第11讲平面直角坐标系与函数(含答案)

合集下载

中考数学专题复习第十一讲:平面直角坐标系与函数含详细参考答案.doc

中考数学专题复习第十一讲:平面直角坐标系与函数含详细参考答案.doc

2019年中考专题复习第十一讲第三章 函数及其图象第十一讲 平面直角坐标系与函数【基础知识回顾】一、 平面直角坐标系:1、定义:具有 的两条 的数轴组成平面直角坐标系,两条数轴分别称 轴 轴或 轴 轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对 来表示,如A (a .b ),(a .b )即为点A 的 其中a 是该点的 坐标,b 是该点的 坐标平面内的点和有序数对具有 的关系。

3、平面内点的坐标特征① P (a .b ):第一象限 第二象限第三象限 第四象限X 轴上 Y 轴上②对称点: P (a ,b )③特殊位置点的特点:P (a .b )若在一、三象限角的平分线上,则 若在二、四象限角的平分线上,则 ④到坐标轴的距离:P (a .b )到x 轴的距离 到y 轴的距离 到原点的距离⑤坐标平面内点的平移:将点P (a .b )向左(或右)平移h 个单位,对应点坐标为 (或 ),向上(或下)平移k 个单位,对应点坐标为 (或 )。

【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记关于y 轴的对称点关于y 轴的对称点 关于原点的对称点忆,不可生硬死记一些结论。

】二、确定位置常用的方法:一般由两种:1、2、。

三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持的量叫做常量,数值发生的量叫做变量。

【名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同情况下可以是常量,也可能是变量,要根据问题的条件来确定。

】2、函数:⑴、函数的概念:一般的,在某个过程中如果有两个变量x、y,如果对于x的每一个确定的值,y都有的值与之对应,我们就成x 是,y是x的。

⑵、自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷、函数的同象:对于一个函数,把自变量x和函数y的每对对应值作为点的与在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开方数应同时分母应。

沪科版八年级上册数学第11章 平面直角坐标系含答案(满分必备)

沪科版八年级上册数学第11章 平面直角坐标系含答案(满分必备)

沪科版八年级上册数学第11章平面直角坐标系含答案一、单选题(共15题,共计45分)1、若点P(a,b)在第四象限,则点P到x轴的距离是()A.aB.-aC.bD.-b2、如图,动点在平面直角坐标系中按图中箭头所示方向运动,第次从原点运动到点,第次接着运动到点,第次接着运动到点,按这样的运动规律,经过第次运动后,动点P的坐标是()A. B. C. D.3、如图,一个60°的角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°4、已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)5、下列语句叙述正确的有()个.①横坐标与纵坐标互为相反数的点在直线y=﹣x上,②直线y=﹣x+2不经过第三象限,③除了用有序实数对,我们也可以用方向和距离来确定物体的位置,④若点P的坐标为(a,b),且ab=0,则P点是坐标原点,⑤函数中y 的值随x的增大而增大.⑥已知点P(x,y)在函数的图象上,那么点P应在平面直角坐标系中的第二象限.A.2B.3C.4D.56、由点A(﹣5,3)到点B(3,﹣5)可以看作()平移得到的.A.先向右平移8个单位,再向上平移8个单位B.先向左平移8个单位,再向下平移8个单位C.先向右平移8个单位,再向下平移8个单位 D.先向左平移2个单位,再向上平移2个单位7、如图,已知棋子“卒”的坐标为(-2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A.(4,2)B.(4,1)C.(2,2)D.(-2,2)8、点M(-sin60°,cos60°)关于x轴对称的点的坐标是()A. (,)B. (,)C. (,) D. (,)9、点P(5,-4)关于y轴的对称点是( )A.(5,4)B.(5,-4)C.(4,-5)D.(-5,-4)10、如果点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为()A.(0,-2)B.( 2,0)C.( 4,0)D.(0,-4)11、已知点P在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2)B.(-4,2)C.(-2,4)D.(2,-4)12、如图,棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,2)13、已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A的对应点A′的坐标为()A.(-4,2);B.(-4,-2);C.(4,-2);D.(4,2);14、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)15、点P的坐标满足xy>0,x+y<0,则点P在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、若点A(﹣4,2)与点B关于y轴对称,则点B的坐标为________.17、已知点P(2-a,3a-2)到两坐标轴的距离相等,则P点的坐标是________.18、已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则|a+2|-|1-a|=________.19、如图,把图1中的圆A经过平移得到圆O(如图2),如果图1⊙A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为________20、点P(-2,-5)到x轴的距离是________.21、点P 在平面直角坐标系的y轴上,则点P的坐标是________.22、点A(2,-3),点B(2,1),点C在x轴的负半轴上,如果△ABC的面积为8,则点C的坐标是________.23、已知点P(,3)与点Q(-2,)关于y轴对称,则+ =________.24、第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是________.25、如图,长方形ABOC在直角坐标系中,点A的坐标为(–2,1),则长方形的面积等于________﹒三、解答题(共5题,共计25分)26、如图,直线AB交x轴于点B,交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°,AD:AB=1:2.(1)求点D的坐标;(2)求经过O、D、B三点的抛物线的函数关系式.27、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28、如图所示,求出A,B,C,D,E,F,O点的坐标.29、这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,并画图说明.30、如图,点A(t,4)在第一象限,OA与x轴所夹的锐角为α,sinα=,求t的值.参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、C5、C6、C7、A9、D10、B11、A12、B13、D14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)28、29、。

2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78

2022八年级数学上册第11章平面直角坐标系11.2图形在坐标系中的平移授课课件新版沪科版78

平面直角坐 标系
图形在坐标 系中的平移
2. 在平面直角坐标系中,把图形向左(右)平移,点的___纵_ 坐标不变;向上(下)平移,点的___横_坐标不变;所得图形与 原图形相比,__形__状__大__小不变.
1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月22日星期二2022/3/222022/3/222022/3/22 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/222022/3/222022/3/223/22/2022 3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/222022/3/22March 22, 2022
并写出点B′,C′的坐标; (2)试说明三角形ABC经过怎样的平移
得到三角形A′B′C′; (3)若三角形ABC内部一点P的坐标为(a,b),则点P的 对应点
P′的坐标是___________.
感悟新知
导引:根据一对对应点的坐标可确定平移的方向和平移的距
离, 图形边上的点和图形内部的点平移方式相同.
感悟新知
知1-练
3 已知点M(a-1,5),现在将平面直角坐标系先向左 平移3个单位,再向下平移4个单位,此时点M的坐 标为(2,b-1),则a=________,b=________.
感悟新知
知识点 2 图形在坐标系中的平移
知2-讲
思考
把平面直角坐标系中的一个图形,按下面的要求
平移,那么,图形上任一个点的坐标(x,y)是如何 变
(2)三角形A2B2C2与三角形ABC的大小、形状完全相同, 三角形A2B2C2可以看作是将三角形ABC向上平移4个单 位长度得到的.

