第二节 微积分的基本定理

合集下载

选修2-2——微积分基本定理

选修2-2——微积分基本定理

1.6 微积分基本定理1.问题导航(1)微积分基本定理的内容是什么? (2)定积分的取值符号有哪些? 2.例题导读 通过P 53例1,学会利用微积分基本定理求简单定积分的步骤和方法,通过P 53例2的学习,理解定积分的几何意义和定积分的取值符号.1.微积分基本定理(1)内容:一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x=F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿-莱布尼茨公式.(2)表示:为了方便,常常把F (b )-F (a )记成F (x )⎪⎪⎪b a ,即⎠⎛ab f (x )d x =F (x )⎪⎪⎪ba =F (b )-F (a ). 2.定积分的符号由定积分的意义与微积分基本定理可知,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(如图1),定积分的值取正值,且等于曲边梯形的面积.(2)当对应的曲边梯形位于x 轴下方时(如图2),定积分的值取负值,且等于曲边梯形的面积的相反数.(3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形面积时(如图3),定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积..1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.若a =⎠⎛01(x -2)d x ,则被积函数的原函数为( )A .f (x )=x -2B .f (x )=x -2+C C .f (x )=12x 2-2x +CD .f (x )=x 2-2x答案:C3.⎠⎛0πsin x d x =________.解析:⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=(-cos π)-(-cos 0)=2.答案:21.应用微积分基本定理求定积分的注意事项(1)微积分基本定理沟通了定积分与导数的关系,揭示了被积函数与函数的导函数之间的互逆运算关系,为计算定积分提供了一个简单有效的方法——转化为计算函数F (x )在积分区间上的增量.(2)用微积分基本定理求定积分的关键是找到满足F ′(x )=f (x )的函数F (x )再计算F (b )-F (a ).(3)利用微积分基本定理求定积分,有时需先化简被积函数,再求定积分. 2.常见函数的定积分公式(1)⎠⎛ab C d x =Cx ⎪⎪⎪ba (C 为常数). (2)⎠⎛ab x n d x =1n +1x n +1⎪⎪⎪ba (n ≠-1).(3)⎠⎛a b sin x d x =-cos x ⎪⎪⎪ba .(4)⎠⎛ab cos x d x =sin x ⎪⎪⎪ba . (5)⎠⎛ab 1xd x =ln x ⎪⎪⎪ba (b >a >0). (6)⎠⎛a b e x d x =e x⎪⎪⎪ba. (7)⎠⎛ab a x d x =a x ln a ⎪⎪⎪ba(a >0且a ≠1).利用微积分基本定理求定积分求下列定积分的值. (1)⎠⎛12(x +1)(x -2)d x ;(2)⎠⎛14x (1+x )d x ;(3)∫π20sin 2x d x ;(4)⎠⎛24x 2-x +1x -1d x . [解] (1)⎠⎛12(x +1)(x -2)d x=⎠⎛12(x 2-x -2)d x=⎝⎛⎭⎫13x 3-12x 2-2x ⎪⎪⎪21 =⎝⎛⎭⎫13×23-12×22-2×2-⎝⎛⎭⎫13×13-12×12-2×1 =-76.(2)⎠⎛14x (1+x )d x=⎠⎛14(x +x )d x =⎝⎛⎭⎫23x 32+12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432+12×42-⎝⎛⎭⎫23×132+12×12=736. (3)∫π2sin 2x d x =∫π21-cos 2x2d x =12∫π20(1-cos 2x )d x =12⎝⎛⎭⎫x -12sin 2x ⎪⎪⎪π2=π4. (4)⎠⎛24x 2-x +1x -1d x =⎠⎛24x (x -1)+1x -1d x =⎠⎛24⎝ ⎛⎭⎪⎫x +1x -1d x =⎝⎛⎭⎫12x 2+ln (x -1)⎪⎪⎪42 =⎝⎛⎭⎫12×42+ln 3-⎝⎛⎭⎫12×22+ln 1=6+ln 3.(1)当被积函数为两个函数的乘积(分式)时,一般要先化简被积函数将其转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下:第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ).(2)利用微积分基本定理求定积分的关键是找出被积函数的原函数,若被积函数的原函扫一扫 进入91导学网()微积分基本定理1.(1)若⎠⎛01(kx +1)d x =2,则k 的值为( )A .1B .2C .3D .4解析:选B.⎠⎛01(kx +1)d x =⎝⎛⎭⎫12kx 2+x ⎪⎪⎪10=12k +1=2. ∴k =2.(2)⎠⎛12x -1x2d x =________. 解析:⎠⎛12x -1x 2d x =⎠⎛12⎝⎛⎭⎫1x -1x 2d x =⎝⎛⎭⎫ln x +1x ⎪⎪⎪21=⎝⎛⎭⎫ln 2+12-()ln 1+1=ln 2-12. 答案:ln 2-12求分段函数的定积分求下列定积分的值. (1)⎠⎛-12|x -1|d x ;(2)⎠⎛-12e |x |d x ;(3)若f (x )=⎩⎪⎨⎪⎧x 2,x ≤0cos x -1,x >0求∫π2-1f (x )d x .[解] (1)⎠⎛-12|x -1|d x=⎠⎛-11|x -1|d x +⎠⎛12|x -1|d x=⎠⎛-11(-x +1)d x +⎠⎛12(x -1)d x=⎝⎛⎭⎫-12x 2+x ⎪⎪⎪1-1+⎝⎛⎭⎫12x 2-x ⎪⎪⎪21=2+12=52.(2)⎠⎛-12e |x |d x =⎠⎛-10e |x |d x +⎠⎛02e |x |d x=⎠⎛-10e -x d x +⎠⎛02e x d x=-e -x ⎪⎪⎪0-1+e x ⎪⎪⎪2=e -1+e 2-1=e 2+e -2.(3)∫π2-1f (x )d x =⎠⎛-1f (x )d x +∫π20f (x )d x =⎠⎛-1x 2d x +∫π20(cos x -1)d x=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪π2=13+⎝ ⎛⎭⎪⎫1-π2=43-π2.求分段函数的定积分(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.2.(1)设f (x )=⎩⎪⎨⎪⎧x 2,0≤x <1,2-x ,1<x ≤2,则⎠⎛02f (x )d x =( )A.23B.34C.45D.56 解析:选D.⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 3⎪⎪⎪10+⎝⎛⎭⎫2x -12x 2⎪⎪⎪21 =13+12=56. (2)⎠⎛0π|cos x |d x =________.解析:⎠⎛0π|cos x |d x =∫π20|cos x |d x +∫ππ2|cos x |d x=∫π20cos x d x +∫ππ2(-cos x )d x=sin x ⎪⎪⎪π20-sin x ⎪⎪⎪⎪ππ2=1+1=2.答案:2(3)计算⎠⎛02|x 2-x |d x .解:∵|x 2-x |=⎩⎪⎨⎪⎧-x 2+x ,0≤x ≤1,x 2-x ,1<x ≤2,∴⎠⎛02|x 2-x |d x =⎠⎛01(-x 2+x )d x +⎠⎛12(x 2-x )d x=⎝⎛⎭⎫-13x 3+12x 2⎪⎪⎪10+⎝⎛⎭⎫13x 3-12x 2⎪⎪⎪21 =16+56=1.微积分基本定理的综合应用(1)已知x ∈(0,1],f (x )=⎠⎛01(1-2x +2t )d t ,则f (x )的值域是________.[解析] ⎠⎛01(1-2x +2t )d t =[(1-2x )t +t 2]⎪⎪⎪10 =2-2x ,即f (x )=-2x +2,因为x ∈(0,1],所以f (1)≤f (x )<f (0),即0≤f (x )<2,所以函数f (x )的值域是[0,2).[答案] [0,2)(2)已知⎠⎛01[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.[解] ⎠⎛01[(3ax +1)(x +b )]d x=⎠⎛01[3ax 2+(3ab +1)x +b ]d x=⎣⎡⎦⎤ax 3+12(3ab +1)x 2+bx ⎪⎪⎪10 =a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.法一:由于(a +b )2=a 2+b 2+2ab ≥4ab .所以⎝⎛⎭⎪⎫-3ab +122≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). 法二:设ab =t ,得a +b =-3t +12,故a ,b 为方程x 2+3t +12x +t =0的两个实数根,所以Δ=(3t +1)24-4t ≥0,整理得9t 2-10t +1≥0,即(t -1)(9t -1)≥0,解得t ≤19或t ≥1.所以ab 的取值范围是⎝⎛⎦⎤-∞,19∪[1,+∞). [互动探究] 本例(1)中原已知条件改为f (t )=⎠⎛01(1-2x +2t )d x ,则f (t )=________.解析:f (t )=⎠⎛01(1-2x +2t )d x=[(1+2t )x -x 2]⎪⎪⎪1=2t . 答案:2t含有参数的定积分问题的处理办法与注意点 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.3.(1)设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0<1,则x 0的值为________.解析:⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =13ax 3+cx ⎪⎪⎪10 =a 3+c =ax 20+c ,又0≤x 0<1,∴x 0=33. 答案:33(2)已知f (a )=⎠⎛01(2ax 2-a 2x )d x ,求f (a )的最大值.解:∵⎠⎛01(2ax 2-a 2x )d x=⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪1=23a -12a 2, ∴f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29.