高中数学:第3章 3.1.1 实数指数幂及其运算
高中数学第三章基本初等函数(ⅰ)3.1.1实数指数幂及其运算bb高一数学
第二十六页,共四十三页。
计算:
(1)(-1.8)0+32-2·3
3382-
1+ 0.01
93;
(2)14-12·0.1(-2·4(aba-31b)-33)12(a>0,b>0).
12/10/2021
第二十七页,共四十三页。
解:(1)原式=1+232·28732-10+923 =1+232·322-10+27=29-10=19. (2)原式=412·0.12·23·a32·a32·b-b32 -32
12/10/2021
第三十一页,共四十三页。
条件求值问题的解法 (1)求解此类问题应注意分析已知条件,通过将已知条件中的 式子变形(如平方、因式分解等),寻找已知式和待求式的关系, 可考虑使用整体代换法. (2)利用整体代换法解决分数指数幂的计算问题,常常运用完 全平方公式及其变形公式.
12/10/2021
4 (-3)4×2. A.0 个 C.2 个
B.1 个 D.3 个
12/10/2021
第十三页,共四十三页。
解析:选 A.3 6a3=3 6·a≠2a;3 -2<0,而6 (-2)2>0; -34 2<0,而4 (-3)4×2>0.
12/10/2021
第十四页,共四十三页。
3.把根式 a a化成分数指数幂是( )
12/10/2021
第二十一页,共四十三页。
2.把下列根式表示为分数指数幂的形式,把分数指数幂表示 为根式的形式:
3
(1)(a-b)-4(a>b);(2)
5
(ab)2;(3)
3
(x-1)5;
(4) 1 ;(5)(a-b)37. 3 a2
12/10/2021
人教B版数学高一版必修1学案实数指数幂及其运算(1)
数学人教B 必修1第三章3.1.1 实数指数幂及其运算1.理解有理指数幂的含义,会用幂的运算法则进行有关计算. 2.通过具体实例了解实数指数幂的意义.3.通过本节的学习,进一步体会“用有理数逼近无理数”的思想,可以利用计算器或计算机实际操作,感受“逼近”的过程.1.整数指数幂(1)正整指数幂的定义:______=n a a a a ⋅⋅⋅⋅个(n ∈N +). (2)正整指数幂的运算法则: ①a m ·a n =______; ②(a m )n =______;③a m ÷a n =____________(m >n ,a ≠0); ④(ab )n =________; ⑤⎝⎛⎭⎫a b n =a n bn (b ≠0).在上述法则③中,限定m >n ,如果取消这种限制,则正整指数幂就推广到了整数指数幂.但要规定a 0=1(a ≠0).a -n =1an (a ≠0,n ∈N +).这样一来,上面的五条运算法则就可以归纳为三条:①a m ·a n =______; ②(ab )n =______; ③(a m )n =______.同时,将指数的范围扩大到了整数.【做一做1】已知a >0,m ,n 为整数,则下列各式中正确的有( ) A .a m÷a n=m naB .a n ·a m =a m ·nC .(a n )m =a m +nD .1÷a n =a 0-n 2.根式(1)根式的定义:式子______叫做根式,这里n 叫做________,a 叫做________.(2)n 次方根的定义:如果存在实数x ,使得______(a ∈R ,n >1,n ∈N +),则____叫做____的n 次方根.(3)n 次方根的性质:①在实数范围内,正数的奇次方根是一个______,负数的奇次方根是一个______,零的奇次方根是____.设a ∈R ,n 是大于1的奇数,则a 的n 次方根是________.②在实数范围内,正数的偶次方根是________________的数,零的偶次方根是______,负数的偶次方根________.设a ≥0,n 是大于1的偶数,则a 的n 次方根是________.其中________叫做a 的n 次算术根.(4)根式的性质:①(na )n =____(n >1,且n ∈N +);②na n=⎩⎪⎨⎪⎧,当n 为奇数时, ,当n 为偶数时.正数开方要分清,根指奇偶大不同, 根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为偶无意义,零取方根仍为零.【做一做2】计算3(-8)3+4(3-2)4-(2-3)2=________. 3.分数指数幂(1)如不特别说明,我们约定底数a >0.于是,正分数指数幂可定义为1na =________(a >0);m na =________(a >0,m ,n ∈N +,且mn 为既约分数).负分数指数幂的意义与负整数指数幂的意义相同,同样可定义为m na-=________(a >0,m ,n ∈N +,且mn为既约分数).(2)有理指数幂的运算法则:①a αa β=a α+β(a >0,α,β∈Q ); ②(a α)β=a αβ(a >0,α,β∈Q );③(ab )α=a αb α(a >0,b >0,α∈Q ).0的正分数指数幂等于0,0的负分数指数幂没有意义,有理指数幂的三条运算法则实际上可推广到实数指数幂.【做一做3-1】把根式a a 化成分数指数幂是( )A .32()a - B .32()a -- C .32a - D .32a【做一做3-2】计算:23×31.5×612. 4.无理指数幂教材中通过实例利用______的思想理解无理指数幂的意义. 一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数. 另外,我们要熟记经常要用的公式:(1)a -b =(a -b )(a +b )(a >0,b >0); (2)a ±2ab +b =(a ±b )2(a >0,b >0). 【做一做4】判断正误: (1)23是一个有理数.( )(2)23不是一个确定的数,而是一个近似值.( ) (3)23没有意义.( ) (4)23是一个实数.( )一、辨析(n a )n 和na n剖析:(na )n 是实数a 的n 次方根的n 次幂,其中实数a 的取值由n 的奇偶性来决定: ①当n 为大于1的奇数时,a ∈R .例如,(327)3=27,(5-32)5=-32,(70)7=0; ②当n 为大于1的偶数时,a ≥0.例如,(427)4=27,(3)2=3,(60)6=0;若a <0,式子(na )n 无意义,例如,(-2)2,(4-54)4均无意义.由此只要(n a )n 有意义,其值恒等于a ,即(na )n =a .na n 是实数a n 的n 次方根,是一个恒有意义的式子,不受n 的奇偶性限制,a ∈R .但是这个式子的值受n 的奇偶性限制:①当n 为大于1的奇数时,其值为a ,即n a n =a ,例如,3(-2)3=-2,56.15=6.1; ②当n 为大于1的偶数时,其值为|a |,即n a n =|a |.例如,434=3,(-3)2=|-3|=3.由此n a n =⎩⎪⎨⎪⎧a ,n =2k -1,k ∈N +,且k >1,|a |,n =2k ,k ∈N +.二、根式与分数指数幂互化的条件探究剖析:(1)引入分数指数幂之后,任何有意义的根式都能化成分数指数幂,即na =1na ,这时被开方数a 即是分数指数幂的底数,根指数的倒数即是分数指数幂的幂指数,显然1na 是m na 当m =1时的特例.(2)分数指数幂的意义来源于根式,而要使na m 对任意的n ∈N +且n >1都有意义,必须限定a >0,否则,当a =0时,若m =0或mn 为分母是偶数的负分数,mn a 没有意义;当a <0时,若m 为奇数,n 为偶数,m na 没有意义.(3)我们可以从一实例看看为什么会加上这个限制条件,如:-3=3-27=1236(27)(27)-=-6(-27)2=6729=3.为什么会出现-3=3这种情况?看看错在了哪里?因为这里的-3<0,在1236(27)(27)-=-中发生了错误,分数的分子、分母扩大相同的倍数分数值不变,有这个性质,必须限制条件“a >0”或“a >0,b >0”.在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指数幂,且尽可能地统一成分数指数幂的形式,再利用幂的性质进行化简、求值、计算,以利于运算,达到化繁为简的目的.对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示.如果有特殊要求,则按要求给出结果,但结果中不能同时含有根号和分数指数幂,也不能既含有分母又含有负指数,即结果必须化为最简形式.题型一 简单的指数幂运算 【例1】计算:(1)2312527-⎛⎫⎪⎝⎭; (2)230.008-; (3)34812401-⎛⎫⎪⎝⎭; (4)(2a +1)0; (5)⎣⎡⎦⎤56-⎝⎛⎭⎫35-1-1.分析:在幂的运算中,首先观察幂的底数,如果幂的底数能化成幂的形式时(如(1)(2)(3)),就先把幂的底数写成幂的形式,再进行幂的乘、除、乘方、开方运算,这样比较简便.在幂的运算中,对于形如m 0的式子,要注意对底数m 是否为零进行讨论,因为只有在m ≠0时,m 0才有意义;而对于形如⎝⎛⎭⎫b a -n的式子,我们一般是先变形为⎝⎛⎭⎫a b n ,然后再进行运算.反思:在进行有关幂的运算时,要注意化归思想的运用;另外化繁为简一直是我们解题的一条基本原则.熟悉幂的运算条件和幂的运算性质是正确解题的关键.题型二 利用根式的性质化简根式 【例2】化简下列各式: (1)3a 3; (2)2 010(x -4)2 010; (3)a 6; (4)2 011(x -7)2 011.分析:根据n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数来化简.反思:通过对本题的解答,大家一定要注意区分好n a n 与(na )n 的形式,并且要建立分类讨论的思想意识.题型三 根式与分数指数幂的互化【例3】(1)把2112 011-化为根式为__________;(2)把1(x ≠0)化为分数指数幂的形式为__________;(3)b >0)化为分数指数幂的形式为__________.反思:通过本例题,我们能得到如下结论:(1)分数指数幂不表示相同因式的乘积,而是根式的另一种写法,分数指数幂与根式可以相互转化.(2)当所求根式含有多重根号时,由里向外用分数指数幂形式写出,然后再用性质进行化简.题型四 整体代入法求值 【例4】已知11223a a-+=,求a +a -1,a 2+a -2的值.分析:本题主要考查分数指数幂及其应用.观察到11221a a -=,对已知等式两边平方即可求解.反思:本题是已知代数式的值求其他代数式的值,通常又简称为“知值求值”.解决此类题目要从整体上把握已知的代数式和所求的代数式的特点,常以整体代入来求值.【例5】已知x +y =12,xy =9,且x <y ,求11221122x y x y-+的值.分析:此题不宜采用直接求值的方法,要考虑把x +y 及xy 整体代入求值.反思:整体代入法在条件求值中非常重要,也是高中数学中一种重要的解题方法.在此题的解题过程中,不宜求出x ,y 后再代入,而应考虑把x +y 及xy 整体代入求值.1下列等式中一定成立的有( ) ①36a 3=2a ;②3-2=6(-2)2;③-342=4(-3)4×2.A .0个B .1个C .2个D .3个2当2-x 有意义时,化简x 2-4x +4-x 2-6x +9的结果为( ) A .2x -5 B .