《中心对称图形》PPT课件
合集下载
九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)
(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他
《中心对称图形》PPT优秀课件
书籍是巨大的力量。 ---列宁
好的书籍是最贵重的珍宝。 ---别林斯基 任何时候我也不会满足,越是多读书,就越是深刻地感到不满足,越感到自己知识贫乏。 ---马克思 书籍便是这种改造灵魂的工具。人类所需要的,是富有启发性的养料。而阅读,则正是这种养料。 ---雨果 喜欢读书,就等于把生活中寂寞的辰光换成巨大享受的时刻。 ---孟德斯鸠 如果我阅读得和别人一样多,我就知道得和别人一样少。 ---霍伯斯[英国作家] 读书有三种方法:一种是读而不懂,另一种是既读也懂,还有一种是读而懂得书上所没有的东西。 ---克尼雅日宁[俄国剧作家・诗人] 要学会读书,必须首先读的非常慢,直到最后值得你精读的一本书,还是应该很慢地读。 了解一页书,胜于匆促地阅读一卷书。 ---麦考利[英国作家] 读书而不回想,犹如食物而不消化。 ---伯克[美国想思家] 读书而不能运用,则所读书等于废纸。 ---华盛顿(美国政治家) 书籍使一些人博学多识,但也使一些食而不化的人疯疯颠颠。 ---彼特拉克[意大利诗人] 生活在我们这个世界里,不读书就完全不可能了解人。 ---高尔基 读书越多,越感到腹中空虚。 ---雪莱(英国诗人) 读书是我唯一的娱乐。我不把时间浪费于酒店、赌博或任何一种恶劣的游戏;而我对于事业的勤劳,仍是按照必要,不倦不厌。 ---富兰克林 书读的越多而不加思索,你就会觉得你知道得很多;但当你读书而思考越多的时候,你就会清楚地看到你知道得很少。 ---伏尔泰(法国哲学家、文学家) 读书破万卷,下笔如有神。---杜甫 读万卷书,行万里路。 ---顾炎武 读书之法无他,惟是笃志虚心,反复详玩,为有功耳。 ---朱熹 读书无嗜好,就能尽其多。不先泛览群书,则会无所适从或失之偏好,广然后深,博然后专。 ---鲁迅 读书之法,在循序渐进,熟读而精思。 ---朱煮 读书务在循序渐进;一书已熟,方读一书,勿得卤莽躐等,虽多无益。 ---胡居仁[明] 读书是学习,摘抄是整理,写作是创造。 ---吴晗 看书不能信仰而无思考,要大胆地提出问题,勤于摘录资料,分析资料,找出其中的相互关系,是做学问的一种方法。---顾颉刚 ---法奇(法国科学家)
《中心对称图形》PPT课件.
观察
将下面的图形绕O点旋转180°,你有 什么发现?
A
OB
o
(1)线段
(2)圆
O (3)平行四边形
O (4) 正方形
A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对 称点.
图中_____A_B_C_D_是中心对称图形 对称中心是_点__O___
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4,
对角线AC.BD交于点O,EF经过点O交AD
于点E,交BC于点F,求图中阴影部分的面
图形沿轴对折
图形绕这个点旋转180O
对折部分与另一部分重合 旋转后与原图重合
表后-返3
接下张
下列图形中哪些是中心对称图形?
①
②
③
④
我记住
我们平时常见的几何图形中,下列是中心 对称图形。
怎样的正多边形是中心对称图形?
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
图形也是一种特殊的旋转对称图形。
若点A是某个中心对称图形上的一点,绕对称中心点O
旋转180°后,它变成了点A′,点A和A′就是一对对
应点,问:线段OA和线段OA有何关系呢?
将下面的图形绕O点旋转180°,你有 什么发现?
A
OB
o
(1)线段
(2)圆
O (3)平行四边形
O (4) 正方形
A
D
O
B
C
如果一个图形绕一个点旋转180°后,能和原来的
图形互相重合,那么这个图形叫做中心对称图形;
这个点叫做它的对称中心;互相重合的点叫做对 称点.