∴当a =23时,f (a )有最大值为29.数学思想 利用函数的奇偶性巧解定积分问题已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0为偶函数,求a ,b .[解] ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛-11(x 3+ax )d x =0.∴⎠⎛-11(x 3+ax +3a -b )d x =⎠⎛-11(x 3+ax )d x +⎠⎛-11(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3.① 又f (t )=⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x ⎪⎪⎪t0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0.②由①②,得a =-3,b =-9. [感悟提高](1)在求对称区间上的定积分时,应该首先考虑函数性质与积分的性质,使解决问题的方法尽可能简便.(2)奇、偶函数在区间[-a ,a ]上的定积分:①若奇函数y =f (x )的图象在[-a ,a ]上连续,则⎠⎛-aaf (x )d x=0. ②若偶函数y =g (x )的图象在[-a ,a ]上连续,则⎠⎛-aag (x )d x =2⎠⎛0a g (x )d x ,如本例为偶函数,可用该结论计算.1.下列各式中,正确的是( )A.⎠⎛ab F ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a b F ′(x )d x =F ′(a )-F ′(b )C.⎠⎛ab F ′(x )d x =F (b )-F (a ) D.⎠⎛ab F ′(x )d x =F (a )-F (b )答案:C2.⎠⎛12(e x -1)d x =________.解析:⎠⎛12(e x-1)d x =(e x-x )⎪⎪⎪21=(e 2-2)-(e 1-1) =e 2-e -1.答案:e 2-e -13.求定积分∫π20cos 2xsin x +cos xd x 的值.解:∫π20cos 2xsin x +cos xd x=∫π20cos2x -sin 2x cos x +sin xd x=∫π20(cos x -sin x )d x=()sin x +cos x ⎪⎪⎪π2=⎝ ⎛⎭⎪⎫sin π2+cos π2-()sin 0+cos 0=0.[A.基础达标]1.⎠⎛1e 1xd x 的值为( ) A .1 B .2 C .ln 2D .e 2解析:选A.⎠⎛1e 1x d x =ln x ⎪⎪⎪e1=ln e -ln 1=1.2.⎠⎛1e x d x 的值为( )A .eB .e -1 C.1eD .1解析:选B.⎠⎛01e x d x =e x ⎪⎪⎪10=e 1-e 0=e -1. 3.已知⎠⎛1m (2x -1)d x =2,则m 的值为( )A .5B .4C .3D .2解析:选D.∵⎠⎛1m (2x -1)d x =(x 2-x )⎪⎪⎪m1=m 2-m =2, ∴m 2-m -2=0,∴m =-1(舍去)或m =2.4.⎠⎛23x x -1d x =( ) A .5+ln 2 B .5-ln 2 C .1+ln 2 D .1-ln 2解析:选C.⎠⎛23xx -1d x =⎠⎛23x -1+1x -1d x=⎠⎛23⎝ ⎛⎭⎪⎫1+1x -1d x =[]x +ln (x -1)⎪⎪⎪32 =(3+ln 2)-(2+ln 1)=1+ln 2.5.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛01f (x )d x =( )A .-1B .-13C.13D .1解析:选B.∵⎠⎛01f (x )d x =⎠⎛01x 2d x +⎠⎛01⎣⎡⎦⎤2⎠⎛01f (x )d x d x=13x 3⎪⎪⎪10+⎣⎢⎡⎦⎥⎤2⎠⎛01f (x )d x x ⎪⎪⎪10=13+2⎠⎛01f (x )d x , ∴⎠⎛01f (x )d x =-13.故选B.6.已知f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0)则⎠⎛-12f (x )d x =________.解析:∵f (x )=⎩⎪⎨⎪⎧x ,(x ≤0)e x ,(x >0).∴⎠⎛-12f (x )d x =⎠⎛-10x d x +⎠⎛02e x d x=12x 2⎪⎪⎪0-1+e x ⎪⎪⎪2=-12+e 2-1=e 2-32.答案:e 2-327.设f (x )=kx +b ,若⎠⎛01f (x )d x =2,⎠⎛12f (x )d x =3.则f (x )的解析式为________.解析:由⎠⎛01(kx +b )d x =2,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪1=2, 即12k +b =2,① 由⎠⎛12(kx +b )d x =3,得⎝⎛⎭⎫12kx 2+bx ⎪⎪⎪21=3, 即(2k +2b )-⎝⎛⎭⎫12k +b =3.∴32k +b =3,② 由①②联立得,k =1,b =32,∴f (x )=x +32.答案:f (x )=x +328.⎠⎛03x 2-4x +4d x =________.解析:⎠⎛03x 2-4x +4d x =⎠⎛03(x -2)2d x=⎠⎛03|x -2|d x=⎠⎛02|x -2|d x +⎠⎛23|x -2|d x=⎠⎛02(2-x )d x +⎠⎛23(x -2)d x=⎝⎛⎭⎫-12x 2+2x ⎪⎪⎪20+⎝⎛⎭⎫12x 2-2x ⎪⎪⎪32=2+12=52. 答案:529.计算⎠⎛02x1+x 2d x .解:∵f (x )=1+x 2的导函数为f ′(x )=x 1+x 2. ∴⎠⎛02x 1+x 2d x =1+x 2⎪⎪⎪20=5-1. 10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176.求⎠⎛12f (x )xd x 的值. 解:设f (x )=kx +b ,k ≠0,则⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b =5.① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x =⎝⎛⎭⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎪⎨⎪⎧k =4.b =3. ∴f (x )=4x +3.则⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12⎝⎛⎭⎫4+3x d x =(4x +3ln x )⎪⎪⎪21 =(8+3ln 2)-(4+3ln 1)=4+3ln 2.[B.能力提升]1.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1解析:选B.S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪21=73, S 2=⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2, S 3=⎠⎛12e x d x =e x ⎪⎪⎪21=e 2-e =e(e -1)>e>73, 所以S 2<S 1<S 3,故选B.2.若函数f (x ),g (x )满足⎠⎛-11f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数: ①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1;③f (x )=x ,g (x )=x 2. 其中为区间[-1,1]上的正交函数的组数是( )A .0B .1C .2D .3解析:选C.对于①,⎠⎛-11sin 12x ·cos 12x d x=⎠⎛-1112sin x d x =12⎠⎛-11sin x d x =12(-cos x )⎪⎪⎪1-1=12(-cos 1+cos 1)=0. 故①为区间[-1,1]上的一组正交函数;对于②,⎠⎛-11(x +1)(x -1)d x =⎠⎛-11(x 2-1)d x =⎝⎛⎭⎫13x 3-x ⎪⎪⎪1-1=13-1-⎝⎛⎭⎫-13+1 =23-2=-43≠0, 故②不是区间[-1,1]上的一组正交函数;对于③,⎠⎛-11x ·x 2d x =⎠⎛-11x 3d x =⎝⎛⎭⎫14x 4⎪⎪⎪1-1=0. 故③为区间[-1,1]上的一组正交函数,故选C.3.若⎠⎛0t cos θd θ=32,且t ∈(0,2π),则t 的值为________. 解析:∵⎠⎛0t cos θd θ=sin θ⎪⎪⎪t 0 =sin t =32, ∵t ∈(0,2π),∴t =π3或23π. 答案:π3或23π 4.已知f (x )=⎩⎪⎨⎪⎧x -1,x ≤11-ln x x 2,x >1,则⎠⎛0e f (x )d x =________. 解析:∵f (x )=⎩⎨⎧x -1,x ≤11-ln x x 2,x >1, ∴⎠⎛0e f (x )d x =⎠⎛01(x -1)d x +⎠⎛1e 1-ln x x 2d x =⎝⎛⎭⎫12x 2-x ⎪⎪⎪10+ln x x ⎪⎪⎪e 1=-12+1e =2-e 2e. 答案:2-e 2e5.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛01f (x )d x =-2,求a 、b 、c 的值.解:由f (-1)=2,得a -b +c =2,①又f ′(x )=2ax +b ,∴f ′(0)=b =0,② 而⎠⎛01f (x )d x =⎠⎛01(ax 2+c )d x =⎝⎛⎭⎫13ax 3+cx ⎪⎪⎪10 =13a +c =-2,③ 联立①②③得a =6,c =-4.6.设f (x )是一次函数,且⎠⎛01f (x )d x =1,求证:⎠⎛01f 2(x )d x >1. 证明:设f (x )=kx +b (k ≠0,b ,k 为常数).⎠⎛01f (x )d x =⎠⎛01(kx +b )d x =⎝⎛⎭⎫k 2x 2+bx ⎪⎪⎪10=k 2+b , 即k 2+b =1,k =2(1-b ). ⎠⎛01f 2(x )d x =⎠⎛01(kx +b )2d x =⎠⎛01(k 2x 2+2kbx +b 2)d x =⎝⎛⎭⎫13k 2x 3+kbx 2+b 2x ⎪⎪⎪10=13k 2+kb +b 2 =43(1-b )2+2b (1-b )+b 2=13(b -1)2+1>1. 即⎠⎛01f 2(x )d x >1得证.。