-2x -1 C .-1 D .5-2x 3求下列各式的值:(1)(325-125)÷45;(2)a 3a ·5a 3(a >0).答案: 基础知识·梳理1.(1)a n (2)①a m +n ②a mn ③a m -n ④a n b n ①a m +n ②a n b n ③a mn【做一做1】D 只有选项D 是按照幂的运算法则进行的.选项A 应为a m -n ,选项B 应为a m +n ,选项C 应为a mn .2.(1)n a 根指数 被开方数 (2)x n =a x a (3)①正数 负数 零 n a ②两个绝对值相等符号相反 零 没有意义 ±n a na (4)①a ②a |a |【做一做2】-8 原式=-8+|3-2|-(2-3)=-8+2-3-2+3=-8.3.(1)n a n a m 1m na【做一做3-1】D【做一做3-2】解:23×31.5×612=1113262323(32)2⎛⎫⨯⨯⨯⨯ ⎪⎝⎭=1111113323623236-+++⨯=⨯=. 4.逼近【做一做4】(1)× (2)× (3)× (4)√ 典型例题·领悟【例1】解:(1)2233331255273--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=5-23-2=3252=925. (2)2223223310.008(0.2)0.25255----⎛⎫===== ⎪⎝⎭.(3) 33444481324017--⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭=3-37-3=7333=34327. (4)(2a +1)0=⎩⎨⎧1, a ≠-12,无意义, a =-12.(5)⎣⎡⎦⎤56-⎝⎛⎭⎫35-1-1=⎝⎛⎭⎫56-53-1 =⎝⎛⎭⎫-56-1=-65. 【例2】解:(1)3a 3=a . (2)2 010(x -4)2 010=|x -4|=⎩⎪⎨⎪⎧x -4,x ≥4,4-x ,x <4.(3)a 6=(a 3)2=|a 3|=⎩⎪⎨⎪⎧a 3,a ≥0,-a 3,a <0.(4)2 011(x -7)2 011=x -7.【例3】(1)1112 0112(2)35x-(3)19b利用m na=a >0,m ,n ∈N +,且mn 为既约分数)和1m nmna a-=(a >0,m ,n ∈N +,且mn 为既约分数)转化即可.(1)原式=12 011211=1112 0112;(2)===3591353511()x x x-==.(3)原式=2221211()3334394[()]b bb ---⨯⨯-==.【例4】解:∵11223a a-+=,∴211229a a -⎛⎫+= ⎪⎝⎭.∴a +2+a -1=9.∴a +a -1=7.∴(a +a -1)2=49,∴a 2+2+a -2=49.∴a 2+a -2=47.【例5】解:211221122111111 222222x yx yx y x y x y⎛⎫-⎪-⎝⎭=⎛⎫⎛⎫++-⎪⎪⎝⎭⎝⎭=12 ()2()x y xyx y+--.①∵x+y=12,xy=9,②∴(x-y)2=(x+y)2-4xy=122-4×9=108. ∵x<y,∴x-y=-6 3.③将式②③代入式①,得11122211229x yx y-==+随堂练习·巩固1.A 36a3=36·a≠2a;3-2<0,而6(-2)2>0;-342<0,而4(-3)4×2>0.2.C由2-x有意义,得x≤2,∴原式=(x-2)2-(x-3)2=|x-2|-|x-3|=2-x-(3-x)=-1.3.解:(1)原式=23 23132 3241455 (55)55--÷==213155 3424124 5555 ---=-.(2)原式=1319 3325103152aa aa a--==⋅.。
高中数学苏教版教材目录
高中数学苏教版教材目录(总4页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除苏教版-----------------------------------必修-----------------------第1章集合集合的含义及其表示子集、全集、补集交集、并集第2章函数函数的概念函数的概念和图象函数的表示方法函数的简单性质函数的单调性函数的奇偶性映射的概念第3章指数函数、对数函数和幂函数指数函数分数指数幂指数函数对数函数对数对数函数幂函数函数的应用函数与方程函数模型及其应用-----------------------------------必修2-----------------------------------第1章立体几何初步空间几何体棱柱、棱锥和棱台圆柱、圆锥、圆台和球中心投影和平行投影直观图画法点、线、面之间的位置关系平面的基本性质空间两条直线的位置关系 1.平行直线2.异面直线直线与平面的位置关系1.直线与平面平行2.直线与平面垂直平面与平面的位置关系1.两平面平行2.平面垂直空间几何体的表面积和体积空间几何体的表面积空间几何体的体积第2章平面解析几何初步直线与方程直线的斜率直线的方程1.点斜式2.两点式3.一般式两条直线的平行与垂直两条直线的交点平面上两点间的距离点到直线的距离圆与方程圆的方程直线与圆的位置关系圆与圆的位置关系空间直角坐标系空间直角坐标系空间两点间的距离-----------------------------------必修3-----------------------------------第1章算法初步算法的意义流程图顺序结构选择结构循环结构基本算法语句赋值语句输入、输出语句条件语句循环语句算法案例第2章统计抽样方法简单随机抽样1.抽签法2.随机数表法系统抽样分层抽样总体分布的估计频率分布表频率分布直方图与折线图茎叶图总体特征数的估计平均数及其估计方差与标准差线性回归方程第3章概率随机事件及其概率随机现象随机事件的概率古典概型几何概型互斥事件-----------------------------------必修4-----------------------------------第1章三角函数任意角、弧度任意角弧度制任意角的三角函数任意角的三角函数同角三角函数关系三角函数的诱导公式三角函数的图象和性质三角函数的周期性三角函数的图象与性质函数y=Asin(ωx+ψ)的图象三角函数的应用第2章平面向量向量的概念及表示向量的线性运算向量的加法向量的减法向量的数乘向量的坐标表示平面向量基本定理平面向量的坐标运算向量的数量积向量的应用第3章三角恒等变换两角和与差的三角函数两角和与差的余弦两角和与差的正弦两角和与差的正切二倍角的三角函数几个三角恒等式-----------------------------------必修5-----------------------------------第1章解三角形1.1正弦定理1.2余弦定理451.3正弦定理、余弦定理的应用 第2章 数列 2.1数列2.2等差数列等差数列的概念等差数列的通项公式等差数列的前n 项和2.3等比数列等比数列的概念等比数列的通项公式等比数列的前n 项和 第3章 不等式 3.1不等关系3.2一元二次不等式3.3二元一次不等式组与简单的线性规划问题二元一次不等式表示的平面区域二元一次不等式组表示的平面区域 简单的线性规划问题3.4基本不等式2b a ab +≤)0,0(≥≥b a 基本不等式的证明基本不等式的应用-----------------------------------选修-------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的共同性质 第3章 导数及其应用3.1导数的概念平均变化率瞬时变化率——导数3.2导数的运算常见函数的导数函数的和、差、积、商的导数 3.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值3.4导数在实际生活中的应用-----------------------------------选修-------------------------第1章 统计案例 1.1独立性检验 1.2回归分析第2章 推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏 2.2直接证明与间接证明直接证明间接证明 第3章 数系的扩充与复数的引入 3.1数系的扩充 3.2复数的四则运算 3.3复数的几何意义 第4章 框图 4.1流程图 4.2结构图-----------------------------------选修2------------------------第1章 常用逻辑用语1.1命题及其关系四种命题充分条件和必要条件 1.2简单的逻辑联结词1.3全称量词与存在量词量词含有一个量词的命题的否定 第2章 圆锥曲线与方程 2.1圆锥曲线2.2椭圆椭圆的标准方程椭圆的几何性质2.3双曲线双曲线的标准方程双曲线的几何性质 2.4抛物线抛物线的标准方程抛物线的几何性质 2.5圆锥曲线的统一定义2.6曲线与方程曲线与方程求曲线的方程曲线的交点 第3章 空间向量与立体几何3.1空间向量及其运算空间向量及其线性运算共面向量定理空间向量基本定理空间向量的坐标表示空间向量的数量积 3.2空间向量的应用直线的方向向量与平面的法向量空间线面关系的判定空间的角的计算-----------------------------------选修2-2-----------------------------------第一章 导数及其应用1.1导数的概念平均变化率瞬时变化率——导数1.2导数的运算常见函数的导数函数的和、差、积、商的导数简单复合函数的导数1.3导数在研究函数中的应用单调性极大值和极小值最大值和最小值1.4导数在实际生活中的应用1.5定积分曲边梯形的面积定积分微积分基本定理第二章推理与证明2.1合情推理与演绎推理合情推理演绎推理推理案例欣赏2.2直接证明与间接证明直接证明间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充3.2复数的四则运算3.3复数的几何意义-----------------------------------选修2-3-----------------------------------第一章计数原理1.1两个基本原理1.2排列1.3组合1.4计数应用题1.5二项式定理二项式定理二项式系数的性质及用第二章概率2.1随机变量及其概率分布2.2超几何分布2.3独立性条件概率事件的独立性2.4二项分布2.5随机变量的均值与方差离散型随机变量的均值离散型随机变量的方差与标准差2.6正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4------------------------相似三角形的进一步认识平行线分线段成比例定理相似三角形圆的进一步认识圆周角定理圆的切线圆中比例线段圆内接四边形圆锥截线球的性质圆柱的截线圆锥的截线学习总结报告-----------------------------------选修4-2-----------------------------------二阶矩阵与平面向量矩阵的概念二阶矩阵与平面列向量的乘法几种常见的平面变换恒等变换伸压变换反射变换旋转变换投影变换切变变换变换的复合与矩阵的乘法矩阵乘法的概念矩阵乘法的简单性质逆变换与逆矩阵逆矩阵的概念二阶矩阵与二元一次方程组特征值与特征向量矩阵的简单应用学习总结报告-----------------------------------选修4-4-----------------------------------直角坐标系直角坐标系极坐标系球坐标系与柱坐标系曲线的极坐标方程曲线的极坐标方程的意义常见曲线的极坐标方程平面坐标系中几种常见变换平面直角坐标系中的平移变换平面直角坐标系中的伸缩变换参数方程参数方程的意义参数方程与普通方程的互化6参数方程的应用平摆线与圆的渐开线学习总结报告-----------------------------------选修4-5-----------------------------------不等式的基本性质含有绝对值的不等式含有绝对值的不等式的解法含有绝对值的不等式的证明不等式的证明比较法综合法和分析法反证法放缩法几个著名的不等式柯西不等式排序不等式算术-几何平均值不等式运用不等式求最大(小)值运用算术-几何平均值不等式求最大(小)值运用柯西不等式求最大(小)值运用数学归纳法证明不等式学习总结报告7。