2020年春数学中考一轮复习11.重庆数学 第11讲函数基础与平面直角坐标系

2020年春数学中考一轮复习11.重庆数学 第11讲函数基础与平面直角坐标系

03 考场 ·笑傲全国题
一、选择题
1.(2019·眉山)函数y= xx−+12中自变量x的取值范围是( A)
A.x≥-2且x≠1 B.x≥-2 C.x≠1 D.-2≤x<1
2.(2019·海南)如图,在平面直角坐标系中,已知点A(2,1),点B(3,-1),
平移线段AB,使点A落在点A1(-2,2)处,则点B的对应点B1的坐标为( C )
乙车到B地时,甲车距B地的距离为120-100=20(千米),
乙车返回与甲相遇时间为20÷(120+100)=111 (时), 因此甲、乙两车第二次相遇时甲行驶的时间是3+111=3141. 故选A.
变式训练
5.(2018·重庆模拟)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过 程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分钟),所走
变式训练
3.(2018·重庆模拟)函数y=
x 中x的取值范.x≥-2且x≠0
B.x>-2且x≠0
C.x>-2
D.x≠0
4.(2018·重庆模拟)下列各曲线中表示y是x的函数的是( D )
焦点3 实际问题与函数图象的关系
样题3 甲、乙两车分别从A地、C地同时向B地匀速行驶(C在A、B两地之
A.(-1,-1) B.(1,0) C.(-1,0) D.(3,0)
3.(2019·随州)第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很 不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌 龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列
函数图象可以体现这次比赛过程的是( B )
5.(2019·日 照 ) 如 图 , 在 单 位 为 1 的 方 格 纸 上 , △ A1A2A3 , △ A3A4A5 , △A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角 三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则

第11讲 平面直角坐标系与其函数

第11讲 平面直角坐标系与其函数

8.[2011·大连 在平面直角坐标系中,将点 -2,- 向上平 . 大连]在平面直角坐标系中 ,-3)向上平 大连 在平面直角坐标系中,将点(- ,- 个单位,则平移后的点的坐标为________. - 移 3 个单位,则平移后的点的坐标为 (-2,0) .
第11讲 │ 考点随堂练 11讲
9.一天老王骑摩托车外出旅游,刚开始行驶时,油箱中有油 9 .一天老王骑摩托车外出旅游,刚开始行驶时, 升,行驶了 1 小时后发现已耗油 1.5 升. (1)求油箱中的剩余油量 Q(升)与行驶的时间 t(小时 之间的函数 小时)之间的函数 求油箱中的剩余油量 升 与行驶的时间 小时 关系式, 的取值范围; 关系式,并求出自变量 t 的取值范围; (2)画出这个函数的图象; 画出这个函数的图象; 画出这个函数的图象 (3)如果摩托车以 60 千米 小时的速度匀速行驶,当油箱中的剩 千米/小时的速度匀速行驶 小时的速度匀速行驶, 如果摩托车以 升时,老王行驶了多少千米? 余油量为 3 升时,老王行驶了多少千米?
千米), (3)由 3=9-1.5t,得到 t=4,所以 s=vt=60×4=240(千米 , 由 = - , = , = = × = 千米 千米. 所以老王行驶了 240 千米.
第11讲 │ 考点随堂练 11讲
10.某商店出售商品时,在进价的基础上又加了一定的利润,其 某商店出售商品时,在进价的基础上又加了一定的利润, 某商店出售商品时 的关系如下表所示: 数量 x 与售价 y 的关系如下表所示: 数量 1 2 3 4 … x(千克 千克) 千克 售价 8+0.4 16+0.8 24+1.2 32+1.6 … + + + + y(元) 元 请根据表中所提供的信息, 请根据表中所提供的信息,写出售价 y 与数量 x 之间的关 系式, 千克时的售价. 系式,并求出当数量是 2.5 千克时的售价.

第11讲平面直角坐标系与函数课件

第11讲平面直角坐标系与函数课件

3.对称点的坐标
已知点 P(a,b), (1)其关于 x 轴对称的点 P1 的坐标为__(_a_,__-__b_)_. (2)其关于 y 轴对称的点 P2 的坐标为__(_-__a_,__b_)_. (3)其关于原点对称的点 P3 的坐标为__(-__a_,__-__b_)_. 4.点与点、点与线之间的距离
5.常量、变量 在一个变化过程中,始终保持不变的量叫做__常__量__,可以 取不同数值的量叫做__变__量__. 6.函数 (1)概念: 在一个变化过程中,有两个变量 x 和 y,对于 x 的每一个值, y 都有__唯__一__确__定__的值与其对应,那么就称 x 是自变量,y 是 x 的函数.
(1)点 M(a,b)到 x 轴的距离为___|b_|_. (2)点 M(a,b)到 y 轴的距离为___|a_|_. (3)点 M1(x1,0),M2(x2,0)之间的距离为__|_x_1-__x_2_| _. (4)点 M1(0,y1),M2(0,y2)之间的距离为___|y_1_-__y_2|_.
⑥结合对函数关系的分析,能又对变量的变化情况进行初步讨论,了解分 段函数的意义
1.通过知识梳理,了解常量、变量的意义,函数的概念和三种表示方法, 能举出函数的实例 2.通过知识点例题训练,能确定简单实际问题中函数的自变量取值范围, 并会求出函数值,并能结合图象对简单实际问题中的函数关系进行分析 3.通过能力提升,熟练解决有关取值范围与函数图像的问题。 4.通过聚焦中考,感受中考,体验中考,提高学生分析问题解决问题的能 力。
小结与反思:求自变量的取值范围时要全面考虑式子有意 义的条件,特别是根号在分母中时,要考虑分母不为零的情况.
方法指点:确定自变量的取值范围
【点评】代数式有意义的条件问题: (1)若解析式是整式,则自变量取全体实数; (2)若解析式是分式,则自变量取使分母不为0的全体实数; (3)若解析式是偶次根式,则自变量只取使被开方数为非负数的全体实数: (4)若解析式含有零指数或负整数指数幂,则自变量应是使底数 不等于0的全体实数; (5)若解析式是由多个条件限制,必须第一求出式子中各部分 自变量的取值范围,然后再取其公共部分,此类问题要特别注意, 只能就已知的解析式进行求解,而不能进行化简变形,特别是 不能轻易地乘或除以含自变量的因式.

人教版数学九年级上册第11讲 平面直角坐标系、函数及其图象-课件

人教版数学九年级上册第11讲 平面直角坐标系、函数及其图象-课件

解析:由纵坐标看出小涛家离报亭的距离是1 200 m,故A不符合题意;由纵坐标看出 小涛家离报亭的距离是1 200 m,由横坐标看出小涛去报亭用了15分钟,小涛从家去 报亭的平均速度是80 m/min,故B不符合题意;返回时的解析式为y=-60x+3 000, 当y=1 200时,x=30,由横坐标看出返回时的时间是50-30=20 min,返回时的速度 是1 200÷20=60 m/min,故C不符合题意;由横坐标看出小涛在报亭看报用了30-15 =15 min,故D符合题意.故选D.
A
解析:由点P(-1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位,∴点 Q(-3,1)的对应点Q′坐标为(2,3),点R(-1,-1)的对应点R′(4,1),故选A. 【思路点拨】由点P(-1,1)到P′(4,3)知,编队需向右平移5个单位、向上平移2个单位, 据此可得.
D
C
解析:观察图形得:函数没有最大值,没有最低点,函数图象关于原 点对称,故选C. 【思路点拨】根据特殊点的实际意义即可求出答案;观察函数图象,得出正确的表述即可.
天每
开个
放孩
;子
有的
的花
孩期
子不
是一
菊样
花,
,有
选的
择孩
在子
秋是
天牡
开丹
放花
;,
而选
有择
的在
孩春
➢ He who falls today may rise tomorrow.
A
A 【思路点拨】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;根据关于y轴的 对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.
x≥2 解析:依题意,得x-2≥0,解得:x≥2,故答案为:x≥2.

