高二动量定理及动量守恒定律专题复习(附参考答案)
动量及动量守恒定律习题大全(含解析答案)
动量及动量守恒定律习题大全一.动量守恒定律概述1。
动量守恒定律的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒.2.动量守恒定律的表达形式(1),即p1 p2=p1/ p2/,(2)Δp1 Δp2=0,Δp1= -Δp2 和3.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象。
(2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。
(3)确定过程的始、末状态,写出初动量和末动量表达式。
注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。
(4)建立动量守恒方程求解。
4.注重动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性.二、动量守恒定律的应用1两个物体作用时间极短,满足内力远大于外力,可以认为动量守恒。
碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种.如:光滑水平面上,质量为m1的物体A以速度v1向质量为m2的静止物体B运动,B 的左端连有轻弹簧分析:在Ⅰ位置A、B刚好接触,弹簧开始被压缩,A开始减速,B开始加速;到Ⅱ位置A、B速度刚好相等(设为v),弹簧被压缩到最短;再往后A、B远离,到Ⅲ位位置恰好分开。
(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等.这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证实A、B的最终速度分别为:.(这个结论最好背下来,以后经常要用到.)(2)弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1.如图所示,在光滑水平面上使滑块A以2 m/s的速度向右运动,滑块B以4 m/s的速度向左运动并与滑块A发生碰撞,已知滑块A、B的质量分别为1 kg、2 kg,滑块B的左侧连有轻弹簧,求:(1)当滑块A的速度减为0时,滑块B的速度大小;(2)两滑块相距最近时滑块B的速度大小.【答案】(1)(2)【解析】(1)根据动量守恒定律可得(3分)解得:(2分)(2)根据动量守恒定律可得:(3分)解得:(2分)【考点】考查了动量守恒定律的应用2.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
若小车不动,A、B两个动量相等,由于不知道两个质量大小,所以不能确定两个的速度,A不对。
若小车向左运动,A、B总动量向右,所以A动量大于B动量,故C正确。
若小车向右运动,A、B总动量向左,B动量大于A动量,D错。
【考点】动量守恒3.在2010年温哥华冬奥会上,首次参赛的中国女子冰壶队喜获铜牌,如图为中国队员投掷冰壶的镜头.在某次投掷中,冰壶运动一段时间后以0.4 m/s的速度与对方的静止冰壶发生正碰,碰后对方的冰壶以0.3 m/s的速度向前滑行.若两冰壶质量相等,规定向前运动的方向为正方向,则碰后中国队冰壶获得的速度为().A.0.1 m/s B.-0.1 m/s C.0.7 m/s D.-0.7 m/s【答案】A【解析】设冰壶质量为m,碰后中国队冰壶速度为vx ,由动量守恒定律得 mv=mv+mvx解得vx=0.1 m/s,故选项A正确。
【考点】动量守恒4.(10分)两块厚度相同的木块A和B,紧靠着放在光滑的水平面上,其质量分别为,,它们的下底面光滑,上表面粗糙;另有一质量的滑块C(可视为质点),以的速度恰好水平地滑到A的上表面,如图所示,由于摩擦,滑块最后停在木块B上,B和C的共同速度为3.0m/s,求:(1)木块A的最终速度(2)滑块C离开A时的速度【答案】(1)2.6m/s(2)4.2m/s【解析】(1)这是一个由A、B、C三个物体组成的系统,以这系统为研究对象,当C在A、B上滑动时,A、B、C三个物体间存在相互作用,但在水平方向不存在其他外力作用,因此系统的动量守恒。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律1.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=)(1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能.【答案】(1)6/B v m s = (2)0.6P E J = 【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.2.如图所示,质量M=1kg 的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef 两个光滑半圆形导轨,c 与e 端由导线连接,一质量m=lkg 的导体棒自ce 端的正上方h=2m 处平行ce 由静止下落,并恰好从ce 端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。