《微积分的基本定理》课件

《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。

微积分基本定理

微积分基本定理

或记作
f ( x)dx F ( x) F (b) F (a).
b a b a
说明:
牛顿-莱布尼茨公式提供了计算定积分的简便 的基本方法,即求定积分的值,只要求出被积
函数 f(x)的一个原函数F(x),然后计算原函数

计算定积分归结为求原函数的问题。
1、已知f ( x)是一次函数,其图象过点(3,4), 且

1
0
f ( x)dx 1, 求f ( x)的解析式
2、已知f (a) (2ax a x)dx, 求f (a)的最大值。
2 2 0
1
练一练:已知f(x)=ax² +bx+c,且f(-1)=2,f’(0)=0,

1
0
f ( x)dx 2, 求a, b, c的值
' ' -1
+1
'
'
'
'
'
问题:通过计算下列定积分,进一步说明其定
积分的几何意义。通过计算结果能发现什么结 论?试利用曲边梯形的面积表示发现的结论.
2

sin xdx

2
0
sin xdx
我们发现:
(1)定积分的值可取正值也可取负值,还可以是0; (2)当曲边梯形位于x轴上方时,定积分的值取正值; (3)当曲边梯形位于x轴下方时,定积分的值取负值; (4)当曲边梯形位于x轴上方的面积等于位于x轴下方 的面积时,定积分的值为0.
得到定积分的几何意义:曲边梯形面积的代数和。
例3:计算 解

2
0
2 x , 0 x 1 f ( x)dx,其中 f ( x) 5, 1 x 2

要点讲解:微积分基本定理

要点讲解:微积分基本定理

1 / 21.6 微积分基本定理自主探究学习1. 微积分基本定理:如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()ba f x dx Fb F a =-⎰. 2. 定积分的性质:()()()()bc ba a c f x dx f x dx f x dx a cb =+<<⎰⎰⎰其中(定积分对积分区间的可加性)名师要点解析要点导学1.微积分基本定理是微积分中最重要、最辉煌的成果,它揭示了导数和定积分之间的内在联系,同时它也提供了计算定积分的一种有效办法.2.寻找满足()()F x f x 的函数F(x ),一般运用基本初等函数的求导公式和导数的四则运算法则,从反方向上求出F(x ).3. 为了方便起见,还常用()|ba F x 表示()()Fb F a -,即()()|()()bb a a f x dx F x F b F a ==-⎰.该式称之为微积分基本公式或牛顿—莱布尼兹公式.它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁. 它不仅揭示了导数和定积分之间的内在联系,同时也提供计算定积分的一种有效方法,为后面的学习奠定了基础.【经典例题】【例1】计算下列定积分:2200sin ,sin ,sin xdx xdx xdx ππππ⎰⎰⎰.由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论.【分析】求出sin x 的原函数,利用微积分基本定理求解.然后观察规律.【解】因为'(cos )sin x x -=,所以00sin (cos )|(cos )(cos 0)2xdx x πππ=-=---=⎰,22sin (cos )|(cos 2)(cos )2xdx x ππππππ=-=---=-⎰,2 / 22200sin (cos )|(cos 2)(cos 0)0xdx x πππ=-=---=⎰.可以发现,定积分的值可能取正值也可能取负值,还可能是0.(1)当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于曲边梯形的面积;(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于曲边梯形的面积的相反数;(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于位于 x 轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.【点拨】要注意定积分的值可能取正值也可能取负值,还可能是0.【例2】计算下列定积分:(1)3211(2)x dx x -⎰; (2)⎰+2021dx xx . 【分析】根据被积函数的特点,求出其原函数,利用微积分基本定理求解.【解】(1)因为2''211()2,()x x x x ==-,所以3332211111(2)2x dx xdx dx xx -=-⎰⎰⎰ 233111122||(91)(1)33x x =+=-+-=. (2))1()1(211221220202x d x dx x x ++=+-⎰⎰151221202-=+⋅=x .【点拨】把求定积分的问题,转化成求原函数的问题,寻找满足()()F x f x '=的函数F(x ),一般运用基本初等函数的求导公式和导数的四则运算法则,从反方向上求出F(x ).。