(中考复习)第11讲 平面直角坐标系与函数的概念

(中考复习)第11讲 平面直角坐标系与函数的概念

B.x≥1 D.x>1
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 3.(2013· 烟台)如图11-1所示,将四边形ABCD先向左平移3个 单位,再向上平移2个单位,那么点A的对应点A′的坐标是 ( B )
图11-1 A.(6,1) B.(0,1) C.(0,-3) D.(6,-3)
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考
4.(2013· 南阳)点M(-sin 60°,cos 60°)关于x轴对称的点的
坐标是
A.
( B )
B.-
3 1 , 2 2 3 1 C.- , 2 2
3 1 ,- 2 2 1 3 D.- ,- 2 2
基础知识 · 自主学习
题组分类 · 深度剖析
课堂回顾 · 巩固提升
浙派名师中考 5.(2013· 东营)将等腰直角三角形AOB按如图11-2所示的方式 放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点
B的横坐标为2,则点A′的坐标为
(C
)
图11-2
A.(1,1) B.( 2, 2) C.(-1,1) D.(- 2, 2)
课堂回顾 · 巩固提升
浙派名师中考
【例2】
(2013· 济宁)把以点(-3,7),(-3,-2)为端点的线
段向左平移5个单位,则线段上任意一点的坐标可以表示为 (-8,y)(-2≤y≤7). __________________
[变式训练]
已知线段MN平行于x轴,且MN=5,若M的坐 (7,-2)或(-3,-2) . 标是(2,-2),则N点的坐标是______________________

专题11 平面直角坐标系(归纳与讲解)(解析版)

专题11 平面直角坐标系(归纳与讲解)(解析版)

专题11平面直角坐标系【专题目录】技巧1:点的坐标变化规律探究问题技巧2:巧用坐标求图形的面积技巧3:活用有序数对表示点的位置技巧4:巧用直角坐标系中点的坐标特征解相关问题【题型】一、用有序数对表示位置【题型】二、求点的坐标【题型】三、距离与点坐标的关系【题型】四、象限角的平分线上的点的坐标【题型】五、与坐标轴平行的直线上的点的坐标特征【题型】六、点的坐标的规律探索【题型】七、函数图象的应用【考纲要求】1、会画平面直角坐标系,并能根据点的坐标描出点的位置,掌握坐标平面内点的坐标特征.2、了解函数的有关概念和函数的表示方法,并能结合图象对实际问题中的函数关系进行分析.3、能确定函数自变量的取值范围,并会求函数值.【考点总结】一、平面直角坐标系【考点总结】二、函数有关的概念及图象【注意】1、坐标轴上的点不属于任何象限点的坐标:对于坐标轴内任意一点A,过点A分别向x轴、y轴作垂线,垂足在x轴、y轴上的对应的数a、b分别叫做点A的横坐标和纵坐标,有序数对A(a,b)叫做点A的坐标,记作A(a,b)。

