函数单调性讲义
函数的单调性与最值讲义
函数的单调性与最值课前双击巩固1.单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数图像 描述自左向右看图像是自左向右看图像是2.单调区间的定义如果函数y=f (x )在区间D 上是 ,那么就说函数y=f (x )在这一区间具有(严格的)单调性, 叫作函数y=f (x )的单调区间. 3.函数的最值 前提设函数y=f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(1)对于任意x ∈I ,都有 ; (2)存在x 0∈I ,使得结论 M 为最大值 M 为最小值常用结论1.复合函数的单调性函数y=f(u),u=φ(x),在函数y=f[φ(x)]的定义域上,如果y=f(u),u=φ(x)的单调性相同,则y=f[φ(x)]单调递增;如果y=f(u),u=φ(x)的单调性相反,则y=f[φ(x)]单调递减.2.单调性定义的等价形式设任意x1,x2∈[a,b],x1≠x2.(1)若有(x1-x2)[f(x1)-f(x2)]>0或f(x1)-f(x2)x1-x2>0,则f(x)在闭区间[a,b]上是增函数.(2)若有(x1-x2)[f(x1)-f(x2)]<0或f(x1)-f(x2)x1-x2<0,则f(x)在闭区间[a,b]上是减函数.3.函数单调性的常用结论(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数.(2)若k>0,则kf(x)与f(x)单调性相同,若k<0,则kf(x)与f(x)单调性相反.(3)函数y=f(x)(f(x)>0)在公共定义域内与y=-f(x),y=1f(x)的单调性相反.(4)函数y=f(x)(f(x)≥0)在公共定义域内与y=√f(x)的单调性相同.题组一常识题1.函数f(x)=(2a-1)x-3是R上的减函数,则a的取值范围是.2.函数f(x)=(x-2)2+5(x∈[-3,3])的单调递增区间是;单调递减区间是.3.函数f(x)=3x+1(x∈[2,5])的最大值与最小值之和等于.4.函数f(x)=|x-a|+1在[2,+∞)上是增函数,则实数a的取值范围是.题组二常错题◆索引:求单调区间忘记定义域导致出错;对于分段函数,一般不能整体单调,只能分段单调;利用单调性解不等式忘记在单调区间内求解;混淆“单调区间”与“在区间上单调”两个概念.5.函数f(x)=ln(4+3x-x2)的单调递减区间是.6.已知函数f(x)={(a-2)x,x≥2,(12)x-1,x<2满足对任意的实数x1≠x2,都有f(x1)-f(x2)x1-x2<0成立,则实数a的取值范围为.7.函数y=f(x)是定义在[-2,2]上的减函数,且f(a+1)<f(2a),则实数a的取值范围是.8.(1)若函数f (x )=x 2+2(a-1)x+2在区间(-∞,4]上是减函数,则实数a 的取值范围是 . (2)若函数f (x )=x 2+2(a-1)x+2的单调递减区间为(-∞,4],则a 的值为 .课堂考点探究探究点一 函数单调性的判断与证明 1 判断函数f (x )=ax x 2-1(a>0),x ∈(-1,1)的单调性,并加以证明.[总结反思] (1)定义法证明函数单调性的一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性).(2)复合函数单调性的确定方法:若两个简单函数的单调性相同,则这两个函数的复合函数为增函数;若两个简单函数的单调性相反,则这两个函数的复合函数为减函数.简称“同增异减”. 式题 下列函数中,在(0,+∞)上单调递增的函数是 ( )A .y=-x 2+1 B .y=|x-1| C .y=x 3 D .y=2-x探究点二 求函数的单调区间2 (1)函数f (x )=ln (x 2-2x-8)的单调递增区间是 ( ) A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)(2)设函数f (x )={1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x-1),则函数g (x )的单调递减区间是 .[总结反思] 求函数单调区间的常见方法:(1)定义法;(2)图像法;(3)导数法.求复合函数单调区间的一般解题步骤为:①确定函数的定义域;②求简单函数的单调区间;③求复合函数的单调区间,其依据是“同增异减”. 