第9章强度理论
强度理论
M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2
2 0
3 2 27.7 MP a 2 2
2
由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2
材料力学面试重点概念36题
材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。
2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。
(2)均匀性:构件内各处的力学性能相同。
(3)各向同性:物体内各方向力学性能相同。
3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。
4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。
5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。
(2)用截面法求解内力。
6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。
9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。
2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。
横截面上正应力为零。
3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。
第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。
答:(1)受力特点:外力的合力作用线与杆的轴线重合。
(2)变形特点:沿轴向伸长或缩短。
11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。
σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。
材料力学-单祖辉-第三版课后答案-(第九章—第十九章)
3Fx 4a 2
[
]
x2 0.1277x6.39104 0
由此得切口的允许深度为
x5.20 mm
10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为 εa =1.0×10-3
2Sz(a)
S z,max
[2.23104
1 0.0085(0.140 0.0137)2 ]m3 2
2.90104 m3
式中:足标 b 系指翼缘与腹板的交界点;足标 a 系指上翼缘顶边中点。 3.应力计算及强度校核
三个可能的危险点( a , b 和 c )示如图 9-5。
a 点处的正应力和切应力分别为
x1
4F πD 2
x2 0
设圆柱体与外管间的相互作用力的压强为 p,在其作用下,外管纵截面上的周向正应力为
t2
pD 2
(a)
在外压 p 作用下(图 b,尺寸已放大),圆柱体内任一点处的径向与周向正应力均为
r1 t1 p
根据广义胡克定律,圆柱体外表面的周向正应变为
t1
1 E1
t1
1
x1
松比 均为已知。试求内压 p 与扭力偶矩 M 之值。
题 9-14 图 解:圆筒壁内任意一点的应力状态如图 9-14 所示。
图中所示各应力分量分别为
图 9-14
由此可得
x
pD 4
,
t p2D,
2M πD2
σ0 σ x , σ90 σt ,
σ 4 5
τ
3pD, 8δ
根据广义胡克定律,贴片方向的正应变为
σ1
σ2
σt
pD,σ 4δ
3
0
9-13 图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为
材料力学第9章 强度理论
由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E
b
E
1 1 1 2 3 E
1u
1u
E
b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa
工程力学第9章 应力状态与强度理论
27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16
第九章第六节梁弯曲时的应力及强度计算(上课用)
m
V
( Stresses in Beams)
m
m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为
V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.
材料力学作业(8-11)
第八章 应力应变状态分析一、选择或填空题1、过受力构件内任一点,取截面的不同方位,各个面上的( )。
A 、正应力相同,切应力不同;B 、正应力不同,切应力相同;C 、正应力相同,切应力相同;D 、正应力不同,切应力不同。
2、在单元体的主平面上( )。
A 、正应力一定最大;B 、正应力一定为零;C 、切应力一定最小;D 、切应力一定为零。