图中_____A_B_C_D_是中心对称图形 对称中心是_点__O___
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4,
对角线AC.BD交于点O,EF经过点O交AD
于点E,交BC于点F,求图中阴影部分的面
图形沿轴对折
图形绕这个点旋转180O
对折部分与另一部分重合 旋转后与原图重合
表后-返3
接下张
下列图形中哪些是中心对称图形?
①
②
③
④
我记住
我们平时常见的几何图形中,下列是中心 对称图形。
怎样的正多边形是中心对称图形?
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
图形也是一种特殊的旋转对称图形。
若点A是某个中心对称图形上的一点,绕对称中心点O
旋转180°后,它变成了点A′,点A和A′就是一对对
应点,问:线段OA和线段OA有何关系呢?
《中心对称图形 》课件PPT
一、如果将中心对称的两个图形看成 一个整体,那么这个图形就是一个中心 对称图形
如果把一个中心对称图形对称的 两部分看成两个独立的图形,那么这两 个图形关于中心对称
二、连结对称点的线段都经过对称中心, 并且被对称中心平分。
比较二
中心对称图形与轴对称图形有什么区别与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
4.下列多边形中,是中心对称图形而不 是轴对称图形的是( A )
A平行四边形 B矩形 C菱形 D正方形
5. 已知:下列命题中真命题的个数是 ( B)
①关于中心对称的两个图形一定不全等 ②关于中心对称的两个图形是全等形 ③两个全等的图形一定关于中心对称
A0
B1
C2
D3
6、在一次游戏当中,
小明将图1的四张扑
23.2 中心对称图形
一.知识回顾 1.中心对称的定义:把一个图形绕着某一点 旋转1800,如果它能与另一个图形重合,就 说这两个图形关于这个点成中心对称.
2.中心对称的性质: ⑴关于中心对称的两个图形是全等图形
⑵关于中心对称的两个图形,对称点所连 线段都经过对称中心,而且被对称中心所 平分 补充:(3)关于中心对称的两个图形,对 称线段数量上长度相等,位置上相互平行 或在同一条直线上。
探究
A
B
O
D
C
总结新知
A
D
O
B
C
把一个图形绕着某一个点旋转180°后,如果旋转
后的图形能够与原来的图形重合,那么这个图形
叫做中心对称图形;这个点叫做它的对称中心;
互相重合的点叫做对称点.
练习
判断下列图形是否是中心对称图形? 如果是,那么对称中心在哪?
如果把一个中心对称图形对称的 两部分看成两个独立的图形,那么这两 个图形关于中心对称
二、连结对称点的线段都经过对称中心, 并且被对称中心平分。
比较二
中心对称图形与轴对称图形有什么区别与联系?
轴对称图形
中心对称图形
1 有一条对称轴——直线 有一个对称中心——点
4.下列多边形中,是中心对称图形而不 是轴对称图形的是( A )
A平行四边形 B矩形 C菱形 D正方形
5. 已知:下列命题中真命题的个数是 ( B)
①关于中心对称的两个图形一定不全等 ②关于中心对称的两个图形是全等形 ③两个全等的图形一定关于中心对称
A0
B1
C2
D3
6、在一次游戏当中,
小明将图1的四张扑
23.2 中心对称图形
一.知识回顾 1.中心对称的定义:把一个图形绕着某一点 旋转1800,如果它能与另一个图形重合,就 说这两个图形关于这个点成中心对称.
2.中心对称的性质: ⑴关于中心对称的两个图形是全等图形
⑵关于中心对称的两个图形,对称点所连 线段都经过对称中心,而且被对称中心所 平分 补充:(3)关于中心对称的两个图形,对 称线段数量上长度相等,位置上相互平行 或在同一条直线上。
探究
A
B
O
D
C
总结新知
A
D
O
B
C
把一个图形绕着某一个点旋转180°后,如果旋转
后的图形能够与原来的图形重合,那么这个图形
叫做中心对称图形;这个点叫做它的对称中心;
互相重合的点叫做对称点.
练习
判断下列图形是否是中心对称图形? 如果是,那么对称中心在哪?