人教版初高中数学章节目录
人教版初中数学章节目录七年级上册(61)第1章有理数(19)第2章整式的加减(8)第3章一元一次方程(18)第4章图形认识初步(16)_______________________________________________________________________________ 七年级下册(62)第5章相交线与平行线(14)第6章平面直角坐标系(7)第7章三角形(8)第8章二元一次方程组(12)第9章不等式与不等式组(12)第10章数据的收集整理与描述(9)_______________________________________________________________________________ 八年级上册(62)第11章全等三角形(11)第12章轴对称(13)第13章实数(8)第14章一次函数(17)第15章整式的乘除与因式分解(13)_______________________________________________________________________________ 八年级下册(61)第16章分式(14)第17章反比例函数(8)第18章勾股定理(8)第19章四边形(16)第20章数据的分析(15)_______________________________________________________________________________ 九年级上册(62)第21章二次根式(9)第22章一元二次方程(13)第23章旋转(8)第24章圆(17)第25章概率初步(15)_______________________________________________________________________________ 九年级下册(48)第26章二次函数(12)第27章相似(13)第28章锐角三角函数(12)第29章投影与视图(11)_______________________________________________________________________________%%%% 各章详细内容%%%%_______________________________________________________________________________ ~~~~七~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~第一章有理数1.1正数和负数阅读与思考用正负数表示加工允许误差1.2有理数1.3有理数的加减法实验与探究填幻方阅读与思考中国人最先使用负数1.4有理数的乘除法观察与思考翻牌游戏中的数学道理1.5有理数的乘方数学活动小结复习题1第二章整式的加减2.1整式阅读与思考数字1与字母X的对话2.2整式的加减信息技术应用电子表格与数据计算数学活动小结复习题2第三章一元一次方程3.1从算式到方程阅读与思考“方程”史话3.2解一元一次方程(一)——合并同类项与移项实验与探究无限循环小数化分数3.3解一元一次方程(二)——去括号与去分母3.4实际问题与一元一次方程数学活动小结复习题3第四章图形认识初步4.1多姿多彩的图形阅读与思考几何学的起源4.2直线、射线、线段阅读与思考长度的测量4.3角4.4课题学习设计制作长方体形状的包装纸盒数学活动小结复习题4~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~七年级下册第五章相交线与平行线5.1相交线5.2平行线5.3平行线的性质5.4平移数学活动小结复习题5第六章平面直角坐标系6.1平面直角坐标系6.2坐标方法的简单应用数学活动小结复习题6第七章三角形7.1与三角形有关的线段7.2与三角形有关的角7.3多边形及其内角和7.4课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1二元一次方程组8.2消元8.3再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1不等式9.2实际问题与一元一次不等式9.3一元一次不等式组9.4课题学习利用不等关系分析比赛(1)数学活动小结复习题9第十章数据的收集整理与描述10.1几种常见的统计图表10.2用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁10.3课题学习从数据谈节水数学活动小结复习题10~~八~~~年~~~级~~~上~~~册~~~~~~~~第十一章全等三角形11.1全等三角形11.2三角形全等的条件阅读与思考为什么要证明11.3角的平分线的性质数学活动小结复习题11第十二章轴对称12.1轴对称12.2轴对称变换信息技术应用探索轴对称的性质12.3等腰三角形实验与探究三角形中边与角之间的不等关系数学活动小结复习题12第十三章实数13.1平方根13.2立方根13.3实数数学活动小结复习题13第十四章一次函数14.1变量与函数信息技术应用用计算机画函数图象14.2一次函数阅读与思考科学家如何测算地球的年龄14.3用函数观点看方程(组)与不等式数学活动小结复习题14第十五章整式的乘除与因式分解15.1整式的乘法15.2乘法公式阅读与思考杨辉三角15.3整式的除法15.4因式分解观察与猜想x2+(p+q)x+pq型式子的因式分解数学活动小结复习题15 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~八年级下册第十六章分式16.1分式16.1分式的运算阅读与思考容器中的水能倒完吗16.1分式方程数学活动小结复习题16第十七章反比例函数17.1反比例函数17.1实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1勾股定理18.2勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1平行四边形19.2特殊的平行四边形实验与探究巧拼正方形19.3梯形观察与猜想平面直角坐标系中的特殊四边形19.4课题学习:重心数学活动小结复习题19第二十章数据的分析20.1数据的代表20.2数据的波动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3课题学习体质健康测试中的数据分析数学活动小结复习题20~~~九~~~年~~~级~~~上~~~册~~~~~~~~~~~~~~~~~~~~~~第二十一章二次根式21.1二次根式21.2二次根式乘除21、3二次根式的加减阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转的性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆阅读与思考圆周率π24.4弧长和扇形面积实验与研究设计跑道数学活动小结复习题24第二十五章概率初步25.1概率25.2用列举法求概率阅读与思考概率与中奖25.3利用频率估计概率阅读与思考布丰投针实验25.4课题学习键盘上字母的排列规律数学活动小结复习题25 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~九年级下册第二十六章二次函数26.1二次函数实验与探究推测植物的生长与温度的关系26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数数学活动小结复习题26第二十四章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数28.2解直角三角形数学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29各章节详细知识点七年级上册第一章《有理数》1.正数与负数的概念2.正数与负数的实际意义3.有理数的概念4.数轴的概念5.相反数的概念6.绝对值的概念7.有理数的大小比较8.有理数的加法法则9.有理数的减法法则10.有理数的乘法法则11.有理数的运算律12.有理数的除法法则13.有理数的混合运算法则14.有理数的乘方相关概念(乘方、幂、底数、指数)15.有理数的乘方法则16.科学记数法17.近似数(有效数字)第二章《整式的加减》1.单项式及其相关概念(单项式、系数、次数)2.多项式及其相关概念(多项式、项、常数项、次数)3.整式4.同类项的概念5.合并同类项的法则6.去括号法则7.整式加减的运算法则第三章《一元一次方程》1.方程的概念2.一元一次方程的概念3.方程的解4.等式的性质5.一元一次方程的解法(步骤)6.一元一次方程的应用问题(和差倍分问题、数字问题、行程问题、工程问题、劳动力调配问题、增长率问题、商品利润问题)第四章《图形的初步认识》1.几何图形的概念2.立体图形的概念3.平面图形的概念4.立体图形的三视图5.立体图形的展开图6.点、线、面、体的概念7.直线的相关概念(直线、相交线、交点)8.两点确定一条直线9.点与直线的位置关系10.线段的中点11.两点之间线段最短12.两点之间的距离13.角及其相关概念14.角平分线15.余角的概念16.补角的概念17.余角(补角)的性质七年级下册第五章《相交线与平行线》1.相交线的相关概念(邻补角、对顶角)2.对顶角的性质3.垂线的相关概念(垂直、垂线、垂足)4.过一点画垂线5.垂线段最短6.点到直线的距离7.“三线八角”的相关概念8.平行的概念9.平行公理10.平行线的判定11.平行线的性质12.命题及其相关概念(命题、真命题、假命题)13.定理的概念14.平移的概念15.平移的性质第六章《平面直角坐标系》1.有序实数对的概念2.平面直角坐标系及其相关概念(平面直角坐标系、横轴、纵轴、原点、坐标、象限)3.特殊点坐标(象限符号、坐标轴上点的特征、坐标轴角平分线上点的特征、对称点坐标特征、平行于坐标轴的点的特征)4.直角坐标系的实际应用5.平移的坐标特征第七章《三角形》1.三角形的概念2.三角形的分类3.三角形的三边关系4.三角形的“三线”(高线、中线、角平分线)5.三角形的稳定性6.三角形的内角和定理7.三角形的外角8.三角形的外角性质定理9.多边形及其相关概念(多边形、对角线、正多边形)10.多边形的内角和定理11.多边形的外角和定理第八章《二元一次方程组》1.二元一次方程的概念2.二元一次方程(组)的解3.解二元一次方程(代入消元法、加减消元法)4.二元一次方程的应用5.三元一次方程组的概念6.