3、图示矩形截面悬臂梁,A-A 为任意横截面,1点位于截面上边缘,3点位于中性层,则1、2、3点的应力状态单元体分别为( )。
A-AA B C4、图示单元体,其最大主应力为( )A 、σ;B 、2σ;C 、3σ;D 、4σ。
5、下面 单元体表示构件A 点的应力状态。
6、图示单元体,如果MPa 30=ασ,则βσ=( ) A 、100Mpa ; B 、50Mpa ; C 、20MPa ; D 、0MPa 。
(C)7、图示单元体应力状态,沿x 方向的线应变εx 可表示为( )A 、Eyσ; B 、)(1y x E μσσ−;C 、)(1x y E μσσ− ;D 、Gτ。
8、图示应力圆对应于单元体( )。
9、已知单元体及应力圆如图所示,σ1所在主平面的法线方向为( )。
A 、n 1;B 、 n 2;C 、n 3;D 、n4。
二、计算题1、已知应力状态如图所示,试用解析法计算图中指定截面上的正应力和切应力。
2、试画图示应力状态的三向应力圆,并求主应力、最大正应力和最大切应力。
3、边长为20mm的钢立方块置于刚性模中,在顶面受力F=14kN作用。
已知材料的泊松比为0.3,求立方体各个面上的正应力。
4、图示矩形截面梁某截面上的弯矩和剪力分别为M=10 kN.m,Q=120 kN。
试绘出截面上1、2、3、4各点的应力状态单元体,并求其主应力。
第九章 强度理论一、选择题或填空题 1、在冬天严寒天气下,水管中的水会受冻而结冰。
根据低温下水管和冰所受力情况可知( )。
A 、冰先破裂而水管完好;B 、水管先破裂而冰完好;C 、冰与水管同时破裂;D 、不一定何者先破裂。
《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
最大主应力和最小主应力的计算式
max m in
x
y
2
x
2
y
2
2 x
确定 max 和 min 所在平面的方法
1)若x>y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定max 所在的平面;
2)若x <y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定min 所在的平面;
2
及
2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
利用上述两式可以求得 de 斜截面上的正应力和切
设 de 斜截面面积为 dA,则 ae 面的面积为 dAsin , ad面的面积为 dAcos 。取 t 和 n 为参考轴,建立棱
柱体 ade 的受力平衡方程如下:
dA ( xdAcos ) sin ( xdAcos ) cos ( ydAsin ) cos ( ydAsin ) sin 0
y
2
2 x
105 MPa
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
0
1 2
arctan(
2 x x
第九章 梁的强度和刚度计算
2023最新整理收集 do
something
第一节
梁横截面上的正应力
第二节 梁横截面上的剪应力
第三节 梁的强度计算
第四节 弯曲中心的概念
第五节 梁的变形和刚度计算
第六节 应力状态和强度理论 小结
返回
第七章 梁的强度和刚度计算
梁的一般情况是横截面上同时 存在剪力和弯矩两种内力,称作剪 力(横力)弯曲。与此相应的截面 上任一点处有剪应力τ和正应力σ。 且剪应力τ只与剪力Q有关,正应力 σ只与弯矩M有关。
等直梁的危险截面危险点为最大弯矩截面上下边缘处各点。
max
M max Iz
ymax
M max Wz
;
令Wz
Iz ; ymax
Wz ___ 抗弯截面系数(模量),反映截面抵抗弯曲变形的能力;单位:m3, mm3.
矩形截面:Wz
bh2 6
;圆形截面:Wz
D3 32
; 环形截面:Wz
D3 32
(1 4 );各种型钢查表。
(对于型钢,Szmax:Iz 的值可查型钢表确定)
2)翼缘上的剪应力:翼缘上的剪应力情况较复杂。竖向分量很 小且分布复杂,一般不考虑;水平分量认为沿翼缘厚度均匀分布, 计算公式与矩形截面的相同,其方向与竖向剪应力方向之间存在 “剪应力流”的规律。
水平
QS z
I z o
Sz—欲求应力点到翼缘边缘间的面积对中性轴惯性矩;
3103 9102 5830108
4.63MPa
m
ax;
(在截面上下边缘。)
返回 下一张 上一张
小结
例7-2 18号工字钢制成的简支梁如图所示。试求D截面上a、b两 点处的正应力。
材料力学强度理论
纵截面裂开,这与第
二强度理论旳论述
基本一致。
例6、填空题
危险点接近于三向均匀受拉旳塑性材
料,应选用 第一 强度理论进行计算,
因为此时材料旳破坏形式
为
脆性断。裂
例8、圆轴直径为d,材料旳弹性模量为E,泊松比为 ,为了测得轴端旳力偶m之值,但只有一枚电阻片。 (1)试设计电阻片粘贴旳位置和方向; (2) 若按照你所定旳位置和方向,已测得线应变为
(一)、有关脆断旳强度理论
1、最大拉应力理论(第一强度理论)
假定:不论材料内各点旳应力状态怎样, 只要有一点旳主应力σ1 到达单向拉伸断裂时旳 极限应力σu,材料即破坏。
