A062=第十章 第一节 分类加法计数原理与分步乘法计数原理
分类加法计数原理与分步乘法计数原理区别分类原理分类的原则
一、分类的原则分类计数时,首先要根据问题的特点,确定一个适当的分类标准,然后利用这个分类标准进行分类,分类时要注意两条基本原则:一是完成这件事的任何一种方法必须分为相应的类;二是不同类的任何方法必须是不同的方法,只要满足这两条基本原则,就可以确保计数的不重不漏.二、分类原理完成一件事,有n类方法,在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,…,在第n类方法中有m n种不同的方法,那么完成这件事共有不同的方法。
注:每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事。
三、分类原理题型比较杂乱,几种常见的现象有①开关现象:要根据开启或闭合开关的个数分类;②数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数;③球赛得分:根据胜或负场次进行分类。
四、分类原理题型比较杂乱,几种常见的现象有:①开关现象:要根据开启或闭合开关的个数分类;②数图形个数:根据图形是由几个单一图形组合而成进行分类求情况数;③球赛得分:根据胜或负场次进行分类。
特别提醒:①明确题目中所指的"完成一件事"是指什么事,完成这件事可以有哪些办法,怎样才算完成这件事.②完成这件事的n种方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对这件事进行分类,要求第一种方法必定属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须做到既不重复也不遗漏.④分类加法计数原理的集合表述形式:做一件事,完成它的办法用集合S表示,S被分成n类办法,分别用集合种不同的方法,即集合个元素,那么完成这件事共有的方法,即集合S中的无素的个数为。
分类加法计数原理与分步乘法计数原理
自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理
分类加法计数原理与分步乘法计数原理示范
THANKS
感谢观看
混合应用的实例
组合问题
在组合问题中,可以将问题按照不同的 组合方式进行分类,然后分别对每一类 进行计数,最后将各类计数结果相加。 同时,也可以将问题分解为若干个连续 的选择步骤,每一步都有一定的选择方 式,最后将各步的选择方式相乘。
VS
排列问题
在排列问题中,可以将问题按照不同的排 列方式进行分类,然后分别对每一类进行 计数,最后将各类计数结果相加。同时, 也可以将问题分解为若干个连续的排列步 骤,每一步都有一定的选择方式,最后将 各步的选择方式相乘。
理的混合应用
原理的结合方式
分类加法计数原理
混合应用
将问题按照不同的分类标准进行划分, 然后分别对每一类进行计数,最后将 各类计数结果相加。
在解决复杂问题时,将分类加法计数 原理与分步乘法计数原理结合使用, 以更全面地考虑问题的各种情况。
分步乘法计数原理
将问题分解为若干个连续的步骤,每 一步都有一定的选择方式,最后将各 步的选择方式相乘。
02
分步乘法计数原理应用建议
确定连续步骤的顺序和数量。
ห้องสมุดไป่ตู้03
对两种计数原理的应用建议
计算每个步骤发生的方法数。
将各个步骤的方法数相乘得 到总的方法数。
注意事项:在应用两种计数原 理时,需要注意事件的互斥性 和步骤的连续性,以及方法数
的准确计算。
对两种计数原理未来发展的展望
分类加法计数原理与分步乘法计数原理作为组合数学中的基本原理,在数学、计算机科学、统计学等 领域有着广泛的应用。
理解
分步乘法计数原理强调的是分步骤完成一件事情,每一步都有多种不同的方法,最终的方法数就是每 一步方法数的乘积。
分类加法计数原理和分步乘法计数原理
分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。
3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。
从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。
要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。
要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。
3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。
要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。
分类加法计数原理与分步乘法计数原理知识点与习题