式题 (1) 函数y=(14)2x 2-3x+2的单调递增区间为 ( )A .(1,+∞)B .(-∞,34]C .(12,+∞) D .[34,+∞)(2)函数f (x )=(a-1)x+2在R 上单调递增,则函数g (x )=a |x-2|的单调递减区间是 .探究点三 函数单调性的应用考向1 利用函数的单调性比较大小3 (1)设a=log 52,b=(32)57,c=log 73,则a ,b ,c 的大小关系是 ( )A .b>a>cB .a>c>bC .b>c>aD .a>b>c(2)已知f (x )是定义在(0,+∞)上的单调函数,且对任意x ∈(0,+∞),f [f (x )-ln x ]=e +1,设a=f [(12)13],b=f [(13)12],c=f (log 2π),则a ,b ,c 的大小关系是 .(用“>”号连接表示)[总结反思] 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.考向2 利用函数的单调性解决不等式问题4 (1)已知函数f (x )的定义域为R ,对任意x 1<x 2,都有f (x 1)-f (x 2)<x 1-x 2,且f (-3)=-4,则不等式f (log 12|3x -1|)>lo g 12|3x-1|-1的解集为 ( )A .(2,+∞)B .(-∞,2)C .(0,1)∪(1,2)D .(-∞,0)∪(0,2)(2)已知函数f (x )=e x+x 3,若f (x 2)<f (3x-2),则实数x 的取值范围是 .[总结反思] 解函数不等式的理论依据是函数单调性的定义,具体步骤是:(1)将函数不等式转化成f (x 1)>f (x 2)的形式;(2)考查函数f (x )f (x )的单调性去掉法则“f ”,转化为形如“x 1>x 2”或“x 1<x 2”的常规不等式,从而得解. 考向3 利用函数的单调性求最值问题 5 设函数f (x )=2017x+1+20162017x +1+2016sin x ,x ∈-π2,π2的最大值为M ,最小值为N ,那么M+N= .[总结反思] 若函数在区间[a ,b ]上单调,则必在区间的端点处取得最值;若函数在区间[a ,b ]上不单调,则最小值为函数在该区间内的极小值和区间端点值中最小的值,最大值为函数在该区间内的极大值和区间端点值中最大的值. 考向4 利用函数的单调性求参数6 已知f (x )={(3-a)x,x ∈(-∞,1],a x ,x ∈(1,+∞)是(-∞,+∞)上的增函数,那么实数a 的取值范围是 ( )A .(0,3)B .(1,3)C .(1,+∞)D .[32,3)[总结反思] (1)根据函数的单调性,将题设条件转化为含参数的不等式(组),即可求出参数的值或范围;(2)若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的. 强化演练1.【考向1】已知函数f (x )满足对任意的x 1,x 2∈(0,+∞),恒有(x 1-x 2)·[f (x 1)-f (x 2)]<0成立.若a=f (log 47),b=f (log 23),c=f (0.20.6),则a ,b ,c 的大小关系是 ( ) A .c<b<a B .b<a<c C .b<c<a D .a<b<c2.【考向2】已知函数f (x )=ln x+2x,若f (x 2-4)<2,则实数x 的取值范围是 .3.【考向3】 已知函数f (x )={log 13x,x >1,-x 2+2x,x ≤1,则函数f (x )的最大值是 .4.【考向4】若函数f (x )=2|x-a|(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于 .5.【考向4】 若函数f (x )=ln (ax 2+x )在区间(0,1)上单调递增,则实数a 的取值范围为 .参考答案【课前双基巩固】 知识聚焦1.f (x 1)<f (x 2) f (x 1)>f (x 2) 上升的 下降的2.增函数或减函数 区间D3.f (x )≥M f (x 0)=M 对点演练1.a<12 [解析] 当2a-1<0,即a<12时,f (x )是R 上的减函数.2.(2,3] [-3,2] [解析] 由函数f (x )=(x-2)2+5(x ∈[-3,3])的图像即可得到单调区间. 3.32 [解析] 函数f (x )=3x+1在[2,5]上是减函数,所以最大值为f (2)=1,最小值为f (5)=12.