2、确定出数自变量力的取值范围的方法 (1)整式:取全体实数 (2)有分母:取值使分母不为零(3)有二次根式:取值使被开方数不小于0 (4)有很多情况:取它们的公共部分 (5)在实际问题中:取值要符合实际意义 【技巧归纳】技巧1:点的坐标变化规律探究问题【类型】一、沿坐标轴运动的点的坐标规律探究1.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O 1,O 2,O 3,…,组成一条平滑的曲线.点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2 019秒时,点P 的坐标是( )(第1题)A .(2 018,0)B .(2 019,-1)C .(2 019,1)D .(2 020,0)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2 017次运动后,动点P 的坐标是________,经过第2 018次运动后,动点P 的坐标是________.3.如图,一个粒子在第一象限内及x 轴、y 轴上运动,第一分钟从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),然后它接着按图中箭头所示的方向运动(在第一象限内运动时,运动方向与x 轴或y 轴平行),且每分钟移动1个单位长度.(1)当粒子所在位置是(2,2)时,所经过的时间是________; (2)在第2 017分钟时,这个粒子所在位置的坐标是________.【类型】二、绕原点呈“回”字形运动的点的坐标规律探究4.将正整数按如图所示的规律在平面直角坐标系中进行排列,每个正整数对应一个整点坐标(x ,y),其中x ,y 均为整数,如数5对应的坐标为(-1,1),则数2 018对应的坐标的( )A .(16,22)B .(-15,-22)C .(15,-22)D .(16,-22) 【类型】三、图形变换的点的坐标规律探究5.在平面直角坐标系中有三个点A(1,-1),B(-1,-1),C(0,1),点P(0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2 018的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)6.(探究题)如图,在平面直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1,第二次将三角形OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律再将三角形OA 3B 3变换成三角形OA 4B 4,则点A 4的坐标是________,点B 4的坐标是________;(2)若按(1)题中的规律,将三角形OAB 进行n(n 为正整数)次变换,得到三角形OA n B n ,比较每次变换前后三角形顶点坐标有何变化,找出规律,推测点A n 的坐标是__________,点B n 的坐标是__________. 参考答案1.B 点拨:半径为1个单位长度的圆的周长的一半为12×2π×1=π,因为点P 从原点O 出发,沿这条曲线向右运动,速度为每秒π2个单位长度,所以点P 1秒走12个半圆.当点P 从原点O 出发,沿这条曲线向右运动,运动时间为1秒时,点P 的坐标为(1,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为2秒时,点P 的坐标为(2,0); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为3秒时,点P 的坐标为(3,-1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为4秒时,点P 的坐标为(4,0);当点P 从原点O 出发,沿这条曲线向右运动,运动时间为5秒时,点P 的坐标为(5,1); 当点P 从原点O 出发,沿这条曲线向右运动,运动时间为6秒时,点P 的坐标为(6,0); ….因为2 019÷4=504……3,所以第2 019秒时,点P 的坐标是(2 019,-1). 2.(2 017,1);(2 018,0) 3.(1)6分钟 (2)(44,7)4.C 点拨:以原点为中心,数阵图形成多层正方形(不完整),观察图形得出下表:正方形在第四象限的顶点 因为442<2 018<452=(2×22+1)2=2 025, 所以数2 025对应的坐标为(22,-22). 所以数2 018对应的坐标为(15,-22).5.D 点拨:设P 1(x ,y),因为点A(1,-1),点P(0,2)关于A 的对称点为P 1,所以x2=1,y +22=-1,解得x =2,y =-4,所以P 1(2,-4).同理可得P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,所以每6个点循环一次.因为2 018÷6=336……2,所以点P 2 018的坐标是(-4,2).故选D . 6.(1)(16,3);(32,0)(2)(2n ,3);(2n +1,0) 技巧2:巧用坐标求图形的面积 【类型】一、直接求图形的面积1.如图,已知A(-2,0),B(4,0),C(-4,4),求三角形ABC 的面积.【类型】二、利用补形法求图形的面积2.已知在四边形ABCD中,A(-3,0),B(3,0),C(3,2),D(1,3),画出图形,求四边形ABCD 的面积.3.如图,已知点A(-3,1),B(1,-3),C(3,4),求三角形ABC的面积.【类型】三、利用分割法求图形的面积4.在如图所示的平面直角坐标系中,四边形OABC各顶点分别是O(0,0),A(-4,10),B(-12,8),C(-14,0),求四边形OABC的面积.【类型】四、已知三角形的面积求点的坐标5.已知点O(0,0),点A(-3,2),点B在y轴的正半轴上,若三角形AOB的面积为12,则点B 的坐标为()A.(0,8) B.(0,4) C.(8,0) D.(0,-8)6.已知点A(-4,0),B(6,0),C(3,m),如果三角形ABC的面积是12,求m的值.7.已知A(-2,0),B(4,0),C(x,y).(1)若点C在第二象限,且|x|=4,|y|=4,求点C的坐标,并求三角形ABC的面积;(2)若点C在第四象限,且三角形ABC的面积为9,|x|=3,求点C的坐标.参考答案1.解:因为C点坐标为(-4,4),所以三角形ABC 的AB 边上的高为4. 又由题易知AB =6, 所以S 三角形ABC =12×6×4=12.2.解:如图所示.过点D 作DE 垂直于BC ,交BC 的延长线于点E ,则四边形DABE 为直角梯形. S 四边形ABCD =S 梯形DABE -S 三角形C DE =12×(2+6)×3-12×1×2=11.3.解:方法一:如图,作长方形CDEF ,则S 三角形ABC =S 长方形CDEF -S 三角形ACD -S 三角形ABE -S 三角形BCF =CD·DE -12·AD·CD -12AE·BE -12BF·CF =6×7-12×3×6-12×4×4-12×2×7=18.方法二:如图,过点B 作EF ∥x 轴,并分别过点A 和点C 作EF 的垂线,垂足分别为点E ,F.易知AE =4,BE =4,BF =2,CF =7,EF =6,所以S 三角形ABC =S 梯形AEFC -S 三角形ABE -S 三角形BFC =12(AE +CF)·EF -12AE·BE -12BF·CF =12×(4+7)×6-12×4×4-12×2×7=18. 方法三:如图,过点A 作DE ∥y 轴,并分别过点C 和点B 作DE 的垂线,垂足分别为点D ,E. 易知AE =4,BE =4,AD =3,CD =6,DE =7,所以S 三角形ABC =S 梯形BEDC -S 三角形ABE -S 三角形ADC=12(BE +CD)·DE -12AE·BE -12AD·CD =12×(4+6)×7-12×4×4-12×3×6=18.4.解:如图,过点A 作AD ⊥x 轴,垂足为点D ,过点B 作BE ⊥AD ,垂足为点E.易知D(-4,0),E(-4,8),且BE =-4-(-12)=8,AE =10-8=2,CD =-4-(-14)=10,所以S 四边形OABC =S 三角形AOD +S 三角形ABE +S 梯形DEBC =12OD·AD +12AE·BE +12(BE +CD)·DE =12×4×10+12×2×8+12×(8+10)×8=20+8+72=100.点拨:本题的解题技巧在于把不规则的四边形OABC 分割为几个规则图形,实际上分割的方法是不唯一的,并且不仅可以用分割法,还可以用补形法. 5.A6.解:AB =6-(-4)=10.根据三角形的面积公式,得12AB·|m|=12,即12×10·|m|=12,解得|m|=2.4. 因为点C(3,m),所以点C 在第一象限或第四象限. 当点C 在第一象限时,m >0, 则m =2.4;当点C 在第四象限时,m <0,则m =-2.4.综上所述,m 的值为-2.4或2.4.7.解:(1)因为点C 在第二象限,且|x|=4,|y|=4,所以点C 的坐标为(-4,4). 又易知AB =6,所以S 三角形ABC =12×6×4=12.(2)由题意可知AB =6.因为点C 在第四象限,|x|=3,所以x =3.因为S 三角形ABC =12×6×|y|=9,所以|y|=3.所以y =-3.所以点C 的坐标为(3,-3). 技巧3:活用有序数对表示点的位置 【类型】一、利用有序数对表示座位号1.如图,王明同学的座位是1组2排,如果用有序数对(1,2)表示,那么张敏同学和石玲同学的座位怎样用有序数对表示?【类型】二、利用有序数对表示棋子位置2.五子棋深受广大棋友的喜爱,其规则是:在正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙对弈时的部分示意图(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记为(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【类型】三、利用有序数对表示地理位置3.如图是某市市区几个旅游景点示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立两条互相垂直的数轴,如果用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置,根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?【类型】四、利用有序数对表示运动路径4.如图,小军家的位置点A在经5路和纬4路的十字路口,用有序数对(5,4)表示;点B是学校的位置,点C是小芸家的位置,如果用(5,4)→(5,5)→(5,6)→(6,6)→(7,6)→(8,6)表示小军家到学校的一条路径.(1)请你用有序数对表示出学校和小芸家的位置;(2)请你写出小军家到学校的其他几条路径.(写3条)参考答案1.解:张敏同学的座位可以表示为(3,3),石玲同学的座位可以表示为(4,5).2.解:甲必须在(1,7)或(5,3)处落子,因为若甲不先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则下一步不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.3.解:(1)湖心岛的位置可表示为(2.5,5);光岳楼的位置可表示为(4,4);山陕会馆的位置可表示为(7,3).(2)不是同一个位置,因为前面一个数字代表横向,后一个数字代表纵向,交换数字的位置后,就会表示不同的位置.4.解:(1)学校和小芸家的位置分别可表示为(8,6),(3,3).(2)答案不唯一,如:①(5,4)→(5,5)→(6,5)→(7,5)→(8,5)→(8,6);②(5,4)→(6,4)→(7,4)→(8,4)→(8,5)→(8,6);③(5,4)→(6,4)→(6,5)→(7,5)→(8,5)→(8,6).技巧4:巧用直角坐标系中点的坐标特征解相关问题【类型】一、象限内的点的坐标1.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是()A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定2.在平面直角坐标系中,若点P(m,m-2)在第一象限内,则m的取值范围是________.【类型】二、坐标轴上的点的坐标3.若点M的坐标为(-a2,|b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上4.已知点P(a-1,a2-9)在y轴上,则点P的坐标为________.【类型】三、平面直角坐标系中一些特殊点的坐标5.已知点P(2m-5,m-1),当m为何值时,(1)点P在第二、四象限的角平分线上?(2)点P在第一、三象限的角平分线上?6.已知A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的取值范围.【类型】四、点的坐标与点到x轴、y轴的距离之间的关系7.已知点A(3a,2b)在x轴上方,y轴的左侧,则点A到x轴、y轴的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a8.已知点P到x轴和y轴的距离分别是2和5,求点P的坐标.【类型】五、关于坐标轴对称的点9.点P(-3,4)关于x轴对称的点的坐标是()A.(-4,3)B.(3,-4)C.(-3,-4) D.(3,4)10.已知点P(3,a)关于y轴的对称点为Q(b,2),则ab=________.11.在平面直角坐标系中,点A的坐标是(2,-3),作点A关于x轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是(______,______).【类型】六、关于特殊直线对称的点12.点P(3,5)关于第一、三象限的角平分线对称的点为点P1,关于第二、四象限的角平分线对称的点为点P2,则点P1,P2的坐标分别为()A.(3,5),(5,3)B.(5,3),(-5,-3)C.(5,3),(3,5) D.(-5,-3),(5,3) 13.点M(1,4-m)关于过点(5,0)且垂直于x轴的直线对称的点的坐标是____________;若点M关于过点(0,-3)且平行于x轴的直线对称的点的坐标为(1,7),则m=________.参考答案1.B2.m>2点拨:第一象限内的点的横、纵坐标必须同时为正,所以m>2.3.C点拨:由-a2可确定a=0,所以-a2=0. 又|b|+1>0,所以点M(-a2,|b|+1)在y轴正半轴上.4.(0,-8)5.解:(1)根据题意,得2m-5+m-1=0,解得m=2.所以当m=2时,点P在第二、四象限的角平分线上.(2)根据题意,得2m-5=m-1,解得m=4.所以当m=4时,点P在第一、三象限的角平分线上.点拨:第一、三象限的角平分线上的点的横、纵坐标相等,第二、四象限的角平分线上的点的横、纵坐标互为相反数.6.解:因为AB∥x轴,所以m=4.因为A,B不重合,所以n≠-3.点拨:与x轴平行的直线上的点的纵坐标相等.7.C点拨:由点A(3a,2b)在x轴上方,y轴的左侧可知点A在第二象限,故3a是负数,2b是正数,所以点A到x轴、y轴的距离分别为2b,-3a.8.解:设点P的坐标为(x, y),依题意,得|x|=5,|y|=2,所以x=±5,y=±2.