +2tan A tan(π-2A )=9tan 2A -2tan A tan 2A =9tan 2A -4tan 2A 1-tan 2A =9tan 2A +4-41-tan 2A=9(tan 2A -1)+4tan 2A -1+13≥25⎝ ⎛⎭⎪⎫当且仅当tan 2A =53时等号成立,所以9tan A tanB +tan B tanC +tan C tan A 的最小值为25.答案:252.(2018·苏北四市联考)已知对满足x +y +4=2xy 的任意正实数x ,y ,都有x 2+2xy +y 2-ax -ay +1≥0,则实数a 的取值范围为________.解析:法一:由x +y +4=2xy ≤x +y22得(x +y )2-2(x +y )-8≥0,又x ,y 是正实数,得x +y ≥4.原不等式整理可得(x +y )2-a (x +y )+1≥0,令x +y =t ,t ≥4,则t 2-at +1≥0,t ∈[4,+∞) (*)恒成立,当Δ=a 2-4≤0,即-2≤a ≤2时,(*)式恒成立;当a <-2时,对称轴t =a 2<-1,(*)式恒成立;当a >2时,对称轴t =a2,要使(*)式恒成立,则a 2<4,且16-4a +1≥0,得2<a ≤174.综上可得(*)式恒成立时,a ≤174,则实数a 的取值范围是⎝⎛⎦⎥⎤-∞,174.法二:由x +y +4=2xy ≤x +y22得(x +y )2-2(x +y )-8≥0,又x ,y 是正实数,得x +y ≥4.原不等式整理可得(x +y )2-a (x +y )+1≥0,令x +y =t ,t ≥4,则t 2-at +1≥0,t ∈[4,+∞) (*)恒成立,则a ≤⎝ ⎛⎭⎪⎫t +1t min =174,故实数a 的取值范围是⎝⎛⎦⎥⎤-∞,174.答案:⎝ ⎛⎦⎥⎤-∞,1743.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x+10 000x-1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式. (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解:(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.05×1 000x 万元,依题意得:当0<x <80时,L (x )=(0.05×1 000x )-13x 2-10x -250=-13x 2+40x -250.当x ≥80时,L (x )=(0.05×1 000x )-51x -10 000x+1 450-250=1 200-⎝ ⎛⎭⎪⎫x +10 000x .所以L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250,0<x <80,1 200-⎝ ⎛⎭⎪⎫x +10 000x ,x ≥80.(2)当0<x <80时,L (x )=-13(x -60)2+950.此时,当x =60时,L (x )取得最大值L (60)=950万元. 当x ≥80时,L (x )=1 200-⎝⎛⎭⎪⎫x +10 000x≤1 200-2x ·10 000x=1 200-200=1 000.此时x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000,所以,当年产量为100千件时,该厂在这一商品生产中所获利润最大,最大利润为1 000万元.。