理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.知识聚焦不简单罗列1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有叫种不同的方法,在第二类方案中有吗种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =种不同的方法.2.分步乘法计数原理完成一件事情需要n个不同的步骤,完成第一步有1^种不同的方法,完成第二步有1^ 种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N = 种不同的方法.3.两个计数原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.正本清源不单纯记忆■链接教材1.[教材改编]现有高一年级的学生3名,高二年级的学生5名,从中任选1人参加接待外宾的活动,有种不同的选法.2.[教材改编]5位同学站成一排准备照相的时候,有2位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么2位老师与同学们站成一排照相的站法总数为.3.[教材改编]如图9551所示,使电路接通,开关不同的开闭方式有种.图9551■易错问题4.分类加法计数原理:每一种方法都能完成这件事情;类与类之间是独立的.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.5.分步乘法计数原理:所有步骤完成才算完成;步与步之间是相关联的.将甲、乙、丙等6人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为.■通性通法6.分类计数原理:分类时标准要明确.如果把个位数是1,且恰有三个数字相同的四位数叫作“好数”,那么在由1, 2, 3, 4 四个数字组成的有重复数字的四位数中,“好数”共有.7.分步计数原理:步骤互相独立,互不干扰;步与步确保连续,逐步完成.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B, C, D中选择,其他四个号码可以从0〜9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3, 5, 6, 8, 9中选择,其他号码只想在1, 3, 6, 9中选择,则他的车牌号码可选的所有可能情况有种.探究点一分类加法计数原理1某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A. 3种B. 6种C. 9 种D. 18 种(2)现有5种不同的颜色可供使用,将一个五棱锥的各个侧面涂色,5个侧面分别编号为1, 2, 3, 4, 5,而有公共边的两个面不能涂同一种颜色,则不同的涂色方法有______________ 种.[总结反思]分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词、关键元素或关键位置.首先,根据题目特点恰当选择一个分类标准;其次,分类时应注意完成这件事情的任何一种方法必须属于某一类.应用分类加法计数原理时,应先明确分类标准,确保计数不重复,不遗漏.式题(1)某班班会准备从甲、乙等7名学生中选4名学生发言,要求甲、乙2人至少有1人参加,则不同的发言顺序的种数为()A. 840B. 720C. 600D. 30(2)如图9552所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为()图9552A. 15B. 16C. 17D. 18探究点二分步乘法计数原理2(1)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有种.(2)将A, B, C, D, E, F六个字母排成一排,且A, B均在C的同侧,则不同的排法共有种.(用数字作答)[总结反思]利用分步乘法计数原理解决问题时应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的,以元素(或位置)为主体的计数问题,通常先满足特殊元素(或位置),再考虑其他元素(或位置);(2)对完成每一步的不同方法种数要根据条件准确确定.式题(1)某节目制作组选取了6户家庭到4个村庄体验农村生活,要求将6户家庭分成4组,其中2组各有2户家庭,另外2组各有1户家庭,则不同的分配方案的种数是()A. 216B. 420C. 720D. 1080(2)用5种不同的颜色为如图9553所示的广告牌着色,要求在①②③④四个不同区域中相邻的区域不用同一种颜色,则不同的着色方法种数为()图9553A. 320B. 240C. 180D. 135探究点三两个计数原理的综合3 (1)设集合A={(xj x2, x3, x4, xj|x产{—1, 0, 1), i = 1, 2, 3, 4, 5},那么集合A中满足条件“1WI XJ + I XJ + I X3I + I XJ + I X5IW3”的元素个数为()A. 60B. 90C. 120D. 130(2)用红、黄、蓝三种颜色去涂图中标号为1, 2,…,9的9个小正方形(如图9554), 使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1, 5, 9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.图9554[总结反思](1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,只有完成每一步,整件事才算完成.(3)若综合利用两个计数原理,一般先分类再分步.式题设集合1={1,2, 3, 4, 5},选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A. 50 种B. 49 种C. 48 种D. 47 种学科能力自主阅读型误区警示21.分类与分步不当致误【典例】若从1, 2, 3,…,9这9个整数中取4个不同的数,其和为偶数,则不同的取法共有()A. 60 种B. 63 种C. 65 种D. 66 种解析D先找出|①和为偶数的各种情况,]再利用分类加法计数原理求解.