所以点P的坐标为(5,2)或(5,-2)或(-5,2)或(-5,-2).点拨:(1)点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.(2)写点P的坐标时,横、纵坐标的前后顺序不能随意改变.(3)找全满足条件的点P的坐标,不要遗漏.9.C10.-611.-2;312.B点拨:任意点A(a,b)关于第一、三象限的角平分线对称的点的坐标为(b,a),关于第二、四象限的角平分线对称的点的坐标为(-b,-a).13.(9,4-m);17点拨:点A(a,b)关于过点(k,0)且垂直于x轴的直线对称的点的坐标为(2k-a,b),关于过点(0,k)且平行于x轴的直线对称的点的坐标为(a,2k-b).【题型讲解】【题型】一、用有序数对表示位置例1、小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是().A.小李现在位置为第1排第2列B.小张现在位置为第3排第2列C.小王现在位置为第2排第2列D.小谢现在位置为第4排第2列【答案】B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A选项错误;B. 小张现在位置为第3排第2列,故B选项正确;C. 小王现在位置为第2排第3列,故C选项错误;D. 小谢现在位置为第4排第4列,故D选项错误.故选:B.【题型】二、求点的坐标例2、如图,四边形OBCD 是正方形,O ,D 两点的坐标分别是()0,0,()0,6,点C 在第一象限,则点C 的坐标是( )A .()6,3B .()3,6C .()0,6D .()6,6【答案】D【分析】利用O ,D 两点的坐标,求出OD 的长度,利用正方形的性质求出OB ,BC 的长度,进而得出C 点的坐标即可.【详解】解:①O ,D 两点的坐标分别是()0,0,()0,6,①OD =6,①四边形OBCD 是正方形,①OB ①BC ,OB =BC =6 ①C 点的坐标为:()6,6, 故选:D .【题型】三、距离与点坐标的关系例3、在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( ) A .(3,4)- B .(4,3)-C .(4,3)-D .()3,4-【答案】C 【解析】 由题意,得 x=-4,y=3,即M 点的坐标是(-4,3), 故选C .【题型】四、象限角的平分线上的点的坐标例4、若点N 在第一、三象限的角平分线上,且点N 到y 轴的距离为2,则点N 的坐标是( ) A .(2,2) B .(-2,-2) C .(2,2)或(-2,-2) D .(-2,2)或(2,-2)【答案】C 【解析】已知点M 在第一、三象限的角平分线上,点M 到x 轴的距离为2,所以点M 到y 轴的距离也为2.当点M 在第一象限时,点M 的坐标为(2,2);点M 在第三象限时,点M 的坐标为(-2,-2).所以,点M 的坐标为(2,2)或(-2,-2).故选C . 【题型】五、与坐标轴平行的直线上的点的坐标特征例5、已知点A (a ﹣2,2a +7),点B 的坐标为(1,5),直线AB ①y 轴,则a 的值是( ) A .1 B .3C .﹣1D .5【答案】B 【详解】 解:①AB①y 轴,①点A 横坐标与点A 横坐标相同,为1, 可得:a -2=1,a=3 故选:B .【题型】六、点的坐标的规律探索例6、在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A ,第二次移动到点2A ……第n 次移动到点n A ,则点2019A 的坐标是( )A .()1010,0B .()1010,1C .()1009,0D .()1009,1【答案】C【分析】根据图象可得移动4次图象完成一个循环,从而可得出点2019A 的坐标. 【详解】()10,1A ,()21,1A ,()31,0A ,()42,0A ,()52,1A ,()63,1A ,…,201945043÷=⋅⋅⋅,所以2019A 的坐标为()50421,0⨯+,则2019A 的坐标是()1009,0, 故选C .【题型】七、函数图象的应用例7、如图,一只蚂蚁从O 点出发,沿着扇形OAB 的边缘匀速爬行一周,设蚂蚁的运动时间为t ,蚂蚁到O 点的距离..为s ,则s 关于t 的函数图象大致为( ).【答案】C【分析】利用函数关系和图象分析解决实际问题,要透过问题情境准确地寻找出问题的自变量和函数,探求变量和函数之间的变化趋势,合理地分析变化过程,准确地结合图象解决实际问题. 【详解】本题是典型的数形结合问题,通过对图形的观察,可以看出s 与t 的函数图象应分为三段:(1)当蚂蚁从点O 到点A 时,s 与t 成正比例函数关系;(2)当蚂蚁从点A 到点B 时,s 不变;(3)当蚂蚁从点B 回到点O 时,s 与t 成一次函数关系,且回到点O 时,s 为零.平面直角坐标系(达标训练)一、单选题1.在平面直角坐标系中,点A (a ,2)在第二象限内,则a 的取值可以是( ) A .1 B .-3C .4D .4或-4【答案】B【分析】根据第二象限的坐标特征判断即可; 【详解】解:①点A (a ,2)在第二象限内, ①a <0, A .不符合题意;B .符合题意;C .不符合题意;D .不符合题意; 故选: B .【点睛】本题考查了象限的坐标特征,掌握第二象限内点的横坐标为负数,纵坐标为正数是解题关键. 2.若点(),1A a a -在x 轴上,则点()1,2B a a +-在第( )象限. A .一 B .二 C .三 D .四【答案】D【分析】由点A 在x 轴上求得a 的值,进而求得点B 坐标,进而得到答案. 【详解】解:点(),1A a a -在x 轴上, 10a ∴-=,即1a =,则点B 坐标为()2,1-, ∴点B 在第四象限,故选:D .【点睛】本题主要考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点. 3.如图,在围棋棋盘上有3枚棋子,如果黑棋①的位置用有序数对(0,−1)表示,黑棋①的位置用有序数对(−3,0)表示,则白棋①的位置可用有序数对表示为( )A .()2,1-B .()1,2-C .()2,1-D .()1,2-【答案】C【分析】根据黑棋①的坐标向上1个单位确定出坐标原点,然后建立平面直角坐标系,再写出白棋①的坐标即可.【详解】解:建立平面直角坐标系如图,白棋①的坐标为(-2,1).故选:C.【点睛】本题考查了坐标确定位置,根据已知点的坐标确定出坐标原点的位置是解题的关键.4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【答案】D【分析】根据方位角的概念并结合平行线的性质,可得答案.【详解】解:过点B作BD①AC,①①1=①A=40°①港口A相对货船B的位置可描述为(北偏东40°,35海里),故选:D.【点睛】本题考查了方向角的知识点,解答本题的关键是理解确定一个点的位置需要两个量应该是方向角,一个是距离.5.某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修,如图所示的图像反映了他骑车上学的整个过程,则下列结论正确的是()A .修车花了25分钟B .小明家距离学校1000米C .修好车后骑行的速度是200米/分钟D .修好车后花了15分钟到达学校【答案】C【分析】根据横坐标,可得时间;根据函数图像的纵坐标,可得路程.【详解】解:A .由横坐标看出,小明修车时间为25-10=15(分钟),故本选项不符合题意; B .由纵坐标看出,小明家离学校的距离2000米,故本选项不合题意;C .小明修好车后骑行到学校的平均速度是:(2000-1000)÷5=200(米/分钟),故本选项符合题意;D .由横坐标看出,小明修好车后花了30-25=5(分钟)到达学校,故本选项不合题意. 故选:D .【点睛】本题考查了函数图像,观察函数图像得出相应的时间,函数图像的纵坐标得出路程是解题关键.二、填空题6.已知点()29,62A m m --在第三象限.则m 的取值范围是______. 【答案】3<m <4.5【分析】在第三象限内的点的横纵坐标均为负数,列式求值即可. 【详解】解:①点A (2m −9,6−2m )在第三象限, ①2m −9<0且6−2m <0, ①3<m <4.5, 故答案为: 3<m <4.5【点睛】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,此特点常与不等式、方程结合起来求一些字母的取值范围.7.如图,两只福娃的发尖所处的位置的坐标分别为M (-2,2)、N (1,-1), 则A 、B 、C 三个点中为坐标系原点的是____.【答案】A【分析】利用平移规律,从M(-2,2)向右平移2个单位长度,向下平移2个单位长度,可得A是坐标原点.【详解】解:①M(-2,2),①A是坐标原点.故答案为A.【点睛】本题考查了平面直角坐标系,利用平移逆向推理是解题关键.三、解答题8.某学校STEAM社团在进行项目化学习时,根据古代的沙漏模型(图1)制作了一套“沙漏计时装置”,该装置由沙漏和精密电子秤组成,电子秤上放置盛沙容器.沙子缓慢匀速地从沙漏孔漏到精密电子称上的容器内,可以通过读取电子秤的读数计算时间(假设沙子足够).该实验小组从函数角度进行了如下实验探究:实验观察:实验小组通过观察,每两小时记录一次电子秤读数,得到表1.表1探索发现:(1)建立平面直角坐标系,如图2,横轴表示漏沙时间x,纵坐标表示精密电子称的读数y,描出以表1中的数据为坐标的各点.(2)观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,请你建立适当的函数模型,并求出函数表达式,如果不在同一条直线上,请说明理由.结论应用:应用上述发现的规律估算:(3)若漏沙时间为9小时,精密电子称的读数为多少?(4)若本次实验开始记录的时间是上午7:30,当精密电子秤的读数为72克时是几点钟? 【答案】(1)作图见解析(2)在同一直线上.函数表达式为:66y x =+ (3)漏沙时间为9小时,精密电子称的读数为60克 (4)下午6:30【分析】(1)根据表中各点对应横、纵坐标,描点即可.(2)通过连线可知这些点大致分布在同一直线上,满足一次函数表达式,所以可假设一次函数表达式,利用待定系数法求解函数表达式.(3)根据(2)中的表达式可求出当9x =时,精密电子秤的读数.(4)根据(2)中的表达式可求出当72y =时,漏沙的时间,然后根据起始时间可求出读数为72克的时间. (1) 解:如图所示(2)解:如图所示,连线可得,这些点在同一线上,并且符合一次函数图像. 设一次函数表达式为:y kx b =+将点(0,6),(2,18)代入解析式中可得6218b k b =⎧⎨+=⎩解得66a b =⎧⎨=⎩∴函数表达式为:66y x =+(3)解:由(2)可知函数表达式为:66y x =+ ∴当9x =时,60y =∴漏沙时间为9小时,精密电子称的读数为60克.(4)解:由(2)可知函数表达式为:66y x =+ ∴当72y =时,11x =起始时间是上午7:30∴经过11小时的漏沙时间为下午6:30.【点睛】本题考查一次函数的实际应用,要求掌握描点法画函数图象,待定系数法求解析式,会求函数自变量或函数值是解决本题的关键.平面直角坐标系(提升测评)一、单选题1.如图,小石同学在正方形网格图中建立平面直角坐标系后,点A 的坐标为(1,1)-,点B 的坐标为(2,0),则点C 的坐标为( )A .(1,2)-B .(2,1)-C .(1,2)--D .(1,1)-【答案】A【分析】利用已知点A 、B 的坐标确定平面直角坐标系,进而可得答案. 【详解】解:根据题意,建立如图所示的直角坐标系, ①点C 的坐标为(1,﹣2). 故选:A .【点睛】此题主要考查了点的坐标的确定,属于基本题型,正确得出原点位置是解题关键. 2.如图所示,从小明家到学校要穿过一个居民小区,小区的道路均是北南或西东方向,小明走下面哪条线路最短( )A .(1,3)→(1,2)→(1,1)→(1,0)→(2,0)→(3,0)→(4,0)B .(1,3)→(0,3)→(2,3)→(0,0)→(1,0)→(2,0)→(4,0)C .(1,3)→(1,4)→(2,4)→(3,4)→(4,4)→(4,3)→(4,2)→(4,0)D .以上都不对 【答案】A【分析】要想线路最短,就应从小明家出发向右及向下走,而不能向左或向上走,所以选A . 【详解】解:要想路线最短,就只应向右及向下走, 故选:A【点睛】本题考查了平面直角坐标系的应用以及数学在实际生活的应用,理解线路最短,应始终向着目标靠近,并明白平面直角坐标系中点的坐标的表示是解题关键.3.道路两旁种植行道树,选择行道树的因素有很多,比如:树形要美、树冠要大、存活率要高、落叶要少…现在只考虑树冠大小、存活率高低两个因素,可以用如下方法将实际问题数学化:设树冠直径为d ,存活率为h .如图,在平面直角坐标系中画出点(d ,h ),其中甲树种、乙树种、丙树种对应的坐标分别为A (d 1,h 1)、B (d 2,h 2)、C (d 3,h 3),根据坐标的信息分析,下列说法正确的是( )A .乙树种优于甲树种,甲树种优于丙树种B .乙树种优于丙树种,丙树种优于甲树种C .甲树种优于乙树种,乙树种优于丙树种D .丙树种优于甲树种,甲树种优于乙树种 【答案】B【分析】根据图象,比较A 、B 、C 三点的存活率和树冠直径即可得出答案. 【详解】根据题意和图象可得,213h h h >>,231d d d >>, ①乙树种是最优的,①甲树种的存活率略高于丙树种,基本相等,但丙树种的树冠直径远远大于甲树种的树冠直径, ①丙树种优于甲树种,①乙树种优于丙树种,丙树种优于甲树种, 故选:B .【点睛】本题考查规律型:点的坐标,准确读出坐标中的信息是解题的关键.4.点A 在第二象限,距离x 轴3个单位长度,距离y 轴5个单位长度,则点A 的坐标为( ) A .()5,3- B .()3,5-C .()5,3-D .()3,5-【答案】A【分析】首先确定点的横纵坐标的正负号,再根据距坐标轴的距离确定点的坐标. 【详解】解:①点A 在第二象限, ①点的横坐标为负数,纵坐标为正数,①点距离x 轴3个单位长度,距离y 轴5个单位长度, ①点的坐标为(-5,3). 故选:A .【点睛】此题主要考查了点的坐标,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.如图,雷达探测器发现了A ,B ,C ,D ,E ,F 六个目标.目标C ,F 的位置分别表示为C (6,120°),F (5,210°),按照此方法表示目标A ,B ,D ,E 的位置时,其中表示正确的是( )A .A (4,30°)B .B (1,90°)C .D ( 4,240°) D .E (3,60°)【答案】C【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别写出坐标A (5,30°),B (2,90°),D (4,240°),E (3,300°),即可判断.【详解】解:按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数, 由题意可知A 、B 、D 、E 的坐标可表示为:A (5,30°),故A 不正确;B (2,90°),故B 不正确;D (4,240°),故C 正确;E (3,300°),故D 不正确.故选择:C .【点睛】本题考查新定义坐标问题,仔细分析题中的C 、F 两例,掌握定义的含义,抓住表示一个点,。