2018-2019学年高中数学苏教版必修3章末综合测评1

2018-2019学年高中数学苏教版必修3章末综合测评1

章末综合测评(一)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填写在题中横线上)1.下面的伪代码运行后的输出结果是________.【解析】 第4行开始交换,a=2,b=3,c为赋值后的a,∴c=2.【答案】 2,3,22.(2015·北京高考改编)执行如图1所示的程序框图,输出的结果为________.图1【解析】 第一次循环:s =1-1=0,t =1+1=2,x =0,y =2,k =1;第二次循环:s =0-2=-2,t =0+2=2,x =-2,y =2,k =2;第三次循环:s =-2-2=-4,t =-2+2=0,x =-4,y =0,k =3.满足条件,退出循环,输出(-4,0).【答案】 (-4,0)3.执行下面的伪代码,输出的结果是________.【解析】 第一次循环:x =0+1=1,x =12=1;第二次循环:x =1+1=2,x =22=4;第三次循环:x =4+1=5,x =52=25.满足条件,退出循环.输出25.【答案】 254.对任意非零实数a 、b ,若a ⊗b 的运算原理如图2所示,则lg 1000⊗-2=________. 【导学号:90200031】(12)图2【解析】 令a =lg 1 000=3,b =-2=4,(12)∴a <b ,故输出==1.b -1a 4-13【答案】 15.阅读图3的流程图,若输出s 的值为-7,则判断框内可填写________.图3【解析】 第一次循环:s =2-1=1,i =1+2=3;第二次循环:s =1-3=-2,i =3+2=5;第三次循环:s =-2-5=-7,i =5+2=7.此时应退出循环,故判断框内应填“i <6”.【答案】 i <6(答案不唯一)6.如下图所给出的是一个算法的伪代码.如果输出的y 的值是20,则输入的x 的值是________.【解析】 当x≤5时,10x=20,即x=2;当x>5时,2.5x+5=20,解得x=6.【答案】 2或67.上述伪代码运行后输出的结果为________.【解析】 第一次循环a=Mod(1,5)=1.I=2;第二次循环a=Mod(3,5)=3.I=3;第三次循环a=Mod(6,5)=1.I=4;第四次循环a=Mod(5,5)=0.I=5;第五次循环a=Mod(5,5)=0.I=6.【答案】 08.图4是求12+22+32+…+1002的值的流程图,则正整数n=________.图4【解析】 因为第一次判断执行后,S←12,i←2,第二次判断执行后,S ←12+22,i ←3,而题目要求计算12+22+32+…+1002,故n =100.【答案】 1009.(2015·南京高二检测)下列伪代码输出的结果是________.【解析】 第一次循环:s =2×1+3=5,I =1+2=3;第二次循环:s =2×3+3=9,I =3+2=5;第三次循环:s =2×5+3=13,I =5+2=7;第四次循环:s =2×7+3=17,I =7+2=9.不满足条件,结束循环,输出17.【答案】 1710.执行如图5所示的流程图,若输入的x 为4,则输出y 的值为________.图5【解析】 当输入x =4时,计算y =x -1,得y =1.12不满足|y -x |<1.于是得x =1,此时y =-1=-,1212不满足|y -x |<1,此时x =-,得y =-.1254这样|y -x |==<1,执行“Y”,|-54+12|34所以输出的是-.54【答案】 -5411.(2015·南通高一月考)某程序的伪代码如下所示,则程序运行后的输出结果为________.【解析】 此程序的功能是计算1+3+5+7的值,故输出结果为16.【答案】 1612.阅读流程图6,如果输出i =5,那么在空白矩形框中应填入的语句为________.图6【解析】 当空白矩形框中应填入的语句为S =2i 时,在运行过程中各变量的值如下所示:i S 是否继续循环循环前 1 0第一圈 2 5 是第二圈 3 6 是第三圈 4 9 是第四圈 5 10 否故输出的i 值为5,符合题意.【答案】 S ←2i13.(2015·新课标Ⅰ高考改编)执行下面的程序框图7,如果输入的t =0.01,则输出的n =________.图7【解析】 执行第1次,t =0.01,S =1,n =0,m ==0.5,S =S -m =0.5,m ==0.25,n =1,S =0.5>t 12m2=0.01,是,循环;执行第2次,S =S -m =0.25,m ==0.125,n =2,S =0.25>t =0.01,是,m2循环;执行第3次,S =S -m =0.125,m ==0.062 5m2,n =3,S =0.125>t =0.01,是,循环;执行第4次,S =S -m =0.062 5,m ==0.03125,n =4,S =0.062m25>t =0.01,是,循环;执行第5次,S =S -m =0.031 25,m ==0.015625,n =5,S =0.03m2125>t =0.01,是,循环;执行第6次,S =S -m =0.015 625,m ==0.007 812 5,n =6,S =0.015 m2625>t =0.01,是,循环;执行第7次,S =S -m =0.0078125,m ==0.003906m225,n =7,S =0.007 812 5>t =0.01,否,输出n =7.【答案】 714.执行如图8所示的流程图,若输出的结果是8,则判断框内m 的取值范围是________.图8【解析】 由题知,k =1,S =0,第一次循环,S =2,k =2;第二次循环,S =2+2×2=6,k =3;…;第六次循环,S =30+2×6=42,k =6+1=7;第七次循环,S =42+2×7=56,k =7+1=8,此时应输出k 的值,从而易知m 的取值范围是(42,56].【答案】 (42,56]二、解答题(本大题共6个小题,共90分.解答时写出文字说明、证明过程或演算步骤)15.(本小题满分14分)设计一个算法,将n个数a1,a2,…,a n中的最小数找出来,并用伪代码表示这个算法.【解】 算法如下:S1 x←a1,l←2;S2 如果2≤l≤n,那么转S3;否则转S6;S3 输入a l;S4 如果a l<x,那么x←a l;S5 l←l+1,转S2;S6 输出x.伪代码如下:16.(本小题满分14分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的流程图.【解】 流程图如下图所示:17.(本小题满分14分)下列是某个问题的算法,将其改为伪代码,并画出流程图. 【导学号:90200032】算法:S1 令i ←1,S ←0.S2 若i ≤999成立,则执行S3.否则,输出S ,结束算法.S3 S ←S +.1i S4 i ←i +2,返回S2.【解】 伪代码和流程图如下:18.(本小题满分16分)设计算法求+++…+11×212×313×4的值.要求画出流程图,写出用基本语句编写的流程图.199×100【解】 程序框图:伪代码如下:19.(本小题满分16分)如图9所示程序框图中,有这样一个执行框x i =f (x i -1),其中的函数关系式为f (x )=,程序框图中的D 为函数f (x )的定义域.4x -2x +1(1)若输入x 0=,请写出输出的所有x i ;4965(2)若输出的所有x i 都相等,试求输入的初始值x 0.图9【解】 (1)当x 0=时,4965x 1=f (x 0)=f =,(4965)1119x 2=f (x 1)=f =,(1119)15x 3=f (x 2)=f =-1,终止循环,所以输出的数为,.(15)111915(2)要使输出的所有数x i 都相等,则x i =f (x i -1)=x i -1.此时有x 1=f (x 0)=x 0,即=x 0,4x 0-2x 0+1解得x 0=1或x 0=2,所以输入的初始值x 0=1或x 0=2时,输出的所有数x i 都相等.20.(本小题满分16分)新课标要求学生数学模块学分认定由模块成绩决定,模块成绩由考试成绩和平时成绩构成,各占50%,若模块成绩大于或等于60分,获得2学分,否则不能获得学分(为0分).设计一算法,通过考试成绩和平时成绩计算学分,并画出流程图.【解】 算法如下:S1 输入考试成绩C 1和平时成绩C 2;S2 计算模块成绩C =;C 1+C 22S3 判断C 与60的大小关系,输出学分F :若C ≥60,则输出F =2;若C <60,则输出F =0.流程图如图所示:。