在单向拉伸时,极限应力 σu =σb
失效条件可写为 σ1 ≥ σb
第一强度理论强度条件:
1 [ ]
[ ] b
n
第一强度理论—最大拉应力理论
(二)强度校核 先绘出C截面正应力分布图和剪应力分布图。
C截面
a.正应力强度校核(K1)点
max
k1
MC WZ
32 103 237 106
135Mpa 150Mpa
b.剪应力强度校核(K2)点
C截面
max
k2
FS hb
(200
100 103 22.8) 103 7 103
1 , 2 0, 3
第三强度理论旳强度条件为:
1 3 ( ) 2 [ ]
由此得: [ ]
2
剪切强度条件为: [ ]
按第三强度理论可求得: [ ] [ ]
2
第四强度理论旳强度条件为:
1
2
( 1 2 )2
( 2
3)2
( 3
1)2
3 [ ]
形状改变比能理论
(二)塑性屈服理论
1.最大剪应力理论(第三强度理论) 无论材料处于什么应力状态,只要最 大剪应力达到极限值,就发生屈服破坏。 破坏原因:tmax 破坏条件: tmax = to
= s 强度条件: n 适用范围:塑性材料屈服破坏; 一般材料三向
s1 s 3
ss
材料力学
2.形状改变比能理论 (Mises’s Criterion)
第9章 强度理论
材料力学
本章主要内容
§9-1 强度理论的概念
§9-2 四个常用强度理论及其相当应力 §9-3 莫尔强度理论及其相当应力
§9-4 各种强度理论的适用范围及其应用
材料力学
§ 9-1 强度理论的概念
一、建立强度条件的复杂性 复杂应力状态的形式是无穷无尽的,建立 复杂应力状态下的强度条件,采用模拟的方法 几乎是不可能的,即逐一用试验的方法建立强 度条件是行不通的,需要从理论上找出路。
= s 2+3t 2
材料力学
§9-3 莫尔强度理论 及其相当应力
莫尔强度理论是以各种状态下材料的破坏 试验结果为依据,而不是简单地假设材料地破 坏是由某一个因素达到了极限值而引起地,从 而建立起来的带有一定经验性的强度理论。
材料力学
一、两个概念:
1、极限应力圆:
t
ts
极限应力圆
s s3
O
s
材料力学
二、利用强度理论建立强度条件
(1)对破坏形式分类; (2)同一种形式的破坏,可以认为是由相同的原因造成的; (3)至于破坏的原因是什么,可由观察提出假说,这些假
说称为强度理论;
(4)利用简单拉伸实验建立强度条件。
材料力学
பைடு நூலகம்
§9-2 四个常用强度理论 及其相当应力
9第九章 应力、应变分析、强度理论123
第九章 应力、应变分析、强度理论一、是非题9-1、单元体最大正应力面上的剪应力恒等于零。
( )9-2、单元体最大剪应力面上的正应力恒等于零。
( )9-3、依照剪应力互等定理,一单元体中两个平面上的剪应力数值相等,符号相反,则这两平面必定相互垂直。
( )9-4、 只要构件横截面上的轴力N=0,则该横截面正应力处处为零。
( )9-5、 梁受横力弯曲时,其横截面上各点处的主应力必定是σ1≥0,σ3≤0。
( )9-6、 等截面圆杆受纯扭转时,杆内任一点处只有剪应力,而无正应力。
( )9-7、若受力构件中一点处,某方向上的线应变为零,则该方向上的正应力必为零。
( )9-8、若受力钢质构件中的一点处,某相互垂直方向的剪应变为零,则该方向上的剪应力必为零。
( ) 9-9、若各向同性材料单元体的三个正应力σx >σy >σz ,则对应的三个线应变也有εx >εy >εz 。
( ) 9-10、 各向同性单元体的三个主应变为ε1≠0,ε2≠0,ε3=0,若(1)、当ε1>0,则必有σ1>0;( )(2)、当ε1>ε2,则必有σ1>σ2;( )(3)、当ε1>ε2>0,则()()21max 12εεμτ-+=E 。
( ) 9-11、各向同性材料在三向均匀压缩或拉伸时,其形状改变比能恒等于零。
( )二、选择题9-12、单元体应力状态如图9-1所示,由x 轴至σ1方向的夹角为( )。
A 、+13.5°;B 、-76.5°;C 、+76.5°;D 、-13.5°。
9-13、 若已知σ1=5MP a ,则另一个主应力为( )。
A 、σ2=-85MP a ;B 、σ3=-85MP a ;C 、σ2=75MP a ;D 、σ3=-75MP a 。
9-14、 三种应力状态分别如图9-2a 、b 、c 所示,则三者间的关系为( )。
A 、完全等价;B 、完全不等价;C 、(b )和(c )等价;D 、(a )和(c )等价。
材料力学第9章应力分析强度理论
F
n
0
F 0
dA ( xydAcos ) sin ( x dAcos ) cos ( yxdAsin ) cos ( y dAsin ) sin 0
dA ( xydAcos ) cos ( x dAcos ) sin ( yxdAsin ) sin ( y dAsin ) cos 0
2
2 xy
xy
min
y
yx
23
⒉主方向
应力圆:D点顺时针转2α0到A1点
单元体:x轴顺时针转α0到主平面法线
证明:
xy 2 xy AD tg 2 0 CA x y x y 2
24
㈣利用应力圆求剪应力极值 应力圆上最高点、最低点的纵坐标值,为剪 应力的极大、极小值。 证明:
2
?