所以最大值与最小值之和为1+12=32.4.a ≤2 [解析] 因为函数f (x )=|x-a|+1的单调递增区间是[a ,+∞),当f (x )在[2,+∞)上单调递增时,满足[2,+∞)⊆[a ,+∞),所以a ≤2.5.[32,4) [解析] 函数f (x )的定义域是(-1,4),u (x )=-x 2+3x+4=-(x -32)2+254,x ∈(-1,4)的单调递减区间为[32,4),∴函数f (x )的单调递减区间为[32,4).6.(-∞,138] [解析] 由题知函数f (x )是R 上的减函数,于是有{a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138] .7.[-1,1) [解析] 由条件知{-2≤a +1≤2,-2≤2a ≤2,a +1>2a,解得-1≤a<1.8.(1)a ≤-3 (2) -3 [解析] (1)函数图像的对称轴为直线x=1-a ,由1-a ≥4,得a ≤-3. (2)函数图像的对称轴为直线x=1-a ,由1-a=4,得a=-3. 【课堂考点探究】例1 [思路点拨] 直接判断单调性即可,按照单调性的定义证明单调性. 解:该函数在(-1,1)上单调递减.证明如下: 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 12-1-ax2x 22-1=ax 1x 22-ax 1-ax 2x 12+ax 2(x 12-1)(x 22-1)=a(x 2-x 1)(x 1x 2+1)(x 12-1)(x 22-1).∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 12-1)(x 22-1)>0.又a>0,∴f (x 1)-f (x 2)>0,函数f (x )在(-1,1)上单调递减.变式题 C [解析] 对于A ,在(0,+∞)上单调递减,故A 错;对于B ,在(0,+∞)上先减后增,故B 错;对于C ,在(0,+∞)上单调递增,故C 对;对于D ,在(0,+∞)上单调递减,故D 错.选C .例2 [思路点拨] (1)先求出函数y=x 2-2x-8在y>0时的单调递增区间,再根据复合函数的单调性的性质判断f (x )的单调性;(2)作出函数g (x )的图像,由图像可得单调区间.(1)D (2)[0,1) [解析] (1)函数y=x 2-2x-8=(x-1)2-9图像的对称轴为直线x=1,由x 2-2x-8>0解得x>4或x<-2,所以(4,+∞)为函数y=x 2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f (x )=ln (x 2-2x-8)的单调递增区间为(4,+∞).(2)由题意知g (x )={x 2,x >1,0,x =1,-x 2,x <1,该函数图像如图所示,其单调递减区间是[0,1).变式题 (1)B (2)(-∞,2] [解析] (1)令t=2x 2-3x+2,则y=(14)t,由复合函数的单调性易知在(-∞,34]上单调递增,故选B .(2)因为f (x )在R 上单调递增,所以a-1>0,即a>1,因此g (x )的单调递减区间就是y=|x-2|的单调递减区间(-∞,2].例3 [思路点拨] (1)转化为同底的指数函数、对数函数,依据它们的单调性比较大小;(2)由已知可知f (x )-ln x 为定值,设为t ,则f (x )=ln x+t ,求出t ,再结合函数的单调性分析可得答案. (1)C (2)c>a>b [解析] (1)因为a=log 52<log 5√5=12,b=(32)57>(32)0=1,c=log 73∈(log 7√7,log 77)即c ∈12,1,故b>c>a.故选C .(2)根据题意,对任意的x ∈(0,+∞),都有f [f (x )-ln x ]=e +1,又由f (x )是定义在(0,+∞)上的单调函数,则f (x )-ln x 为定值,设t=f (x )-ln x ,则f (x )=ln x+t.又由f (t )=e +1,即ln t+t=e +1,解得t=e ,则f (x )=ln x+e (x>0),则f (x )为增函数.又由(12)13=√123=√146,(13)12=√13=√1276,log 2π>1,则有(13)12<(12)13<log 2π,则有c>a>b.