苏教版2018-2019学年高中数学必修三教学案:第3章 章末小结与测评 Word版含答案

苏教版2018-2019学年高中数学必修三教学案:第3章 章末小结与测评 Word版含答案

一、随机事件及概率1.随机现象在一定条件下,某种现象可能发生,也可能不发生,事先不能断定出现哪种结果.2.事件的分类(1)必然事件:在一定条件下,必然发生的事件;(2)不可能事件:在一定条件下,肯定不发生的事件;(3)随机事件:在一定条件下,可能发生也可能不发生的事件,常用大写字母表示随机事件,简称为事件.3.随机事件的概率(1)随机事件的概率:如果随机事件A在n次试验中发生了m次,当试验的次数n很大时,我们可以将事件A发生的频率m n 作为事件A 发生的概率的近似值,即P (A )≈m n.(2)概率的性质:①有界性:对任意事件A ,有0≤P (A )≤1.②规范性:若Ω、∅分别代表必然事件和不可能事件,则P (Ω)=1;P (∅)=0. 二、古典概型 1.基本事件在一次试验中可能出现的每一个基本结果. 2.等可能事件若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件. 3.古典概型(1)特点:有限性,等可能性. (2)概率的计算公式:如果一次试验的等可能基本事件共有n 个,那么每一个等可能基本事件发生的概率都是1n;如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P (A )=m n.即P (A )=事件A 包含的基本事件数试验的基本事件总数.三、几何概型(1)特点:无限性,等可能性. (2)概率的计算公式:在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P (A )=d 的测度D 的测度.这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.四、基本事件 1.互斥事件(1)定义:不能同时发生的两个事件称为互斥事件.如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,就说事件A 1,A 2,…,A n 彼此互斥.(2)规定:设A ,B 为互斥事件,若事件A 、B 至少有一个发生,我们把这个事件记作A +B . 2.互斥事件的概率加法公式(1)若事件A 、B 互斥,那么事件A +B 发生的概率等于事件A 、B 分别发生的概率的和即P (A +B )=P (A )+P (B ).(2)若事件A 1,A 2,…,A n 两两互斥.则P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).3.对立事件(1)定义:两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A .(2)性质:P (A )+P (A )=1,P (A )=1-P (A ).(考试时间:90分钟 试卷总分:120分)一、填空题(本大题共14小题,每小题5分,共70分) 1.下列事件属于必然事件的有________. ①长为2,2,4的三条线段,组成等腰三角形 ②电话在响一声时就被接到 ③实数的平方为正数 ④全等三角形面积相等解析:①2+2=4,不能组成三角形,为不可能事件;②为随机事件;③中0的平方为0,为随机事件;④为必然事件.答案:④2.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是__________. 解析:共出现4种结果其两正面向上只有1种, 故P =14.答案:143.在坐标平面内,已知点集M ={(x ,y )|x ∈N ,且x ≤3,y ∈N ,且y ≤3)},在M 中任取一点,则这个点在x 轴上方的概率是________.解析:集合M 中共有16个点,其中在x 轴上方的有12个,故所求概率为1216=34.答案:344.某人随机地将标注为A ,B ,C 的三个小球放入编号为1,2,3的三个盒子中,每个盒子放一个小球,全部放完.则标注为B 的小球放入编号为奇数的盒子中的概率等于________.解析:随机地将标注为A ,B ,C 的三个小球放入编号为1,2,3的三个盒子中共有6种情况,而将标注为B 的小球放入编号为奇数的盒子中有B ,A ,C ;B ,C ,A ;A ,C ,B ;C ,A ,B ,共4种情况,因此所求概率等于23.答案:235.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环)的概率为________.解析:以上事件为互斥事件,故命中6环以下(含6环)的概率为1-0.5-0.2-0.1=0.2. 答案:0.26.抛掷一颗骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________. 解析:出现奇数点或2点的概率为P =12+16=23.答案:237.某部三册的小说,任意排放在书架的同一层上,各册从左到右或从右到左恰好为第1,2,3册的概率为________.解析:所有基本事件为:123,132,213,231,312,321共6个.其中“从左到右或从右到左恰好为第1,2,3册”包含2个基本事件,故P =26=13.答案:138.函数f (x )=x 2-x -2,x ∈[-5,5],那么任意x 0∈[-5,5]使f (x 0)≤0的概率为________.解析:f (x )=x 2-x -2=⎝ ⎛⎭⎪⎫x -122-94,x ∈[-5,5],区间长度为10,∵f (x 0)=⎝⎛⎭⎪⎫x 0-122-94≤0, ∴-1≤x 0≤2,区间长度为3,∴概率为310.答案:3109.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________.解析:甲不输为两个事件的和事件,其一为甲获胜(事件A ),其二为甲获平局(事件B ),并且两事件是互斥事件.∵P (A +B )=P (A )+P (B ),∴P (B )=P (A +B )-P (A )=90%-40%=50%. 答案:50%10.同时抛掷两枚质地均匀的骰子,所得的点数之和为6的概率是________.