高考物理动量守恒定律试题(有答案和解析)
高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。
2019高考物理二轮复习:动量定理及动量守恒定律(答案+解析)
动量定理及动量守恒定律第I卷并留在其中。
在子弹打中木块A及弹簧被压缩的整个过程中,kg m/s,W kg m/s,Wkg m/s,W kg m/s,W的作用,F与时间t时间内F的冲量为零时刻物块A的速度最大时刻物块A的动能最大时间内F对物块.有一种飞行器是利用电场加速带电粒子,形成向外发射的高速粒子流,对飞行器自身产生反冲力,从而对飞行器的飞行状态进行调整的。
已知飞行器发射的高速粒子流是由二价氧离子构成的。
当单位时间内发射的离子个数为n,加速电压为时,飞行器获得的反冲力为F。
为了使加速器获得的反冲力变为.将加速电压变为2U.将加速电压变为4U.将单位时间内发射的离子个数变为.将单位时间内发射的离子个数变为第Ⅱ卷二、非选择题(本题共4个小题。
写出必要的文字说明、方程式和重要的演算步骤,有数值计算的题,答案中必须明确写出数值和单位)9.如图所示,甲木板的质量为1m 2kg =,乙木板的质量为2m 2kg =,甲木板的右端有一可视为质点的小物块,小物块的质量m 1kg =。
甲木板和小物块的速度为8m /s ,乙木板的速度为2m /s ,方向均向右。
木板与地面间无摩擦,小物块与两木板间的动摩擦因数均为μ0.1=。
已知乙木板足够长,重力加速度g 取210m /s ,两木板碰撞后粘在一起。
求:(1)两木板碰撞后的瞬间乙木板的速度大小;(2)两木板碰撞后,小物块与乙木板发生相对运动的时间。
10.如图,质量10.45kg =m 的平顶小车静止在光滑水平面上,质量20.5kg =m 的小物块(可视为质点)静止在车顶的右端。
一质量为00.05kg =m 的子弹以水平速度0100m /s =v 射中小车左端并留在车中,最终小物块相对地面以2m /s 的速度滑离小车。
已知子弹与车的作用时间极短,小物块与车顶面的动摩擦因数μ0.8=,认为最大静摩擦力等于滑动摩擦力。
取2g 10m /s =,求:(1)子弹相对小车静止时小车速度的大小; (2)小车的长度L 。
专题:动量定理 动量守恒定律
专题:动量定理动量守恒定律考点一:动量定理的理解及应用【典例1】质量的篮球从距地板高处由静止释放,与水平地板撞击后反弹上升的最大高度,从释放到弹跳至h高处经历的时间,忽略空气阻力,重力加速度,求:篮球与地板撞击过程中损失的机械能;篮球对地板的平均撞击力.强化训练一1.蹦床运动有“空中芭蕾“之称,某质量的运动员从空中落下,接着又能弹起高度,此次人与蹦床接触时间,取,求:运动员与蹦床接触时间内,所受重力的冲量大小I;运动员与蹦床接触时间内,受到蹦床平均弹力的大小F。
2.蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目一个质量为60kg的运动员,从离水平网面高处自由下落,着网后沿竖直方向蹦回离水平网面高处已知运动员与网接触的时间为若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小取3.如图所示,物块A和B通过一根轻质不可伸长的细绳连接,跨放在质量不计的光滑定滑轮两侧,质量分别为、。
初始时A静止与水平地面上,B悬于空中。
先将B竖直向上再举高未触及滑轮然后由静止释放。
一段时间后细绳绷直绷直的时间极短,A、B以大小相等的速度一起运动,之后B恰好可以和地面接触。
取。
从释放到细绳绷直时的运动时间t;的最大速度v的大小;初始时B离地面的高度H。
4.某游乐园入口旁有一喷泉,喷出的水柱将一质量M的卡通玩具稳定地悬停在空中。
为计算方便起见,假设水柱从横截面积为S的喷口持续以速度竖直向上喷出;玩具底部为平板面积略大于;水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。
忽略空气阻力。
已知水的密度为,重力加速度大小为g。
求喷泉单位时间内喷出的水的质量;玩具在空中悬停时,其底面相对于喷口的高度。
考点二:动量守恒定律的理解及应用【典例2】在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光滑的圆弧,他们紧靠在一起,如图所示一个可视为质点的物块P,质量也为m,它从木板AB的右端以初速度滑上木板,过B点时速度为,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高点C处若物体P与木板AB间的动摩擦因数为,求:物块滑到B处时木板AB的速度的大小;木板AB的长度L;滑块CD最终速度的大小.【典例3】如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求小球到达车底B点时小车的速度和此过程中小车的位移;小球到达小车右边缘C点处,小球的速度.强化训练二1. 如图,在光滑的水平面上,有一质量为 的木板,木板上有质量为 的物块 它们都以 的初速度反向运动,它们之间有摩擦,且木板足够长,求:当木板向左的速度为 时,物块的速度是多大?木板的最终速度是多大?2. 如图所示,A 、B 两木块靠在一起放于光滑的水平面上,A 、B 的质量均为 。