例4 [思路点拨] (1)构造函数,利用单调性把求解的不等式中的函数符号去掉,得出一般的不等式,解该不等式;(2)可判断出f (x )为增函数,于是可将函数不等式转化为常规不等式. (1)D (2)(1,2) [解析] (1)由已知条件知,f (x 1)-x 1<f (x 2)-x 2对任意x 1<x 2恒成立,故函数g (x )=f (x )-x 为R 上的增函数,且g (-3)=f (-3)-(-3)=-1.不等式f (log 12|3x -1|)>lo g 12|3x -1|-1,即f (log 12|3x -1|)-lo g 12|3x -1|>-1,即g (lo g 12|3x -1|)>g (-3),所以lo g 12|3x -1|>-3,得0<|3x -1|<8,解得x<2且x ≠0,故所求不等式的解集为(-∞,0)∪(0,2).(2)因为y=e x,y=x 3在R 上均为增函数,所以函数f (x )为增函数,所以不等式f (x 2)<f (3x-2)等价于x 2<3x-2,即x 2-3x+2<0⇔1<x<2,故x ∈(1,2).例5 [思路点拨] 变换函数解析式,利用常见函数的单调性确定f (x )的单调性,从而得到函数的最大值和最小值. 4033 [解析] f (x )=2017x+1+20162017x +1+2016sin x=2017x+1+2017−12017x +1+2016sin x=2017-12017x +1+2016sin x.显然该函数在区间-π2,π2上单调递增,故最大值为f π2,最小值为f -π2,所以M+N=fπ2+f -π2=2017-12017π2+1+2016+2017-12017-π2+1-2016=4034-12017π2+1-2017π21+2017π2=4034-1=4033.例6 [思路点拨] 根据一次函数以及指数函数的单调性得到不等式组,解出即可. D [解析] 由题意得{3−a >0,a >1,3−a ≤a,解得32≤a<3,故选D .强化演练1.B [解析] 根据题意可知,函数f (x )在(0,+∞)上单调递减.而1<log 47<log 49=log 23,0<0.20.6<0.20=1,所以log 23>log 47>0.20.6,所以b<a<c.2.(-√5,-2)∪(2,√5) [解析] 因为函数f (x )=ln x+2x在定义域上单调递增,且f (1)=ln 1+2=2,所以由f (x 2-4)<2得f (x 2-4)<f (1),所以0<x 2-4<1,解得-√5<x<-2或2<x<√5.3.1 [解析] 当x>1时,y=lo g 13x 是减函数,得y<0;当x ≤1时,y=-x 2+2x=-(x-1)2+1在(-∞,1]上单调递增,得y ≤1.综上得f (x )的最大值是1.4.1 [解析] ∵f (1+x )=f (1-x ),∴f (x )的图像关于直线x=1对称,∵函数f (x )=2|x-a|(a ∈R )的图像以直线x=a 为对称轴,∴a=1,∴f (x )在[1,+∞)上单调递增.∵f (x )在[m ,+∞)上单调递增,∴m ≥1,则m 的最小值为1.5.a ≥-12 [解析] 若函数f (x )=ln (ax 2+x )在区间(0,1)上单调递增,则函数g (x )=ax 2+x 在(0,1)上单调递增且g (x )>0恒成立.当a=0时,g (x )=x 在(0,1)上单调递增且g (x )>0,符合题意;当a>0时,g (x )图像的对称轴为x=-12a<0,且有g(x)>0,所以g(x)在(0,1)上单调递增,符合题意;当a<0时,需满足g(x)图像的对称轴x=-12a ≥1,且有g(x)>0,解得a≥-12,则-12≤a<0.综上,a≥-12.。
《函数单调性的概念》课件
如果函数f(x)在区间[a, b]上连续,且f'(x) > 0,那么函数f(x)在区间[a, b]上单 调递增。
证明
设x1, x2是区间[a, b]上的任意两点,且x1 < x2,考虑差值f(x2) - f(x1)。由于 f'(x) > 0,差值可以表示为f'(c)(x2 - x1) > 0,其中c位于x1和x2之间。因此, f(x2) > f(x1),说明函数在区间[a, b]上单调递增。
通过观察函数的图像来判断函数的增减性。如果图像在某区间内从左到
右上升,则函数在该区间内单调递增;如果图像在某区间内从左到右下
降,则函数在该区间内单调递减。
导数在判定单调性中的应用
导数大于0的区间内 ,函数单调递增。
导数等于0的点可能 是函数的极值点或拐 点。
导数小于0的区间内 ,函数单调递减。
单调性判定定理的证明
周期性
单调函数可能是周期函数,但并非所 有单调函数都具有周期性。
单调函数的极限和积分性质
