第9章强度理论

合集下载

强度理论

强度理论
在Mmax和FS,max同时存在的横截面C稍稍偏左的横截 面上,该工字形截面腹板与翼缘交界点a处,正应力 和切应力分别比较接近前面求得的max和max,且该 点处于平面应力状态,故需利用强度理论对该点进 行强度校核。
M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2

2 0
3 2 27.7 MP a 2 2
2

由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2

材料力学面试重点概念36题

材料力学面试重点概念36题

材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。

2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。

(2)均匀性:构件内各处的力学性能相同。

(3)各向同性:物体内各方向力学性能相同。

3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。

4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。

5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。

(2)用截面法求解内力。

6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。

9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。

2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。

横截面上正应力为零。

3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。

第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。

答:(1)受力特点:外力的合力作用线与杆的轴线重合。

(2)变形特点:沿轴向伸长或缩短。

11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。

σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)

3Fx 4a 2
[
]
x2 0.1277x6.39104 0
由此得切口的允许深度为
x5.20 mm
10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为 εa =1.0×10-3
2Sz(a)
S z,max
[2.23104
1 0.0085(0.140 0.0137)2 ]m3 2
2.90104 m3
式中:足标 b 系指翼缘与腹板的交界点;足标 a 系指上翼缘顶边中点。 3.应力计算及强度校核
三个可能的危险点( a , b 和 c )示如图 9-5。
a 点处的正应力和切应力分别为
x1
4F πD 2
x2 0
设圆柱体与外管间的相互作用力的压强为 p,在其作用下,外管纵截面上的周向正应力为
t2
pD 2
(a)
在外压 p 作用下(图 b,尺寸已放大),圆柱体内任一点处的径向与周向正应力均为
r1 t1 p
根据广义胡克定律,圆柱体外表面的周向正应变为
t1
1 E1
t1
1
x1
松比 均为已知。试求内压 p 与扭力偶矩 M 之值。
题 9-14 图 解:圆筒壁内任意一点的应力状态如图 9-14 所示。
图中所示各应力分量分别为
图 9-14
由此可得
x
pD 4
,
t p2D,
2M πD2
σ0 σ x , σ90 σt ,
σ 4 5
τ
3pD, 8δ
根据广义胡克定律,贴片方向的正应变为
σ1
σ2
σt
pD,σ 4δ
3
0
9-13 图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为

材料力学第9章 强度理论

材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E

b
E
1 1 1 2 3 E
1u
1u
E

b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa

工程力学第9章 应力状态与强度理论

工程力学第9章 应力状态与强度理论

27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16

第九章第六节梁弯曲时的应力及强度计算(上课用)

第九章第六节梁弯曲时的应力及强度计算(上课用)

m
V
( Stresses in Beams)
m

m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为

V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.

材料力学作业(8-11)

材料力学作业(8-11)

第八章 应力应变状态分析一、选择或填空题1、过受力构件内任一点,取截面的不同方位,各个面上的( )。

A 、正应力相同,切应力不同;B 、正应力不同,切应力相同;C 、正应力相同,切应力相同;D 、正应力不同,切应力不同。

2、在单元体的主平面上( )。

A 、正应力一定最大;B 、正应力一定为零;C 、切应力一定最小;D 、切应力一定为零。

3、图示矩形截面悬臂梁,A-A 为任意横截面,1点位于截面上边缘,3点位于中性层,则1、2、3点的应力状态单元体分别为( )。

A-AA B C4、图示单元体,其最大主应力为( )A 、σ;B 、2σ;C 、3σ;D 、4σ。

5、下面 单元体表示构件A 点的应力状态。

6、图示单元体,如果MPa 30=ασ,则βσ=( ) A 、100Mpa ; B 、50Mpa ; C 、20MPa ; D 、0MPa 。

(C)7、图示单元体应力状态,沿x 方向的线应变εx 可表示为( )A 、Eyσ; B 、)(1y x E μσσ−;C 、)(1x y E μσσ− ;D 、Gτ。