高二物理动量定理试题答案及解析
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
高中物理动量守恒定律真题汇编(含答案)
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高三复习高中物理重点知识习题 动量守恒定律 - (含答案)
第七章动量守恒定律考点一:动量、动量变化量与冲量、动量定理1. (多选)如图所示,两个质量相等的物体在同一高度沿倾角不同的两个光滑斜面由静止开始自由下滑,不计空气阻力,在它们到达斜面底端的过程中()A.重力的冲量相同B.斜面弹力的冲量不同C.斜面弹力的冲量均为零D.合力的冲量不同答案BD2.(多选)质量为m的物块以初速度v0从光滑斜面底端向上滑行,到达最高位置后再沿斜面下滑到底端,则物块在此运动过程中()A.上滑过程与下滑过程中物块所受重力的冲量相同B.整个过程中物块所受弹力的冲量为零C.整个过程中物块合外力的冲量为零D.若规定沿斜面向下为正方向,则整个过程中物块合外力的冲量大小为2mv0 答案AD3.如图所示,质量为m的物体,在大小确定的水平外力F作用下,以速度v沿水平面匀速运动,当物体运动到A点时撤去外力F,物体由A点继续向前滑行的过程中经过B点,则物体由A点到B点的过程中,下列说法正确的是()A.v越大,摩擦力对物体的冲量越大,摩擦力做功越多B.v越大,摩擦力对物体的冲量越大,摩擦力做功与v的大小无关C.v越大,摩擦力对物体的冲量越小,摩擦力做功越少D.v越大,摩擦力对物体的冲量越小,摩擦力做功与v的大小无关答案D4. (多选)几个水球可以挡住一颗子弹?《国家地理频道》的实验结果是:四个水球足够!完全相同的水球紧挨在一起水平排列,子弹在水球中沿水平方向做匀变速直线运动,恰好能穿出第4个水球,则可以判断的是()A.子弹在每个水球中的速度变化相同B.子弹在每个水球中运动的时间不同C.每个水球对子弹的冲量不同D.子弹在每个水球中的动能变化相同答案BCD5. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则() 答案ABA.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零6. (多选)一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图5所示,下列说法正确的是()A.第2 s 末,质点的动量为0B.第4 s 末,质点回到出发点C.在0~2 s 时间内,力F 的功率先增大后减小D.在1~3 s 时间内,力F 的冲量为0 答案 CD7.质量为1 kg 的物体做直线运动,其速度—时间图象如图所示。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1.(9分)如图所示,一质量为M的平板车B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,A、B间动摩擦因数为μ,现给A和B以大小相等,方向相反的初速度v,使A开始向左运动,B开始向右运动,如果A不滑离B,求:(ⅰ)A、B最后的速度大小和方向;(ⅱ)从地面上看,小木块向左运动到离出发点最远处时,平板车向右运动的位移大小。
【答案】(1)(2)【解析】(1)A刚好没有滑离B板,表示当A滑到B板的最左端时,A、B具有相同的速度,设此速度为v,A和B的初速度的大小为v,则据动量守恒定律可得:Mv0-mv=(M+m)v解得:,方向向右(2)从地面上看,小木块向左运动到离出发点最远处时,木块速度为零,平板车速度为v',由动量守恒定律得 Mv0-mv=Mv'这一过程平板向右运动S,μmgs=MV2−Mv′2解得【考点】动量守恒及能量守恒定律。
2.一条小船长3米,船上站有一人。
人的质量为60kg,船的质量(不包括人)为240kg,开始时船静止在水面上,当该人从船头走向船尾的过程中(不计水的阻力),小船将后退的距离为:()A.0.4m B.0.5m C.0.6m D.0.7m【答案】C【解析】设船的质量为M,人的质量为m,船长为d,据题,水对船的阻力略不计,船和人组成的系统,在水平方向上动量守恒,人在船上行进,船向右退,取人相对地的速度为正,人和船的速度大小分别为v和V.有:.人从船头走到船尾,设船后退的距离为x,则人相对于地面的距离为.则,,则有:解得:.带入数据可得,故C正确,【考点】考查了动量守恒定律的应用3.如图所示,一辆小车静止在光滑水平面上,A、B两人分别站在车的两端.当两人同时相向运动时()A.若小车不动,两人速率一定相等B.若小车向左运动,A的动量一定比B的小C.若小车向左运动,A的动量一定比B的大D.若小车向右运动,A的动量一定比B的大【答案】C【解析】水平面光滑,把两个人和小车看做糸统,在水平方向不受外力,糸统动量守恒。