满足题设的取法可分为三类:一是4个都是奇数,在奇数1, 3,5,7,9中,任意取4个,有C4 = 5(种);二是2个奇数2 5个偶数,在5个奇数中任取2个,再在偶数2, 4, 6, 8中任取2个,有②C,-C 2 = 60 (种)--- 5 --4--------三是4个都是偶数,取法有1种.所以满足条件的取法共有5 + 60+1 = 66(种).【踉踪练习】(1)[2015 •唐山二模]一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分.已知甲球队已赛4场,积4分,则在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A. 7 种B. 13 种C. 18 种D. 19 种(2)给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有种.。
分类加法计数原理与分步乘法计数原理课件
2 示例案例
我们将通过一些具体的案例来演示分类加法计数原理的应用,以加深理解。
分步乘法计数原理介绍
现在,我们来学习分步乘法计数原理,了解它的定义及应用场景,并通过实例来进一步理解。
1 定义及应用场景
2 示例案例
分步乘法计数原理是一种将多个步骤分 别计数再相乘的方法,通常用于解决复 杂的计数问题。
通过一些具体的案例,我们可以更好地 理解分步乘法计数原理的应用和实际效 果。
分类加法计数原理与法计数原理和分步乘法计数原理的相似之处和不同之处。
共同点
两种计数原理都用于解决复杂计数问题,并能够得到准确的结果。
分类加法计数原理与分步 乘法计数原理课件
欢迎来到分类加法计数原理与分步乘法计数原理的课件!在这个课件中,我 们将深入探讨这两个重要的计数原理,并比较它们的共同点和不同点。
分类加法计数原理介绍
在这一部分,我们将学习分类加法计数原理的定义及其应用场景,并通过一些示例案例来帮助理 解。
1 定义及应用场景
实际应用举例
我们将通过一些实际应用的案例来展示这两 种计数原理的实际效果。
不同点
分类加法计数原理适用于将多个分类的计数结果相加,而分步乘法计数原理适用于将多个步 骤的计数结果相乘。
结论
分类加法计数原理和分步乘法计数原理在不同的场景下都发挥着重要的作用。
适用场景
分类加法计数原理适用于需要将多个分类的 计数结果相加的问题。分步乘法计数原理适 用于需要将多个步骤的计数结果相乘的问题。
分类加法计数原理与分步乘法计数原理
分类加法计数原理与分步乘法计数原理1.分类计数问题:要计算一些集合中满足其中一种条件的元素的数目。
可以将该集合分为若干个子集,分别计算每个子集中满足条件的元素的数目,然后将这些数目相加即可得到最终的结果。
例如,一些班级有30个学生,其中有10个男生和20个女生,要计算全班学生中身高超过1.7米的男生的人数。
可以将问题分解为两个部分,分别计算身高超过1.7米的男生和身高不超过1.7米的男生的人数,然后将这两个数目相加即可得到最终的结果。
2.多重条件计数问题:要计算满足多个条件的元素的数目。
可以将满足不同条件的元素分为不同的类别,然后计算每个类别中满足条件的元素的数目,最后将这些数目相加得到最终的结果。
例如,一些商店有3种颜色的衬衫(红色、蓝色和绿色),每种颜色的衬衫分别有5件、3件和4件。
要计算购买2件衬衫的方法数目,其中要求至少购买一件红色的衬衫。
可以将购买2件衬衫分为两种情况:一种是购买一件红色的衬衫和一件其他颜色的衬衫,另一种是购买两件红色的衬衫。
然后分别计算这两种情况下的购买方法数目,最后将这两个数目相加即可得到最终的结果。
分步乘法计数原理是指将一个计数问题分解为若干个步骤,每个步骤的计数独立进行,最后将每个步骤的计数结果相乘得到最终的结果。
该方法的基本思想是通过分步骤计数来简化问题,使得每个步骤的计数更加直观和容易。
分步乘法计数原理通常适用于以下两种情况:1.顺序计数问题:要计算一些事件发生的不同顺序的可能性。
可以将该事件分为若干个步骤,分别计算每个步骤的可能性,然后将这些可能性相乘得到最终的结果。
例如,一些球队有10名队员,要计算选择3名队员组成一支首发阵容的方法数目。
可以将选择队员分为三个步骤:先选择首发中锋(有10种选择),然后选择首发后卫(有9种选择),最后选择首发前锋(有8种选择)。
然后将这三个步骤的选择数目相乘即可得到最终的结果。
2.分步限制问题:要计算满足多个条件的元素的数目。
分类加法计数原理与分步乘法计数原理
分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.分类加法计数原理的理解分类加法计数原理中的“完成一件事有两个不同方案”,是指完成这件事的所有方法可以分为两类,即任何一类中的任何一种方法都可以完成任务,两类中没有相同的方法,且完成这件事的任何一种方法都在某一类中.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.分步乘法计数原理的理解分步乘法计数原理中的“完成一件事需要两个步骤”,是指完成这件事的任何一种方法,都需要分成两个步骤.在每一个步骤中任取一种方法,然后相继完成这两个步骤就能完成这件事,即各个步骤是相互依存的,每个步骤都要做完才能完成这件事.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A.3种B.4种C.7种D.12种答案:C已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( ) A.1 B.3C.6 D.9答案:D某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种.