min
tg 2 0
2 xy
max
yx
x
x y
xy
解出两各极值点α0,α0=90+α0 最大、最小应力即为主应力
max x y x y 2 2 ( ) xy min 2 2
y
σmax、σmin为三个主应力中的两个。
11
讨论: ⑴若代数值σx≥σy,则α0、α0中,绝对值较小者是
σx与σmax之间夹角,且小于45。 ⑵若代数值 σx≤σy ,则α0 、α0 中,绝对值较小者是 σx 与 σmin之间夹角,且小于45。
min
max
yx
x
xy
12
y
㈢τmax、τmin(与z轴平行的任意斜截面上的)
九章强度理论PPT课件
变能密度达到极限值,就发生屈服破坏。
变形能:构件弹性变形储存的应变能。
应变能密度: 材料单位体积储存的变形能。 分为两部分:体积改变能密度vv 畸变能密度vd
只改变体积
只改变形状
畸变能密度
vd
=
1
6E
s1 -s 2 2 s 2 -s 3 2 s 3 -s1 2
2
2
sx
-s y
2
4t
2 xy
s = s x s y - 1 22
sx
-s y
2
4t
2 xy
s = 0
例题
主应力为
s1=29.28MPa, s2=3.72MPa, s3=0
smax= s1< [st] = 30MPa
结论:满足强度条件。
23 11 10
MPa
例题
P
P=200kN
120 14
s3
强度条件:
s1
sb
n
= s
适用范围: 脆性材料拉、扭; 一般材料三向拉;
铸铁二向拉-拉,拉-压(st> sc)
45°
铸铁断口
s3=-t
45°
Kt
s1=t
拉断!
二、最大伸长线应变理论(17世纪末)
无论材料处于什么应力状态,只要最
大伸长线应变达到极限值,材料就发生脆
性断裂。
破坏原因:etmax (最大伸长线应变)
MPa
已知 : 铸铁构件上 危险点的应力状态。 铸铁拉伸许用应力
[st] =30MPa。
求:试校核该点的 强度。
例题
解:首先根据材料 和应力状态确定失效 形式,选择强度理论。
完整word版,(最新)工程力学试题库(1)
《工程力学》试题库第一章静力学基本概念4. 试计算图中力F对于O点之矩。
解:M O(F)=07. 试计算图中力F对于O点之矩。
解: M O(F)= -Fa8.试计算图中力F对于O点之矩。
解:M O(F)= F(l+r)19. 画出杆AB的受力图。
24. 画出销钉A的受力图。
物系受力图26. 画出图示物体系中杆AB、轮C、整体的受力图。
29. 画出图示物体系中支架AD、BC、物体E、整体的受力图。
30. 画出图示物体系中横梁AB、立柱AE、整体的受力图。
32. 画出图示物体系中梁AC、CB、整体的受力图。
第二章平面力系3. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。
解:(1)取销钉A画受力图如图所示。
AB、AC杆均为二力杆。
(2)建直角坐标系,列平衡方程:∑F x=0,-F AB+F AC cos60°=0∑F y=0,F AC sin60°-G=0(3)求解未知量。
F AB=0.577G(拉)F AC=1.155G(压)4.图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。
解(1)取销钉A画受力图如图所示。
AB、AC杆均为二力杆。
(2)建直角坐标系,列平衡方程:∑F x=0,F AB-F AC cos60°=0∑F y=0,F AC sin60°-G=0(3)求解未知量。
F AB=0.577G(压)F AC=1.155G(拉)6. 图示三角支架由杆AB,AC铰接而成,在A处作用有重力G,求出图中AB,AC所受的力(不计杆自重)。
解(1)取销钉A画受力图如图所示。
AB、AC杆均为二力杆。
(2)建直角坐标系,列平衡方程:∑F x=0,-F AB sin30°+F AC sin30°=0∑F y=0, F AB cos30°+F AC cos30°-G=0(3)求解未知量。
材料力学第9章 强度理论
第一节 概述 在前面研究杆件基本变形的强度问题时,所用 的强度条件是以杆件横截面上的最大正应力,或最 大切应力为依据的,即