解析:掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的事件为(1,5),(2,4),(3,3),(4,2),(5,1)共5个,故所得的点数之和为6的概率是P =536.答案:53611.从分别写有ABCDE 的五张卡片中任取两张,这两张卡片上的字母顺序恰好相邻的概率为________.解析:随机抽取两张可能性有AB ,AC ,AD ,AE ,BC ,BD ,BE ,CD ,CE ,DE ,BA ,CA ,DA ,EA ,CB ,DB ,EB ,DC ,EC ,ED ,共20种.卡片字母相邻:AB ,BA ,BC ,CB ,CD ,DC ,DE ,ED 共8种. ∴概率为820=25.答案:2512.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的小圆.现将半径为2 cm 的一枚铁片抛到此纸板上,使铁片整体随机落在纸板内,则铁片落下后把小圆全部覆盖的概率为________.解析:铁片整体随机落在纸板内的测度D =πR 2=64π;而铁片落下后把小圆全部覆盖的测度d =πr 2=π,所以所求的概率P =d D =π64π=164.答案:16413.(安徽高考改编)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.解析:由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙,丁,戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910.答案:91014.从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率为________.解析:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 包含(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2),即事件A 由4个基本事件组成,因而,P (A )=46=23.答案:23二、解答题(本大题共4小题,共50分)15.(本小题满分12分)除了电视节目中的游戏外,我们平时也会遇到很多和概率有关的游戏问题,且看下面的游戏:如图所示,从“开始”处出发,每次掷出两颗骰子,两颗骰子点数之和即为要走的格数.(1)在第一轮到达“车站”的概率是多少?(2)假设你想要在第一轮到电信大楼、杭州日报或体育馆,则概率是多少?解:(1)第一轮要到“车站”,则必须掷出的点数之和为5,而用2颗骰子掷出5会有4种结果,假定一颗骰子为红色,另一颗骰子为蓝色,则有(1,4),(2,3),(3,2),(4,1)4种组合,而抛掷两颗骰子共有36种可能结果,所以第一轮到达“车站”的概率为436=19.(2)需要掷出的点数之和为6或8或9,而要得出这3种结果共有下列14种组合:(5,1),(4,2),(3,3),(2,4),(1,5),(6,2),(5,3),(4,4),(3,5),(2,6),(6,3),(5,4),(4,5),(3,6),所以到达这一区域的概率为1436=718.16.(辽宁高考)(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.解:(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6,任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.用A 表示“都是甲类题”这一事件,则A 包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P (A )=615=25.(2)基本事件同(1).用B 表示“不是同一类题”这一事件,则B 包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P (B )=815.17.(本小题满分12分)某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.(1)打进的电话在响5声之前被接的概率是多少?(2)打进的电话响4声而不被接的概率是多少?解:(1)设事件“电话响第k 声时被接”为A k (k ∈N ),那么事件A k 彼此互斥,设“打进的电话在响5声之前被接”为事件A ,根据互斥事件概率加法公式,得P (A )=P (A 1+A 2+A 3+A 4)=P (A 1)+P (A 2)+P (A 3)+P (A 4)=0.1+0.2+0.3+0.35=0.95.(2)事件“打进的电话响4声而不被接”是事件A “打进的电话在响5声之前被接”的对立事件,记为A ;根据对立事件的概率公式,得P (A )=1-P (A )=1-0.95=0.05.18.(本小题满分14分)一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回,求取出的两个球上编号之积为奇数的概率;(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测,这10个球的弹性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.解:(1)设“取出的两个球上编号之积为奇数”为事件B ,Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(5,1),(5,2),(5,3),(5,4)…},共包含20个基本事件;其中B ={(1,3),(1,5),(3,1),(3,5),(5,1),(5,3)},包含6个基本事件,则P (B )=620=310.(2)样本平均数为x =110(8.7+9.1+8.3+9.6+9.4+8.7+9.7+9.3+9.2+8.0)=9,设B 表示事件“从样本中任取一数,该数与样本平均数之差的绝对值不超过0.5”,则包含{8.7,9.1,9.4,8.7,9.3,9.2}6个基本事件,所以P (B )=610=35.。