答案:3加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,每两道工序中可供选择的人各不相同,如果从中选3人每人做一道工序,则选法有________种.答案:120探究点1 分类加法计数原理[学生用书P2]在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).利用分类加法计数原理计数时的解题流程某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班30 20 50 高三(2)班30 30 60 高三(3)班 35 20 55(1)(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.探究点2 分步乘法计数原理[学生用书P2]从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?【解】 由题意知a 不能为0,故a 的值有5种选法; b 的值也有5种选法;c 的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a 有2种方法,第二步确定b 有5种方法,第三步确定c 有4种方法,故可组成2×5×4=40条抛物线.2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n=1的参数m ,n ,则可以组成椭圆的个数是多少?解:据条件知m >0,n >0,且m ≠n ,故需分两步完成,第一步确定m ,有3种方法,第二步确定n ,有2种方法,故确定椭圆的个数为3×2=6(个).利用分步乘法计数原理计数时的解题流程从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)分三步:第1步,排个位,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.故共有4×3×2=24个满足要求的三位数.(2)第1步,排个位,只能从2,4中选1个,有2种方法;第2步,排十位,从剩下的3个数中选1个,有3种方法;第3步,排百位,只能从剩下的2个数字中选1个,有2种方法.故共有2×3×2=12个满足要求的三位偶数.探究点3 两个计数原理的综合应用[学生用书P3]甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?【解】(1)需完成的事情是“借1本书”,所以借给乙数学、物理、化学书中的任何1本,都可以完成这件事情.根据分类加法计数原理,共有5+4+3=12种借法.(2)需完成的事情是“每科各借1本书”,意味着要借给乙3本书,只有从数学、物理、化学三科中各借1本,才能完成这件事情.根据分步乘法计数原理,共有5×4×3=60种借法.(3)需完成的事情是“从三种学科的书中借2本不同学科的书”,可分三类:第1类,借1本数学书和1本物理书,只有2本书都借,事情才能完成,根据分步乘法计数原理,有5×4=20种借法;第2类,借1本数学书和1本化学书,有5×3=15种借法;第3类,借1本物理书和1本化学书,有4×3=12种借法.根据分类加法计数原理,共有20+15+12=47种借法.利用两个计数原理的解题策略用两个计数原理解决具体问题时,首先,要分清是“分类”还是“分步”,区分分类还是分步的关键是看这种方法能否完成这件事情.其次,要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重不漏”的原则,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性;有些题目中“分类”与“分步”同时进行,即“先分类后分步”或“先分步后分类”.现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?解:(1)分三类:第一类,选出的是医生,有3种选法;第二类,选出的是护士,有5种选法;第三类,选出的是麻醉师,有2种选法.根据分类加法计数原理,共有3+5+2=10(种)选法.(2)分三步:第一步,选1名医生,有3种选法;第二步,选1名护士,有5种选法;第三步,选1名麻醉师,有2种选法.根据分步乘法计数原理知,共有3×5×2=30(种)选法.1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )A.8 B.15C.18 D.30解析:选A.共有5+3=8种不同的选法.2.已知集合A={1,2},B={3,4,5},从集合A、B中先后各取一个元素构成平面直角坐标系中的点的横、纵坐标,则可确定的不同点的个数为( )A.5 B.6C.10 D.12解析:选B.完成这件事可分两步:第一步,从集合A中任选一个元素,有2种不同的方法;第二步,从集合B中任选一个元素,有3种不同的方法.由分步乘法计数原理得,一共有2×3=6种不同的方法.3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有( )A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步乘法计数原理知进、出门的方案有7×7=49种.4.