8、图示应力圆对应于单元体( )。

9、已知单元体及应力圆如图所示,σ1所在主平面的法线方向为( )。

A 、n 1;B 、 n 2;C 、n 3;D 、n4。

二、计算题1、已知应力状态如图所示,试用解析法计算图中指定截面上的正应力和切应力。

2、试画图示应力状态的三向应力圆,并求主应力、最大正应力和最大切应力。

3、边长为20mm的钢立方块置于刚性模中,在顶面受力F=14kN作用。

已知材料的泊松比为0.3,求立方体各个面上的正应力。

4、图示矩形截面梁某截面上的弯矩和剪力分别为M=10 kN.m,Q=120 kN。

试绘出截面上1、2、3、4各点的应力状态单元体,并求其主应力。

第九章 强度理论一、选择题或填空题 1、在冬天严寒天气下,水管中的水会受冻而结冰。

根据低温下水管和冰所受力情况可知( )。

A 、冰先破裂而水管完好;B 、水管先破裂而冰完好;C 、冰与水管同时破裂;D 、不一定何者先破裂。

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
最大主应力和最小主应力的计算式
max m in
x
y
2
x
2
y
2
2 x
确定 max 和 min 所在平面的方法
1)若x>y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定max 所在的平面;
2)若x <y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定min 所在的平面;
2

2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
利用上述两式可以求得 de 斜截面上的正应力和切
设 de 斜截面面积为 dA,则 ae 面的面积为 dAsin , ad面的面积为 dAcos 。取 t 和 n 为参考轴,建立棱
柱体 ade 的受力平衡方程如下:
dA ( xdAcos ) sin ( xdAcos ) cos ( ydAsin ) cos ( ydAsin ) sin 0
y
2
2 x
105 MPa
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
0
1 2
arctan(
2 x x

第九章 梁的强度和刚度计算

第九章 梁的强度和刚度计算
第九章 梁的强度和刚度计算
2023最新整理收集 do
something
第一节
梁横截面上的正应力
第二节 梁横截面上的剪应力
第三节 梁的强度计算
第四节 弯曲中心的概念
第五节 梁的变形和刚度计算
第六节 应力状态和强度理论 小结
返回
第七章 梁的强度和刚度计算
梁的一般情况是横截面上同时 存在剪力和弯矩两种内力,称作剪 力(横力)弯曲。与此相应的截面 上任一点处有剪应力τ和正应力σ。 且剪应力τ只与剪力Q有关,正应力 σ只与弯矩M有关。
等直梁的危险截面危险点为最大弯矩截面上下边缘处各点。
max
M max Iz
ymax
M max Wz
;
令Wz
Iz ; ymax
Wz ___ 抗弯截面系数(模量),反映截面抵抗弯曲变形的能力;单位:m3, mm3.
矩形截面:Wz
bh2 6
;圆形截面:Wz
D3 32
; 环形截面:Wz
D3 32
(1 4 );各种型钢查表。
(对于型钢,Szmax:Iz 的值可查型钢表确定)
2)翼缘上的剪应力:翼缘上的剪应力情况较复杂。竖向分量很 小且分布复杂,一般不考虑;水平分量认为沿翼缘厚度均匀分布, 计算公式与矩形截面的相同,其方向与竖向剪应力方向之间存在 “剪应力流”的规律。
水平
QS z
I z o
Sz—欲求应力点到翼缘边缘间的面积对中性轴惯性矩;
3103 9102 5830108
4.63MPa
m
ax;
(在截面上下边缘。)
返回 下一张 上一张
小结
例7-2 18号工字钢制成的简支梁如图所示。试求D截面上a、b两 点处的正应力。

材料力学强度理论

材料力学强度理论

纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式

脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]