高中数学必修3课时跟踪检测顺序结构与选择结构

高中数学必修3课时跟踪检测顺序结构与选择结构

课时跟踪检测(十) 顺序结构与选择结构1如图所示的算法框图表示的算法意义是( ).3+4-5 ztzz /输⑹A .求边长为 3,4,5的直角三角形面积B .求边长为 3,4,5的直角三角形内切圆面积C .求边长为 3,4,5的直角三角形外接圆面积D .求以3,4,5为弦的圆面积解析:选B 直角三角形内切圆半径 a + b — c22•如图是计算函数别填入的是(In — x , x w- 2, y = 3x ,— 2<x w 3,2x , x>3的函数值的算法框图,在①②③处应分/输入拧/时,s = 3t € [ — 3,3);当 1 < t w 3 时,s = 4t — t 2 = — (t —2)2+ 4,此时 3< s < 4.综上,可得输出的 s € [— 3,4]. 4.如图所示的框图中, X 1 , X 2, X 3为某次考试三个评阅人对同一道题的独立评分, 为该题的最终得分.当X i = 6, X 2= 9, p = 8.5时,X 3等于()A • [ — 3,4] C . [ — 4,3]B.[—5,2] [—2,5]解析:选A 算法框图的功能是求分段函数s=丿t , t ;1,的值.所以当—1W t v 1 4t — t , t >1/输入匸/A . 11解析:选C 显然满足p = 8.5的可能为6+2119+ 8=8.5或专 =8.5.若X 3= 11,不满足|X 311+ 9—X 1|V |x 3 — X 2|,则 X 1 = 11 , p = —2 — = 10,不满足题意; 若 X 3= 8,不满足 |X 3 — X 1|V |X 3 — X 2|,8 + 9则 X 1 = 8, p = —2 — = 8.5,满足题意.5•如图所示的算法框图能判断任意输入的整数的奇偶性,其中判断框内的条件是B . 10[W]/输出&是奇数%^输出■是僭数7I「厂I '解析:x 除以2的余数是0或1,当余数为0时,x 为偶数;当余数为1时,x 为奇数. 答案:m = 1(或m ^ 0)6•如图(2)所示的框图是计算图(1)(其中大正方形的边长为 a )中空白部分面积的算法,则①中应填 _________ •解析:由平面几何知识可得空白部分的面积为答案:S =》2- a 2 7.某种电子产品的采购商指导价为每台 200元,若一次采购达到一定量,还可享受折扣.如图为某位采购商根据折扣情况设计的算法框图,则该程序运行时,在输入一个正整数x 之后,输出的S 值的实际意义是 __________________ ;若一次采购85台该电子产品,贝U S________元.g g □①/输fEin 2 22a — a .输入豊4/ 刑p 除以2的余救图⑴/输入a /图⑵1^200 I解析:根据算法框图可知各分支中p表示该电子产品的实际采购价格,因此S表示次采购共需花费的金额. 因为85€ (50,100],所以采购价格为200X 0.9= 180(元/台),所以S=180 X 85= 15 300(元).答案:一次采购共需花费的金额 15 3008.如图所示是解决某个问题而绘制的算法框图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1) 该框图解决的是怎样的一个问题?(2) 若最终输出的结果 屮=3, y 2=- 2,当x 取5时输出的结果 5a + b 的值 应该是多大?(3) 在(2)的前提下,输入的x 值越大,输出的ax + b 是不是越大?为什么? ⑷在(2)的前提下,当输入的 x 值为多大时,输出结果 ax + b 等于0? 解:⑴该框图解决的是求函数 f(x) = ax + b 的函数值的问题.其中输入的是自变量 x 的值,输出的是x 对应的函数值.(2)y i = 3,即 2a + b = 3.① y 2= — 2,即一3a + b = — 2.② 由①②得a = 1, b = 1./• f(x)= x + 1.•••当 x 取 5 时,5a + b = f(5) = 5X 1 + 1 = 6.⑶输入的x 值越大,输出的函数值 ax + b 越大,因为f(x)= x + 1是R 上的增函数.⑷令f(x)= x + 1 = 0,得x =— 1,所以当输入的 x 值为一1时,输出的函数值为 0.9. 算法框图如图所示,根据该算法框图回答以下问题:(1)该算法框图是为什么问题而设计的?解:(1) “a v b 且a v c 且a v d ”是判断a 是否为最小的数,如果成立,则输出a ,此时2 ]1'戶-3HC+1&开始~TI输出了a, b, c, d中最小的数;如果不成立,也就是a不是最小数,从而进入“b v c且b v d”,它是判断当a不是最小数时,b是否为最小数,如果成立,则输出b,说明此时也是输出了a,b,c,d中最小的数;如果不成立,就说明a与b都不是最小的数,从而进入“c v d”,它是判断当a, b都不是最小数时,c是否为最小数,如果成立,则输出c,说明此时输出了a, b, c, d中最小的数;如果不成立,则输出d,此时d是a, b, c, d中最小的数.故算法框图是为“输出a,b,c, d 四个数中的最小数” 而设计的.(2)当输入的四个数分别为5,2,7,22 时,最后输出的结果是2.xA. y= ln( —x), y= 3x, y= 2B. y= ln( —x), y= 2 , y= 3xC. y= 3x, y= 2x, y= ln( —x)xD. y= 3x, y= ln( —x), y= 2解析:选B 依题意得,当x w —2时,y= ln(—x),因此①处应填y= ln(—x);当一2<x w 3时,y= 3x,因此③处应填y= 3x;当x>3时,y= 2x,因此②处应填y= 2x.3. 执行如图所示的算法框图,如果输入的t€ [—1,3],则输出的s属于()。