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①高一和高二各选1人作中心发言人,有50×42=2 100 种选法;②高二和高三各选1人作中心发言人,有42×30=1 260种选法;③高一和高三各选1人作中心发言人,有50×30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法.[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A.5 B.4C.9 D.20解析:选C.由分类加法计数原理求解,5+4=9(种).故选C.2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.答案:548.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:229.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?解:(1)只要闭合图中的任一电键,电灯即发光.由于在电键组A中有2个电键,电键组B 中有3个电键,且分别并联,应用分类加法计数原理,所以共有2+3=5(种)接通电源使电灯发光的方法.(2)只有在闭合A组中2个电键中的一个之后,再闭合B组中3个电键中的一个,才能使电灯的电源接通,电灯才能发光.根据分步乘法计数原理,共有2×3=6(种)不同的接通方法使电灯发光.[B 能力提升]11.(2018·郑州高二检测)从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.(2018·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.13.已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M).(1)点P可以表示平面上的多少个不同点?(2)点P可以表示平面上的多少个第二象限的点?(3)点P可以表示多少个不在直线y=x上的点?解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,点P可以表示平面上6×6=36(个)不同点.(2)根据条件,需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,点P 可以表示平面上3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,点P可以表示6×5=30(个)不在直线y=x上的点.14.(选做题)某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。
分类加法计数原理与分步乘法计数原理1
分类加法计数原理与分步乘法计数原理1分类加法计数原理与分步乘法计数原理1
当要确定一个组合的数量时,分类加法计数原理就可以归结到两种状态:
1)它的子集的数量可以用加法的方式表示
2)它的数量受它的子集的数量的影响,以及它子集之间的关系。
因此,如果要确定一个总体的数量,就要先获得它包含的子集的数量,然后把子集的数量相加得到总体的数量。
分步乘法计数原理又叫乘法定理,也是组合数学中关于组合数学性质
的一个定理,它的基本思想是:一个总体有一定的数量和性质。
这种性质
可以是概率、数量或其他特性。
它可以使用乘法的方式表示。
当要确定一个组合的数量时,分步乘法计数原理就可以归结到两种状态:
1)它的子集的数量可以用乘法的方式表示
2)它的数量受它的子集的数量的影响,以及它子集之间的关系。
因此,如果要确定一个总体的数量,就要先获得它包含的子集的数量,然后把子集的数量相乘得到总体的数量。
第十章 第一节 分类加法计数原理与分步乘法计数原理 课件(共30张PPT)
学科素养: 数学建模、数学抽象.
知识·分步落实
⊲学生用书 P165
两个计数原理
分类加法计数原理
分步乘法计数原理
条 完成一件事有两__类__不__同__方__案__,在第 1 完成一件事需要两__个__步__骤__,做
件 类方案中有 m 种不同的方法,在第 2 第 1 步有 m 种不同的方法,做
法,所以由分步乘法计数原理得直线有 5×4=20(条).]
4.书架的第 1 层放有 4 本不同的语文书,第 2 层放有 5 本不同的数学书, 第 3 层放有 6 本不同的体育书.从第 1,2,3 层分别各取 1 本书,则不同的 取法种数为________.
解析: 由分步乘法计数原理知,从第 1,2,3 层分别各取 1 本书,不 同的取法共有 4×5×6=120(种).
(2)区域 3 有 4 种选法,区域 1 有 3 种选法,区域 2 有 2 种选法,区域 4 从区域 1,2 所选颜色中选有 2 种选法,区域 5 可选剩下的一种和区域 1,2 所选被区域 4 选剩下的一种,有 2 种选法,共有 4×3×2×2×2=96 种.
答案: 144;96
用分步乘法计数原理解决问题的三个步骤
类方案中有 n 种不种的方法
第 2 步有 n 种不同的方法
结 完成这件事共有 N=m__+__n_种不同的 完成这件事共有 N=_m_·_n_种不
论 方法
同的方法
[注意] 分类的关键在于要做到“不重不漏”;分步的关键在于要正确 设计分步的程序,即合理分类,准确分步.在分类与分步之前要确定题目中 是否有特殊条件限制.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于 其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立, 分步完成”.
第一节,分类加法计数原理与分步乘法计数原理1
4
草地
思考
水路
狐狸总共有多少种
2种
安全地 方法逃到安全地?