形状改变比能理论

形状改变比能理论

(二)塑性屈服理论
1.最大剪应力理论(第三强度理论) 无论材料处于什么应力状态,只要最 大剪应力达到极限值,就发生屈服破坏。 破坏原因:tmax 破坏条件: tmax = to
= s 强度条件: n 适用范围:塑性材料屈服破坏; 一般材料三向
s1 s 3
ss
材料力学
2.形状改变比能理论 (Mises’s Criterion)
第9章 强度理论
材料力学
本章主要内容
§9-1 强度理论的概念
§9-2 四个常用强度理论及其相当应力 §9-3 莫尔强度理论及其相当应力
§9-4 各种强度理论的适用范围及其应用
材料力学
§ 9-1 强度理论的概念
一、建立强度条件的复杂性 复杂应力状态的形式是无穷无尽的,建立 复杂应力状态下的强度条件,采用模拟的方法 几乎是不可能的,即逐一用试验的方法建立强 度条件是行不通的,需要从理论上找出路。
= s 2+3t 2
材料力学
§9-3 莫尔强度理论 及其相当应力
莫尔强度理论是以各种状态下材料的破坏 试验结果为依据,而不是简单地假设材料地破 坏是由某一个因素达到了极限值而引起地,从 而建立起来的带有一定经验性的强度理论。
材料力学
一、两个概念:
1、极限应力圆:
t
ts
极限应力圆
s s3
O
s
材料力学
二、利用强度理论建立强度条件
(1)对破坏形式分类; (2)同一种形式的破坏,可以认为是由相同的原因造成的; (3)至于破坏的原因是什么,可由观察提出假说,这些假
说称为强度理论;
(4)利用简单拉伸实验建立强度条件。
材料力学
பைடு நூலகம்
§9-2 四个常用强度理论 及其相当应力

9第九章 应力、应变分析、强度理论123

9第九章 应力、应变分析、强度理论123

第九章 应力、应变分析、强度理论一、是非题9-1、单元体最大正应力面上的剪应力恒等于零。

( )9-2、单元体最大剪应力面上的正应力恒等于零。

( )9-3、依照剪应力互等定理,一单元体中两个平面上的剪应力数值相等,符号相反,则这两平面必定相互垂直。

( )9-4、 只要构件横截面上的轴力N=0,则该横截面正应力处处为零。

( )9-5、 梁受横力弯曲时,其横截面上各点处的主应力必定是σ1≥0,σ3≤0。

( )9-6、 等截面圆杆受纯扭转时,杆内任一点处只有剪应力,而无正应力。

( )9-7、若受力构件中一点处,某方向上的线应变为零,则该方向上的正应力必为零。

( )9-8、若受力钢质构件中的一点处,某相互垂直方向的剪应变为零,则该方向上的剪应力必为零。

( ) 9-9、若各向同性材料单元体的三个正应力σx >σy >σz ,则对应的三个线应变也有εx >εy >εz 。

( ) 9-10、 各向同性单元体的三个主应变为ε1≠0,ε2≠0,ε3=0,若(1)、当ε1>0,则必有σ1>0;( )(2)、当ε1>ε2,则必有σ1>σ2;( )(3)、当ε1>ε2>0,则()()21max 12εεμτ-+=E 。