而材料的许用应力[σ]和[τ]是通过拉伸(压 缩)试验和剪切试验,测定出材料破坏时横截面上的 极限应力,然后除以适当的安全因数得到的。
1
解释材料破坏因素的一些假说是否正确,或适 用于什么情况.必须由实践来检验。实际上,也正 是在反复试验与实践的基础上,强度理论才逐步得 到发展并日趋完善。 下面介绍工程中关于各向同 性材料在常温、静载荷条件下几个常用的强度理论。
6
假设单向拉伸直到断裂时,仍可用胡克定律
由广义胡克定律,有
将式(b)、式(c)代入式(a),该理论的脆性断裂 准则改写为
7
相应的强度条件为 最大伸长线应变理论也称为 第二强度理论。
8
二、关于屈服的强度理论 塑性破坏(plastic failure)一般是对塑性材料 而言的,破坏时,以出现屈服或产生显著的塑性变 形为标志。例如,低碳钢拉伸屈服时,出现与轴线 成45°的滑移线。这类破坏与最大切应力τmax、 畸变能密度有关。
12
于是屈服准则改写为
相应的强度条件为
13
对于梁来说,由于 三、第四强度理论的相当应力为
于是第
关于以上4个强度理论的应用,一般来说,如 铸铁、石料、混凝土、玻璃等脆性材料通常以脆断 方式破坏,宜选用第一和第二强度理论。如低碳钢、 铝、铜等塑性材料通常以屈服的方式失效,宜选用 第三和第四强度理论。
2
第二节 常用的强度理论 一、关于断裂的强度理论 脆性断裂(brittle fracture)一般是对脆性材 料而言,破坏时,材料没有明显的塑性变形,突然 断裂。例如,铸铁拉伸、扭转破坏。这类破坏与σ max(拉)、εmax(拉)有关。
材料力学填空与判断题解总括
F122-题132-题第 2 章 轴向拉伸与压缩二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。
2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
2-9 铸铁试件的压缩破坏和(切)应力有关。
2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。
三、选择题2-11 应用拉压正应力公式AN =σ的条件是( B )(A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。
2-12 图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) (A )平动;(B )转动;(C )不动;(D )平动加转动。
2-13 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。
2-14 图示三杆结构,欲使杆3的内力减小,应该( B )DC BA ζε(A )增大杆3的横截面积; (B )减小杆3的横截面积; (C )减小杆1的横截面积; (D )减小杆2的横截面积。
2-15 图示有缺陷的脆性材料拉杆中,应力集中最严重的是杆( D )二、填空题3-6 圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
3-7 铸铁圆杆发生扭转破坏的破断线如图所示,试画出圆杆所受外力偶的方向。
3-8 画出圆杆扭转时,两种截面的切应力分布图。
3-9 在计算圆柱形密围螺旋弹簧簧丝切应力时,考虑到(剪力引起的切应力及簧丝曲率的影响 ),而加以校正系数。
3-10 开口薄壁杆扭转时,截面上最大切应力发生在(最厚的矩形长边 )处;闭口薄壁杆扭转时,截面上最大切应力发生在( 最小厚度)处.TTF 123题24 F FF FFFF F(A )(B ) (C )(D )第3章 扭转三,选择题3-11阶梯圆轴的最大切应力发生在( D ) (A) 扭矩最大的截面; (B)直径最小的截面; (C) 单位长度扭转角最大的截面; (D)不能确定.3-12 空心圆轴的外径为 D ,内径为 d ,D d /=α。
陈天富材料力学第九章应力和应变分析和强度理论修订
σ2ε3dz
ε2dy
dz
σ1
dy
σ3 dx ε1dx
V1 V V
(1 1 2 3 )V
V
V
1 2
3
(1 2)
E
( 1
2
3
)
3(1 2)
E