陆路
3种
如果狐狸还有4辆自行车可以选择呢? 2+3+4=9种
探究1
如果完成一件事情有3类不同方案,在第 1类方案中有m1种不同的方法,在第2类方案中 有m2种不同的方法,在第3类方案中有m3类不 同的方法,那么完成这件事情有
一种方法就可完成这件 有各个步骤都完成了,才
事。
能完成这件事。
区别3
各类办法是互斥的, 并列的,独立的。
各步之间是关联的、独立 的,“关联”确保不遗 漏,”独立“确保不 重复。
即:类类互斥,步步独立
18
(1) 草地到安全地
完成这个事情有几类方案
两类
每类方案能否独立完成这件事情
能
每类方案中分别有几种不同的方法
2种 3种
完成这件事情共有多少种不同的方法
2+3=5种
3
互不相容
完成一件事有两类不同方案,在第1类方案中有 m种不同的方法,在第2类方案中有n种不同的方
法,那么完成这件事共有: N=m+n种不同的方法。 思考 原理使用的前提条件是什么?
分析: 分三类:
第一类:从第1层取,有4种方法;
第二类:从第2层取,有3种方法;
第三类:从第3层取,有2种方法。
所以从书架上任取1本书共有4+3+
2 =9 种不同的取法
15
问2.一个书架共有三层,第1层放有4 本不同的计算机书,第2层放有3本不 同的文艺书,第3层放有2本不同的体 育书。从书架的第1、2、3层各取1本 书,有多少种不同的取法?
第一节 分类加法计数原理与分步乘法计数原理
第一节 分类加法计数原理与分步乘法计数原理
一、“基础知识”掌握牢 两个计数原理
基本形式
一般形式
分类 加法 计数 原理
完成一件事有两类不同
方案,在第1类方案中 有m种不同的方法,在 第2类方案中有n种不同 的方法,那么完成这件 事共有N= m+n 种不 同的方法
相邻区域所涂颜色不同,则不同的涂色方
法种数为
()
A.24
B.48
C.72
D.96
解析:分两种情况:①A,C不同色,先涂A有4种,C有3种,E 有2种,B,D各有1种,有4×3×2=24种涂法. ②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2 种,有4×3×2×2=48种涂法. 故共有24+48=72种涂色方法. 答案:C
A.12
B.24
C.18
D.6
[解析] (1)由于同一条线段的两个端点不能同色,因此可
分类如下.第一类:若A,D相同,先涂E有4种涂法,再涂A,
D有3种涂法,再涂B有2种涂法,C只有一种涂法,共有
4×3×2×1=24(种);第二类:若A,D不同,先涂E有4种涂
法,再涂A有3种涂法,共有4×3×2×1×(2+1)=72(种).根据
2.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示
平面上的点,则P可表示坐标平面上第二象限的点的个数为
A.6
B.12
()
C.24
D.36
解析:确定第二象限的点,可分两步完成:
第一步确定a,由于a<0,所以有3种方法;
第二步确定b,由于b>0,所以有2种方法.
由分步乘法计数原理,得到第二象限的点的个数是3×2=6. 答案:A
高中数学精品讲义第十章第一节分类加法计数原理与分步乘法计数原理Word版含解析
第十章⎪⎪⎪计数原理与概率、随机变量及其分布高中数学精品讲义第十章第一节分类加法计数原理与分步乘法计数原理Word版含解析全国卷5年考情图解高考命题规律把握1.本章在高考中一般考查1个小题和1个解答题,占12~17分.2.从考查内容来看,主要有:(1)利用计数原理解决实际问题,有时与古典概型综合考查.(2)几何概型均以选择题的形式单独考查.(3)对二项式定理的考查主要是利用通项公式求特定项.(4)对正态分布的考查,可能单独考查也可能在解答题中出现.(5)以实际问题为背景,考查分布列、期望等是高考的热点题型.3.2018年高考全国卷Ⅰ将概率问题与导数相结合且出现在第20题的位置,应引起考生的注意.第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.[熟记常用结论]1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n 种不同的方法.[小题查验基础]一、判断题(对的打“√”,错的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.()(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.()(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.()(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.()答案:(1)×(2)√(3)√(4)×二、选填题1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有()A.16种B.13种C.12种D.10种答案:C2.小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,则不同的买法共有()A.7种B.8种C.6种D.9种解析:选A要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC 电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有2种方法.不同的买法共有2+3+2=7(种).3.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160B.720C.240D.120解析:选B分步来完成此事.第1张有10种分法;第2张有9种分法;第3张有8种分法,共有10×9×8=720(种)分法.4.从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).