高中数学同步教学 第4章 §2 微积分基本定理

高中数学同步教学 第4章 §2 微积分基本定理
a
通常称 F(x)是 f(x)的一个_原__函__数___.
(2)在计算定积分时,常常用符号 F(x)|ba来表示 F(b)-F(a),牛顿—莱布尼茨
公式也可写作bf(x)dx=F(x)|ba=__F__(b_)_-__F_(_a_)__. a (3)微积分基本定理表明,计算定积分bf(x)dx 的关键是找出满足 F′(x)=f(x) a
1.2(x-1)dx=__0__. 0
[解析] 2(x-1)dx=(x22-x)|02=2-2=0. 0
2.已知自由下落的物体的运动速度 v=gt(g 为常数),则当 t∈[1,2]时,物体
下落的距离为( C )
A.12g
B.g
C.32g
D.2g
[解析] 物体下落的距离 s=1gtdt=12gt2|21=32g.故选 C. 0
4)dx=(x2-4x)|05=(52-4×5)-(02-4×0)=5.
(2)由于 x3 的导函数是 3x2,根据微积分基本定理可得53x2dx=x3|25=53-23= 2
117. (3)由于-cosx 的导函数是 sinx,根据微积分基本定理可得πsinxdx=(-cosx)|π0
0
=(-cos π)-(-cos0)=2. (4)由于 lnx 的导函数是1x,根据微积分基本定理可得31xdx=lnx|31=ln3-ln1=
0
1
• [思路分析] 根据微积分基本定理,关键求相应被积函数的 一[解个析原] 函(1数)∵.(x2+3x)′=2x+3,
∴1(2x+3)dx=(x2+3x)|10=1+3=4. 0
(2)∵(t-t44)′=1-t3,
1
∴-2
(1-t3)dt=(t-t44)|-1 2

定积分与原函数的关系 微积分基本定理【高等数学PPT课件】

定积分与原函数的关系 微积分基本定理【高等数学PPT课件】
通过原函数计算定积分开辟了道路 .
2) 变限积分求导:
d (x)
dx a
f
(t) d t

f
[ (x)](x)
d
dx
( x) (x)
f
(t)
dt

d dx

a
f (t) d t
(x)
( x)
a
f
(t) d t

f [ (x)](x) f [ (x)] (x)
第二节 定积分与原函数的关系 微积分基本定理
一、积分上限函数
二、牛顿—莱布尼茨公式
一、积分上限函数
定理1. 若
x
则变上限函数 y
y f (x)
(x) a f (t) d t
(x)
证: x, x h [a, b] , 则有
o a x b x
(x

h) h
(x)

1
o
x
0
例6

f
(x)

2x 5
0 1

x x

1
,
2

2
0
f
( x)dx.
解:
2
0
f
ห้องสมุดไป่ตู้
( x)dx
1 0
f
( x)dx

2
1
f
( x)dx
y
在[1,2]上规定当x 1时, f ( x) 5,
原式
1
2xdx
2
5dx 6.
0
1
o 12x
例7. 设
解:设
1