2018-2019学年高中数学同步苏教版必修3学案:第1章 1.2 1.2.1 顺序结构 Word版含解析

2018-2019学年高中数学同步苏教版必修3学案:第1章 1.2 1.2.1 顺序结构 Word版含解析

1.2.1 顺序结构[新知初探]1.流程图的概念流程图是由一些图框和流程线组成的,其中图框表示各种操作的类型,图框中的文字和符号表示操作的内容,流程线表示操作的先后次序.2.常见的图框、流程线及各自表示的功能[点睛]关于流程图,要注意以下几点(1)起止框是任何流程图必不可少的,它表明算法的开始和结束.(2)输入、输出框可用在算法中任何需要输入、输出的位置,需要输入、输出的字母、符号、数据都填在框内.(3)处理框用于数据处理需要的算式、公式等,另外,对变量进行赋值,也用到了处理框.(4)流程线是有方向箭头的,不要忘记画箭头,因为它是反映流程图的先后执行顺序的,如不画箭头,就难以判定各框内程序的执行顺序了.3.顺序结构及形式[小试身手]1.下列几个选项中不是流程图符号的是________.答案:(1)2.下面三个流程图,不是顺序结构的是________.答案:(2)[典例] 下列关于流程图的符号的理解中,正确的有________.流程图的基本概念①任何一个流程图都必须有起止框;②输入框只能在开始框之后,输出框只能在结束框之前;③判断框是唯一具有超过一个退出点的图形符号;④判断框内的条件是唯一的.[解析]任何一个程序都有开始和结束,因而必须有起止框;输入框和输出框可以放在算法中任何需要输入、输出的位置;判断框内的条件不是唯一的,如条件a>b,也可写成a≤b,故只有①③正确.[答案]①③[活学活用]下列关于流程线的说法:①流程线表示算法步骤执行的顺序,用来连接图框;②流程线只要是上下方向就表示自上向下执行可以不要箭头;③流程线无论什么方向,总要按箭头的指向执行;④流程线是带有箭头的线,它可以画成折线.其中正确的有________.答案:①③④[典例]已知点P(x,y0)和直线l:Ax+By+C=0(A2+B2≠0),求点P(x0,y0)到直线l 的距离d.设计算法,并画出流程图.[解]算法如下:S1输入点的坐标x0,y0,输入直线方程的系数A,B,C;S2E1←Ax0+By0+C;S3E2←A2+B2;S4d←|E1|E2;S5输出d.流程图如图所示:画顺序结构的流程图利用梯形的面积公式计算上底为2,下底为4,高为5的梯形的面积.设计出该问题的算法及流程图.解:算法如下: S1a ←2,b ←4,h ←5;S2S ←12(a +b )h ;S3 输出S .该算法的流程图如图所示.[典例] 如图是为解决某个问题而绘制的流程图,仔细分析各图框内的内容及图框之间的关系,回答下面的问题:(1)图框①中x ←2的含义是什么? (2)图框②中y 1←ax +b 的含义是什么? (3)图框④中y 2←ax +b 的含义是什么?顺序结构流程图的识读(4)该流程图解决的是怎样的一个问题?(5)若最终输出的结果y 1=3,y 2=-2,当x 取5时,输出的结果5a +b 的值应该是多少?(6)在(5)的前提下输入的x 值越大,输出的ax +b 的值是不是也越大?为什么? (7)在(5)的前提下,当输入的x 为多大时,输出的结果为0? [解](1)图框①中x ←2表示把2赋给变量x (即使x =2). (2)图框②中y 1←ax +b 的含义:当x =2时, 计算ax +b 的值,并把这个值赋给y 1.(3)图框④中y 2←ax +b 的含义:当x =-3时, 计算ax +b 的值,并把这个值赋给y 2.(4)该流程图解决的是求函数f (x )=ax +b 的函数值的问题,其中输入的是自变量x 的值,输出的是x 对应的函数值.(5)y 1=3,即2a +b =3;y 2=-2,即-3a +b =-2;从而可得a =1,b =1,故f (x )=x +1,当x 取5时,5a +b =f (5)=6.(6)输入的x 值越大,输出的函数值ax +b 越大, 因为f (x )=x +1是(-∞,+∞)上的增函数. (7)令f (x )=x +1=0,得x =-1,因而当输入值为-1时,输出的函数值为0.图1是计算图2中阴影部分面积的一个流程图,其中,①中应填________________.解析:∵一个花瓣形面积为2·ð··⎛⎫ ⎪⎝⎭1a21a a 44222=2⎝⎛⎭⎫a 216π-18a 2=14a 2·π-22,∴图中阴影部分面积应为π-22a 2,故①处应填S ←π-22a 2. 