答案:65.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法共有4×5×6=120(种).答案:120考点一分类加法计数原理[基础自学过关][题组练透]1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A到O有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A到O,有1种走法;第二类,中间过一个点,有A→B→O和A→C→O 2种不同的走法;第三类,中间过两个点,有A→B→C→O和A→C→B→O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x2m+y2n=1的焦点在y轴上,且m∈{1,2,3,4,5},n∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m=1时,n=2,3,4,5,6,7,共6个;当m=2时,n=3,4,5,6,7,共5个;当m=3时,n=4,5,6,7,共4个;当m=4时,n=5,6,7,共3个;当m=5时,n=6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a1a2a3”满足a1<a2且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240[名师微点]应用分类加法计数原理解决实际问题的步骤(1)审题:认真阅读题设条件,理清题目要求.(2)分类:依据题设条件选择分类标准,做到不重不漏.(3)整合:整合各类情况得出结论.考点二分步乘法计数原理[师生共研过关][典例精析](1)已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则P可表示坐标平面上第二象限的点的个数为()A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析](1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[过关训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:18 6考点三两个计数原理的综合应用[师生共研过关][典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[过关训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.72
C.108
B.96
D.144
[自主解答]
从2,4,6三个偶数中选一个数放在个位,有C1种方法, 3
将其余两个偶数全排列,有A2种排法,当1,3不相邻且不与5相邻时 2
2 有A3种方法,当1,3相邻且不与5相邻时有A2· 3种方法,故满足题意 A2 3 2 的偶数个数有C1· 2(A3+A2· 2)=108(个). 3A 3 2 A3
第一节 分类加法计数原理与分步乘法计数原理
考 什 么 1.理解分类加法计数原理和分步乘法计数原理. 2.会用分类加法计数原理和分步乘法计数原理解决一些简
单的实际问题.
怎 么 考
1.两个计数原理在高考中单独命题较少,一般与排列组合
相结合考查. 2.多为选择、填空题,着重考查学生分析问题解决问题的 能力.
种不同线路.
∴共有3×16=48种不同的参观路线. 答案: D
4.(2012· 郑州模拟)在2012年伦敦奥运选手选拔赛上,8 名男运动员参加100米决赛.其中甲、乙、丙三人 必须在1、2、3、4、5、6、7、8八条跑道的奇数号 跑道上,则安排这8名运动员比赛的方式共有_____
种
解析:分两步安排这8名运动员. 第一步:安排甲、乙、丙三人,共有1、3、5、7四条跑
=36(个).
答案: C
3.5名应届毕业生报考三所高校,每人报且仅报一所院 校,则不同的报名方法的种数是 A.35 C.A3 5 B.53 D.C3 5 ( )
解析:共有3×3×3×3×3=35.
答案: A
4.(教材习题改编)有不同颜色的四件衬衣与不同颜色 的三条领带,如果一条领带与一件衬衣配成一 套.则不同的配法种数是________.
1.(教材习题改编)从3名女同学和2名男同学中选1人主 持主题班会,则不同的选法种数为 A.6 C.3 B.5 D.2 ( )
解析:不同的选法有3+2=5种.3+2=5.
答案: B
2.在所有的两位数中,个位数字大于十位数字的两位 数共有 A.50个 C.36个 B.45个 D.35个 ( )
解析:利用分类加法原理8+7+6+5+4+3+2+1
答案: C
2.(2012· 佛山模拟)五名篮球运动员比赛前将外衣放在
休息室,比赛后都回到休息室取衣服.由于灯光暗 淡,看不清自己的外衣,则至少有两人拿对自己的 外衣的情况有 A.30种 B.31种 ( )
C.35种
D.40种
2 5
解析:分类:第一类,两人拿对:2×C
=20种;第二类,三人拿
对:C 3 =10种;第三类,四人拿对与五人拿对一样,所以有1种.故 5 共有20+10+1=31种.
一、分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m种不 同的方法,在第2类方案中有n种不同的方法.那么完 成这件事共有N= m+n 种不同的方法.
二、分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法, 做第2步有n种不同的方法,那么完成这件事共有N=
m×n 种不同的方法.
解析:有4×3=12(种).
答案: 12种
5.从6个人中选4个人分别到巴黎、伦敦、悉尼、莫斯科四 个城市游览,要求每个城市至少有一人游览,每人只游 览一个城市,且这6个人中,甲、乙两人不去巴黎游览, 则不同的选择方案共有________种.