( ) 9-11、各向同性材料在三向均匀压缩或拉伸时,其形状改变比能恒等于零。

( )二、选择题9-12、单元体应力状态如图9-1所示,由x 轴至σ1方向的夹角为( )。

A 、+13.5°;B 、-76.5°;C 、+76.5°;D 、-13.5°。

9-13、 若已知σ1=5MP a ,则另一个主应力为( )。

A 、σ2=-85MP a ;B 、σ3=-85MP a ;C 、σ2=75MP a ;D 、σ3=-75MP a 。

9-14、 三种应力状态分别如图9-2a 、b 、c 所示,则三者间的关系为( )。

A 、完全等价;B 、完全不等价;C 、(b )和(c )等价;D 、(a )和(c )等价。

材料力学第9章应力分析强度理论

材料力学第9章应力分析强度理论
已知如图,设ef 面积为dA
F
n
0
F 0

dA ( xydAcos ) sin ( x dAcos ) cos ( yxdAsin ) cos ( y dAsin ) sin 0
dA ( xydAcos ) cos ( x dAcos ) sin ( yxdAsin ) sin ( y dAsin ) cos 0
2
2 xy
xy
min
y
yx
23
⒉主方向
应力圆:D点顺时针转2α0到A1点
单元体:x轴顺时针转α0到主平面法线
证明:
xy 2 xy AD tg 2 0 CA x y x y 2
24
㈣利用应力圆求剪应力极值 应力圆上最高点、最低点的纵坐标值,为剪 应力的极大、极小值。 证明:
2
?
min
tg 2 0
2 xy
max
yx
x
x y
xy
解出两各极值点α0,α0=90+α0 最大、最小应力即为主应力
max x y x y 2 2 ( ) xy min 2 2
y
σmax、σmin为三个主应力中的两个。
11
讨论: ⑴若代数值σx≥σy,则α0、α0中,绝对值较小者是
σx与σmax之间夹角,且小于45。 ⑵若代数值 σx≤σy ,则α0 、α0 中,绝对值较小者是 σx 与 σmin之间夹角,且小于45。
min
max
yx
x
xy
12
y
㈢τmax、τmin(与z轴平行的任意斜截面上的)

九章强度理论PPT课件

九章强度理论PPT课件
(第四强度理论,20世纪初,Mises) 无论材料处于什么应力状态,只要畸
变能密度达到极限值,就发生屈服破坏。
变形能:构件弹性变形储存的应变能。
应变能密度: 材料单位体积储存的变形能。 分为两部分:体积改变能密度vv 畸变能密度vd
只改变体积
只改变形状
畸变能密度
vd
=
1
6E
s1 -s 2 2 s 2 -s 3 2 s 3 -s1 2
2
2
sx
-s y
2
4t
2 xy
s = s x s y - 1 22
sx
-s y
2
4t
2 xy
s = 0
例题
主应力为
s1=29.28MPa, s2=3.72MPa, s3=0
smax= s1< [st] = 30MPa
结论:满足强度条件。
23 11 10
MPa
例题
P
P=200kN
120 14
s3
强度条件:
s1
sb
n
= s
适用范围: 脆性材料拉、扭; 一般材料三向拉;
铸铁二向拉-拉,拉-压(st> sc)
45°
铸铁断口
s3=-t
45°
Kt
s1=t
拉断!
二、最大伸长线应变理论(17世纪末)
无论材料处于什么应力状态,只要最
大伸长线应变达到极限值,材料就发生脆
性断裂。
破坏原因:etmax (最大伸长线应变)
MPa
已知 : 铸铁构件上 危险点的应力状态。 铸铁拉伸许用应力
[st] =30MPa。
求:试校核该点的 强度。
例题
解:首先根据材料 和应力状态确定失效 形式,选择强度理论。

完整word版,(最新)工程力学试题库(1)

完整word版,(最新)工程力学试题库(1)

《工程力学》试题库第一章静力学基本概念4. 试计算图中力F对于O点之矩。

解:M O(F)=07. 试计算图中力F对于O点之矩。

解: M O(F)= -Fa8.试计算图中力F对于O点之矩。

解:M O(F)= F(l+r)19. 画出杆AB的受力图。

24. 画出销钉A的受力图。

物系受力图26. 画出图示物体系中杆AB、轮C、整体的受力图。

29. 画出图示物体系中支架AD、BC、物体E、整体的受力图。

30. 画出图示物体系中横梁AB、立柱AE、整体的受力图。

32. 画出图示物体系中梁AC、CB、整体的受力图。

第二章平面力系3. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。

解:(1)取销钉A画受力图如图所示。

AB、AC杆均为二力杆。

(2)建直角坐标系,列平衡方程:∑F x=0,-F AB+F AC cos60°=0∑F y=0,F AC sin60°-G=0(3)求解未知量。

F AB=0.577G(拉)F AC=1.155G(压)4.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。

解(1)取销钉A画受力图如图所示。

AB、AC杆均为二力杆。

(2)建直角坐标系,列平衡方程:∑F x=0,F AB-F AC cos60°=0∑F y=0,F AC sin60°-G=0(3)求解未知量。

F AB=0.577G(压)F AC=1.155G(拉)6. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。