三元一次方程组的解法第九章《不等式与不等式组》1.不等式的概念2.不等式的解3.解集4.一元一次不等式的概念5.不等式的性质6.一元一次不等式的解法7.一元一次不等式的应用8.一元一次不等式组的概念9.一元一次不等式组的解法第十章《数据的收集、整理与描述》1.收集数据(问卷)2.整理数据(表格)3.描述数据(条形统计图、扇形统计图)4.抽样调查的概念5.总体、个体、样本、样本容量6.简单随机抽样的概念7.直方图及其相关概念(直方图、组距、频数)8.画直方图的步骤八年级上册第十一章《全等三角形》1.全等形的概念2.全等三角形的相关概念(全等三角形、对应顶点、对应边、对应角)3.全等三角形的性质4.全等三角形的判定5.角平分线的性质6.角平分线的判定第十二章《轴对称》1.轴对称图形的概念2.关于直线对称的相关概念3.轴对称的性质4.线段垂直平分线的性质5.线段垂直平分线的判定6.作轴对称图形7.关于坐标轴对称点的特征8.等腰三角形的概念9.等腰三角形的性质10.等腰三角形的判定11.等边三角形的概念12.等边三角形的判定13.等边三角形的性质第十三章《实数》1.算术平方根的概念2.平方根的概念3.平方根的性质4.立方根的概念5.立方根的性质6.实数的概念7.实数的分类8.实数的相反数、绝对值9.实数与数轴的关系第十四章《一次函数》1.变量与常量2.函数与自变量3.函数的图像4.正比例函数的解析式5.正比例函数的图象及其性质6.一次函数的解析式7.一次函数的图象及其性质8.一次函数与一元一次方程的关系9.一次函数与一元一次不等式关系10.一次函数与二元一次方程组的关系第十五章《整式的乘除与因式分解》1.同底数的幂的乘法公式2.幂的乘方公式3.积的乘方公式整式的乘法法则4.单项式与多项式相乘的乘法法则5.多项式相乘的乘法法则6.平方差公式7.完全平方公式8.添括号法则9.同底数幂的除法法则10.单项式除单项式的法则11.多项式除以单项式法则12.因式分解的概念13.因式分解的方法(提取公因式法、公式法)八年级下册第十六章《分式》1.分式的概念2.分式的基本性质3.约分与通分4.最简分式5.分式乘除的法则6.分式加减的法则7.整数指数幂的运算性质8.分式方程的概念9.分式方程的解法10.分式方程的应用第十七章《反比例函数》1.反比例函数的概念2.反比例函数的图象及其性质3.反比例函数的应用第十八章《勾股定理》1.勾股定理2.勾股定理的逆定理第十九章《四边形》2.平行四边形的性质3.平行四边形的判定4.两条平行直线之间的距离5.矩形的概念6.矩形的判定7.矩形的性质8.菱形的概念9.菱形的性质10.菱形的判定11.正方形的概念12.正方形的性质与判定13.梯形概念14.梯形的分类15.等腰梯形的性质16.等腰绞刑的判定第二十章《数据的分析》1.平均数与加权平均数2.中位数3.众数4.方差九年级上册第二十一章《二次根式》1.二次根式的概念2.二次根式的两个重要公式3.代数式的概念4.二次根式的乘法法则5.二次根式的除法法则6.最简二次根式7.二次根式的加减法法则第二十二章《一元二次方程》2.一元二次方程的根3.一元二次方程的解法(直接开方法、配方法、求根公式法、因式分解法)4.根的判别式5.一元二次方程根与系数的关系6.一元二次方程的应用(面积问题、连续增长问题)第二十三章《旋转》1.旋转的相关概念(旋转、旋转中心、旋转角)2.旋转的性质3.中心对称的相关概念(中心对称、对称中心、对称点)4.中心对称的性质5.中心对称图形的概念6.关于原点对称的点的坐标的特征第二十四章《圆》1.圆的相关概念(圆的两种定义、圆心、半径、弦、直径、圆弧、优弧、劣弧、半圆、等圆、等弧)2.垂径定理及其推论3.弧、弦、圆心角、弦心距之间的关系定理4.圆周角的概念5.圆周角定理及其推论6.圆内接多边形的概念7.圆内接四边形的性质8.点与圆的位置关系9.三点确定一个圆10.三角形的外接圆及外心11.直线与圆的位置关系及其相关概念12.切线的性质及判定定理13.切线长定理14.圆与圆的位置关系及其相关概念15.正多边形与圆的相关概念(正三角形与圆、正方形与圆、正六边形与圆)16.弧长公式及扇形面积公式17.圆锥及圆柱的侧面积及表面积第二十五章《概率》1.随机事件、不可能事件、必然事件的概念2.随机事件的性质3.概率的概念4.概率的计算公式5.用列表法、树形图计算概率6.频率与概率的关系高中数学目录此文为人教必修版新教材高中数学目录必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱棱锥棱台的结构特征1.1.3圆柱圆锥圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱棱锥棱台和球的表面积1.1.7柱锥台和球的体积1.2点线面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值输入输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦余弦和正切3.3三角函数的积化和差与和差化积必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且与或1.2.2非(否定)1.3充分条件必要条件与命题的四种形式1.3.1推出与充分条件必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分的基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与实践的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析选修4-4第一章坐标系1.1直角坐标系平面上的伸缩变换1.1.1直角坐标系1.1.2平面上的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆1.4.2圆心在点(a,∏/2)处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线与圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2双曲线的参数方程2.3.3抛物线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程。
高中新课程数学(新课标人教B)必修1《有理指数幂及其运算》课件
• MATHEMATICS n数学第三章基本初等函数(I)3. 1指数与指数函数3. 1.1实数指数幕及其运算【课标要求】1.理解有理指数幕的含义,会用幕的运算法则进行有关运算.2.了解实数指数幕的意义.【核心扫描】1-根式与分数指数幕的互化.(重点)2.根式的性质.(易混点)3.有理指数幕运算性质的应用.(难点)KEQIANTANJIUXUEXI》课前探究学习挑战自我[点点落实自学导引1."次方根的概念(1)如果存在实数兀,使得心,则X叫做。
的〃次方根.(2)当紡有意义的时候,式子黑叫做根式,这里"叫做根指数,a叫做被开方数.2.根式的性质(1)(般)"=丄(卅>1 且〃UN+);(卅为奇数且〃>1, 〃WN+)(〃为偶数且卅>1, 〃UN+)\a\3.分数指数幕的定义:(1)规定正数的正分数指数幕的意义是:in _Q 去二(Q〉() 9 "、m w N 9 且刃〉1 );(2)规定正数的负分数指数幕的意义是(°〉()山、m. e N * ,且几 > 1);(3)0的正分数指数幕为(),0的负分数指数幕4.有理数指数幕的运算性质(l}aa=ar+s(a>0,厂、泻Q);(2)@丫= _(a>0,厂、$WQ);(3YabY=arbr(a>0, b>0,胆Q)・试一试:分数指数幕血及(乙(nN,且叫"互质)的底数有何取值范围?提不(帀='Q,当m为奇数时,底数a e R,当m为偶数时,dM();_2l_ ["〃‘二石亍当尬为奇数时,HO且</ e R,当肌为偶数时,a > 0.想一想:防(〃WN+)与(裁)"(”WN+)对任意实数a都有意义吗?提示式子勺刁(“WN+)对任意实数a都有意义;而式子(第)"(〃WN+),当n为奇数时,对任意实数a都有意义;当n 为偶数时,对负数a没有意义.名师点睛1.根式紡的符号:根式紡的符号由根指数〃的奇偶性及被开方数Q的符号共同确定;当〃为偶数时,。
知识点整理-[高中数学]第三章 基本初等函数(I)
如果 a=1,y=1x=1,是一个常量,对它就没有研究的必要。
为了避免上述各种情况,所以规定 a>0 且 a≠1。
1
③如 y=2·3x,y= 2 x ,y= 3 x2 ,y=3x+1 等函数都不是指数函数,要注意区分。
(2)指数函数的图象和性质
y=ax
0<a<1
a>1
图 象
定义域为 R,值域为(0,+∞)
质对于无理指数幂也适用,这样,指数概念就扩充到了整个实数范围。
(3)利用分数指数进行根式与幂的计算
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指
数幂,并尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简、求值、计算,
以利于运算、达到化繁为简的目的。
对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示,如
a0=1,即 x=0 时,y=1,图像都过点(0,1)
性 a1=a,即 x=1 时,y 等于底数 a,图像都经过点(1,a)
质 在定义域上是单调减函数
在定义域上是单调增函数
x<0 时,ax>1;
x<0 时,0<ax<1;
x>0 时,0<ax<1
x>0 时,ax>1
既不是奇函数,也不是偶函数
4
学习指数函数的图象和性质,需要注意的几个问题: ①当底数 a 大小不定时,必须分“a>1”和“0<a<1”两种情况讨论。 ②当 0<a<1 时,x→+∞,y→0;当 a>1 时,x→-∞,y→0。当 a>1 时 a 的值越大, 图象越靠近 y 轴,递增速度越快;当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的 速度越快。(其中“x→+∞”意义是:“x 接近于正无穷大”)。 ③在同一直角坐标系中指数函数图象的位置与底数大小的关系:在 y 轴右侧,图象从 上到下相应的底数由大变小;在 y 轴左侧,图象从下到上相应的底数由大变小。 规律:当 a>1,b>1 时,指数函数 y=ax,y=bx 的图象在同一坐标系中,在直线 x=0 的右边,当 a>b 时,y=ax 的图象在 y=bx 的图象上方,在直线 x=0 的左边正好相反。 当 0<a<1,0<b<1 时,指数函数 y=ax,y=bx 的图象的关系与 a>1,b>1 正好相反。 (3)指数函数的定义域与值域 指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞,+∞),值域是(0,+∞)。 求由指数函数构成的复合函数的定义域时,可能涉及解指数不等式(即未知数在指数 上的不等式)。解指数不等式的基本方法是把不等式两边化为同底的幂的形式,利用指数 函数的单调性脱去幂的形式,从而转化为熟悉的不等式。同时还应注意负数不能开偶次方, 分母不能为零,限制 x 的取值。 求由指数函数构成的复合函数的值域,一般用换元法即可,但应注意在中间变量的值 域以及指数函数的单调性的双重作用下,函数值域的变化情况。 (4)指数函数图象的变换规律 ①平移规律 若已知 y=ax 的图象,则把 y=ax 的图象向左平移 b(b>0)个单位,则得到 y=ax+b 的图 象,向右平移 b(b>0)个单位,则得到 y=ax-b 的图象,向上平移 b(b>0)个单位,则得 到 y=ax+b 的图象,向下平移 b(b>0)个单位,则得到 y=ax-b 的图象。 一般的,把函数 y=f(x)图象向右平移 m 个单位得到函数 y=f(x-m)的图象(m∈R,m< 0,就是向左平移|m|个单位);把函数 y=f(x)的图象向上平移 n 个单位,得函数 g(x)=f(x)+n 的图象(n∈R,n<0,就是向下平移|n|个单位)。