答案:S ←π-22a 2[层级一 学业水平达标]1.下列几个选项中,不是流程图的符号的是________.(填序号)答案:(2)(3)(4)2.如图表示的算法结构是________. 答案:顺序结构3.要解决下面的四个问题,只用顺序结构画不 出其流程图的是________.①当n =10时,利用公式1+2+3+…+n =n (n +1)2,计算1+2+3+…+10; ②当圆的面积已知时,求圆的半径;③给定一个数x ,求函数f (x )=⎩⎪⎨⎪⎧1,x >0,-1,x ≤0的值;④当x =5时,求函数f (x )=x 2-3x -5的函数值. 答案:③4.阅读下列流程图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x 赋值,然后倒着推,b =15时,2a -3=15,a =9,当a =9时,2x +1=9,x =3.答案:x ←35.某学生五门功课成绩为80,95,78,87,65.写出平均成绩的算法,画出流程图. 解:算法如下:S1S←80;S2S←S+95;S3S←S+78;S4S←S+87;S5S←S+65;S6A←S/5;S7输出A.流程图:[层级二应试能力达标] 1.如图所示的流程图解决的数学问题是________.答案:计算半径为2的圆的面积2.阅读如图所示流程图,其输出的结果是________.答案:43.下面四个流程图中不是顺序结构的是________.答案:(3)4.如图所示的流程图最终输出的结果是________.解析:由题意y=(22-1)2-1=8.答案:85.下列流程图表示的算法最后运行的结果为________.解析:无论a ,b 输入什么数值,程序执行到第二、三步重新对a ,b 进行赋值,a =4,b =2,所以T =8.答案:86.如图所示的流程图的输出结果是________.解析:执行过程为x =1,y =2,z =3, x =y =2,y =x =2,z =y =2. 答案:27.如图是解方程组⎩⎪⎨⎪⎧2x -y =1①4x +3y =7 ②的一个流程图,则对应的算法为:S1_________________________________________________________; S2_________________________________________________________; S3_________________________________________________________. 答案:将方程②中x 的系数除以方程①中x 的系数得商数m =4÷2=2方程②减去m 乘以方程①的积消去方程②中的x 得到⎩⎪⎨⎪⎧2x -y =1,5y =5将上面的方程组自下而上回代求解得到y =1,x =18.要求底面边长为4,侧棱长为5的正四棱锥的侧面积及体积.甲、乙二同学分别设计了一个算法并画出了相应的流程图如下,其中正确的是________.答案:甲、乙9.如图所示是一个流程图,根据该图和下列各小题的条件回答问题.(1)该流程图解决的是一个什么问题?(2)若输入的a 值为0和4时,输出的值相等,则当输入的a 的值为3时,输出的值为多少?(3)在(2)的条件下,要想使输出的值最大,输入的a 值应为多大?解:(1)该流程图解决的是求二次函数f (x )=-x 2+mx 的函数值的问题.(2)若输入的a 值为0和4时,输出的值相等,即f (0)=f (4).∵f (0)=0,f (4)=-16+4m ,∴-16+4m =0.∴m =4,∴f (x )=-x 2+4x .∵f (3)=-32+4×3=3,∴当输入的a 的值为3时,输出的值为3.(3)∵f (x )=-x 2+4x =-(x -2)2+4,当x =2时,f (x )max =4,∴要想使输出的值最大,输入的a 的值应为2.10.阅读下列两个求三角形面积的流程图,回答问题.(1)图①的流程图输出结果S 是多少?图②中若输入a =4,h =3,输出的结果是多少?(2)对比一下两个流程图,你有什么发现?解:(1)图①运行后,S =12×4×3=6,故图①输出结果为6.图②当a =4,h =3时输出的结果也为6.(2)通过对比,图①只能求底边长为4、高为3的三角形的面积.图②由于底边长和高要求输入,故可求任意三角形的面积.可见一个好的算法,不仅可以解决某个问题,更可以解决某一类问题,也就是说,设计算法时,我们应尽量“优化”.。