《微积分学基本定理》课件

《微积分学基本定理》课件

解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。

第四章 §2 微积分基本定理

第四章 §2 微积分基本定理

§2 微积分基本定理学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点 微积分基本定理(牛顿—莱布尼茨公式)思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系?答案 由定积分的几何意义知,ʃ10(2x +1)d x =12×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x +1)d x =F (1)-F (0).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?答案 不唯一.根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′(x )+c ′=f (x ).梳理 (1)微积分基本定理①条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); ②结论:ʃb a f (x )d x =F (b )-F (a );③符号表示:ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).(2)常用函数积分公式表1.若F ′(x )=f (x ),则F (x )唯一.( × )2.微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( √ )3.应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( √ )类型一 求定积分命题角度1 求简单函数的定积分 例1 求下列定积分.(1)ʃ21⎝⎛⎭⎫1x -3cos x d x ; (2)2π2sin cos d 22x x x⎛⎫- ⎪⎝⎭⎰; (3)ʃ30(x -3)(x -4)d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 解 (1)ʃ21⎝⎛⎭⎫1x -3cos x d x =(ln x -3sin x )|21 =(ln 2-3sin 2)-(ln 1-3sin 1)=ln 2-3sin 2+3sin 1.(2)∵⎝⎛⎭⎫sin x 2-cos x 22=1-2sin x 2cos x 2 =1-sin x , ∴2π2sin cos d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20(1sin )d x x ⎰-=π20(cos )|x x +=⎝⎛⎭⎫π2+cos π2-(0+cos 0)=π2-1. (3)∵(x -3)(x -4)=x 2-7x +12,∴ʃ30(x -3)(x -4)d x =ʃ30(x 2-7x +12)d x=⎪⎪⎝⎛⎭⎫13x 3-72x 2+12x 30=⎝⎛⎭⎫13×33-72×32+12×3-0=272. 反思与感悟 (1)当被积函数为两个函数的乘积或乘方形式时一般要转化为和的形式,便于求得原函数F (x ).(2)由微积分基本定理求定积分的步骤 第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ). 跟踪训练1 求下列定积分.(1)ʃ21⎝⎛⎭⎫x -x 2+1x d x ; (2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰;(3)ʃ94x (1+x )d x .考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分解 (1)ʃ21⎝⎛⎭⎫x -x 2+1x d x =⎪⎪⎝⎛⎭⎫12x 2-13x 3+ln x 21=⎝⎛⎭⎫12×22-13×23+ln 2-⎝⎛⎭⎫12-13+ln 1=ln 2-56.(2)π222cos sin d 22x x x ⎛⎫- ⎪⎝⎭⎰=π20cos d x x ⎰=π20sin |x =1. (3)ʃ94x (1+x )d x =ʃ94(x +x )d x =3292421|32x x ⎛⎫+ ⎪⎝⎭=322219932⎛⎫⨯+⨯ ⎪⎝⎭-322214432⎛⎫⨯+⨯ ⎪⎝⎭=2716.命题角度2 求分段函数的定积分 例2 求下列定积分:(1)f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2<x ≤4,求ʃ40f (x )d x ;(2)ʃ20|x 2-1|d x .考点 分段函数的定积分 题点 分段函数的定积分 解(1)ʃ40f (x )d x =π2sin d x x ⎰+2π21d x ⎰+ʃ42(x -1)d x=π20(cos )|x -+2π2|x +⎪⎪⎝⎛⎭⎫12x 2-x 42=1+⎝⎛⎭⎫2-π2+(4-0)=7-π2. (2)ʃ20|x 2-1|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x= ⎪⎪⎝⎛⎭⎫x -13x 310+⎪⎪⎝⎛⎭⎫13x 3-x 21=2. 反思与感悟 分段函数定积分的求法(1)利用定积分的性质,转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.跟踪训练2 (1)ʃ1-1e |x |d x =_______.(2)已知f (x )=⎩⎪⎨⎪⎧2x +e x,0≤x ≤1,x -1x ,1<x ≤2,则ʃ20f (x )d x =______.考点 分段函数的定积分 题点 分段函数的定积分 答案 (1)2e -2 (2)e +32-ln 2解析 (1)ʃ1-1e |x |d x =ʃ0-1e -x d x +ʃ10e xd x=-e -x |0-1+e x |10=-e 0+e 1+e 1-e 0=2e -2.(2)ʃ20f (x )d x =ʃ10(2x +e x )d x +ʃ21⎝⎛⎭⎫x -1x d x =(x 2+e x )|10+⎪⎪⎝⎛⎭⎫12x 2-ln x 21=(1+e)-(0+e 0)+⎝⎛⎭⎫12×22-ln 2-⎝⎛⎭⎫12×1-ln 1 =e +32-ln 2.类型二 利用定积分求参数例3 (1)已知t >0,f (x )=2x -1,若ʃt 0f (x )d x =6,则t =________. (2)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________. 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)3 (2)⎣⎡⎦⎤23,2解析 (1)ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t =6, 解得t =3或-2,∵t >0,∴t =3. (2)ʃ21(kx +1)d x =⎪⎪⎝⎛⎭⎫12kx 2+x 21=32k +1. 由2≤32k +1≤4,得23≤k ≤2.引申探究1.若将例3(1)中的条件改为ʃt 0f (x )d x =f ⎝⎛⎭⎫t 2,求t . 解 由ʃt 0f (x )d x =ʃt 0(2x -1)d x =t 2-t , 又f ⎝⎛⎭⎫t 2=t -1,∴t 2-t =t -1,得t =1.2.若将例3(1)中的条件改为ʃt 0f (x )d x =F (t ),求F (t )的最小值. 解 F (t )=ʃt 0f (x )d x =t 2-t =⎝⎛⎭⎫t -122-14(t >0), 当t =12时,F (t )min =-14.反思与感悟 (1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.跟踪训练3 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________.(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 (1)[0,2) (2)33解析 (1)f (x )=ʃ10(1-2x +2t )d t =(t -2xt +t 2)|10=-2x +2,x ∈(0,1]. ∴f (x )的值域为[0,2).(2)∵ʃ10f (x )d x =ʃ10(ax 2+c )d x=⎪⎪⎝⎛⎭⎫13ax 3+cx 10=a 3+c . 又f (x 0)=ax 20+c ,∴a 3=ax 20,即x 0=33或-33. ∵0≤x 0≤1,∴x 0=33.1.若ʃa 1⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 D解析 ʃa 1⎝⎛⎭⎫2x +1x d x =ʃa 12x d x +ʃa 11xd x =x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.2.π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰等于( )A .-32 B .-12 C.12 D.32考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D 解析π2312sin d 2θθ⎛⎫- ⎪⎝⎭⎰=π3cos d θθ⎰=π30sin |θ=32. 3.设f (x )=⎩⎪⎨⎪⎧x 2,0≤x ≤1,2-x ,1<x ≤2,则ʃ20f (x )d x 等于( )A.34 B.45 C.56D .不存在考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ʃ20f (x )d x =ʃ10x 2d x +ʃ21(2-x )d x = ⎪⎪13x 310+⎪⎪⎝⎛⎭⎫2x -12x 221=56. 4.已知函数f (x )=x n +mx 的导函数f ′(x )=2x +2,则ʃ31f (-x )d x =________.考点 微积分基本定理的应用 题点 微积分基本定理的综合应用 答案 23解析 ∵f (x )=x n +mx 的导函数f ′(x )=2x +2, ∴nx n -1+m =2x +2,解得n =2,m =2, ∴f (x )=x 2+2x ,则f (-x )=x 2-2x ,∴ʃ31f (-x )d x =ʃ31(x 2-2x )d x=⎪⎪⎝⎛⎭⎫13x 3-x 231=9-9-13+1=23. 5.求函数f (a )=ʃ10(6x 2+4ax +a 2)d x 的最小值.考点 微积分基本定理的综合应用 题点 微积分基本定理的综合应用解 ∵ʃ10(6x 2+4ax +a 2)d x =(2x 3+2ax 2+a 2x )|10=2+2a +a 2,∴f (a )=a 2+2a +2=(a +1)2+1, ∴当a =-1时,f (a )有最小值1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.ʃ21⎝⎛⎭⎫e x +1x d x 等于( ) A .e 2-ln 2 B .e 2-e -ln 2 C .e 2+e +ln 2D .e 2-e +ln 2考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分 答案 D解析 ʃ21⎝⎛⎭⎫e x +1x =(e x +ln x )|21 =(e 2+ln 2)-(e +ln 1)=e 2-e +ln 2. 2.若π2(sin cos )d x a x x ⎰-=2,则实数a 等于( )A .-1B .1C .- 3D. 3考点 微积分基本定理的应用 题点 利用微积分基本定理求参数 答案 A 解析π2(sin cos )d x a x x ⎰-=π20(cos sin )|x a x --=0-a -(-1-0)=1-a =2, ∴a =-1,故选A.3.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1D .S 3<S 2<S 1考点 利用微积分基本定理求定积分 题点 利用微积分基本定理求定积分答案 B解析 因为S 1=ʃ21x 2d x =⎪⎪13x 321=13×23-13=73, S 2=ʃ211xd x =ln x |21=ln 2, S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1).又ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.4.ʃ30|x 2-4|d x 等于( )A.213B.223C.233D.253 考点 分段函数的定积分 题点 分段函数的定积分 答案 C解析 ∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4,2≤x ≤3,4-x 2,0≤x ≤2,∴ʃ30|x 2-4|d x =ʃ32(x 2-4)d x +ʃ20(4-x 2)d x= ⎪⎪⎝⎛⎭⎫13x 3-4x 32+⎪⎪⎝⎛⎭⎫4x -13x 320=⎣⎡⎦⎤(9-12)-⎝⎛⎭⎫83-8+⎣⎡⎦⎤⎝⎛⎭⎫8-83-0 =-3-83+8+8-83=233.5.若函数f (x ),g (x )满足ʃ1-1f (x )g (x )d x =0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x +1,g (x )=x -1; ③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数为( ) A .0 B .1 C .2 D .3 考点 微积分基本定理的应用 题点 微积分基本定理的综合应用解析 对于①,ʃ1-1sin 12x cos 12x d x =ʃ1-112sin x d x =0, 所以①是区间[-1,1]上的一组正交函数;对于②,ʃ1-1(x +1)(x -1)d x =ʃ1-1(x 2-1)d x ≠0,所以②不是区间[-1,1]上的一组正交函数;对于③,ʃ1-1x ·x 2d x =ʃ1-1x 3d x =0,所以③是区间[-1,1]上的一组正交函数.6.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于() A .-13 B .-1C.13 D .1考点 利用微积分基本定理求定积分题点 利用微积分基本定理求定积分答案 A解析 ∵f (x )=x 2+2ʃ10f (x )d x ,∴ʃ10f (x )d x = ⎪⎪⎝⎛⎭⎫13x 3+2x ʃ10f (x )d x 10=13+2ʃ10f (x )d x ,∴ʃ10f (x )d x =-13.7.设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0,则ʃ1-1f (x )d x =________. 考点 分段函数的定积分题点 分段函数的定积分答案 sin 1-23解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ10(cos x -1)d x=⎪⎪13x 30-1+(sin x -x )|10=⎣⎡⎦⎤13×03-13×(-1)3+[(sin 1-1)-(sin 0-0)] =sin 1-23. 8.已知f (x )=3x 2+2x +1,若ʃ1-1f (x )d x =2f (a )成立,则a =________.考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 -1或13解析 ʃ1-1f (x )d x =(x 3+x 2+x )|1-1=4, 2f (a )=6a 2+4a +2,由题意得6a 2+4a +2=4,解得a =-1或13. 9.从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为________.考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 13解析 长方形的面积为S 1=3,S 阴=ʃ103x 2d x =x 3|10=1,则P =S 阴S 1=13.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +ʃa 03t 2d t ,x ≤0,若f (f (1))=1,则a =____________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又当x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f (f (1))=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 考点 微积分基本定理的应用题点 利用微积分基本定理求参数答案 f (x )=4x +3解析 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0),∴ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x=12a +b =5, ʃ10xf (x )d x =ʃ10x (ax +b )d x=ʃ10(ax 2)d x +ʃ10bx d x =13a +12b =176. ∴⎩⎨⎧ 12a +b =5,13a +12b =176,解得⎩⎪⎨⎪⎧a =4,b =3. ∴f (x )=4x +3. 12.已知α∈⎣⎡⎦⎤0,π2,则当ʃα0(cos x -sin x )d x 取最大值时,α=________. 考点 微积分基本定理的应用题点 微积分基本定理的综合应用答案 π4解析 ʃα0(cos x -sin x )d x =(sin x +cos x )|α0=sin α+cos α-1=2sin ⎝⎛⎭⎫α+π4-1. ∵α∈⎣⎡⎦⎤0,π2,则α+π4∈⎣⎡⎦⎤π4,34π, 当α+π4=π2,即α=π4时, 2sin ⎝⎛⎭⎫α+π4-1取得最大值. 三、解答题13.已知f (x )=ʃx -a (12t +4a )d t ,F (a )=ʃ10[f (x )+3a 2]d x ,求函数F (a )的最小值.考点 微积分基本定理的应用题点 微积分基本定理的综合应用解 因为f (x )=ʃx -a (12t +4a )d t =(6t 2+4at )|x -a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=ʃ10[f (x )+3a 2]d x =ʃ10(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )|10=a 2+2a +2=(a +1)2+1≥1.所以当a =-1时,F (a )取到最小值为1.四、探究与拓展14.已知函数f (x )=⎩⎨⎧ (x +1)2,-1≤x ≤0,1-x 2,0<x ≤1,则ʃ1-1f (x )d x 等于( ) A.3π-812B.4+3π12C.4+π4D.-4+3π12 考点 分段函数的定积分题点 分段函数的定积分答案 B解析 ʃ1-1f (x )d x =ʃ0-1(x +1)2d x +ʃ101-x 2d x ,ʃ0-1(x +1)2d x = ⎪⎪13(x +1)30-1=13, ʃ101-x 2d x 以原点为圆心,以1为半径的圆的面积的四分之一, 故ʃ101-x 2d x =π4, 故ʃ1-1f (x )d x =13+π4=4+3π12. 15.已知f ′(x )是f (x )在(0,+∞)上的导数,满足xf ′(x )+2f (x )=1x2,且ʃ21[x 2f (x )-ln x ]d x =1. (1)求f (x )的解析式;(2)当x >0时,证明不等式2ln x ≤e x 2-2.考点 微积分基本定理的应用题点 微积分基本定理的综合应用(1)解 由xf ′(x )+2f (x )=1x2,得 x 2f ′(x )+2xf (x )=1x, 即[x 2f (x )]′=1x, 所以x 2f (x )=ln x +c (c 为常数),即x 2f (x )-ln x =c .又ʃ21[x 2f (x )-ln x ]d x =1,即ʃ21c d x =1,所以cx |21=1,所以2c -c =1,所以c =1.所以x 2f (x )=ln x +1,所以f (x )=ln x +1x 2. (2)证明 由(1)知f (x )=ln x +1x 2(x >0), 所以f ′(x )=1x ×x 2-2x (ln x +1)x 4=-2ln x -1x 3, 当f ′(x )=0时,x =12e -,f ′(x )>0时,0<x <12e -,f ′(x )<0时,x >12e -,所以f (x )在120,e -⎛⎫ ⎪⎝⎭上单调增,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调减.所以f (x )max =12e f -⎛⎫ ⎪⎝⎭=e 2, 所以f (x )=ln x +1x 2≤e 2, 即2ln x ≤e x 2-2.。