08专题:动量定理与动量守恒定律专题(含答案)
08专题:动量定理与动量守恒定律专题1.(多选)(2017·全国卷Ⅲ)一质量为 2 kg 的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则( )A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零2.质量为m的运动员从下蹲状态向上起跳,经时间t身体伸直并刚好离开水平地面,该过程中,地面对他的冲量大小为I,重力加速度大小为g.下列说法正确的是()A.运动员在加速上升过程中处于超重状态 B.运动员离开地面时的速度大小为I mC.该过程中,地面对运动员做的功为22ImD.该过程中,人的动量变化大小为I-mgt3.如图所示,abc是竖直面内的光滑固定轨道,ab段水平,长度为2R;bc段是半径为R的四分之一圆弧,与ab相切于b点.一质量为m的小球.始终受到与重力大小相等的水平外力F的作用,自a点处从静止开始向右运动,重力加速度大小为g.小球从a点开始运动到其轨迹最高点的过程中,以下说法正确的是()A.重力与水平外力合力的冲量等于小球的动量变化量B.小球对圆弧轨道b点和c点的压力大小都为5mgC.小球机械能的增量为3mgRD.小球在到达c点前的最大动能为21)mgR4.如图所示,在光滑水平面上停放着质量为m、装有光滑弧形槽的小车,一质量也为m的小球以水平初速度v0沿槽口向小车滑去,到达某一高度后,小球又返回右端,则( ) A.小球以后将向右做平抛运动B.小球将做自由落体运动C.此过程小球对小车做的功为20 2 mvD .小球在弧形槽内上升的最大高度为204gν 5.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。
某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可视为质点。
甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站(设甲、乙距离空间站足够远,速度均指相对空间站的速度)。
高考物理动量守恒定律真题汇编(含答案)及解析
高考物理动量守恒定律真题汇编(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒运动周期:222m T qBπ=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高考物理动量守恒定律专题训练答案及解析
高考物理动量守恒定律专题训练答案及解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为E p=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离。
高二物理动量守恒定律试题答案及解析
高二物理动量守恒定律试题答案及解析1. 如图所示,两个小球A 、B 在光滑水平地面上相向运动,它们的质量分别为m A =4 kg ,m B =2 kg ,速度分别是v A =3 m/s(设为正方向),v B =-3 m/s.则它们发生正碰后,速度的可能值分别为( )A .v A ′=1 m/s ,vB ′=1 m/s B .v A ′=4 m/s ,v B ′=-5 m/sC .v A ′=2 m/s ,v B ′=-1 m/sD .v A ′=-1 m/s ,v B ′=-5 m/s 【答案】A【解析】两球碰撞过程系统动量守恒,碰撞过程中系统机械能不可能增加,碰撞后的系统总动能应该小于或等于碰撞前的系统总动能;同时,碰撞后A 球速度不大于B 球的速度. 碰前系统总动量为,碰前总动能为;若,则系统动量守恒,动能3J ,碰撞后A 球速度不大于B 球的速度,符合,故A 可能; 若,则系统动量守恒,动能大于碰撞前,不符合题意,故B 不可能; 若,则系统动量守恒,但不符合碰撞后A 球速度不大于B 球的速度,故C 不可能; 若,则系统动量不守恒,D 不可能。
【考点】考查了动量守恒定律的应用2. 木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上.在b 上施加向左的水平力F 使弹簧压缩,如图所示.当撤去外力F 后,下列说法中正确的是( )A .a 尚未离开墙壁前,a 和b 组成的系统动量守恒B .a 尚未离开墙壁前,a 和b 组成的系统动量不守恒C .a 离开墙壁后,a 、b 组成的系统动量守恒D .a 离开墙壁后,a 、b 组成的系统动量不守恒【答案】BC【解析】在a 离开墙壁前、弹簧伸长的过程中,对a 和b 构成的系统,由于受到墙给a 的弹力作用,所以a 、b 构成的系统动量不守恒,因此B 选项正确,A 选项错误;a 离开墙壁后,a 、b 构成的系统所受合外力为零,因此动量守恒,故C 选项正确,D 选项错误. 【考点】动量守恒条件的判断3. 如图所示,质量为m 的铅弹以大小为初速度射入一个装有砂子的总质量为M 的静止的砂车中并与车相对静止,砂车与水平地面间的摩擦可以忽略.