中心对称图形课件(共20张PPT)人教版数学九年级上册
(中心对称图形的特点:绕某一点旋转180°后能与自身重合.中心对称图形 上每一对对称点所连线段都被对称中心平分(合理即可);中心对称图形是 指一个图形本身是中心对称的,反映了一个图形的本质特征,而中心对称 是指两个图形关于某一点对称,表示的是两个图形之间的一种关系)
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
小组讨论 1.我们已经知道,平行四边形是中心对称图形,你能根据中心 对称图形的性质验证平行四边形的哪些性质? (平行四边形的对边互相平行且相等; 平行四边形的对角相等; 平行四边形的对角线互相平分) 2.试着总结中心对称图形的性质
【题型二】中心对称与中心对称图形的区别和联系 例3: 下列说法中,正确的是( A) ①中心对称与中心对称图形是两个不同的概念;②中心对称与 中心对称图形都只有一个对称中心;③中心对称图形是指两个 图形之间的一种关系;④中心对称的两个图形 ,对称点所连线段 的中点刚好是对称中心. A.①②④ B.①②③ C.①③④ D.②③④
(点A,B,C,D的对应点分别是点C,D,A,B ; 重合)
③上述两个旋转的共同点是什么? (都是绕某一点旋转180°,旋转后的图形能与原图形重合)
自主探究
2.请同学们阅读课本67页,并勾画中心对称图形的概念. 3.你还能说出其他的中心对称图形吗?
(正方形 长方形 正六边形等) 4.说说中心对称图形具有哪些特点?它与中心对称有什么区 别和联系?
图形名称 线段 角 等腰三 等边三 直角三 平行四 矩形 菱形 正方 等腰 直角 圆
角形 角形 角形 边形
形 梯形 梯形
是否是轴对 是 是 是 是 否 否 是 是 是 是 否 是
称图形
是否是中心 是 否 否
对称图形
否 否是 是 是 是否 否 是
板书设计
联 ①把中心对称的两个图形看成一个“整体”,则为中心对称图形; 系 ②把中心对称图形的两部分看成两个图形,则它们中心对称
《中心对称图形》PPT课件
A E D O
B
F
C
比 较
中心对称与中心对称图形是两个既有 联系又有区别的概念.
区别: 中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系: 如果将中心对称图形的两个图形看成一个整体, 则它们是中心对称图形. 如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.
观 察
将下面的图形绕O点旋转180°,你有 什么发现?
A O B o (2)圆 O (4) 正方形
(1)线段
O (3)平行四边形
A
D
O
B C 如果一个图形绕一个点旋转180°后,能和原来的 图形互相重合,那么这个图形叫做中心对称图形; 这个点叫做它的对称中心;互相重合的点叫做对 称点.
ABCD 点O 图中_________是中心对称图形 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
B矩形
C菱形
D正方形
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4, 对角线AC.BD交于点O,EF经过点O交AD 于点E,交BC于点F,求图中阴影部分的面 积。
A
F
C O
左图是一幅中心对称图形,O是对称 中心,请你找出点A绕点O的旋转 180O后的对应点B;
B
D
E
点C的对应点D在哪? 怎么找的?
你能很快地找到点E的对应点F吗?
中心对称的性质 Ð 中心对称图形上的每一对对应点 都被对称中心平分 所连成的线段_______________ __.
B
F
C
比 较
中心对称与中心对称图形是两个既有 联系又有区别的概念.
区别: 中心对称指两个全等图形的相互位置关系, 中心对称图形指一个图形本身成中心对称.
联系: 如果将中心对称图形的两个图形看成一个整体, 则它们是中心对称图形. 如果将中心对称图形对称的部分看成两个图形, 则它们成中心对称.
观 察
将下面的图形绕O点旋转180°,你有 什么发现?
A O B o (2)圆 O (4) 正方形
(1)线段
O (3)平行四边形
A
D
O
B C 如果一个图形绕一个点旋转180°后,能和原来的 图形互相重合,那么这个图形叫做中心对称图形; 这个点叫做它的对称中心;互相重合的点叫做对 称点.