《微积分基本定理》课件

《微积分基本定理》课件

证明方法三:使用不定积分和定积分的性质
总结词
利用不定积分和定积分的性质来证明微积分基本定理 。
详细描述
首先,我们知道不定积分的定义是$int f(x) dx = F(x) + C$,其中$F(x)$是$f(x)$的一个原函数,$C$是常 数。然后,根据定积分的性质,我们知道 $int_{a}^{b} f(x) dx = F(b) - F(a)$。因此,我们可以 将微积分基本定理的结论表示为$int_{a}^{b} f(x) dx = lim_{Delta x to 0} sum_{i=1}^{n} f(xi_i) Delta x$ ,其中$xi_i$是每个小区间的中点,$Delta x$是每个 小区间的宽度。最后,我们利用不定积分的定义和极 限的性质来证明这个结论。
我们可以将积分看作是计算曲线下方的面积。对于一个给 定的函数,我们可以在坐标系中画出其图像。然后,将积 分区间分成若干个小区间,每个小区间的宽度为$Delta x$ ,高度为$f(x)$。因此,每个小矩形的高度与宽度的乘积 即为该小区间的面积。所有小矩形的面积之和即为整个曲 线下方的面积,即函数的积分值。
广义微积分基本定理的应用
广义微积分基本定理在数学分析和实变函数等领域中有 着重要的应用,例如在证明某些积分的收敛性和求解某 些特殊类型的积分等。
THANKS
感谢观看
微积分基本定理是微积分学中的核心定理,它建立了函数积分与导数之间 的联系,为解决各种问题提供了重要的方法和思路。
微积分基本定理的背景
微积分基本定理的起源可以追溯到17世纪,当 时科学家们开始研究如何求解各种物理问题, 如速度、加速度、面积和体积等。
牛顿和莱布尼茨等科学家在研究这些问题时, 发现了微积分基本定理,从而为解决这些问题 提供了重要的方法和工具。

微积分基本定理

微积分基本定理

1
2
x ,0 ≤ x < 1 , 例8 设 f ( x ) = x,1 ≤ x ≤ 2
2
上的表达式. 求 Φ( x ) = ∫0 f (t )dt ,在 [0,2] 上的表达式
x

当 0 ≤ x < 1 时,
Φ( x ) = ∫0 f (t )dt = ∫0 t dt
x x 2
1 t 3 = 1 x 3 = 3 0 3
3 2
3x 2 2x = − 12 1+ x 1 + x8
x 0 “ 型未定式,可利用洛必达法 型未定式, 解 这是一个 ” 0 1 −t cos x −t e 则计算, 则计算,分子为 ∫cos x dt=-∫1 e dt
2 2
例4
e ∫cos x 求 limt
由法则2得 由法则 得
(2)定理2 (2)定理2 定理
分上限函数Φ ( x ) = ∫ f (t )dt 是 f ( x ) 在区间
x
上连续, 若函数 f ( x ) 在 [a, b]上连续,则积
a
上的一个原函数. [a, b] 上的一个原函数.
此定理一方面说明了连续函数一定存在原函数, 此定理一方面说明了连续函数一定存在原函数, 另一方面也说明了定积分与原函数之间的关系, 另一方面也说明了定积分与原函数之间的关系, 从而可能用原函数来计算定积分. 从而可能用原函数来计算定积分
3.法则3 3.法则3 法则
α ( x ) ∈ [a , , β ( x ) ∈ [a , b] 且α ( x ) 与 β ( x ) b] ,
都可微, 都可微,则有
若函数 f ( x )在区间 [a, b]上连续, 上连续,

第二节 微积分基本公式

第二节  微积分基本公式
上可导, 设 α ( x ) 在 [a, b] 上可导, 则
d α( x) ∫a f (t ) dt = f [α ( x )] ⋅ α ′( x ) . dx
证 设 Φ( x) =

x
a
则 f (t )dt , ∫a
α ( x)
f (t) dt = Φ[α(x)],
d α ( x) 所以 ∫a f (t ) dt = Φ′[α( x)]⋅α′( x) = f [α ( x )] ⋅ α ′( x ) . dx
例2 设 f ( x ) 为连续函数, F ( x ) = 为连续函数,

ln x 1 x
f ( t ) dt , 则
1 1 1 F ′( x ) = f (ln x ) ⋅ ( ) − f ( ) ⋅ ( − 2 ) x x x
1 1 1 = f (ln x ) + 2 f ( ) . x x x
1 0
F (1) = 1 − ∫ f ( t ) dt = ∫ [1 − f ( t )] dt > 0, 0
由零点定理可知, 由零点定理可知,F (x) 在 (0,1) 内至少有一个零点; 内至少有一个零点; 另一方面,Q f ( x ) < 1, ∴ F ′( x ) = 2 − f ( x ) > 0 , 另一方面,
上连续, 且 例6 设 f ( x ) 在 [0,1] 上连续, f ( x ) < 1 .证明方程
2 x − ∫ f ( t ) dt = 1 在 [0,1] 上只有一个实根 .
0
x