2011高一数学学案:3.1.1《实数指数幂及其运算》(第二课时)(新人教B版必修一)
3.1.1实数指数幂及其运算(2)【学习目标要求】要求学生理解分数指数幂的概念和性质,根式和分数指数幂的互化,实数指数幂的概念和性质,并会进行相关运算。
【知识再现】1 ① 当n =;② 当n a ⎧==⎨⎩(要注意分清n 是偶数还是奇数)2 整数数指数幂的性质(1) ,(2) ,(3) 。
(4) 。
3 如果存在实数x ,使得(,1,)n x a a R n n N +=∈>∈,则x 叫作 。
求a 的n 次方根,叫作把a 开n 次方,称作 。
4规定正分数指数幂的定义是:(1) (2) 。
规定负分数指数幂的定义是: 。
规定0的正分数指数幂为0,0的负分数指数幂和0次幂 。
规定了分数指数幂以后,指数的概念也就从整数指数扩展到了 指数。
5 有理指数幂的运算性质有:(1) (2)(3) 。
【概念探究】阅读教材86页88页例题1以前,思考并完成以下问题1分数指数幂是根式的另一种表示,根式的运算可利用 之间的关系转化为分数指数幂的运算.对于问题计算化简的结果,不强求统一用何种形式来表示.但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.2 为什么有理指数幂可以扩展到无理指数幂?例题例1 化简:332b a a b ba练习:(1例2:已知:22121=+-a a 求下列各式的值(1)22-+a a ;(2)33-+a a ;(3)44-+a a .练习:已知12,9x y xy +==,且x y <,求11221122x yx y -+的值。
【课堂检测】1 下列运算正确的是( )A 2332()()a a -=-B 235()a a -=-C 235()a a -=D 236()a a -=- 2 下列说法正确的是( )A -2是16的四次方根B 正数的n 次方根有两个C a 的nD a =3 下列各式成立的是( ) A 7177n n m m ⎛⎫= ⎪⎝⎭ B= C34()x y =+ D=4. (1)4325)12525(÷-(22a>0)5. 化简2115113366221()(3)()3a b a b a b-÷,(0)b≠6. 0=,求x y。
北师大版高中数学课件必修第1册第三章 指数运算与指数函数
2.
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
3.[江苏镇江 2021 高一期中]已知指数函数 f(x)的图象过点(-2,4),则 f(6)=( B )
3
1
4
A.
B.
C.
4
64
3
1 D.
12
解析
1
设
f(x)=ax(a>0
且
a≠1),∴f(-2)=a-2=4,解得
1 a= ,∴f(6)=
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
6.[宁夏大学附属中学 2021 高一期中]已知 f(x)=ka-x(k,a 为常数,a>0 且 a≠1)的图象过点 A(0,1),B(- 3,8). (1)求 f(x)的解析式;
f(x)-1
(2)若函数 g(x)=
,试判断 g(x)的奇偶性并给出证明.
10
解析
103x-2y=103x=(10x)3=33=27,故选 C. 102y (10y)2 42 16
§2 指数幂的运算性质
刷能力
5.已知 ab=-5,则 a
A.2 5 C.-2 5
解析
b - +b
a
a - 的值是( B )
b
B.0
D.±2 5
由题意知 ab<0,a 故选 B.
b - +b
a
a - =a
2
6=
1
.故选
B.
2
64
3.1 指数函数的概念+ 3.2 指数函数的图象和性质
刷基础
4.[福建福州第三中学 2021 高一期中]以下关于函数 f(x)=2x 的说法正确的是( D ) A.f(mn)=f(m)f(n) B.f(mn)=f(m)+f(n) C.f(m+n)=f(m)+f(n) D.f(m)f(n)=f(m+n)
高中数学实数指数幂教案
高中数学实数指数幂教案
授课对象:高中学生
教学目标:通过本堂课的学习,学生将能够掌握实数指数幂的基本概念、性质和运算法则,以及能够灵活运用到实际问题中。
教学准备:
1. 教材《高中数学》相关章节
2. 教学投影仪
3. 教学板书
4. 教学示范题目
教学步骤:
一、引入(5分钟)
教师通过提问或者引用例题,引导学生回顾实数指数幂的基本概念和运算法则。
二、概念讲解(15分钟)
1. 实数指数幂的定义;
2. 正整数指数幂的运算法则;
3. 零指数幂的特殊性;
4. 负整数指数幂的运算法则;
5. 实数指数幂的性质及计算方法。
三、例题讲解(20分钟)
教师在投影仪上展示一些实际问题,带领学生分析问题、列方程、并运用实数指数幂的运
算法则解答。
四、练习与讨论(15分钟)
学生在课堂中进行相关练习,教师巡视指导,并将学生常犯的错误或者疑惑进行讨论和解答。
五、总结(5分钟)
教师对本节课的重点内容进行总结,并强调学生在日常学习中要多加练习和巩固,以便更
好地掌握实数指数幂的概念和运算法则。
课后作业:
1. 完成课后作业册相关题目;
2. 总结复习本课所学内容。
教学反思:
本节课主要围绕实数指数幂的基本概念、性质和运算法则展开,通过例题讲解和练习讨论,激发学生学习兴趣,提高学生的实际运用能力。
在教学过程中,教师要注重引导学生提出
问题,激发学生思维,帮助学生形成严密的逻辑思维,提高解题能力。
湘教版(2019)高中数学目录
湘教版(2019)高中数学目录湘教版数学必修第一册第1章集合与逻辑1.1 集合1.2 常用逻辑用语数学文化从德·摩根到康托尔:逻辑与集合小结与复习复习题一第2章一元二次函数、方程和不等式2.1 相等关系与不等关系2.2 从函数观点看一元二次方程2.3 一元二次不等式小结与复习复习题二第3章函数的概念与性质3.1 函数数学实验用计算机作函数图像和列函数表3.2 函数的基本性质数学文化函数概念的形成与发展小结与复习复习题三第4章幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.2 指数函数4.3 对数函数数学文化历史上的对数4.4 函数与方程数学实验用二分法求方程的近似解4.5 函数模型及其应用小结与复习复习题四第5章三角函数5.1 任意角与弧度制5.2 任意角的三角5.3 三角函数的图像与性质5.4 函数()ϕω+=xy sinA的图像与性质数学实验用计算机作函数()ϕω+=xy sinA的图像5.5 三角函数模型的简单应用数学文化三角学的历史小结与复习复习题五第6章统计学初步6.1 获取数据的途径及统计概念6.2 抽样数学文化《文学摘要》的破产6.3 统计图表数学实验利用计算机制作统计图表6.4 用样本估计总体数学文化统计与文学作品鉴定数学文化大数据小结与复习复习题六数学词汇中英文对照表后记湘教版数学必修第二册第1章平面向量及其应用1.1 向量1.2 向量的加法1.3 向量的数乘1.4 向量的分解与坐标表示1.5 向量的数量积1.6 解三角形1.7 平面向量的应用举例小结与复习复习题一第2章三角恒等变换2.1 两角和与差的三角函数2.2 二倍角的三角函数2.3 简单的三角恒等变换小结与复习复习题二第3章复数3.1 复数的概念3.2 复数的四则运算3.3 复数的几何表示*3.4 复数的三角表示数学文化数系扩充简史小结与复习复习题三第4章立体几何初步4.1 空间的几何体4.2 平面4.3 直线与直线、直线与平面的位置关系4.4 平面与平面的位置关系数学实验正四棱锥的截面4.5 几种简单几何体的表面积和体积数学文化几何学的产生和发展小结与复习复习题四第5章概率5.1 随机事件与样本空间5.2 概率及运算5.3 用频率估计概率数学实验用计算机模拟掷质地均匀的硬币实验5.4 随机事件的独立性数学文化概率论发展简史小结与复习复习题五第6章数学建模6.1 走进异彩纷呈的数学建模世界6.2 数学建模——从自然走向理性之路6.3 数学建模案例(一):最佳视角6.4 数学建模案例(二):曼哈顿距离6.5 数学建模案例(三):人数估计数学词汇中英文对照表后记湘教版数学选择性必修第一册第1章数列1.1 数列的概念1.2 等差数列1.3 等比数列数学实验用计算机探究无穷递减等比数列的和*1.4 数学归纳法数学文化中国古代数学中的数列数学文化从兔子问题引出的斐波那契数列小结与复习复习题一数学建模乐音频率与等比数列第2章平面解析几何初步2.1 直线的斜率2.2 直线的方程2.3 两条直线的位置关系2.4 点到直线的距离2.5 圆的方程2.6 直线与圆、圆与圆的位置关系2.7 用坐标方法解决几何问题数学文化解析几何的诞生与发展小结与复习复习题二第3章圆锥曲线与方程数学实验生活中的圆锥曲线3.1 椭圆3.2 双曲线3.3 抛物线3.4 曲线与方程3.5 圆锥曲线的应用数学实验用计算机探究圆锥曲线的光学性质数学文化圆锥曲线小史小结与复习复习题三数学建模冰川融化模型第4章计数原理4.1 两个计数原理4.2 排列4.3 组合4.4 二项式定理数学文化中国古代的排列组合数学文化杨辉三角小结与复习复习题四数学词汇中英文对照表后记湘教版数学选择性必修第二册第1章导数及其应用1.1 导数概念及其意义1.2 导数的运算数学实验曲线的切线与函数的导数1.3 导数在研究函数中的应用数学文化微积分的故事小结与复习复习题一数学建模易拉罐的优化设计第2章空间向量与立体几何2.1 空间直角坐标系2.2 空间向量及其运算2.3 空间向量基本定理及坐标表示2.4 空间向量在立体几何中的应用小结与复习复习题二第3章概率3.1 条件概率与事件的独立性3.2 离散型随机变量及其分布列3.3 正态分布数学文化高斯与正态分布数学实验利用计算机探究正态分布密度曲线小结与复习复习题三第4章统计4.1 成对数据的统计相关性4.2 一元线性回归模型数学实验用计算机探究线性回归模型4.3 独立性试验数学文化高尔顿与回归小结与复习复习题四数学建模体重与脉搏的数据拟合模拟数学词汇中英文对照表后记。
人教B版高中数学必修一学第三章实数指数幂及其运算讲解与例题