解(1)取销钉A画受力图如图所示。

AB、AC杆均为二力杆。

(2)建直角坐标系,列平衡方程:∑F x=0,-F AB sin30°+F AC sin30°=0∑F y=0, F AB cos30°+F AC cos30°-G=0(3)求解未知量。

材料力学第9章 强度理论

材料力学第9章 强度理论
第9章 强度理论
第一节 概述 在前面研究杆件基本变形的强度问题时,所用 的强度条件是以杆件横截面上的最大正应力,或最 大切应力为依据的,即
而材料的许用应力[σ]和[τ]是通过拉伸(压 缩)试验和剪切试验,测定出材料破坏时横截面上的 极限应力,然后除以适当的安全因数得到的。
1
解释材料破坏因素的一些假说是否正确,或适 用于什么情况.必须由实践来检验。实际上,也正 是在反复试验与实践的基础上,强度理论才逐步得 到发展并日趋完善。 下面介绍工程中关于各向同 性材料在常温、静载荷条件下几个常用的强度理论。
6
假设单向拉伸直到断裂时,仍可用胡克定律
由广义胡克定律,有
将式(b)、式(c)代入式(a),该理论的脆性断裂 准则改写为
7
相应的强度条件为 最大伸长线应变理论也称为 第二强度理论。
8
二、关于屈服的强度理论 塑性破坏(plastic failure)一般是对塑性材料 而言的,破坏时,以出现屈服或产生显著的塑性变 形为标志。例如,低碳钢拉伸屈服时,出现与轴线 成45°的滑移线。这类破坏与最大切应力τmax、 畸变能密度有关。
12
于是屈服准则改写为
相应的强度条件为
13
对于梁来说,由于 三、第四强度理论的相当应力为
于是第
关于以上4个强度理论的应用,一般来说,如 铸铁、石料、混凝土、玻璃等脆性材料通常以脆断 方式破坏,宜选用第一和第二强度理论。如低碳钢、 铝、铜等塑性材料通常以屈服的方式失效,宜选用 第三和第四强度理论。
2
第二节 常用的强度理论 一、关于断裂的强度理论 脆性断裂(brittle fracture)一般是对脆性材 料而言,破坏时,材料没有明显的塑性变形,突然 断裂。例如,铸铁拉伸、扭转破坏。这类破坏与σ max(拉)、εmax(拉)有关。

材料力学填空与判断题解总括

材料力学填空与判断题解总括

F122-题132-题第 2 章 轴向拉伸与压缩二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

2-9 铸铁试件的压缩破坏和(切)应力有关。

2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。

三、选择题2-11 应用拉压正应力公式AN =σ的条件是( B )(A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。

2-12 图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) (A )平动;(B )转动;(C )不动;(D )平动加转动。

2-13 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。

2-14 图示三杆结构,欲使杆3的内力减小,应该( B )DC BA ζε(A )增大杆3的横截面积; (B )减小杆3的横截面积; (C )减小杆1的横截面积; (D )减小杆2的横截面积。

2-15 图示有缺陷的脆性材料拉杆中,应力集中最严重的是杆( D )二、填空题3-6 圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

3-7 铸铁圆杆发生扭转破坏的破断线如图所示,试画出圆杆所受外力偶的方向。

3-8 画出圆杆扭转时,两种截面的切应力分布图。

3-9 在计算圆柱形密围螺旋弹簧簧丝切应力时,考虑到(剪力引起的切应力及簧丝曲率的影响 ),而加以校正系数。

3-10 开口薄壁杆扭转时,截面上最大切应力发生在(最厚的矩形长边 )处;闭口薄壁杆扭转时,截面上最大切应力发生在( 最小厚度)处.TTF 123题24 F FF FFFF F(A )(B ) (C )(D )第3章 扭转三,选择题3-11阶梯圆轴的最大切应力发生在( D ) (A) 扭矩最大的截面; (B)直径最小的截面; (C) 单位长度扭转角最大的截面; (D)不能确定.3-12 空心圆轴的外径为 D ,内径为 d ,D d /=α。