令 F ( x) = 2 x −
1

x 0
f ( t ) dt − 1 , F ( 0 ) = − 1 < 0 ,

微积分基本定理_图文_图文

微积分基本定理_图文_图文
微积分基本定理_图文_图文.ppt
【课标要求】 1.了解微积分基本定理的内容与含义. 2.会利用微积分基本定理求函数的定积分. 【核心扫描】 1.用微积分基本定理求函数的定积分是本课的重点. 2.对微积分基本定理的考查常以选择、填空题的形式出现.
1.微积分基本定理
自学导引
连续
f(x)
F(b)-F(a)

(1)用微积分基本定理求定积分的步骤: ①求f(x)的一个原函数F(x); ②计算F(b)-F(a). (2)注意事项: ①有时需先化简,再求积分; ②f(x)的原函数有无穷多个,如F(x)+c,计算时,一般只写一个最 简单的,不再加任意常数c.
【变式1】 求下列定积分:
求较复杂函数的定积分的方法: (1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积 函数的原函数,当原函数不易求时,可将被积函数适当变形后求 解,具体方法是能化简的化简,不能化简的变为幂函数、正、余 函数、指数、对数函数与常数的和与差. (2)精确定位积分区间,分清积分下限与积分上限.
定积分的应用体现了积分与函数的内在联系,可以通过 积分构造新的函数,进而对这一函数进行性质、最值等方面的考 查,解题过程中注意体会转化思想的应用.
【题后反思】 (1)求分段函数的定积分时,可利用积分性质将其表 示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝 对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论.
2.被积函数为分段函数或绝对值函数时的正确处理方式 分段函数和绝对值函数积分时要分段去积和去掉绝对值符
号去积.处理这类积分一定要弄清分段临界点,同时对于定积分 的性质,必须熟记在心.
题型一 求简单函数的定积分 【例1】 计算下列定积分

微积分的基本定理

微积分的基本定理

微积分的基本定理(Fundamental Theorem of Calculus)微积分是数学中的一个重要分支,被广泛应用于物理学、工程学、经济学等众多领域中。

而微积分的基本定理是微积分的核心之一,它为我们求解积分问题提供了一个重要的依据。

微积分的基本定理实际上是由两个定理组成,一个是第一类基本定理,另一个是第二类基本定理。

这两个定理都是微积分学习的基石和里程碑。

第一类基本定理可以用以下公式来表达:如果函数f是一个在区间[a, b]上的连续函数,且F是f的一个原函数,那么有:∫[a, b] f(x)dx = F(b) - F(a)这个定理告诉我们,如果我们能找到一个函数F,它的导数等于原函数f,那么我们就可以通过计算F(b)和F(a)的差值来求解积分。

这个定理是微积分中最重要的定理之一,也被称为积分与微分的对应关系。

第二类基本定理是微积分学中的另一个核心定理,它表述如下:如果函数f在区间[a, b]上是连续的,并且F是f在[a, b]上的一个原函数,那么在[a, b]上的定积分可以通过F的导数来计算,即∫[a, b] f(x)dx = F(x)|[a, b] = F(b) - F(a)这个定理告诉我们,如果我们能找到一个函数F,它的导数等于我们要求解的函数f,那么我们就可以通过计算F(b)和F(a)的差值来求解积分。

这个定理可以看作是第一类基本定理的逆向推导,它证明了积分和微分是可以互相转化的。

微积分的基本定理的重要性在于它为我们提供了一个求解积分问题的通用方法。

无论是利用第一类基本定理还是第二类基本定理,我们都可以将复杂的积分问题转化为较为简单的求导问题。

这使得我们可以更加便捷地求解各种复杂的积分问题,帮助我们更好地理解和应用微积分。

微积分的基本定理的应用远远不止于此。

例如,在微积分的前沿领域中,基本定理被广泛应用于求解变分问题、函数逼近、积分方程等诸多问题中。

它不仅为我们提供了数学上的框架和工具,更为现代科学和工程技术的发展做出了重要贡献。

如何理解微积分基本定理

如何理解微积分基本定理

如何理解微积分基本定理
微积分基本定理可以用导数和积分的物理意义来理解,也可以用其几何意义来理解。

用导数的物理意义来理解,函数f(x)已知,对其求导可得f(x),即求导和积分是互逆的过程。

用积分的物理意义来理解,函数f(x)已知,积分可得原函数∫f(x)dx,其中∫f(x)dx 是f(x)的原函数。

用几何意义来理解,微积分基本定理可表示为函数的定积分的值等于原函数在积分区间端点处的函数值之差。

其中,定积分的几何意义是面积,原函数的几何意义是切线的斜率。

无论用哪种方式理解微积分基本定理,都需要具备一定的数学基础和思维能力,如果想要深入理解,可以结合实际应用进行学习。

2.微积分基本定理

2.微积分基本定理
x Δx

a
x Δx
f ( t )dt f ( t )dt
a
x
( x)
oa
x
x x b x
5

a
x
f ( t )dt
x Δx
x
f ( t )dt f ( t )dt
a
x

x
x Δx
y
f ( t )dt , ( )由积分中值定理得o a
x x x b x

b
a
f ( x )dx f ( )(b a )
(a b).
证 因为 f ( x ) 连续, 故它的原函数存在,
设其为 F ( x ). 即设在 [a, b] 上 F ( x ) f ( x ).
根据牛顿 - 莱布尼茨公式, 有
a f ( x )dx F (b) F (a ).
定理2(原函数存在定理)
如果 f ( x )在[a , b]上连续, 则积分上限的函数
( x ) f ( t )dt
a
x
就是f ( x )在[a , b]上的一个原函数.
这就证明了上一章中所提出的任何连续 函数一定存在原函数.
7
定理2(原函数存在定理)
如果 f ( x )在[a , b]上连续, 则积分上限的函数
x
已知 F ( x ) 是 f ( x ) 的一个原函数,
又由于 ( x )
所以
a
f ( t )dt 也是 f ( x )的一个原函数 ,
x [a , b].
11
F ( x) ( x) C
F ( x) ( x) C
x [a , b].

第二节 微积分基本公式

第二节  微积分基本公式

x x0
x
9
定理1指出: (1) 积分运算和微分运算的关系, 它把微分和
积分联结为一个有机的整体 — 微积分, 所以它是微积分学基本定理. (2) 连续函数 f (x) 一定有原函数,
函数 ( x) x f (t)dt 就是f(x)的一个原函数. a
10
推论 设f ( x) C[a, b], 函数g( x)可导,x [a,b].
a
a
25
b a
f
( x)dx
F(b)
F (a)
F ( x)ba
微积分基本公式表明
一个连续函数在区间[a, b]上的定积分等于 它的任意一个原函数在区间[a, b]上的增量.
求定积分问题转化为求原函数的问题.
注 当a b时,
b f ( x)dx F(b) F(a)仍成立. a
26
例 2 (2cos x sin x 1)dx 0
f
(t )dt
(x
x)
f
(x)
0
对吗?
dx 0
错!
42
分析 在 d x ( x t ) f (t )dt中, 其中的x对积分过程 dx 0
是常数, 而积分结果 x ( x t) f (t)dt 是x的函数. 0
注意 若被积函数是积分上限(或下限)的函数中的 变量 x 及积分变量 t 的函数时, 应注意 x与t 的区别. 对 x求导时, 绝不能用积分上限(或下限)的变量x替 换积分变量.
f (t)dt
f (x)
18

d dx
x
tf (t)dt
0
xf ( x),
d dx
x 0
f (t)dt
f (x)

微积分的基本定理(2)