第11章平面直角坐标系 讲义

第11章平面直角坐标系 讲义

第11章平面直角坐标系11.1 平面内点的坐标知识点一平面直角坐标系中点的坐标为了确定平面内一个点的位置,我们先在平面内画两条互相垂直并且原点重合的数轴,水平的数轴叫做x轴或横轴,取向右为正方向;垂直的数轴叫做y轴或纵轴,取向上为正方向;两轴交点O为原点.这样就建立了平面直角坐标系,这个平面叫做坐标平面.例1 如图,在平面直角坐标系内有两点A,B.(1)分别写出它们的坐标;(2)在平面内找出一点C,使它的坐标为(3,-5).知识点二平面直角坐标系中点的坐标特点1.各象限内点的坐标的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).表示平面上点的坐标是一个有序实数对.2.特殊位置点的坐标特点(1)坐标轴上点的坐标特点坐标轴上的点不属于任何象限,x轴上的点的纵坐标为0,记作(x,0);y轴上的点的横坐标为0,记作(0,y);坐标原点的横坐标、纵坐标都是0,记作(0,0).反过来也成立,即:点(x,0)在x轴上,点(0,y)在y轴上,点(0,0)为原点.(2)与x轴、y轴平行的直线上的点的坐标特点过(a,b)点与x轴平行的直线上的点的纵坐标都是b,这条直线可表示为y=b;过(a,b)点与y轴平行的直线上的点的横坐标都是a,这条直线可表示为x=a.反过来也成立,即:直线y=b上的点的纵坐标都是b,直线x=a上的点的横坐标都是a.3.到坐标轴的距离:P(a,b)到x轴的距离为|b|,到y轴的距离为|a|.例2 已知点P的坐标为(a+2,b-3).(1)若点P在x轴上,则b=;(2)若点P在y轴上,则a=;(3)若点P在第二象限,则a= ,b= .(4)若点P到x轴的距离为4,则b= ,若P到y轴的距离为4,则a= 。