求:(1)弹和砂车的共同速度;(2)弹和砂车获得共同速度后,砂车底部出现一小孔,砂子从小孔中流出,当漏出质量为的砂子时砂车的速度 【答案】(1)(2)【解析】:(1)以铅球、砂车为系统,水平方向动量守恒,,得球和砂车的共同速度.(2)球和砂车获得共同速度后漏砂过程中系统水平方向动量也守恒,设当漏出质量为的砂子时砂车的速度为,砂子漏出后做平抛运动,水平方向的速度仍为,由,得.【考点】考查了动量守恒定律的应用4.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动,两球质量关系为mB =2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则左方是球,碰撞后A、B两球速度大小之比为。
高二物理 动量、动量守恒定律测试题及答案
动量、动量守恒定律(一)班级 姓名 成绩1 2 3 4 5 678 9 10 BCBBCC DCBCAB一、选择题(1-8为单项选择,9-10为双项选择题)1、下列关于物体的动量和动能的说法,正确的是 A .物体的动量发生变化,其动能一定发生变化 B .物体的动能发生变化,其动量一定发生变化 C .若两个物体的动量相同,它们的动能也一定相同 D .两物体中动能大的物体,其动量也一定大2、在光滑的水平导轨上有A 、B 两球,球A 追上并与球B 正碰,碰前两球动量分别为p a =5㎏·m/s,p B =7㎏·m/s,碰后球B 的动量p′=10㎏·m/s,则两球质量m A 、m B 的关系可能是 (A)m B =m A(B)m B =2m A (C)m B =4m A (D)m B =6m A3、在光滑的水平面上有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A =5㎏·m/s,p B =7㎏·m/s,如图所示.若两球发生正碰,则碰后两球的动量增量Δp A 、Δp B 可能是 (A)Δp A =3㎏·m/s,Δp B =3㎏·m/s (B)Δp A =-3㎏·m/s,Δp B =3㎏·m/s (C)Δp A =3㎏·m/s,Δp B =-3㎏·m/s (D)Δp A =-10㎏·m/s,△p B =10㎏·m/s4、一个质量为m 的小球甲以速度V 在光滑水平面上运动,与一个等质量的止小球乙正碰后,甲球的速度变为v,那么乙球获得的动能等于(A) (B) (C)(D) 5、在光滑水平面上,动能为0E ,动量大小为0P 的小钢球1与静止的小钢球22211mV mv22-()21m V v 2-211m V 22⎛⎫ ⎪⎝⎭211m v 22⎛⎫ ⎪⎝⎭发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量的大小分别记作1E 、1P ,球2的动能和动量的大小分别记为2E 、2P ,则必有 ①1E <0E ②1P <0P ③2E >0E ④2P >0P A .①② B.①③④ C.①②④ D.②③6、质量为m 的 粒子,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速度为0/2v ,而碳核获得的速度为7、一颗水平飞行的子弹射入一个原来悬挂在天花板下静止的沙袋并留在其中和沙袋一起上摆.关于子弹和沙袋组成的系统,下列说法中正确的是 A .子弹射入沙袋过程中系统动量和机械能都守恒 B .子弹射入沙袋过程中系统动量和机械能都不守恒 C .共同上摆阶段系统动量守恒,机械能不守恒 D .共同上摆阶段系统动量不守恒,机械能守恒8、相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,这是由于 (A)A 车的质量一定大于B 车的质量(B)A 车的速度一定大于B 车的速度 (C)A 车的动量一定大于B 车的动量(D)A 车的动能一定大于B 车的动能量9、两物体相互作用前后的总动量不变,则两物体组成的系统一定A .不受外力作用B .不受外力或所受合外力为零C .每个物体动量改变量的值相同D .每个物体动量改变量的值不同 10、质量为m 的小球A 在光滑的水平面上以速度v 与静止在光滑水平面上的质量为2m 的小球B 发生正碰,碰撞后,A 球的动能变为原来的1/9,那么碰撞后B 球的速度夫小可能是10、如图所示,质量为2m =1kg 的滑块静止于光滑的水平面上,一小球1m =50g ,以1000m/s 的速率碰到滑块后又以800m/s 速率被弹回,滑块获得的速度为多少?1A v 3、2B v 3、4C v 9、8D v 9、0B 2v 、0A 6v 、0C 2v 、0D 3v 、动量、动量守恒定律(二)班级 姓名 成绩1 2 3 4 5 6 7 8 9 10 11 DDCCBBBBCABAC1、在光滑的水平面上有两个质量均为m 的小球A 和B,B 球静止,A 球以速度v 和B 球发生碰撞,碰后两球交换速度.