ABCD 点O 图中_________是中心对称图形 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
B矩形
C菱形
D正方形
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4, 对角线AC.BD交于点O,EF经过点O交AD 于点E,交BC于点F,求图中阴影部分的面 积。
A
F
C O
左图是一幅中心对称图形,O是对称 中心,请你找出点A绕点O的旋转 180O后的对应点B;
B
D
E
点C的对应点D在哪? 怎么找的?
你能很快地找到点E的对应点F吗?
中心对称的性质 Ð 中心对称图形上的每一对对应点 都被对称中心平分 所连成的线段_______________ __.
16.4 中心对称图形课件(共17张PPT)
A
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
3.如图,△ABO与△CDO关于点O成中心对称,点E,F在线段AC 上,且AF=CE.求证:FD=BE.
证明:∵△ABO与△CDO关于点O成中心对称∴AB=CD,∠A=∠C∵AF=CE∴AF+FE=CE+FE即AE=CF在△ABE和△CDF中∵AB=CE∠A=∠CAE=CF∴△ABE≌△CDF(SAS)∴FD=BE
知识点3 中心对称的性质
在成中心对称的两个图形中,对应点的连线经过对称中心,并且被对称中心平分.
中心对称的性质
例题解析
例 如图,已知线段AB和点O,画出线段AB关于点O的中心对称图形.
解:如图.(1)连接AO,BO,并延长AO到点C,延长BO到点D,使得OC=OA,OD=OB.(2)连接CD.线段CD即为所求.
第十六章 轴对称和中心对称16.4 中心对称图形
学习目标
学习重难点
重点
难点
1.认识并能够辨析中心对称图形和两个图形成中心对称.2.理解中心对称的基本性质,并会利用性质作图.
能够辨析中心对称图形和两个图形成中心对称.
理解中心对称的基本性质,并会利用性质作图.
观察这几幅图片,将它们分别绕各自标示的“中心点”旋转180°后,能不能与它们自身重合?
知识点2 成中心对称
中心对称图形是指一个图形的中心对称性,两个图形之间往往也具有这种对称关系.
如果一个图形绕某一点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称,这个点叫做对称中心,其中成中心对称的点、线段和角,分别叫做对应点、对应线段和对应角.
随堂练习
1.下列图案都是由字母“m”经过变形、组合 而成的,其中不是中心对称图形的是( )A B C D
B
2.如图,是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AB=3,则AB'的长为 .
23.2.2 中心对称图形课件(共30张PPT)
B C 答:观察图2可以发现,平行 四边形ABCD绕它的两条对角线的 0 点 交O旋转1 8 0后与它本身重合。
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。
广东省怀集县怀城镇城东初级中学 梁伟
观察总结
A
D
O
B
C
把一个图形绕着某一个点旋转180,如果旋转后的 图形能够与原来的图形重合,那么这个图形叫做 中心对称图形;这个点叫做它的对称中心;互相 重合的点叫做对称点.
心的对称点.
中心对称性质
A C B O A'
B' C'
(1)关于中心对称的两个图形是全等形; (2)关于中心对称的两个图形,对称点 所连线段都经过对称中心,而且被对称中 心平分.
中心对称与轴对称有什么区别?又有什么联系?
观察思考
(1)这些图形有什么共同的特征? 都是旋转对称图形。
后三个图形都是旋转1800后能与自身重合
梁伟 广东省怀集县怀城镇城东初级中学
探索发现
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
还有其它英文字 母是中心对称的
练一练
知识点一 5、在英文字母VWXYZ中,是 中 心对称的英文字母的个数有( B)个. A . 1 B . 2 C . 3 D. 4 6、所有的平行四边形都是
【小组讨论1】 (1)判断一个图形是否是中心对称 图形的关键是什么 ?
探索
(1)平行四边形是中心对称图形吗?如果是,
请找出它的对称中心,并设法验证你的结论。
(2)根据上面的过程,你能验证平行四边形的 哪些性质?
O
(1)平行四边形是中心对称图形,对称中心是两 条对角线的交点。 (2)能验证平行四边形的对边相等、对角相等、 对角线互相平分等性质。
《中心对称图形》PPT课件
后三个图形都是旋转1800后能与自身重合
一个图形绕着中心点旋转180°后能与 自身重合,这种图形叫做中心对称图形。 这个中心点叫做对称中心。
旋转对称图形 旋转角为180 °中心对称图形
精选ppt
31
正方形是中心对称图形吗?正方形绕两条对角线的 交点旋转多少度能与原来的图形重合?能由此验证 正方形的一些特殊性质吗?