解析:共有4×5×4×3=240(种).
答案: 240
[精析考题]
[答案]
C
[巧练模拟]——————(课堂突破保分题,分分必保!) 1.(2012· 日照模拟)某化工厂生产中需依次投放2种化工 原料,现已知有5种原料可用,但甲、乙两种原料不 能同时使用,且依次投料时,若使用甲原料,则甲必
须先投放,则不同的投放方案有
A.10种 B.12种
(
)
C.15种
D.16种
解析:依题意,可将所有的投放方案分成三类,①使用 甲原料, C1· 有 3 1=3 种投放方案; ②使用乙原料, C1· 2 有 3 A2 =6 种投放方案;③甲、乙原料都不使用,有 A2=6 种, 3 所以共有 3+6+6=15 种投放方案.
[答案] B
[精析考题] [例2] (2011· 天津高考)如图,用四种 不同颜色给图中的A,B,C,D, F六个点涂色,要求每个点涂一种颜色, 且图中每条线段的两个端点涂不同颜色.则不同的涂
色方法共有
A.288种 C.240种 B.264种 D.168种
(
)
[自主解答]
先涂A、D、E三个点,共有4×3×2=24
[例1] (2011· 大纲全国卷)某同学有同样的画册2本,同
样的集邮册3本,从中取出4本赠送给4位朋友,每位朋 友1本,则不同的赠送方法共有 A.4种 B.10种 ( )
C.18种
D.20种
[自主解答]
依题意,就所剩余的一本画册进行分类计
数:第一类,剩余的是一本画册,此时满足题意的赠送 方法共有4种;第二类,剩余的是一本集邮册,此时满 足题意的赠送方法共有C 2 =6(种).因此,满足题意的赠 4 送方法共有4+6=10(种).
A.180
C.110
B.120
D.100
解析:(排除法)从 10 名队员中任选 3 名队员的方案数为 C3 =120;只从 10 5 名男队员中选取 3 名队员的方案数为 C3=10.所以至少有 1 名女队员入 5 选的方案数为 120-10=110.
答案: C
6.(2012· 上海模拟)上海某区政府召集5家企业的负责 人开年终总结经验交流会,其中甲企业有2人到会, 其余4家企业各有1人到会,会上推选3人发言,则 这3人来自3家不同企业的可能情况的种数为
________.
解析:若3人中有一人来自甲企业,则共有C 1 C 2 种情况, 2 4 若3人中没有甲企业的,则共有C 3 种情况,由分类加法原 4 理可得,这3人来自3家不同企业的可能情况共有C 1 C 2 + 2 4 C3=16(种). 4
答案: 16
作业
课时跟踪检测 (B卷) (六十二) p358
种涂法,然后再按B、C、F的顺序涂色,分为两类:一
类是B与E或D同色,共有2×(2×1+1×2)=8种涂法; 另一类是B与E或D不同色,共有1×(1×1+1×2)=3种 涂法.所以涂色方法共有24×(8+3)=264种. [答案] B
[精析考题] [例3] (2011· 四川高考)由1、2、3、4、5、6组成没有重 复数字且1、3都不与5相邻的六位偶数的个数是 ( )
道可安排,所以安排方式有4×3×2=24(种).
第二步:安排另外5人,可在2、4、6、8及余下的一条奇 数号跑道安排,所以安排方式有5×4×3×2×1=120(种). ∴安排这8人的方式有24×120=2 880(种).
答案:2 880
[巧练模拟]—————(课堂突破保分题,分分必保!) 5.(2012· 临沂模拟)2010年广州亚运会的篮球比赛中场 休息时,为活跃现场气氛,组委会想从拉拉队的5名 男队员和5名女队员中选出3名队员表演一个临时性的 节目,则其中至少有1名女队员入选的方案数为( )
答案: B
[巧练模拟]———————(课堂突破保分题,分分必保!)
3.(2011· 洛阳期末)一植物园参观路径 如图所示,若要全部参观并且路线 不重复,则不同的参观路线共有( A.6种 C.36种 B.8种 D.48种 )
解析:如图,在A点可先参观区域1, 也可先参观区域2或3,共有3种不同 选法.每种选法中又有2×2×2×2=16