3.1.1 实数指数幂及其运算1.整数指数(1)一个数a 的n 次幂等于n 个a 的连乘积,即n nn a a a a a =⋅⋅⋅⋅L 14243个叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数.并规定a 1=a .(2)正整指数幂在a n 中,n 是正整数时,a n叫做正整指数幂. 正整指数幂具有以下运算法则:①a m·a n=a m +n;②(a m )n=a mn;③a m an =a m -n (a ≠0,m >n );④(ab )m =a m b m.其中m ,n ∈N +.(3)整数指数幂在上述法则③中,限制了m >n ,如果取消这种限制,那么正整指数幂就推广到了整数指数幂.规定:①a 0=1(a ≠0);②a -n=1an (a ≠0,n ∈N +).这样,上面的四条法则可以归纳为三条:①a m ·a n =a m +n ;②(ab )n =a n b n ;③(a m )n =a mn.其中m ,n ∈Z .同时,将指数的范围由正整数扩大为整数.0的零次幂没有意义,0的负整数次幂也没有意义,因此对于整数指数幂,要求“底数不等于0”.【例1】化简:(a 2b 3)-2·(a 5b -2)0÷(a 4b 3)2.解:原式=223246423286()()1=()()a b a b a b a b----⋅⋅⋅ =(a -4·a -8)·(b -6·b -6)=a -12b -12. 2.根式如果存在实数x ,使得x n=a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根.求a 的n 次方根,叫做把a 开n 次方,称作开方运算.当n a 有意义时,式子na 叫做根式,n 叫做根指数,a 叫做被开方数.正数a 的正n 次方根叫做a 的n 次算术根.n 次方根具有以下性质:(1)在实数范围内,正数的奇次方根是一个正数;(2)在实数范围内,正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根不存在;(3)零的任何次方根都是零.根式有两个重要性质:(1)(na )n=a (n >1,n ∈N +),当n 为奇数时,a ∈R ,当n 为偶数时,a ≥0(a <0时无意义);(2)n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数.析规律 关于根式的知识总结正数开方要分清,根指奇偶大不同, 根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为负无意义,零取方根仍为零.【例2-1=-a -1,则实数a 的取值范围是__________.解析:=|a+1|,∴|a+1|=-a-1=-(a+1).∴a+1≤0,即a≤-1. 答案:(-∞,-1]【例2-2】化简下列各式:+;.解:(1)原式=(-2)+-2|+-2)=-2+(2)+-2)=-2.(2)=(1)+-1)=.辨误区根式运算应注意的问题利用na n的性质求值运算时,要注意n的奇偶性.特别地,当n为偶数时,要注意a的正负.3.分数指数幂(1)分数指数幂的意义正分数指数幂可定义为:①1na=na(a>0);②mna=(na)m=na m⎝⎛⎭⎪⎫a>0,n,m∈N+,且mn为既约分数.负分数指数幂的意义与负整数指数幂的意义相同,可定义为:1=mnmnaa-⎝⎛⎭⎪⎫a>0,n,m∈N+,且mn为既约分数.提示:所谓既约分数,就是约分后化成最简形式的分数.感悟:1.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理指数;2.mna与na m表示相同的意义,所以分数指数幂与根式可以相互转化;3.通常规定分数指数幂的底数a>0,但要注意在像14()a-=4-a中的a,则需要a≤0.(2)有理指数幂的运算法则:①aαaβ=aα+β;②(aα)β=aαβ;(3)(ab)α=aαbα(其中a>0,b>0,α,β∈Q).析规律有理指数幂的运算1.有理指数幂的运算性质是由整数指数幂的运算性质推广而来,可以用文字语言叙述为:(1)同底数幂相乘,底数不变,指数相加;(2)幂的幂,底数不变,指数相乘;(3)积的幂等于幂的积.2.乘法公式仍适用于有理指数幂的运算,例如:11112222()()a b a b+⋅-=a-b(a>0,b>0);111122222()2a b a b a b±=+±(a>0,b>0).【例3-1】求值:(1)438-;(2)3481;(3)323-⎛⎫⎪⎝⎭;(4)2327125-⎛⎫⎪⎝⎭.解:(1)44433433318=(2)=2=2=16⎛⎫⨯--- ⎪-⎝⎭.(2)33344344481=(3)=3=3=27⨯.(3)332327==328-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.(4)2223323332733325====1255559⎛⎫--⨯-- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.点技巧 有理指数幂运算时把根式转化为幂进行有理指数幂的运算要首先考虑利用幂的运算性质,而不要将幂转化为根式的运算,像238【例3-2】求下列各式的值:(1)1123331222x x x --⎛⎫- ⎪⎝⎭;解:(1)原式=11121333314222=14=12x x x x x x ----⋅-⋅--.(2)原式=125222362132==a a a a a --⋅4.无理指数幂(1)一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数; (2)有理指数幂的运算性质同样适用于无理指数幂,即:①a α·a β=a α+β(a >0,α,β是无理数);②(a α)β=a αβ(a >0,α,β是无理数);③(ab )α=a αb α(a >0,b >0,α是无理数). 【例4】求值:(1)213328--⋅⋅;(2)12+⋅.解:(1)原式=221333(22(2)--⋅⋅=2322323222=2=2=8--+-⋅⋅.(2)原式=12+52+21=27.5.指数幂(根式)的化简与计算化简、计算指数幂(根式)时,应注意以下几点:(1)运算顺序:先进行幂的运算,再进行乘除运算,最后进行加减运算,有括号的先算括号内的.(2)如果指数是小数,那么通常化为分数指数,这样可以随时检验运算的正确性,是常用的化简技巧.比如,(-3)2.1=2110(3)-=10(-3)21,由于(-3)21是一个负数,所以(-3)2.1无意义.(3)将其中的根式化为分数指数幂,利用指数幂的运算性质进行计算.比如,化简a a ,如果不将根式a化为指数幂,就很难完成化简:1131222==a a a a +⋅.(4)计算或化简的结果尽量最简,如果没有特殊要求,用正分数指数幂或根式来表示均可. 析规律 多重根号化为有理指数幂此类问题应熟练应用na m=m na ⎝⎛⎭⎪⎫a >0,m ,n ∈N +,且mn 为既约分数.当各式中含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后再利用指数运算法则化简.【例5-1】求下列各式的值:(1)121203170.027279--⎛⎫⎛⎫--+-- ⎪ ⎪⎝⎭⎝⎭; (2)11223412220.00154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(3)分析:结合指数幂的运算性质,应首先将小数化为分数,根式转化为指数幂的形式,负指数幂转化为正指数幂,再根据指数幂的运算性质求解.解:(1)原式=11232227125105(1)1=491=4510007933---⎛⎫⎛⎫⎛⎫--+--+-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)原式=112314111161=1=49100061015⎛⎫⎛⎫+⨯-+- ⎪ ⎪⎝⎭⎝⎭. (3)原式=11111111111113312636333236223123(32)=23332=2322-+++⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2×3=6.【例5-2】化简下列各式:(1)1373412a a a ;(2)131234()x y -;.解:(1)1137537334123412==a a a a a ++.(2)1133121212493344()==x yx yx y ⨯--⨯-.1125152331123336363442125364()===xy x y x y x yx yx y------⋅⋅⋅⋅⋅.辨误区 化简时注意运算顺序化简时要弄清开方、乘方等的运算顺序,同时注意运算性质及乘法公式的应用.6.知值求值问题已知代数式的值求其他代数式的值,通常又简称为“知值求值”,解决此类题目要从整体上把握已知的代数式和所求的代数式的特点,然后采取“整体代换....”或“求值后代换”两种方法求值.要注意正确地变形,像平方、立方等以及一些公式的应用问题,还要注意开方时的取值符号问题.例如,已知1122=3a a-+,求下列各式的值:(1)a +a -1;(2)a 2+a -2;(3)33221122a a a a----.显然,从已知条件中解出a 的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件1122=3a a-+的联系,进而整体代入求值.将1122=3a a-+两边平方,得a +a -1+2=9,即a +a -1=7.再将上式平方,有a 2+a -2+2=49,即a 2+a -2=47. 由于3311332222=()()a aa a ----,所以有331111122222211112222()()=a a a a a a a a a aa a--------++⋅--=a +a-1+1=8.【例6-1】已知2x +2-x=5,求下列各式的值:(1)4x +4-x ;(2)8x +8-x.解:(1)4x +4-x =(22)x +(22)-x=(2x )2+(2-x )2=(2x )2+2·2x ·2-x +(2-x )2-2=(2x +2-x )2-2=52-2=23.(2)8x +8-x =(23)x +(23)-x =(2x )3+(2-x )3=(2x +2-x )·[(2x )2-2x ·2-x +(2-x )2]=(2x +2-x )(4x +4-x-1)=5×(23-1)=110. 析规律 平方在知值求值中的应用遇到式子中含有指数互为相反数的数,通常用平方进行解决,平方后观察条件和结论的关系,变形求解即可.本题中用到了两个公式(a +b )2=a 2+2ab +b 2,a 3+b 3=(a +b )(a 2-ab +b 2).【例6-2】已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0的值.分析:观察所求式子,将所求式子平方后出现了ab 和a +b 的形式.又a ,b 为方程的两根,所以可利用根与系数的关系求解.解:由根与系数的关系可得=6,=4.a b ab +⎧⎨⎩∵a >b >0>.又∵221==105.∴.。
人教B版高中数学必修一第三章3.1.1实数指数幂及其运算课件
32
85 5 8
2
1
②8 3 (83)2 22 4
1
1
1
③3 3 3 3 6 3 3 32 33 36
1 1 1 1
3 2 3 6
32
9
21
2
1
3
④(a 3b 4)3 (a 3)(3 b 4)3 a 2b 4
1
1
1
1
1
1
⑤(a 2 b 2)(a 2 b 2)(a 2)2 (b 2)2
正整数 整数 0
负整数
分数
无理数
1、整数指数幂
正整数指数幂:
a2 aa
a3 aaa
指数
幂
an a a a a
底数
n个
运算法则(1)am an amn
2 am n amn
3
am an
amn
m n, a 0
4abm ambm
特别地
a0
1 a a3
a3
a33
0
a3 a5
⑤4(3)4 | 3 | 3
那么,根式与分数指数幂有什么 关系?