知识点三坐标平面内的图形及其面积的计算坐标平面内图形的面积问题,常常需要通过作辅助线来进行转化,转化思想是一种重要的数学思想,即把不规则的图形转化为规则的图形(割补),再利用和或差进行计算。

第11讲平面直角坐标系11

第11讲平面直角坐标系11

过F作FQ∥B′C,交EC于点Q, 则△FEQ∽△B′EC
2 , 3 ), 3 2 3 根据对称性可得,Q关于直线EF的对称点Q′(,3 )也符 3

,可得Q的坐标为(-
合条件.
13.(12分)已知:等腰三角形OAB在直角坐标系中的位置如图, 点A的坐标为(-3 为(-6,0). (1)若三角形OAB关于y轴的轴对称图形 是三角形OA′B′,请直接写出A、B的对 ,3) ,点B的坐标 3
(如图2)∵OE=
在Rt△BMP中,BP·cos60°=MP
即2(t-6)· 1 = 9-t ,解得t= 45 .
2 6 7
②存在.理由如下:
∵t=2,∴OE=
2 3 ,AP=2,OP=1 3
将△BEP绕点E顺时针方向旋转90°, 得到△B′EC(如图3) ∵OB⊥EF,∴点B′在直线EF上,
2 C点坐标为(- 2 3, 3 -1) 3 3
请解答下列问题: (1)过A,B两点的直线解析式是_____;
(2)当t=4时,点P的坐标为_____;当
t=_____,点P与点E重合; (3)①作点P关于直线EF的对称点P′. 在运动过程中,若形成的四边形PEP′F为菱形,则t的值是多 少? ②当t=2时,是否存在着点Q,使得△FEQ ∽△BEP?若存在, 求出点Q的坐标;若不存在,请说明理由.
x
【解析】(1)y=- 3x+ 3 ; (2)(0, 3 )
9 2
3
(3)①当点P在线段AO上时,过F作
FG⊥x轴,G为垂足(如图1)
∵OE=FG,EP=FP,∠EOP=∠FGP=90°,
∴△EOP≌△FGP,∴OP=PG.
又∵OE=FG= 3 t,∠A=60°,∴ AG= FG = 1 t , 而AP=t,∴OP=3-t,PG=AP-AG= 2 t 由3-t=

第11讲 平面直角坐标系与函数

第11讲 平面直角坐标系与函数

一象限内,则m的取值范围是______.
【解析】因为第一象限内的点横坐标为正,纵坐标为正,所以
m 0, m 2 0,
解得
m 0, 所以m>2. m 2,
答案:m>2
求函数自变量的取值范围
◆中考指数:★★★★☆ 函数自变量取值范围的五种情形: 1.若函数解析式是整式,其取值范围是全体实数. 2.若函数解析式是分式,其取值范围应使分母不等于零. 3.若函数解析式是偶次根式,其取值范围应使被开方数为 非负数. 4.若函数解析式为零指数和负整数指数,其取值范围应使 底数不等于0. 5.与实际问题有关的函数解析式,其自变量的取值范围除 了满足上述条件外,还应使实际问题有意义.
平路、上坡、下坡的时间分别为8分钟、10分钟、2分钟,所以
总共需要20分钟.
【对点训练】 6.(2012·益阳中考)在一个标准大气压下,能反映水在均匀 加热过程中,水的温度(T)随加热时间(t)变化的函数图象大 致是( )
【解析】选B.选项A:由图象中发现,水温达到100 ℃时温度
保持了一段时间后又在上升,错误;选项C:由图象中发现,水
【例】(2011·长沙中考)如图,在平面直角坐标系中,
点P(-1,2)向右平移3个单位长度后的坐标是(
(A)(2,2) (C)(-1,5) (B)(-4,2) (D)(-1,-1)
)
【解题导引】根据“右加左减,上加下减”确定点P平移后的
坐标.
【规范解答】选A.借助网格,可以看出在平面直角坐标系中点
3 2 (D) x 3 2
(A)x> 3
2 (C)x 3 2
(B) x
【解析】选D.∵2x-3≥0,解得 x
3 . 2

第11章 平面直角坐标系 沪科版数学八年级上册同步练习(3课时 含答案)

第11章 平面直角坐标系 沪科版数学八年级上册同步练习(3课时 含答案)

第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.下列各点中,在第二象限的是( )A.(5,3) B.(-5,0) C.(-5,1) D.(-5,-1)2.若点P(m-1,-2)在第四象限,则m的取值范围是( )A.m<1 B.m<0 C.m>1 D.m>03.若教室中5排3列的位置记为(5,3),则3排5列的位置记为________.4.在平面直角坐标系中,若点A(m-1,m+2)在x轴上,则点A的坐标为________.5.在平面直角坐标系中,有一点M(a-2,2a+6),试求满足下列条件的a值或a的取值范围.(1)点M在y轴上;(2)点M在第一象限;(3)点M到x轴的距离为2.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.已知平行四边形的对边平行且相等.以平行四边形ABCD的顶点A为原点,直线AD为x轴建立平面直角坐标系(如图),若B,C两点的坐标分别为(1,3),(5,3),则该平行四边形的面积是________.(第1题)2.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(-2,1),B(-4,5),C(-6,3).求三角形ABC的面积.(第2题)3.在如图所示的平面直角坐标系中,描出以下各点:A(0,0),B(2,5),C(6,6),D(5,0),并顺次连接形成四边形ABCD.求出这个图形的面积.(第3题)第11章 平面直角坐标系11.2 图形在坐标系中的平移1.在平面直角坐标系中,将点(-2,3)向右平移6个单位后得到的点的坐标是( )A.(4,3) B.(-8,3)C.(-2,9) D.(-2,-3)2.在平面直角坐标系xOy中,将三角形ABC平移得到三角形DEF,若点A(-1,3)的对应点为D(2,5),则点B(-3,-1)的对应点E的坐标是( ) A.(1,0) B.(0,1) C.(-6,0) D.(0,-6)3.把点(-2,3)先向上平移4个单位,再向左平移3个单位,得到的点的坐标为__________.4.如图,在平面直角坐标系中,已知点A(-3,3),B(-4,-1),C(-2,1),P(a,b)为三角形ABC的边AC上任意一点,三角形ABC经过平移后得到三角形A1B1C1,点P的对应点为P1(a+5,b-2).(第4题)(1)直接写出点A1,B1,C1的坐标;(2)在图中画出三角形A1B1C1.第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系1.C 2.C 3.(3,5) 4.(-3,0)5.解:(1)由题意得a-2=0,解得a=2.(2)由题意得{a-2>0,2a+6>0,解得a>2.(3)由题意得|2a+6|=2,解得a=-2或-4.第11章 平面直角坐标系11.1 平面内点的坐标第2课时 坐标平面内图形的面积1.12 2.解:S三角形ABC=12×3×2+12×3×2=6.3.解:如图所示.(第3题)S 四边形ABCD =12×2×5+12×(5+6)×4-12×1×6=24.第11章 平面直角坐标系11.2 图形在坐标系中的平移1.A 2.B 3.(-5,7)4.解:(1)A 1(2,1),B 1(1,-3),C 1(3,-1).(2)如图所示,△A 1B 1C 1即为所求.(第4题)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 函数及其图象第十一讲:平面直角坐标系与函数【基础知识回顾】一、 平面直角坐标系:1、定义:具有 的两条 的数轴组成平面直角坐标系,两条数轴分别称 轴 轴或 轴 轴,这两系数轴把一个坐标平面分成的四个部分,我们称作是四个2、有序数对:在一个坐标平面内的任意一个点可以用一对 来表示,如A (a .b ),(a .b )即为点A 的 其中a 是该点的 坐标,b 是该点的 坐标平面内的点和有序数对具有 的关系。