则A 、B 球动量的改变量Δp A 、Δp B 和A 、B 系统的总动量的改变Δp 为(D ). (A)△p A =mv,△p B =-mv,△p=2mv (B)△p A ,△p B =-mv,Δp=0 (C)Δp A =0,Δp B =mv,Δp=mv(D)△p A =-mv,Δp B =mv,Δp=02、一个静止的质量为m 的不稳定原子核,当它完成一次α衰变.以速度v 发射出一个质量为m α的α粒子后,其剩余部分的速度等于( D ).(A) (B)-v (C) (D)3、一个不稳定的原子核质量为M,处于静止状态.放出一个质量为m 的粒r 后反冲.已知放出的粒子的动能为E 0,则原子核反冲的动能为(C )(A)E 0 (B) (C) (D) 4、质量相同的三个小球,在光滑水平面上以相同的速度运动,分别与原来静止的三个小球A 、B 、C 、相碰(a 碰A,b 碰B,c 碰C).碰后a 球继续沿原来方向运动;b 球静止;c 球被反弹而向后运动.这时A 、B 、C 三球中动量最大的是(C )(A)A 球(B)B 球(C)C 球(D)条件不足,无法判断5、如图所示,木块A 的右侧为光滑曲面,且下端极薄,其质量为2.0㎏,静止于光滑水平面上,一质量为2.0㎏的小球B 以2.0m/s 的速度从右向左运动冲上A 的曲面,与A 发生相互作用. B 球沿A 曲面上升到最大高度处时的速度是( B). (A)0(B)1.0m/s (C)0.71m/s(D)0.50m/s6、为了模拟宇宙大爆炸初期的情境,科学家们使用两个带正电的重离子被加速后,沿同一条直线相向运动而发生猛烈碰撞.若要使碰撞前重离子的动能经碰撞后尽可能多地转化为其他形式的能,应该设法使这两个重离子在碰撞前的瞬间具有 ( B )m v m-m αα-m v m-m ααm v m α-0m E M 0m E M-m 02Mm E (M-m)A.相同的速度B.相同大小的动量C.相同的动能D.相同的质量7、质量为M的小车在光滑水平面上以速度v向东行驶,一个质量为m的小球从距地面H高处自由落下,正好落入车中,此后小车的速度将 ( B )A.增大 B.减小 C.不变 D.先减小后增大8、A、B两刚性球在光滑水平面上沿同一直线、同一方向运动,A球的动量是5kg·m /s,B球的动量是7kg·m/s,当A球追上B球时发生碰撞,则碰撞后A、B两球的动量的可能值是 ( B )A.-4kg·m/s、14kg·m/s B.3kg·m/s、9kg·m/sC.-5kg·m/s、17kg·m/s D.6kg·m/s、6kg·m/s9、竖直向上抛出一个物体.若不计阻力,取竖直向上为正,则该物体动量随时间变化的图线是 ( C )10、在两个物体碰撞前后,下列说法中可以成立的是(AB ).(A)作用后的总机械能比作用前小,但总动量守恒(B)作用前后总动量均为零,但总动能守恒(C)作用前后总动能为零,而总动量不为零(D)作用前后总动景守恒,而系统内各物体的动量增量的总和不为零11、在一条直线上相同运动的甲、乙两个小球,它们的动能相等,已知甲球的质量大于乙球的质量.它们正碰后可能发生的情况是(AC ).(A)甲球停下,乙球反向运动(B)甲球反向运动,乙球停下(C)甲、乙两球都反向运动(D)甲、乙两球都反向运动,且动能仍相等12.(5分)光滑水平面上有一静止小车,质量为M,小车上一原来静止的人,质量为m,相对于小车以速度v向右跳离小车,求人跳离瞬间车的速度的大小?26.(6分)大炮的炮身质量为M =490kg (不包括炮弹),一枚质量为m =10kg 的炮弹从炮口射出,速度大小为v =490m/s ,方向与水平方向成60°,设炮车与地面间的动摩擦因数μ=O.8,求炮车后退的距离。
动量定理、动量守恒定理大题50题(含答案)
1.如图(a)所示,“ ”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求: (1) 斜面BC 的长度;(2) 滑块的质量;(3) 运动过程中滑块克服摩擦力做的功.2.甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?F/Nt/s-5121 2 3图(b )图(a )AθB C力传感器3.(2011·新课标全国卷)如图,A、B、C三个木块的质量均为m。
置于光滑的水平面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体,现A以初速v沿B、C的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为v,求弹簧释放的势能。
4.一质量为2m的物体P静止于光滑水平地面上,其截面如图所示。
图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接。
现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止。
重力加速度为g。
求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s。
5.( 2010·天津)如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h 。
动量定理及动量守恒定律专题复习(附参考答案).