1
(a3 )3
1 3
a3
=a
2
(a 3
)3
2 3
a 3 =a2
1
a3 3 a
2
a3 3 a2
分数指数幂与根式互化
1
a n n a (a 0)
两者要 区别开
m
a n (n a)m n am
an 1 an
a
m n
(a 0, n、m
ab
1
1
11
⑥(a 2 b 2)2 a b 2a 2 b 2
高中数学第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算教案新人教B版必修1
3。
1。
1 实数指数幂及其运算错误!教学分析在初中,学生已了解了整数指数幂的概念和运算性质.从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把整数指数推广到分数指数,进而推广到有理数指数幂,再推广到无理指数幂,并将幂的运算性质由整数指数幂推广到实数指数幂.本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)等,同时,充分关注与实际问题的结合,体现数学的应用价值.根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.三维目标1.通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质.2.掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质.培养学生观察分析、抽象类比的能力.3.掌握根式与分数指数幂的互化,渗透“转化"的数学思想.通过运算训练,养成学生严谨治学、一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理.4.能熟练地运用实数指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力.重点难点教学重点:(1)分数指数幂和根式概念的理解.(2)掌握并运用分数指数幂的运算性质.(3)运用实数指数幂性质进行化简、求值.教学难点:(1)分数指数幂及根式概念的理解.(2)实数指数幂性质的灵活应用.课时安排2课时错误!第1课时导入新课思路1.碳14测年法.原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14在机体内保持一定的水平.而当有机体死亡后,即会停止吸收碳14,其组织内的碳14便以约5 730年的半衰期开始衰变并消失.对于任何含碳物质只要测定剩下的放射性碳14的含量,便可推断其年代(半衰期:经过一定的时间,变为原来的一半).引出本节课题.思路 2.同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的.这就是本节的主讲内容,教师板书本节课题.推进新课错误!提出问题错误!讨论结果:(1)整数指数幂的运算性质:a n=a·a·a·…·a,a0=1(a≠0);00无意义;a-n=错误!(a≠0);a m·a n=a m+n;(a m)n=a mn;(a n)m=a mn;(ab)n=a n b n.其中n、m∈N+.(2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根.实质上①错误!=a错误!,②错误!=a错误!,③错误!=a错误!,④错误!=a错误!结果的a的指数是2,4,3,5分别写成了错误!,错误!,错误!,错误!,形式上变了,本质没变.根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式).(3)利用(2)的规律,错误!=5错误!,错误!=7错误!,错误!=a错误!,错误!=x错误!。
高中数学人教B版必修一课件3.1.1实数指数幂及其运算(42张PPT)
(1)(n a)n=___a___(n>1,且 n∈N*);
n (2)
an=
a n为奇数, |a| n为偶数.
5.分数指数幂的运算法则
1
(1)an
n =____a____(a>0);
m
(2)a n
=__(_n_a_)_m__=____n_a_m__(a>0,m、n∈N*,且mn 为既
约分数);
m
(3)a- n
=____(a>0,m、n∈N*,且mn 为既约分数).
预习效果展示
1.如果 a>0,b>0,m、n 都是有理数,则下列各式错误的
是( )
A.(am)-n=a-mn
B.ama-n=am-n
C.(ab)n=an·b-n [答案] D
D.am+an=am+n
[解析] 根据有理指数幂的运算法则可知选项D错误.
3.1 指数与指数函数 第三章
3.1.1 实数指数幂及其运算 第三章
课前自主预习
情境引入导学
2010年11月1日,全国人口普查全面展开,而2000年我国 约有13亿人口.我国政府现在实行计划生育政策,人口年增 长率较低.若按年增长率1%计算,到2010年底,我国人口将 增加多少?到2020年底,我国人口总数将达到多少?如果我 们放开计划生育政策,年增长率是2%,甚至是5%,那么结果 将会是怎样的呢?会带来灾难性后果吗?
×-760+80.25×4 2+(3 2×
3)6-
-3223;
(2) a3b2·3 ab2 (a>b,b>0).
4 a
3 b4·
b a
[解析]
(1)原式=3213
3
+24
1
×24
+22×33-3213
高中数学(文科)目录
高中数学(文科)目录高一上:必修1第1章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第2章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图象2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第3章基本初等函数(Ⅰ)3.1 指数与指数函数3.1.1 实数指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数幂函数的概念、解析式、定义域、值域幂函数的图象幂函数的性质幂函数的单调性、奇偶性及其应用3.4 函数的应用(Ⅱ)函数最值的应用分段函数的应用根据实际问题选择函数类型必修4:第1章基本初等函数(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数1.3 三角函数的图象与性质第2章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第3章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式必修5第1章解三角形1.1 正弦定理和余弦定理1.2 应用举例第2章数列2.1 数列2.2 等差数列2.3 等比数列第3章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题必修2第1章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第2章平面解析几何初步2.1 平面直角坐标系中的基本公式2.2 直线的方程2.3 圆的方程2.4 空间直角坐标系必修3第1章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第2章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第3章概率3.1 事件与概率3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用选修(文科)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第2章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第3章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修(文科)选修1-2第1章统计案例1.1 独立性检验1.2 回归分析第2章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明第3章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.2 复数的运算第4章框图4.1 流程图4.2 结构图选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-4第一章坐标系1.1 直角坐标系,平面上的伸缩变换1.2 极坐标系1.3 曲线的极坐标方程1.4 圆的极坐标方程1.5 柱坐标系和球坐标系第二章参数方程2.1 曲线的参数方程2.2 直线和圆的参数方程2.3 圆锥曲线的参数方程2.4 一些常见曲线的参数方程选修4-5第1章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法。
人教B版高中数学必修一教案-3.1.1 实数指数幂及其运算1
实数指数幂及其运算一、教学分析在初中时学生已经学习了整数指数幂的概念和运算性质,从本节课开始我们将学习由正整数指数幂推广到实数指数幂。
通过取消正整数指数幂的运算性质中n m >的条件,正整数指数幂推广到整数指数幂。
在回顾平方根和立方根的基础上,类比出n 次方根的概念与性质,从而把整数指数幂推广到分数指数幂,进而推广到有理数指数幂。
本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想等。
同时,充分关注与实际问题的结合,体现数学的应用价值。
根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。
二、教学目标1、知识与技能:通过实际背景认识分数指数幂,理解分数指数幂的含义。
掌握根式与分数指数幂的互化,掌握有理指数幂的运算性质,会求简单的有理数指数幂的值以及化简。
2、过程与方法:通过与初中所学的知识进行类比,理解分数指数幂的概念,掌握分数指数幂的运算性质,培养学生观察分析、抽象类比的能力。
情感态度与价值观:通过训练及点评,让学生能熟练掌握指数幂的运算性质。