陈天富材料力学第九章应力和应变分析和强度理论修订

陈天富材料力学第九章应力和应变分析和强度理论修订

σ2ε3dz
ε2dy
dz
σ1
dy
σ3 dx ε1dx
V1 V V
(1 1 2 3 )V
V
V
1 2
3
(1 2)
E
( 1
2
3
)
3(1 2)
E
1
2
3
3
令 K E --体积弹性模量
3(1 2 )
m
1
2 3
3
--平均应力
m
K
称为体积应变
26
§9.8 复杂应力状态的变形比能
σ2
简单应力状态比能
u
2
σ1 σ3
三向应力状态比能
u 11 22 33
222
1 2E
[(
2 1
2 2
2 3
)
2 ( 1
2
2 3
3 1 )]
27
σ2 σ3
σm
σ1
=
σm
σ2-σm
σm +
σ1-σm σ3-σm
体积改变比能
体积改变
形状改变
uV
m m
2
m m
2
m m
2
3 m m
2
3(1 2
2E
)
2 m
τn2 = p2-σn2 =σ12l 2+σ2 2m2 σ3 2n2-σn2 (3)
y
σ3 py
σ1
Pz px
x
z
σ2
n
y σn
σ3
σ1 z
τn x
σ2
t
15
应力圆方程
( n
2
3
2
)2

009-第九章-强度理论与组合变形

009-第九章-强度理论与组合变形
试:全面校核(主应力)梁的强度。
F
F=100kN
Z
0.32m
0.32m
Fs
100kN
X
100kN M
32kNm
X
第11页,共85页。
7K 100
88.6 11.4
I z 2370 104 mm4
Wz 237 103 mm3
Iz
/
S
z
max
17.2cm
解:1、画内力图
11
2、最大正应力校核
max
3、最大切应力理论(第三强度理论)
强度条件: 1 3
4、最大形状改变比能理论: (第四强度理论;均方根理论;歪形能理论;畸形能理论)
强度条件:
1
2
(1 2 )2
( 2
3 )2
( 3
1)2
22
第22页,共85页。
三、结论: xd ( ; r )
r1 1 r 2 1 ( 2 3 )
9
第9页,共85页。
强度理论的应用——
x
max
min
x
2
( x )2
2
xy 2
1
3
xy
r3 x2 4 xy2
r4 x2 3 xy2
使用条件:屈服破坏, 2 0 。
10
第10页,共85页。
例:如图所示工字型截面梁,已知〔σ〕=180MPa〔τ 〕 =100MPa
29
第29页,共85页。
§8—5 斜弯曲
一、斜弯曲的概念
梁上的外力都垂直于轴线,外力的作用面不在梁的纵向对称面 内,变形后梁的轴线不在外力的作用平面内由直线变为曲线(梁上的 外力都垂直于轴线且过弯曲中心,但不与形心主轴重合或平行)。

材料力学填空与判断题解

材料力学填空与判断题解

F122-题132-题第 2 章 轴向拉伸与压缩二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

2-9 铸铁试件的压缩破坏和(切)应力有关。

2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。

三、选择题2-11 应用拉压正应力公式AN=σ的条件是( B ) (A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。

2-12 图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) (A )平动;(B )转动;(C )不动;(D )平动加转动。

2-13 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。

2-14 图示三杆结构,欲使杆3的内力减小,应该( B )(A )增大杆3的横截面积; (B )减小杆3的横截面积; (C )减小杆1的横截面积; (D )减小杆2的横截面积。

2-15 图示有缺陷的脆性材料拉杆中,应力集中最严重的是杆( D )第 3 章 扭转二、填空题3-6 圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。