2018-2019学年高一数学苏教版必修三练习:课时跟踪检测(一) 算法的含义 Word版含答案

2018-2019学年高一数学苏教版必修三练习:课时跟踪检测(一) 算法的含义 Word版含答案

姓名,年级:时间:课时跟踪检测(一)算法的含义[层级一学业水平达标]1.有关算法的描述有下列几种说法:①对一类问题都有效;②对个别问题有效;③可以一步一步地进行,每一步都有唯一的结果;④是一种通法,只要按部就班地做,总能得到结果.其中描述正确的为________.解析:算法通常是指可以用计算机来解决的某一类问题的程序或步骤,所以①正确,②错误.由于算法必须是明确的,有效的,而且在有限步内完成,故③④正确.答案:①③④2.某人坐飞机去外地办一件急事,下面是他自己从家里出发到坐在机舱内的主要算法,请补充完整.第一步,乘车去飞机场售票处;第二步,____________________________;第三步,凭票登机对号入座.答案:在售票处购买飞机票3.已知算法:第一步,输入n。

第二步,判断n是否是2,若n=2,则n满足条件;若n〉2,则执行第三步.第三步,依次检验从2到n-1的整数能不能整除n,若不能整除n,满足条件.该算法的功能是________.解析:因为2是质数,且大于2的任何数,只要它不能被2,3,…,n-1整除,则n一定为质数.故上述步骤是判断n是否为质数的算法.答案:判断所给的数是否为质数4.写出求长、宽、高分别为3,2,4的长方体表面积的算法:第一步取a=3,b=2,c=4;第二步____________________________________________________;第三步输出结果S.答案:计算S=2ab+2bc+2ac5.已知函数y={-x2-1x≤-1,,x3x〉-1,试设计一个算法输入x的值,求对应的函数值.解:算法如下:第一步输入x的值;第二步当x≤-1时,计算y=-x2-1,否则执行第三步;第三步计算y=x3;第四步输出y.[层级二应试能力达标]1.已知球的表面积为16π,求球的体积的一个算法如下:第一步取S=16π;第二步_____________________________________________________;第三步_____________________________________________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(三) 选择结构
[层级一 学业水平达标]
1.下列函数求值算法中需要用到选择结构的是________. ①f (x )=x 2-1;②f (x )=2x +1;
③f (x )=⎩
⎪⎨⎪⎧
x 2+1,x >1,
x 2-1,x ≤1;④f (x )=2x .
答案:③
2.指出流程图的运行结果,若输入-4,则输出结果为________.
答案:是负数
3.如图是求某函数值的流程图,则满足该流程图的函数是______________.
答案:y =⎩
⎪⎨⎪⎧
x -2,x ≥3,
4-x ,x <3
4.如图所示的流程图,若a =5,则输出b =________.
解析:这是一个分段函数b =⎩
⎪⎨⎪⎧
a 2+1,a ≤5,
2a ,a >5,的求值问题.根据条件易知,b =52+1
=26.
答案:26
5.设计一个判断正整数p 是否是正整数q 的约数的算法,并画出其流程图. 解:算法如下: S1 输入p ,q ;
S2 判断p 除q 的余数r 是否为零,如果r =0,则输出“p 是q 的约数”;否则,输出“p 不是q 的约数”.
流程图:
[层级二 应试能力达标]
1.如图所示的流程图的功能是________.
解析:根据条件结构的定义, 当a ≥b 时,输出a -b ; 当a <b 时,输出b -a . 故输出|a -b |. 答案:计算|a -b |
2.阅读如图所示的流程图,若运行该程序后输出的y 值为1
8,则输入的实数x 的值为
________.
解析:由流程图知:令2x 2-1=18(x >0),则x =3
4,
令⎝⎛⎭⎫12x =18(x ≤0),无解,∴输入的实数x =3
4. 答案:34
3.已知函数y =|x -3|,如流程图表示的是给定x 的值,求其相应函数值的算法,请将该流程图补充完整.其中①处应填________,②处应填________.
解析:由y =|x -3|=⎩
⎪⎨⎪⎧
x -3,x ≥3,
3-x ,x <3.
∴①处应填“x <3”,②处应填“y ←x -3”. 答案:x <3 y ←x -3
4.阅读如图所示的流程图,若输入值x =3,则输出的结果是________.
答案:1.5
5.对任意非零实数a ,b ,若a ⊗b 的运算原理如流程图所示,则3⊗2=________.。

相关文档
最新文档