1
2
3
3
令 K E --体积弹性模量
3(1 2 )
m
1
2 3
3
--平均应力
m
K
称为体积应变
26
§9.8 复杂应力状态的变形比能
σ2
简单应力状态比能
u
2
σ1 σ3
三向应力状态比能
u 11 22 33
222
1 2E
[(
2 1
2 2
2 3
)
2 ( 1
2
2 3
3 1 )]
27
σ2 σ3
σm
σ1
=
σm
σ2-σm
σm +
σ1-σm σ3-σm
体积改变比能
体积改变
形状改变
uV
m m
2
m m
2
m m
2
3 m m
2
3(1 2
2E
)
2 m
τn2 = p2-σn2 =σ12l 2+σ2 2m2 σ3 2n2-σn2 (3)
y
σ3 py
σ1
Pz px
x
z
σ2
n
y σn
σ3
σ1 z
τn x
σ2
t
15
应力圆方程
( n
2
3
2
)2
009-第九章-强度理论与组合变形
F
F=100kN
Z
0.32m
0.32m
Fs
100kN
X
100kN M
32kNm
X
第11页,共85页。
7K 100
88.6 11.4
I z 2370 104 mm4
Wz 237 103 mm3
Iz
/
S
z
max
17.2cm
解:1、画内力图
11
2、最大正应力校核
max
3、最大切应力理论(第三强度理论)
强度条件: 1 3
4、最大形状改变比能理论: (第四强度理论;均方根理论;歪形能理论;畸形能理论)
强度条件:
1
2
(1 2 )2
( 2
3 )2
( 3
1)2
22
第22页,共85页。
三、结论: xd ( ; r )
r1 1 r 2 1 ( 2 3 )
9
第9页,共85页。
强度理论的应用——
x
max
min
x
2
( x )2
2
xy 2
1
3
xy
r3 x2 4 xy2
r4 x2 3 xy2
使用条件:屈服破坏, 2 0 。
10
第10页,共85页。
例:如图所示工字型截面梁,已知〔σ〕=180MPa〔τ 〕 =100MPa
29
第29页,共85页。
§8—5 斜弯曲
一、斜弯曲的概念
梁上的外力都垂直于轴线,外力的作用面不在梁的纵向对称面 内,变形后梁的轴线不在外力的作用平面内由直线变为曲线(梁上的 外力都垂直于轴线且过弯曲中心,但不与形心主轴重合或平行)。
材料力学填空与判断题解
F122-题132-题第 2 章 轴向拉伸与压缩二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。
2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。
2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。
2-9 铸铁试件的压缩破坏和(切)应力有关。
2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。
三、选择题2-11 应用拉压正应力公式AN=σ的条件是( B ) (A )应力小于比极限;(B )外力的合力沿杆轴线; (C )应力小于弹性极限;(D )应力小于屈服极限。
2-12 图示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D ) (A )平动;(B )转动;(C )不动;(D )平动加转动。
2-13 图示四种材料的应力-应变曲线中,强度最大的是材料(A ),塑性最好的是材料(D )。
2-14 图示三杆结构,欲使杆3的内力减小,应该( B )(A )增大杆3的横截面积; (B )减小杆3的横截面积; (C )减小杆1的横截面积; (D )减小杆2的横截面积。
2-15 图示有缺陷的脆性材料拉杆中,应力集中最严重的是杆( D )第 3 章 扭转二、填空题3-6 圆杆扭转时,根据(切应力互等定理),其纵向截面上也存在切应力。
3-7 铸铁圆杆发生扭转破坏的破断线如图所示,试画出圆杆所受外力偶的方向。
3-8 画出圆杆扭转时,两种截面的切应力分布图。
3-9 在计算圆柱形密围螺旋弹簧簧丝切应力时,考虑到(剪力引起的切应力及簧丝曲率的影响 ),而加以校正系数。