动量定理及动量守恒定律专题复习(附参考答案).动量定理及动量守恒定律专题复习⼀、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的⼀个状态量,它与时刻相对应。
(3)动量是⽮量,它的⽅向和速度的⽅向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因⽽动量具有相对性。
题中没有特别说明的,⼀般取地⾯或相对地⾯静⽌的物体为参考系。
(5)动量的变化:0p p p t -=?.由于动量为⽮量,则求解动量的变化时,其运算遵循平⾏四边形定则。
A 、若初末动量在同⼀直线上,则在选定正⽅向的前提下,可化⽮量运算为代数运算。
B 、若初末动量不在同⼀直线上,则运算遵循平⾏四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是⽮量,动能是标量,动量改变,动能不⼀定改变,但动能改变动量是⼀定要变的。
2、深刻理解冲量的概念(1)定义:⼒和⼒的作⽤时间的乘积叫做冲量:I =Ft(2)冲量是描述⼒的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是⽮量,它的⽅向由⼒的⽅向决定(不能说和⼒的⽅向相同)。
如果⼒的⽅向在作⽤时间内保持不变,那么冲量的⽅向就和⼒的⽅向相同。
如果⼒的⽅向在不断变化,如绳⼦拉物体做圆周运动,则绳的拉⼒在时间t 内的冲量,就不能说是⼒的⽅向就是冲量的⽅向。
对于⽅向不断变化的⼒的冲量,其⽅向可以通过动量变化的⽅向间接得出。
(4)⾼中阶段只要求会⽤I=Ft 计算恒⼒的冲量。
对于变⼒的冲量,⾼中阶段只能利⽤动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒⼒在⼀段时间内可能不作功,但⼀定有冲量。
特别是⼒作⽤在静⽌的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外⼒的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发⽣变化的原因,冲量是物体动量变化的量度。
高中物理动量守恒定律真题汇编(含答案)及解析
高中物理动量守恒定律真题汇编(含答案)及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.3.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.4.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律5.如图的水平轨道中,AC段的中点B的正上方有一探测器,C处有一竖直挡板,物体P1沿轨道向右以速度v1与静止在A点的物体P2碰撞,并接合成复合体P,以此碰撞时刻为计时零点,探测器只在t1=2 s至t2=4 s内工作,已知P1、P2的质量都为m=1 kg,P与AC间的动摩擦因数为μ=0.1,AB段长L=4 m,g取10 m/s2,P1、P2和P均视为质点,P与挡板的碰撞为弹性碰撞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安徽高二动量定理及动量守恒定律专题复习(附参考答案)一、知识梳理1、深刻理解动量的概念(1)定义:物体的质量和速度的乘积叫做动量:p =mv(2)动量是描述物体运动状态的一个状态量,它与时刻相对应。
(3)动量是矢量,它的方向和速度的方向相同。
(4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。
题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。
(5)动量的变化:0p p p t -=∆.由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。
A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。
B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。
(6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标量,动量改变,动能不一定改变,但动能改变动量是一定要变的。
2、深刻理解冲量的概念(1)定义:力和力的作用时间的乘积叫做冲量:I =Ft(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。
(3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。
如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。
如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。
对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。
(4)高中阶段只要求会用I=Ft 计算恒力的冲量。
对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。
(5)要注意的是:冲量和功不同。
恒力在一段时间内可能不作功,但一定有冲量。
特别是力作用在静止的物体上也有冲量。
3、深刻理解动量定理(1).动量定理:物体所受合外力的冲量等于物体的动量变化。
既I =Δp(2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。
这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。
(3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。
(4)现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。
(5)动量定理的表达式是矢量式。
在一维的情况下,各个矢量必须以同一个规定的方向为正。
4、深刻理解动量守恒定律(1).动量守恒定律:一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:22112211v m v m v m v m '+'=+ (2)动量守恒定律成立的条件○1系统不受外力或者所受外力之和为零; ○2系统受外力,但外力远小于内力,可以忽略不计; ○3系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
○4全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。
(3).动量守恒定律的表达形式:除了22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/外,还有:Δp 1+Δp 2=0,Δp 1= -Δp 2 和1221v v m m ∆∆-= (4)动量守恒定律的重要意义动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。