联系
指两个图形 把中心对称的两个图
的关系
形看成一个“整体”,
则成为中心对称图形
指具有某种 把中心对称图形的两
特性的一个 个部分看成“两个图
图形
形”,他们成中心对称
精选ppt
25
下列图形中哪些是中心对称图形?
①
②
③
④
判断下列图形是否是中心对称图形?如果 是,那么对称中心在哪?
(1)平行四边形是中心对称图形吗?如果是, 请找出它的对称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的 哪些性质?
(1) (3) (4) (5) (7)
。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
精选ppt
23
问题
如右图所示:
1、△ABC与△ADE关于点A成中心对 称,请找出对应点和对应线段。
2、右图Hale Waihona Puke 一个中心对称图形么?精选ppt
24
中心对称与中心对称图形有什么区别 和联系?
中心对称 中心对称图形
区别
对称图形
是
是
是
角
否
平行四边形 是
矩形
是
是
否
否
是
是
一个图形绕着中心点旋转180°后能与 自身重合,这种图形叫做中心对称图形。 这个中心点叫做对称中心。
旋转对称图形 旋转角为180 °中心对称图形
精选ppt
31
正方形是中心对称图形吗?正方形绕两条对角线的 交点旋转多少度能与原来的图形重合?能由此验证 正方形的一些特殊性质吗?
联系
指两个图形 把中心对称的两个图
的关系
形看成一个“整体”,
则成为中心对称图形
指具有某种 把中心对称图形的两
特性的一个 个部分看成“两个图
图形
形”,他们成中心对称
精选ppt
25
下列图形中哪些是中心对称图形?
①
②
③
④
判断下列图形是否是中心对称图形?如果 是,那么对称中心在哪?
(1)平行四边形是中心对称图形吗?如果是, 请找出它的对称中心,并设法验证你的结论。 (2)根据上面的过程,你能验证平行四边形的 哪些性质?
(1) (3) (4) (5) (7)
。
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
精选ppt
23
问题
如右图所示:
1、△ABC与△ADE关于点A成中心对 称,请找出对应点和对应线段。
2、右图Hale Waihona Puke 一个中心对称图形么?精选ppt
24
中心对称与中心对称图形有什么区别 和联系?
中心对称 中心对称图形
区别
对称图形
是
是
是
角
否
平行四边形 是
矩形
是
是
否
否
是
是
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A E D O
B
F
C
? 今天你学到了什么 ?
1、回顾本节课的活动过程 。
观察 ——分析 ——探索 ——概括 ——应用
2、本节课学到了哪些知识? (1)中心对称图形的定义 (2)中心对称图形的性质 (3)我们所学的多边形中有哪些是中心对称图形 (4)中心对称图形的应用
同学们,请不要停止探究的步伐,
中心对称图形
有一个对称中心 图形绕这个点旋转180O
图形沿轴对折 对折部分与另一部分重合
表后-返3
旋转后与原图重合
接下张
选择题:
(1)下列图形中即是轴对称图形又是中心对称图形 的是( )
C
A 角
B 等边三角形
C 线段
D平行四边形
(2)下列多边形中,是中心对称图形而不是轴对称 图形的是( A )
A平行四边形
数学源自于对生活的热爱
…… 感谢所有的同行, 感谢同学们,
再见!
观 察
将下面的图形绕O点旋转180°,你有 什么发现?
A O B o (2)圆 O (4) 正方形
(1)线段
O (3)平行四边形
A
D
O
B C 如果一个图形绕一个点旋转180°后,能和原来的 图形互相重合,那么这个图形叫做中心对称图形; 这个点叫做它的对称中心;互相重合的点叫做对 称点.
ABCD 是中心对称图形 点O 图中_________ 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
①
②
③
④
我 记 住
我们平时常见的几何图形中,下列是中心 对称图形。
怎样的正多边形是中心对称图形?