微积分的基本定理(2)

b f (t)dt 称为积分下限函数. x
4
定理 6.1 (原函数存在性定理)
若 f (x) C([a,b]), 则 (x) x f (t) d t 在[a,b] a
上可导, 且
dx
'(x) d x a f (t) d t f (x) (a x b) .
5
例1
(
x
cost dt )
大 学 数 学(一)
—— 一元微积分学
第2节 微积分的基本定理
1
第六章 定积分
第二节 微积分的基本公式
一. 积分上限函数 二. 微积分基本公式
2
一. 积分上限函数 (变上限的定积分)
对可积函数 f (x) 而言, 每给定一对 a, b 值, 就有
确定的定积分值I
b
f
(x)d x
与之对应.
a
这意味着 f (x) 的定积分 b f (x)d x 与它的上下限 a
一个原函数, 则
b a
f
(x)d x
F ( x)
b a
F (b)
F (a).
牛顿— 莱布尼茨公式 将定积分的计算与求原函数的计算联系起来了.
10
例4
(sin x) cos x,
2 cos x d x
0
sin
x
2 0
sin
2
sin 0
1.
11
例5
1 1
11 x2
dx
arctan x
1 1
lim
x0
cos x
x2
lim x0
1
x2
罗必达法则
lim ecos2 x (sin x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
原函数, 这就肯定了连续函数的原函数是存在的。 定理 2 (原函数存在定理) 若函数f (x) 在区间 [a, b]上连续,则在该区间上 f (x) 的原函数存在。
例1
求下列变限积分的导数
d x t e dt ( 1) dx a

f (t ) e t 是连续函数,根据定理 1,得
d x t x e dt e dx a
0 x
' ' ( x) [20 (2t 1)dt (2 x 1) 2 ]'
x
2(2 x 1) 2(2 x 1) 2
6(2 x 1)
例3 ( 1) 解
求下列极限:
tdt x2
x
2 该极限是 x 0, sin tdt 0 , x 0 时, 当 0

b
a
f ( x )dx F ( x ) a F (b) F (a ).
b
例7 解



2 0
(cos x 2 sin x) dx


2 0
(cos x 2 sin x)dx
2 sin x 2 cos x0

sin

2
2 cos

2
(sin 0 2 cos 0)
f (t )dt f (t )dt
a
x
y y = f (x)
x
B A C
f (t )dt
a
x
x x
x
f (t )dt f (t )dt
a

x x
x
f (t )dt .
O a
(x)

x x + x b
x
根据积分中值定理知道,在 x 与 x + x 之 间 至少存在一点 x , 使
内容小结
1. 变限积分求导公式
x
( x) f (t )dt f ( x). a

( f (t )dt )' f ( x)
b
x
(
(
( x)
a
( x)
f (t )dt )' f [ ( x)] ' ( x)
f (t )dt )' f [ ( x)] ' ( x) f [ ( x)] ' ( x)
1 2 1 2 (ln e ln 1) 2 2
x 1, x 0 求 例 10 设 f ( x) x e , x0
解 由定积分性质,有

2
1
f ( x)dx

2
1
f ( x)dx f ( x)dx f ( x)dx
1
0
0
2
0
e dx ( x 1)dx
二、牛顿-莱布尼茨公式
定理 2 如果函数 f (x) 在区间[a, b]上连续,
F(x) 是 f (x) 在区间 [a, b] 上任一原函数, 那么

b
a
f ( x )dx F (b) F (a ).
牛顿-莱布尼茨(Newton-Leibniz)公式
由定理 1 知道 ( x ) f ( t ) dt 是 a f (x) 在 [a, b] 上的一个原函数, 又 由 题 设 知 道 F(x) 也是 f (x) 在 [a, b] 上一个原函数, 由 原 函数的性质得知,同一函数的两个不同原函数只 相差一个常数, 即 证
x 时, 该极限是 " " 型未定式, 解 当 由洛必达法则和重要极限得:
x
lim

x
a
(1 t ) dt
t
x
lim
( (1 t )t dt) '
a
x
x
( x) '
1 x lim (1 ) x x
e
例4
证明:函数 ( x) te t dt 当 x 0 时单调增加 0


2


2
cos x cos xdx cos x sin ddx 2 cos x sin xdx
3 2 0
0

cos x d (cosx) 2 cos xd (cosx)
2 0
0

3 3 2 2 2 2 4 [ cos2 x]0 [ cos2 x]02 ( ) 3 3 3 3 3 2
( x ) 证 按导数定义,证 lim f ( x ) 即可. x 0 x 由 (x ) 的 给自变量 x 以增量 x,x + x [a, b], 定义得对应的函数 (x) 的量 (x), 即
(x) = (x + x) - ( x)

x x a
1 1 [ (2 x 1)101 ]1 0 2 101 1 101 [1 (1)101 ] 202 1 101

例9 解
b
a
f ( x)dx [ f ( x)dx]b a F (b) F (a)


e
1
ln x dx x

e
1
e ln x dx 1 ln xd (ln x) x 1 2 e [ln x]1 2
第五章 定 积 分
第二节 微积分的基本定理
一、变上限定积分 二、牛顿-莱布尼茨公式
一、变上限定积分
如果 x 是区间 [a, b]上任意一点,定积分 x a f (t )dt 表示曲线 y = f (x) 在部分区间 [a, x] 上曲边梯形 AaxC 的面积, 如图中阴影部分所示的面积 . 当 x 在 y B 区间 [a, b] 上变化时, y = f (x) 阴影部分的曲边梯形面 C A 积也随之变化,所 以 变 (x) 上限定积分 x f (t )dt 是上限变量 x 的函数. 记作 (x), 即 x ( x ) f (t )dt (a ≤ x ≤ b).
0 " " 型未定式, 可以用洛必达法则求极限,有 0
lim
x 0
x
0
sin tdt x2
lim
x 0
( sin tdt) '
0
x
( x 2 )'
sin x lim x0 2 x
1 2
( 2)
x
lim
x
a
(1 t ) t dt x
(a 0为 常 数)
b

1 1 1 x 2 dx;
1
1 解 f ( x) 2 在 [ 1,1]上连续, F ( x) arctanx 是 1 x f ( x) 的一个原函数, 由牛顿—莱布尼兹公式得
1 1 1 1 x 2 dx arctan x 1 arctan 1 arctan( 1) ( ) ; 4 4 2
F ( x ) f ( t )dt C
a x
x
(a ≤ x ≤ b).

把 x = a 代入①式中, 即 (a ) 则,常数 C = F(a), 于是得

a
a
f ( t ) dt 0,
F ( x ) f (t )dt F (a ).
a
x
令 x = b 代入上式中,移项,得
a
a
O
a
x
b
x
定理 1
(变上限积分对上限的求导定理)
若函数 f (x) 在区间 [a, b] 上连续, 则变上限定积分
( x ) f (t )dt
a
x
并且它的导数等于被积函数, 在区间 [a, b] 上可导, 即
x d ( x) ( x) f (t )dt f ( x). a dx
x2
解 由函数单调性的判别方法,只需证明 ' ( x) 0 即可。
( x) ( te dt) x e
' t ' 0
x2
2 x2
2x
2x e
当 x 0 时, ( x) 2x e
'
x2
3 x2
3 x2
0
故 ( x) te t dt 当 x 0 时单调增加 0
1
注:(2)

b
a
b f ( x)dx [ f ( x)dx]b ( F ( x ) C ) | a a F (b) F (a)
例8 解

1 0

1
0
(2 x 1)100 dx
100
(2 x 1)
1 1 100 dx 0 (2 x 1) d (2 x 1) 2
例1 ( 2) 解
求下列变限积分的导数
d b t e dt x dx
x d b t x t e dt ( e dt )' e b dx x
x d 总结: f (t )dt f ( x) dx b
例1 ( 3) 解
求下列变限积分的导数
d x 2 t e dt dx a
x 1 0
2
1 2 2 [ e ] [ x x ] 0 e3 2
x 0 1
例 11 设 解

2

cos x cos3 xdx
2
简化被积函数.
cos x cos 3 x cos x(1 cos 2 x) cos x | sin x |
cos x sin x 2 x 0 cos x sin x 0 x 2
相关文档
最新文档