题24(A (B (C )(D第3章 扭转3-10 开口薄壁杆扭转时,截面上最大切应力发生在(最厚的矩形长边 )处;闭口薄壁杆扭转时,截面上最大切应力发生在( 最小厚度)处. 三,选择题3-11阶梯圆轴的最大切应力发生在( D ) (A) 扭矩最大的截面; (B)直径最小的截面; (C) 单位长度扭转角最大的截面; (D)不能确定.3-12 空心圆轴的外径为 D ,内径为 d ,D d /=α。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
M max 8410 6 3 W 49610 m 6 [s ] 17010
3
据此可选用28a号工字钢,其截面系数为:
W 508106 m3
再按切应力强度条件进行校核。对28a号工字 钢,查表可得截面几何性质为
I z 71.14106 m4
d 0.8510 m
2
vd, u
1 2 2s s 6E
所以
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s s 2
强度条件
ss 1 2 2 2 s1 s 2 s 2 s 3 s1 s 3 [s ] 2 n
sb
s1 s 2 s b
+
45º
sb
+
O 45º
s1 s b
+
s1
++ + +
B
s3 s1
(s2=0)
s3
D
s 1 s 3 s b
二、关于塑性屈服的强度理论
1. 最大切应力理论(第三强度理论)
F
低碳钢
max
F
max=0
金属不屈服
假设最大切应力max是引起材料塑性屈服的因 素,破坏条件为
x
s max [s ]
max [ ]
来建立强度条件,因为sx 与x 之间会相互影响。 研究复杂应力状态下材料破坏的原因,根据一 定的假设来确定破坏条件,从而建立强度条件,这 就是强度理论的研究内容。
IV. 材料破坏的形式 常温、静载时材料的破坏形式大致可分为
(1)脆性断裂型
例如铸铁拉伸、扭转; 低碳钢三向拉应力状态。 (2)塑性屈服型 例如低碳钢拉伸、扭转; 铸铁三向压缩应力状态。 可见,材料破坏的形式不仅与材料有关,而 且与应力状态有关。
可见,按第三强度理论,图b所示应力状态比 图a所示的安全;而按第四强度理论,两者的危险 程度一样。
注意:图a所示应力状态实际上为拉扭或弯扭组 合变形对应的应力状态,其相当应力如下
s r 3 s 4
2
2
s
s r 4 s 2 3 2
应牢记,以便于组合变 形的强度校核。
(a)
例 分别应用第三和第四强度理论求纯剪切应力状态 屈服应力s和拉压屈服应力ss之间的关系。 解 图示纯切剪应力状态的主应力为
实验验证:(1) 较第三强度理论更接近实际值; (2) 材料拉压性能相同时成立。
s1
s2
s3
s2=0
切
s3=0
2 1 2 2
s1
45º
45º
s s1s 2 s s s1 s s
s s1s 3 s s s1 s 3 s s
2 1 2 3
2 s
2 s
s2 s3
则
max u
对低碳钢等塑性材料,单向拉伸时的屈服是由 45斜截面上的切应力引起的,因而极限应力u可 由单向拉伸时的屈服应力求得。
因为 所以 强度条件
max
s1 s 3
2
u
ss
2
s1 s 3 s s
s1 s 3 ss
n [s ]
实验验证:(1)仅适用于拉压性能相同的材料; (2)与低碳钢单向拉(压)的45滑移线吻合; (3)二向应力状态基本符合,但偏于安全。
s 1 s 2 s 3
sb
n
[s ]
实验验证 (1) 可解释大理石单向压缩时的纵向开裂现象; (2) 与铸铁二向、三向拉应力状态下的实验不相符; (3) 对铸铁一向拉、一向压的二向应力状态偏于安 全,但可应用。
F
C
F
Me
y
Me
x
x
s2
C
A
+ + +
s2 s1
(s3=0)
第九章
强 度 理 论
§ 9- 1
I. 单向应力状态
强度理论的概念
s s
图示拉伸和压缩的单向应力状态,材料的破坏 有两种形式
(1)塑性屈服:极限应力为
(2)脆性断裂:极限应力为
su ss su sb
或
s p0.2
其中,ss、sp0.2和sb可由实验测得。由此可建立 如下强度条件 su s max [s ] n
s s
(a)
(b)
解 对图a所示应力状态,因为