极限性质
单调函数的极限值存在且唯一,且极限 值等于函数值。
VS
积分性质
单调函数的积分值与被积函数值成正比, 即对于任意区间[a, b],有 ∫baf(x)dx=k∫baf(x)dxf(x)dx int_a^b f(x) dx = k int_a^b f(x) dxf(x)dx∫abf(x)dx=k∫abf(x)dxdx,其 中k为常数。
《函数单调性的概念 》ppt课件
REPORTING
• 函数单调性的定义 • 函数单调性的判定 • 函数单调性的应用 • 函数单调性的性质 • 函数单调性的扩展知识
目录
PART 01
函数单调性课件(公开课)
定义法
总结词
通过函数定义判断单调性
详细描述
在区间内任取两个数$x_{1}$、$x_{2}$,如果$x_{1} < x_{2}$,都有$f(x_{1}) leq f(x_{2})$,则函数在这个区间内单调递增;如果$x_{1} < x_{2}$,都有$f(x_{1}) geq f(x_{2})$,则函数在这个区间内单调递减。
感谢您的观看
03 函数单调性的应用
单调性与最值
总结词
单调性是研究函数最值的重要工 具。
详细描述
单调性决定了函数在某个区间内的 变化趋势,通过单调性可以判断函 数在某个区间内是否取得最值,以 及最值的位置。
举例
对于函数f(x)=x^2,在区间(-∞,0) 上单调递减,因此在该区间上取得 最大值0。
单调性与不等式证明
单调递减函数的图像
在单调递减函数的图像上,随着$x$的增大,$y$的值减小,图像 呈现下降趋势。
单调性转折点
在单调性转折点上,函数的导数由正变负或由负变正,对应的函数 图像上表现为拐点或极值点。
02 判断函数单调性的方法
导数法
总结词
通过求导判断函数单调性
详细描述
求函数的导数,然后分析导数的符号,根据导数的正负判断函数的增减性。如 果导数大于0,则函数在该区间内单调递增;如果导数小于0,则函数在该区间 内单调递减。
总结词
单调性是证明不等式的重要手段。
详细描述
通过比较函数在不同区间的单调性,可以证明一些不等式。例如,如果函数f(x)在区间[a,b]上 单调递增,那么对于任意x1,x2∈[a,b],有f(x1)≤f(x2),从而证明了相应的不等式。
举例
利用函数f(x)=ln(x)的单调递增性质,可以证明ln(x1/x2)≤(x1-x2)/(x1+x2)。
函数的单调性(公开课课件)
04 函数单调性的应用举例
利用函数单调性求最值问题
极值问题
通过判断函数在某一点的单调性 ,可以确定该点是否为极值点, 从而求得函数的最值。
最值问题
利用函数在整个定义域上的单调 性,可以确定函数在定义域上的 最大值和最小值。
利用函数单调性解不等式问题
单调性比较法
通过比较两个函数的单调性,可以确定它们的大小关系,从而解决一些不等式问题。
02
建议学生多参与数学建模和数学竞赛等活动,提高数学应用发展
03
学生可以通过阅读数学期刊、参加学术会议等方式,了解数学
学科的最新发展动态和前沿研究领域。
THANKS FOR WATCHING
感谢您的观看
单调性分析法
利用函数的单调性,可以分析不等式的解集和边界情况。
利用函数单调性解决实际问题
优化问题
在经济学、金融学等领域中,经常需要解决一些优化问题,如最优化生产、最优化投资等。利用函数 单调性可以找到最优解或近似最优解。
决策问题
在企业管理、市场营销等领域中,经常需要做出一些决策,如选择最佳的营销策略、确定最优的产品 价格等。利用函数单调性可以分析不同决策方案的效果,从而做出更好的决策。
03 函数单调性的判定方法
导数法判定函数单调性
总结词
通过求导数判断函数的单调性
详细描述
求函数的导数,然后分析导数的符号,如果导数大于0,则函数在该区间内单调递增;如 果导数小于0,则函数在该区间内单调递减。
举例
对于函数$f(x) = x^3$,其导数$f'(x) = 3x^2$,在$x > 0$时,$f'(x) > 0$,因此函数 $f(x)$在$x > 0$时单调递增。
1.3.1 函数的单调性讲义
1.3.1 函数的单调性一、单调函数的定义如果y =f(x)(在某个区间上是增函数或减函数,那么就说函数y =f(x)在这一区间具有(严格的)单调性,这个区间叫做y =f(x)的单调区间。
注意:(1)区间D ,必须在定义域I 内,即D ⊆I ,一个函数在不同区间上的单调性可以不同。
(2)自变量的大小关系与函数的大小关系有直接联系,如:f(x)是增函数,则x 1<x 2⇔f(x 1)<f(x 2)。