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
√
2.下列图形不是中心对称图形的是--(B )
√
①
(A)①
② (B)②
③ (C)③
④ (D)④
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形?(1)
(2)(5) (3)哪些既是轴对称图形,又是中心对称图形?ຫໍສະໝຸດ (1)(2)(3)
(4)
(5)
(6)
对比轴对称图形与中心对称图形:
轴对称图形
有一条对称轴——直线
A
F
O
C
左图是一幅中心对称图形,O是对称 中心,请你找出点A绕点O的旋转 180O后的对应点B;
B
D
E
点C的对应点D在哪? 怎么找的?
你能很快地找到点E的对应点F吗?
中心对称的性质 Ð 中心对称图形上的每一对对应点 都被对称中心平分 所连成的线段_______________ __.
下列图形中哪些是中心对称图形?
B矩形
C菱形
D正方形
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4, 对角线AC.BD交于点O,EF经过点O交AD 于点E,交BC于点F,求图中阴影部分的面 积。
B
F
C
? 今天你学到了什么 ?
1、回顾本节课的活动过程 。
观察 ——分析 ——探索 ——概括 ——应用
2、本节课学到了哪些知识? (1)中心对称图形的定义 (2)中心对称图形的性质 (3)我们所学的多边形中有哪些是中心对称图形 (4)中心对称图形的应用
同学们,请不要停止探究的步伐,
中心对称图形
有一个对称中心 图形绕这个点旋转180O
图形沿轴对折 对折部分与另一部分重合
表后-返3
旋转后与原图重合
接下张
选择题:
(1)下列图形中即是轴对称图形又是中心对称图形 的是( )
C
A 角
B 等边三角形
C 线段
D平行四边形
(2)下列多边形中,是中心对称图形而不是轴对称 图形的是( A )
A平行四边形
数学源自于对生活的热爱
…… 感谢所有的同行, 感谢同学们,
再见!
观 察
将下面的图形绕O点旋转180°,你有 什么发现?
A O B o (2)圆 O (4) 正方形
(1)线段
O (3)平行四边形
A
D
O
B C 如果一个图形绕一个点旋转180°后,能和原来的 图形互相重合,那么这个图形叫做中心对称图形; 这个点叫做它的对称中心;互相重合的点叫做对 称点.
ABCD 是中心对称图形 点O 图中_________ 对称中心是______ 点B 点C 点A的对称点是______ 点D的对称点是______
①
②
③
④
我 记 住
我们平时常见的几何图形中,下列是中心 对称图形。
怎样的正多边形是中心对称图形?
正三角形是中心对称图形吗?正方形呢?正五边 形呢?正六边形呢?……你能发现什么规律?
边数为偶数的正多边形都是中心对称图形。
O
等边三角形不是中心对称图形!
1.下面哪个图形是中心对称图形?
√
2.下列图形不是中心对称图形的是--(B )
√
①
(A)①
② (B)②
③ (C)③
④ (D)④
观察图形,并回答下面的问题: (1)哪些只是轴对称图形? (3)(4)(6) (2)哪些只是中心对称图形?(1)
(2)(5) (3)哪些既是轴对称图形,又是中心对称图形?ຫໍສະໝຸດ (1)(2)(3)
(4)
(5)
(6)
对比轴对称图形与中心对称图形:
轴对称图形
有一条对称轴——直线
A
F
O
C
左图是一幅中心对称图形,O是对称 中心,请你找出点A绕点O的旋转 180O后的对应点B;
B
D
E
点C的对应点D在哪? 怎么找的?
你能很快地找到点E的对应点F吗?
中心对称的性质 Ð 中心对称图形上的每一对对应点 都被对称中心平分 所连成的线段_______________ __.
下列图形中哪些是中心对称图形?
B矩形
C菱形
D正方形
下面的扑克牌中,哪些牌面是中心对称图形?
在26个英文大写正体字母中,哪些字母 是中心对称图形?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
学以致用
3.如图,在矩形ABCD中,已知AB=2,AD=4, 对角线AC.BD交于点O,EF经过点O交AD 于点E,交BC于点F,求图中阴影部分的面 积。