3-7 铸铁圆杆发生扭转破坏的破断线如图所示,试画出圆杆所受外力偶的方向。

3-8 画出圆杆扭转时,两种截面的切应力分布图。

3-9 在计算圆柱形密围螺旋弹簧簧丝切应力时,考虑到(剪力引起的切应力及簧丝曲率的影响 ),而加以校正系数。

题24(A (B (C )(D第3章 扭转3-10 开口薄壁杆扭转时,截面上最大切应力发生在(最厚的矩形长边 )处;闭口薄壁杆扭转时,截面上最大切应力发生在( 最小厚度)处. 三,选择题3-11阶梯圆轴的最大切应力发生在( D ) (A) 扭矩最大的截面; (B)直径最小的截面; (C) 单位长度扭转角最大的截面; (D)不能确定.3-12 空心圆轴的外径为 D ,内径为 d ,D d /=α。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M max 8410 6 3 W 49610 m 6 [s ] 17010
3
据此可选用28a号工字钢,其截面系数为:
W 508106 m3
再按切应力强度条件进行校核。对28a号工字 钢,查表可得截面几何性质为
I z 71.14106 m4
d 0.8510 m
2


vd, u
1 2 2s s 6E


所以
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s s 2


强度条件
ss 1 2 2 2 s1 s 2 s 2 s 3 s1 s 3 [s ] 2 n
sb
s1 s 2 s b

45º
sb

O 45º
s1 s b

s1
++ + +
B
s3 s1
(s2=0)
s3
D
s 1 s 3 s b
二、关于塑性屈服的强度理论
1. 最大切应力理论(第三强度理论)
F
低碳钢
max
F
max=0
金属不屈服
假设最大切应力max是引起材料塑性屈服的因 素,破坏条件为
x
s max [s ]
max [ ]
来建立强度条件,因为sx 与x 之间会相互影响。 研究复杂应力状态下材料破坏的原因,根据一 定的假设来确定破坏条件,从而建立强度条件,这 就是强度理论的研究内容。
IV. 材料破坏的形式 常温、静载时材料的破坏形式大致可分为
(1)脆性断裂型
例如铸铁拉伸、扭转; 低碳钢三向拉应力状态。 (2)塑性屈服型 例如低碳钢拉伸、扭转; 铸铁三向压缩应力状态。 可见,材料破坏的形式不仅与材料有关,而 且与应力状态有关。


可见,按第三强度理论,图b所示应力状态比 图a所示的安全;而按第四强度理论,两者的危险 程度一样。
注意:图a所示应力状态实际上为拉扭或弯扭组 合变形对应的应力状态,其相当应力如下
s r 3 s 4
2
2
s
s r 4 s 2 3 2
应牢记,以便于组合变 形的强度校核。

(a)
例 分别应用第三和第四强度理论求纯剪切应力状态 屈服应力s和拉压屈服应力ss之间的关系。 解 图示纯切剪应力状态的主应力为
实验验证:(1) 较第三强度理论更接近实际值; (2) 材料拉压性能相同时成立。


s1
s2
s3
s2=0

s3=0
2 1 2 2
s1
45º
45º
s s1s 2 s s s1 s s
s s1s 3 s s s1 s 3 s s
2 1 2 3
2 s
2 s
s2 s3

max u
对低碳钢等塑性材料,单向拉伸时的屈服是由 45斜截面上的切应力引起的,因而极限应力u可 由单向拉伸时的屈服应力求得。
因为 所以 强度条件
max
s1 s 3
2
u
ss
2
s1 s 3 s s
s1 s 3 ss
n [s ]
实验验证:(1)仅适用于拉压性能相同的材料; (2)与低碳钢单向拉(压)的45滑移线吻合; (3)二向应力状态基本符合,但偏于安全。
s 1 s 2 s 3
sb
n
[s ]
实验验证 (1) 可解释大理石单向压缩时的纵向开裂现象; (2) 与铸铁二向、三向拉应力状态下的实验不相符; (3) 对铸铁一向拉、一向压的二向应力状态偏于安 全,但可应用。
F
C
F
Me
y
Me
x
x
s2
C
A
+ + +
s2 s1
(s3=0)
第九章
强 度 理 论
§ 9- 1
I. 单向应力状态
强度理论的概念
s s
图示拉伸和压缩的单向应力状态,材料的破坏 有两种形式
(1)塑性屈服:极限应力为
(2)脆性断裂:极限应力为
su ss su sb