3、平面内点的坐标特征① P (a .b ):第一象限 第二象限第三象限 第四象限X 轴上 Y 轴上②对称点: P (a ,b )③特殊位置点的特点:P (a .b )若在一、三象限角的平分线上,则若在二、四象限角的平分线上,则④到坐标轴的距离:P (a .b )到x 轴的距离 到y 轴的距离 到原点的距离⑤坐标平面内点的平移:将点P (a .b )向左(或右)平移h 个单位,对应点坐标为 (或 ),向上(或下)平移k 个单位,对应点坐标为 (或 )。

【名师提醒:坐标平面内点的坐标所具备的特征必须结合坐标平面去理解和记忆,不可生硬死记一些结论。

】二、确定位置常用的方法:一般由两种:1、 2、 。

三、函数的有关概念:1、常量与变量:在某一变化过程中,始终保持 的量叫做常量,数值发生 的量叫做变量。

【名师提醒:常量与变量是相对的,在一个变化过程中,同一个量在不同情况下可以是常量,也可能是变量,要根据问题的条件来确定。

】2、函数:⑴、函数的概念:一般的,在某个 过程中如果有两个变量x 、y ,如果对于x 的每一个确定的值,y 都有 的值与之对应,我们就成x 是 ,y 是x 的 。

⑵、自变量的取值范围:主要有两种情况:①、解析式有意义的条件,常见分式和二次根式两种情况关于y 轴的对称点关于y 轴的对称点 关于原点的对称点②、实际问题有意义的条件:必须符合实际问题的背景⑶、函数的表示方法:通常有三种表示函数的方法:①、法②、法③、法⑷、函数的同象:对于一个函数,把自变量x和函数y的每对对应值作为点的与在平面内描出相应的点,符合条件的所有的点组成的图形叫做这个函数的同象【名师提醒:1、在确定自变量取值范围时要注意分式和二次根式同时存在,应保证两者都有意义,即被开方数应同时分母应。

2、函数的三种表示方法应根据实际需要选择,有时需同时使用几种方法3、函数同象是在自变量取值范围内无限个点组成的图形,图象上任意一点的坐标是解析式方程的一个解,反之满足解析式方程的每一个解都在函数同象上】【重点考点例析】考点一:平面直角坐标系中点的特征例1 (2013•淄博)如果m是任意实数,则点P(m-4,m+1)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限思路分析:求出点P的纵坐标一定大于横坐标,然后根据各象限的点的坐标特征解答.解:∵(m+1)-(m-4)=m+1-m+4=5,∴点P的纵坐标一定大于横坐标,∵第四象限的点的横坐标是正数,纵坐标是负数,∴第四象限的点的横坐标一定大于纵坐标,∴点P一定不在第四象限.故选D.点评:本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).对应训练1.(2013•宁夏)点 P(a,a-3)在第四象限,则a的取值范围是.1.0<a<3考点二:规律型点的坐标例2 (2013•济南)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)思路分析:根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2013除以6,根据商和余数的情况确定所对应的点的坐标即可.解:如图,经过6次反弹后动点回到出发点(0,3),∵2013÷6=335…3,∴当点P第2013次碰到矩形的边时为第336个循环组的第3次反弹,点P的坐标为(8,3).故选D.点评:本题是对点的坐标的规律变化的考查了,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键,也是本题的难点.对应训练2.(2013•江都市一模)如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2013次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)2.A考点三:函数自变量的取值范围A.x≥-3 B.x≥3C.x≥0且x≠1D.x≥-3且x≠1思路分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解:根据题意得,x+3≥0且x-1≠0,解得x≥-3且x≠1.故选D.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.对应训练3.(2013•泸州)函数自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠33.A考点四:函数的图象例4 (2013•重庆)2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利回到家.其中x表示童童从家出发后所用时间,y 表示童童离家的距离.下面能反映y与x的函数关系的大致图象是()A. B. C. D.思路分析:童童的行程分为5段,①离家至轻轨站;②在轻轨站等一会;③搭乘轻轨去奥体中心,④观看比赛,⑤乘车回家,对照各函数图象即可作出判断.解:①离家至轻轨站,y由0缓慢增加;②在轻轨站等一会,y不变;③搭乘轻轨去奥体中心,y快速增加;④观看比赛,y不变;⑤乘车回家,y快速减小.结合选项可判断B选项的函数图象符合童童的行程.故选B.点评:本题考查了函数的图象,解答本题需要我们能将函数图象和实际对应起来,结合当前的一档娱乐节目出题,立意新颖,是一道不错的题目.对应训练4.(2013•湘西州)小芳的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小芳爷爷离家的距离y(米)与时间x(分钟)之间的关系的大致图象是()A. B.C.D.4.C考点四:动点问题的函数图象例5 (2013•烟台)如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.AE=6cmB.sin∠EBC=4 5C.当0<t≤10时,y=2 5 t2D.当t=12s时,△PBQ是等腰三角形∵BC=10,∴△BCN不是等腰三角形,即此时△PBQ不是等腰三角形.点评:本题考查动点问题的函数图象,需要结合几何图形与函数图象,认真分析动点的运动过程.突破点在于正确判断出BC=BE=10cm.对应训练5.(2013•铁岭)如图,点G、E、A、B在一条直线上,Rt△EFG从如图所示是位置出发,沿直线AB向右匀速运动,当点G与B重合时停止运动.设△EFG与矩形ABCD重合部分的面积为S,运动时间为t,则S与t的图象大致是()A.B.C.D.5.D【聚焦山东中考】1.(2013•东营)若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,-3)B.(-2,3)C.(2,3)D.(-2,-3)1.B2.(2013•济南)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多2.B3.(2013•潍坊)用固定的速度如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A. B. C. D.3.C4.(2013•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为(用n表示)cm2)A. B. C. D.6.B【备考真题过关】一、选择题1.(2013•湛江)在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四1.D2.(2013•邵阳)如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)2.CA.x>1 B.x<1 C.x≥5D.x≥-53.CA.x>3 B.x<3 C.x≠3D.x≠-34.CA.x≤1B.x≥1C.x<1 D.x>15.D6.(2013•玉林)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A. B. C. D.6.B7.(2013•乌鲁木齐)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时7.C8.(2013•黄冈)一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与快车行驶时间(小时)之间的函数图象是()A. B.C.D.8.C9.(2013•绍兴)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是()A.B.C.D.9.C10.(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y 升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A.0 B.1 C.2 D.310.C11.(2013•三明)如图,在矩形ABCD中,O是对角线AC的中点,动点P从点C出发,沿DC 方向匀速运动到终点C.已知P,Q两点同时出发,并同时到达终点,连接OP,OQ.设运动时间为t,四边形OPCQ的面积为S,那么下列图象能大致刻画S与t之间的关系的是()A.B.C.D.tA.4 B.3 C.2 D.112.B二、填空题13.(2013•株洲)在平面直角坐标系中,点(1,2)位于第象限.13.一17.(8052,0)18.(2013•湖州一模)如图,在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,3),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为3n(n为正整数)时,m= (用含n的代数式表示).18.3n-219.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)19.①③④。

相关文档
最新文档