三、教学重点难点教学重点:根式与分数指数幂互化教学难点:运用有理指数幂运算性质进行化简、求值 四、教学过程设计 一、温故知新牛顿是大家所熟悉的大物理学家,他在1676年6月写给大数学家莱布尼茨的信中说:“因为数学家将aa ,aaa ,aaaa ,…写成,,,432a a a …,所以可将,a,,32a a 写成 ,,,232221a a a 将 ,1,1,1aaaaa a 写成 ,,,321---a a a ”这是牛顿首次使用任意实数指数。
设计意图:生活实例引入新知识,使学生对本课的新知识产生浓厚的兴趣,激发学生的学习兴趣。
二、新知识探究在同学们进行了课前预习的基础上,复习正整数指数幂与运算性质。
1、正整数指数幂:()n a n N +∈的意义: n na a aa =⋅, n a 叫做a ,a 叫做幂的 ,n 叫做幂的 .(1)m n m n a a a +⋅= (2)()m n m n a a ⋅=(3)(,0)mm n n a a m n a a-=>≠ (4)()m m m a b a b ⋅=⋅练习1:=75x x =-233)(x =⎪⎭⎫⎝⎛-3221x ()=-73x =--322)()(x x()=⎪⎭⎫ ⎝⎛-22551x x 教师设问:若取消(,0)mm n n a a m n a a-=>≠式中的n m >的限制条件,则能得到什么结论? 2、负整数指数幂规定: 01(0)a a =≠ 1(0)n na a a -=≠ 例1:=08 =08-)( =-0)(b a )(b a ≠ =⎪⎭⎫ ⎝⎛6-21 =-32)(x =⎪⎪⎭⎫⎝⎛-223r x=0001.0 =cb a 22=3-10设计意图:学生通过课前预习复习初中所学的正整指数幂,以及推广到整数指数幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 指数与指数函数3.1.1 实数指数幂及其运算1.理解n次方根及根式的概念.(重点)2.正确运用根式的运算性质进行根式运算.(重点、难点)3.掌握根式与分数指数幂的互化.(重点、易错点)4.掌握有理数指数幂的运算性质.(重点)基础·初探]教材整理1整数指数阅读教材P85~P86“第7行”以上部分,完成下列问题.1.a n=.a n叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,并规定a1=a.2.零指数幂与负整数指数幂规定:a0=1(a≠0),a-n=1a n(a≠0,n∈N+).3.整数指数幂的运算法则正整数指数幂的运算法则对整数指数幂的运算仍然成立.下列运算中,正确的是()A.a2·a3=a6B.(-a2)5=(-a5)2C.(a-1)0=0 D.(-a2)5=-a10【解析】a2·a3=a5;(-a2)5=-(a5)2;当a=1时,(a-1)0无意义;当a≠1时,(a-1)0=-1.【答案】 D教材整理2根式阅读教材P86~P87“第6行”以上内容,完成下列问题.1.a的n次方根的意义如果存在实数x,使得x n=a(a∈R,n>1,n∈N+),则x叫做a的n 次方根.求a的n次方根,叫做把a开n次方,称作开方运算.2.根式的意义和性质当na有意义时,na叫做根式,n叫做根指数.根式的性质:(1)(na)n=a(n>1,且n∈N+);(2)na n=⎩⎪⎨⎪⎧a,当n为奇数时,|a|,当n为偶数时.判断(正确的打“√”,错误的打“×”)(1)当n∈N*时,(n-16)n都有意义.()(2)任意实数都有两个偶次方根,它们互为相反数.()(3)na n=a.()【解析】(1)×.当n是偶数时,(n-16)n没有意义.(2)×.负数没有偶次方根.(3)×.当n为偶数,a<0时,na n=-a.【答案】(1)×(2)×(3)×教材整理3 实数指数幂阅读教材P 87“第7行”~P 88“例1”以上部分内容,完成下列问题.1.分数指数幂的意义(1)正数的正分数指数幂的意义:a mn =(na )m =n a m⎝ ⎛⎭⎪⎫a >0,m ,n ∈N +,且m n 为既约分数;(3)0的正分数指数幂等于0,0的负分数指数幂没有意义. 2.有理指数幂的运算性质 (1)a αa β=a α+β(a >0,α,β∈Q ); (2)(a α)β=a αβ(a >0,α,β∈Q ); (3)(ab )α=a αb α(a >0,b >0,α∈Q ). 3.无理数指数幂无理数指数幂a α(a >0,α是无理数)是一个确定的实数.有理数指数幂的运算性质对于无理数指数幂同样适用.判断(正确的打“√”,错误的打“×”) (1)(3-π)2=π-3.( ) (2)分数指数幂a mn 可能理解为m n个a 相乘.( )(3)0的任何指数幂都等于0.( ) 【解析】 ∵(3-π)2=|3-π|=π-3.∴(1)正确.由分数指数幂的意义知(2)、(3)均错. 【答案】 (1)√ (2)× (3)×小组合作型]利用根式的性质化简或求值【导学号:60210072】(1)5(-2)5; (2)4⎝⎛⎭⎪⎫3-π24; (3)(x -y )2;(4)x 2-2x +1-x 2+6x +9(-3<x <3).【精彩点拨】 根指数是奇数的,直接开出结果,根指数是偶数的,先判断被开方数的底数的符号,如不能唯一确定,可分类表示.【自主解答】 (1)5(-2)5=-2. (2)∵3-π<0,∴4⎝ ⎛⎭⎪⎫3-π24=π-32. (3)(x -y )2=|x -y |=⎩⎪⎨⎪⎧x -y ,x ≥y ,y -x ,x <y .(4)原式=(x -1)2-(x +3)2=|x -1|-|x +3|. ∵-3<x <3,∴-4<x -1<2,0<x +3<6.当-4<x -1<0,即-3<x <1时,|x -1|-|x +3|=1-x -(x +3)=-2x -2;当0≤x -1<2,即1≤x <3时,|x -1|-|x +3|=x -1-(x +3)=-4. ∴x 2-2x +1-x 2+6x +9=⎩⎪⎨⎪⎧-2x -2,-3<x <1,-4,1≤x <3.1.正确区分n a n 与(na )n(1)(n a )n 已暗含了na 有意义,据n 的奇偶性不同可知a 的范围; (2)n a n 中的a 可以是全体实数,na n 的值取决于n 的奇偶性. 2.有条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.再练一题]1.求值:3-22+⎝ ⎛⎭⎪⎫31-23=________. 【解析】 3-22+⎝ ⎛⎭⎪⎫31-23=(2-1)2+()1-2=2-1+1-2=0.【答案】 0根式与分数指数幂的互化【精彩点拨】 对于本题先把根式化为分数指数幂,再利用运算性质求解.【自主解答】1.当所要化简的根式含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后用性质进行化简.2.关于式子na m=amn的两点说明:(1)根指数n↔分数指数的分母;(2)被开方数(式)的指数m↔分数指数的分子.3.通常规定分数指数幂的底数a>0,但像(-a)12=-a中的a则需要a≤0.特点提醒:分数指数幂和根式是同一个数的两种不同书写形式.再练一题]2.化简x·3x2x·6x的结果是()A.x B.xC.1 D.x2【解析】.故选C.【答案】 C利用分数指数幂化简、求值(1);(2).【精彩点拨】【自主解答】 (1)原式=0.4-1-1+(-2)-4+2-3=52-1+116+18=2716.(2).利用指数幂的运算性质化简求值的方法1.进行指数幂的运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.2.在明确根指数的奇偶(或具体次数)时,若能明确被开方数的符号,则可以对根式进行化简运算.3.对于含有字母的化简求值的结果,一般用分数指数幂的形式表示.再练一题]3.计算:.【解析】【答案】12探究共研型]指数式的条件求值问题探究1把⎝⎛⎭⎪⎫a+1a2,⎝⎛⎭⎪⎫a+1a2分别展开是什么?【提示】⎝⎛⎭⎪⎫a+1a2=a+1a+2,⎝⎛⎭⎪⎫a+1a2=a2+1a2+2.探究2⎝⎛⎭⎪⎫a+1a2和⎝⎛⎭⎪⎫a-1a2有什么关系?【提示】⎝⎛⎭⎪⎫a+1a2=⎝⎛⎭⎪⎫a-1a2+4.已知a12+a-12=4,求下列各式的值:(1)a+a-1;(2)a2+a-2.【精彩点拨】寻找要求值的式子与条件式a12+a-12=4的联系,进而整体代入求值.【自主解答】(1)将a12+a-12=4两边平方,得a+a-1+2=16,故a+a-1=14.(2)将a+a-1=14两边平方,得a2+a-2+2=196,故a2+a-2=194.1.在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形、沟通所求式子与条件等式的联系,以便用整体代入法求值.2.在利用整体代入的方法求值时,要注意完全平方公式的应用.再练一题] 4.已知a 12-a -12=5,则a 12+a -12=________.【解析】 因为⎝ ⎛⎭⎪⎫a 12+a -122=a +a -1+2=⎝ ⎛⎭⎪⎫a 12+a -122+4=5+4=9,又因为a 12+a -12>0, 所以a 12+a -12=3.【答案】 31.下列运算结果中,正确的是( ) A .a 2a 3=a 5 B .(-a 2)3=(-a 3)2 C .(a -1)0=1D .(-a 2)3=a 6【解析】 a 2a 3=a 2+3=a 5;(-a 2)3=-a 6≠(-a 3)2=a 6;(a -1)0=1,若成立,需要满足a ≠1;(-a 2)3=-a 6,故选A. 【答案】 A2.下列各式中成立的一项是( )【解析】 A中应为⎝ ⎛⎭⎪⎫n m 7=n 7m -7;B中等式左侧为正数,右侧为负数;C 中x =y =1时不成立;D 正确.【答案】 D3.【解析】 .【答案】 D4.如果x >y >0,则x y y xy y xx =________.【解析】 ∵x >y >0,∴x y y x y y x x =x y -x ·y y -x =⎝ ⎛⎭⎪⎫x y y -x.【答案】⎝ ⎛⎭⎪⎫x y y -x5.化简下列各式(式中字母均为正数): (1)b 3aa 6b 6; (2) (结果为分数指数幂).【解】。