s p0.2
其中,ss、sp0.2和sb可由实验测得。由此可建立 如下强度条件 su s max [s ] n
s s


(a)
(b)
解 对图a所示应力状态,因为
s 1 s 2 s1 1 5 s 2 2 2
2


s2 0
1 s 2 s 3 1 5 s 2 2 2
所以

2
s
2


s
s 2 s r3 s1 s 3 2 2 s 4 5s
2. 最大伸长线应变理论(第二强度理论)
F
1
F
3
Me
1
Me
假设最大伸长线应变1是引起脆性破坏的主要因 素,破坏条件为
1 u
u由单向拉伸实验测定。
因为 所以 强度条件
1 1 s 1 s 2 s 3 E
u
sb
E
s1 s 2 s 3 s b
可用28b号工字钢。 若用第三强度理论,则相当应力为
s r1 s1
s r 2 s1 s 2 s 3
s r 3 s1 s 3
s r4
1 2 2 2 s1 s 2 s 2 s 3 s1 s 3 2


应用范围
仅适用于常温、静载条件下的均匀、连续、各向同性 的材料; (1)不论塑性或脆性材料,在三向拉应力状态都发生脆 性断裂,宜采用第一强度理论;
2 2
(a)
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s r4 2 s 2 3 2 2s


对图b所示应力状态,因为
s
s1 s 2 s
s 3 s
所以

s r 3 s1 s 3 2s
(b)
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s r4 2 2s
13.7
(d)
122
8.5
s max
126.3 280
max
a
13.7
126.3
以上分析仅考虑了最大正应力和切应力作用的 位置,而对工字型截面腹板和翼缘交界处(图d中的 a点),正应力和切应力都较大,且处于平面应力状 态(见图e),因此还需对该点进行强度校核。
(e)
s

a
s

利用图d所示的截面简化尺寸和已知的Iz,可 求得a点的正应力s 和切应力 分别为
s max
su
n

ss
n
然而,其屈服是由于max引起的,对图示单向应力 状态,有
max
s max
2
依照切应力强度条件,有
max
s max
2

s
n
可见,s u s s与 u
su
2
s
ss
2
相当或等效
sx
III. 复杂应力状态 对图示平面应力状态,不能分别用
s3
s1
s2=0
s1=0
s1
s3 s2=0
s2
s1 s3=0
s2 s3 s1=0
s3 s1 s2=0
§9 -4 强度理论的应用
强度理论的统一形式
s r [s ]
式中,[s]为材料的许用拉应力,sr为按不同强度理 论所得到的单元体内各主应力的综合值,称为相当应 力。与各强度理论相应的相当应力分别为
存在问题:(1)没考虑s2对屈服的影响,虽偏于安全, 但误差较大; (2)仅适用于拉压性能相同的材料。
2. 形状改变能密度理论(第四强度理论)
假设形状改变能密 度vd是引起材料塑性屈 服的因素,破坏条件为
vd=0
vd vd,u
vd,u可通过单向拉伸试验来确定。 因为
金属不屈服
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 vd 6E
s1
s 2 0 s 3
当 =s时材料发生屈服,因此有

s1 s
s2 0
s 3 s
由第三强度理论得
s r3 s1 s 3 2 s
而当材料拉压屈服时有
s1 s s
s 2 s3 0
即 由此可得
s r3 s s
s 0.5s s
由前例可得,图e所示应力状态的第四强度理论 相当应力为
s r 4 s 2 3 2 149.12 3 73.82
196.4MPa [s ] 170MPa
可见,28a号工字钢不能满足要求。改用28b号工 字钢,按同样的方法可得
s r 4 173.2MPa [s ]1.05 178.5MPa
[ ] 0.5[s ]
应用第四强度理论得
s r4
1 2 2 2 s 1 s 2 s 2 s 3 s 3 s 1 2
纯剪切 单向拉伸


3 s s
s
由此可得
1 s s s 0.577s s 3 [ ] 0.577[s ] 0.6[s ]
(2)对于脆性材料,在二向拉应力状态下宜采用第一强 度理论;
(3)对塑性材料,除三向拉应力状态外都会发生屈服, 宜采用第三或第四强度理论; (4) 不论塑性或脆性材料,在三向压应力状态都发生塑 性屈服,宜采用第四强度理论。
相关文档
最新文档