s 1 s 2 s1 1 5 s 2 2 2
2
s2 0
1 s 2 s 3 1 5 s 2 2 2
所以
2
s
2
s
s 2 s r3 s1 s 3 2 2 s 4 5s
2. 最大伸长线应变理论(第二强度理论)
F
1
F
3
Me
1
Me
假设最大伸长线应变1是引起脆性破坏的主要因 素,破坏条件为
1 u
u由单向拉伸实验测定。
因为 所以 强度条件
1 1 s 1 s 2 s 3 E
u
sb
E
s1 s 2 s 3 s b
可用28b号工字钢。 若用第三强度理论,则相当应力为
s r1 s1
s r 2 s1 s 2 s 3
s r 3 s1 s 3
s r4
1 2 2 2 s1 s 2 s 2 s 3 s1 s 3 2
应用范围
仅适用于常温、静载条件下的均匀、连续、各向同性 的材料; (1)不论塑性或脆性材料,在三向拉应力状态都发生脆 性断裂,宜采用第一强度理论;
2 2
(a)
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s r4 2 s 2 3 2 2s
对图b所示应力状态,因为
s
s1 s 2 s
s 3 s
所以
s r 3 s1 s 3 2s
(b)
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 s r4 2 2s
13.7
(d)
122
8.5
s max
126.3 280
max
a
13.7
126.3
以上分析仅考虑了最大正应力和切应力作用的 位置,而对工字型截面腹板和翼缘交界处(图d中的 a点),正应力和切应力都较大,且处于平面应力状 态(见图e),因此还需对该点进行强度校核。
(e)
s
a
s
利用图d所示的截面简化尺寸和已知的Iz,可 求得a点的正应力s 和切应力 分别为
s max
su
n
ss
n
然而,其屈服是由于max引起的,对图示单向应力 状态,有
max
s max
2
依照切应力强度条件,有
max
s max
2
s
n
可见,s u s s与 u
su
2
s
ss
2
相当或等效
sx
III. 复杂应力状态 对图示平面应力状态,不能分别用
s3
s1
s2=0
s1=0
s1
s3 s2=0
s2
s1 s3=0
s2 s3 s1=0
s3 s1 s2=0
§9 -4 强度理论的应用
强度理论的统一形式
s r [s ]
式中,[s]为材料的许用拉应力,sr为按不同强度理 论所得到的单元体内各主应力的综合值,称为相当应 力。与各强度理论相应的相当应力分别为
存在问题:(1)没考虑s2对屈服的影响,虽偏于安全, 但误差较大; (2)仅适用于拉压性能相同的材料。
2. 形状改变能密度理论(第四强度理论)
假设形状改变能密 度vd是引起材料塑性屈 服的因素,破坏条件为
vd=0
vd vd,u
vd,u可通过单向拉伸试验来确定。 因为
金属不屈服
1 2 2 2 s 1 s 2 s 2 s 3 s 1 s 3 vd 6E
s1
s 2 0 s 3
当 =s时材料发生屈服,因此有
s1 s
s2 0
s 3 s
由第三强度理论得
s r3 s1 s 3 2 s
而当材料拉压屈服时有
s1 s s
s 2 s3 0
即 由此可得
s r3 s s
s 0.5s s
由前例可得,图e所示应力状态的第四强度理论 相当应力为
s r 4 s 2 3 2 149.12 3 73.82
196.4MPa [s ] 170MPa
可见,28a号工字钢不能满足要求。改用28b号工 字钢,按同样的方法可得
s r 4 173.2MPa [s ]1.05 178.5MPa
[ ] 0.5[s ]
应用第四强度理论得
s r4
1 2 2 2 s 1 s 2 s 2 s 3 s 3 s 1 2
纯剪切 单向拉伸
3 s s
s
由此可得
1 s s s 0.577s s 3 [ ] 0.577[s ] 0.6[s ]
(2)对于脆性材料,在二向拉应力状态下宜采用第一强 度理论;
(3)对塑性材料,除三向拉应力状态外都会发生屈服, 宜采用第三或第四强度理论; (4) 不论塑性或脆性材料,在三向压应力状态都发生塑 性屈服,宜采用第四强度理论。