二、动量定理及动量守恒定律的典型应用1、有关动量的矢量性例1、质量为50kg 的人以8m/s 的速度跳上一辆迎面驶来的质量为200kg 、速度为4m/s 的平板车。
人跳上车后,车的速度为:( )A.4.8m/sB.3.2m/sC.1.6m/sD.2m/s例2、在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们落地的瞬间正确的是:( )A .速度相等B .动量相等C .动能相等D .从抛出到落地的时间相等拓展一:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有:( )A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大拓展二:质量为0. 1kg 的小球从离地面20m 高处竖直向上抛出,抛出时的初速度为15m /s ,取g =10m /s ,当小球落地时求:(1)小球的动量;(2)小球从抛出至落地过程中动量的变化量;(3)若其初速度方向改为水平,求小球落地时的动量及动量变化量。
2、求恒力和变力冲量的方法。
恒力F 的冲量直接根据I=Ft 求,而变力的冲量一般要由动量定理或F-t 图线与横轴所夹的面积来求。
例3、一个物体同时受到两个力F 1、F 2的作用,F 1、F 2与时间t 的关系如图1所示,如果该物体从静止开始运动,经过t=10s 后F 1、F 2以及合力F的冲量各是多少?例4、一质量为100g 的小球从0.80m 高处自由下落到一厚软垫上.若从小球接触软垫到小球陷至最低点经历了0.2s ,则这段时间内软垫对小球的冲量大小为________.(取 g=10m/s 2,不计空气阻力).变式:从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上不容易打碎,其原因是:( )A .掉在水泥地上的玻璃杯动量大,而掉在草地上的玻璃杯动量小B .掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小C .掉在水泥地上的玻璃杯动量改变快,掉在草地上的玻璃杯动量改变慢D .掉在水泥地上的玻璃杯与地面接触时,相互作用时间短,而掉在草地上的玻璃杯与地面接触时间长。
3、动量定理求解相关问题例5、一个质量为m=2kg 的物体在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。
试求物体在水平面上所受的摩擦力。
拓展:如图2所示,矩形盒B 的质量为M ,放在水平面上,盒内有一质量为m 的物体A ,A 与B 、B 与地面间的动摩擦因数分别μ1、μ2,开始时二者均静止。
现瞬间使物体A 获取一向右且与矩形盒B 左、右侧壁垂直的水平速度V 0,以后物体A 在盒B 的左右壁碰撞时,B 始终向右运动。
当A 与B 最后一次碰撞后,B 停止运动,A 则继续向右滑行距离S 后也停止运动,求盒B 运动的时间t 。
4、系统动量是否守恒的判定例6、如图3所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中︰( ) A .动量守恒、机械能守恒 B .动量不守恒、机械能不守恒C .动量守恒、机械能不守恒D .动量不守恒、机械能守恒变式:把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、弹、车,下列说法正确的是︰( ) A BC.三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合力为零图2图3拓展:如图4所示,A 、B 两小车间夹一压缩了的轻质弹簧,且置于光滑水平面上,用手抓住小车使其静止,下列叙述正确的是:( )A .两手先后放开A 、B 时,两车的总动量大于将A 、B 同时放开时的总动量B .先放开左边的A 车,后放开右边的BC .先放开右边的B 车,后放开左边的A D .两手同时放开A 、B5、碰撞:碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。
碰撞的特点(1)作用时间极短,内力远大于外力,总动量总是守恒的。
(2)碰撞过程中,总动能不增。
因为没有其它形式的能量转化为动能。
(3)碰撞过程中当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大。
(4)碰撞过程中,两物体产生的位移可忽略。
判定碰撞可能性问题的分析思路(1)判定系统动量是否守恒。
(2)判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度。
(3)判定碰撞前后动能是不增加。
如:光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧(1)弹簧是完全弹性的。
压缩过程系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;分开过程弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。
这种碰撞叫做弹性碰撞。
由动量守恒和能量守恒可以证实A 、B 的最终速度分别为:。
(这个结论最好背下来,以后经常要用到。
)(2)弹簧不是完全弹性的。
压缩过程系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态弹性势能仍最大,但比损失的动能小;分离过程弹性势能减少,部分转化为动能,部分转化为内能;因为全过程系统动能有损失。
(3)弹簧完全没有弹性。
压缩过程系统动能减少全部转化为内能,Ⅱ状态没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有分离过程。
可以证实,A 、B 最终的共同速度为。
在完全非弹性碰撞过程中,系统的动能损失最大。
例7、如图所示,木块A 的右侧为光滑曲面,且下端极薄,其质量为2.0㎏,静止于光滑水平面上,一质量为2.0㎏的小球B 以2.0m/s 的速度从右向左运动冲上A 的曲面,与A 发生相互作用.(1)B 球沿A 曲面上升的最大高度(设B 球不能飞出去)是:( )A .0.40mB .0.20mC .0.10mD .0.05m(2)B 球沿A 曲面上升到最大高度处时的速度是:( )A .0B .1.0m/sC .0.71m/sD .0.50m/s(3)B 球与A 曲面相互作用结束后,B 球的速度是:( )A .0B .1.0m/sC .0.71m/sD .0.50m/s图4例8、A、B两球在光滑水平面上沿同一直线同向运动,A、B的质量分别为2kg和4kg,A 的动量是6kg·m/s,B的动量是8kg·m/s,当A球追上B球发生碰撞后,A、B两球动量可能值分别为:()A.4kg·m/s,10 kg·m/s B.-6kg·m/s,20kg·m/sC.10 kg·m/s,4 kg·m/s D.5kg·m/s,9kg·m/s变式:甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是P1=5kg.m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种?A、m1=m2B、2m1=m2C、4m1=m2D、6m1=m2。