(3)函数在其单调区间上的图象特征:f(x)在D 上是增函数,则图象在D 上从左到右呈上升趋势;f(x)在D 上是减函数,则图象在D 上从左到右呈下降趋势。
(4)函数单调性受区间限制。
如函数f(x)=x1分别在(-∞,0),(0,+∞)上是减函数,但不能说成它在整个定义域内(-∞,0)∪(0,+∞)上是减函数。
单调区间用“,”逗开,不能用“∪”。
(5)有些函数不具备单调性。
如f(x)=x +1,x ∈Z 。
(6)熟记常见函数在其定义域内的单调性。
二、用定义证明函数的单调性例2:证明函数f(x)=-3x +2在R 上是减函数。
分析:按定义只需设x 1,x 2是R 上的任意两个实数,当 x 1<x 2,我们来证明f(x 1,)>f(x 2)。
证明:设x 1,x 2是R 上的任意两个实数,且 x 1<x 2, 取值 f(x 1)-f(x 2)=(-3x 1+2)-(-3x 2+2)作差=3(x 2-x 1) 变形 由x 1<x 2 ,得 x 2-x 1>0图象上升图象下降于是 f(x 1)-f(x 2)>0 即 f(x 1,)>f(x 2) 定号 所以,函数f(x)=-3x +2在R 上是减函数。
定论 例3:证明函数 x x f =)( 在区间[0,+∞)上为增函数。
证明:设x 1,x 2是[0,+∞)上的任意两个实数,且0≤x 1<x 2,则21212121)()(x x x x x x x f x f +-=-=-由0≤x 1<x 2,得x 1-x 2<0且21x x +>0于是 f(x 1)-f(x 2)<0。
《函数单调性的性质》课件
单调性在求解不等式问题中的应用
总结词
详细描述
实例
利用单调性求解不等式问题
通过分析函数的单调性,可以将不等 式问题转化为函数值的大小比较问题 ,从而简化求解过程。例如,对于形 如$f(x) > g(x)$的不等式,可以通过 分析$f(x)$和$g(x)$的单调性,找到 满足不等式的$x$的取值范围。
判定函数单调性的导数方法
01
02
03
导数大于零
若函数在某区间内的导数 大于零,则函数在此区间 内单调递增。
导数小于零
若函数在某区间内的导数 小于零,则函数在此区间 内单调递减。
ห้องสมุดไป่ตู้
导数等于零
若函数在某区间内的导数 等于零,则需要进一步分 析函数在该点的左右极限 来判断函数的单调性。
判定函数单调性的其他方法
控制工程系统的稳定性
在工程控制领域,单调性的分析可以帮助工程师了解系统的稳定性,从而更好地进行系 统设计和控制。
提高生产效率
在生产过程中,通过对生产数据的单调性进行分析,可以帮助企业优化生产流程,提高 生产效率。
THANKS
感谢观看
实例
对于函数$f(x) = x^2$,其在区间$[0, +infty)$上是单调递增的,因此在该区间内函数的最小值为0,最 大值为正无穷大。
04 函数单调性与函 数其他性质的关 系
单调性与函数奇偶性的关系
总结词
单调性与奇偶性相互影响,奇函数在区间内单调递增或递减,偶函数在区间内单调递减或递增。
详细描述
复合函数单调性判定
利用同增异减原则,即内外函数的单调性相同,则复合函 数单调递增;内外函数的单调性不同,则复合函数单调递 减。
函数单调知识点归纳总结
函数单调知识点归纳总结一、函数单调性的定义1. 单调递增函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)<=f(x2)成立,则称函数f(x)是在该定义域上是单调递增函数。
2. 单调递减函数对于定义域内的任意x1和x2,若x1<x2恒成立,则有f(x1)>=f(x2)成立,则称函数f(x)是在该定义域上是单调递减函数。
二、函数单调性的性质1. 如果函数f(x)在定义域内具有一阶导数且导数恒大于0,则函数f(x)是在该定义域上是单调递增函数;如果函数f(x)在定义域内具有一阶导数且导数恒小于0,则函数f(x)是在该定义域上是单调递减函数。
2. 函数的单调性与导数的关系:若函数f(x)在定义域上的一阶导数大于0,则函数f(x)在该定义域上是单调递增函数;若函数f(x)在定义域上的一阶导数小于0,则函数f(x)在该定义域上是单调递减函数。
3. 在具有一阶导数的情况下,如果函数f(x)在定义域上导数恒大于0,则函数f(x)的单调递增区间为(-∞,+\infty);如果函数f(x)在定义域上导数恒小于0,则函数f(x)的单调递减区间为(-\infty,+\infty)。
4. 对于具有n阶导数的函数f(x),通过求解导数的符号变化,可以得到函数f(x)在定义域上的单调性和拐点位置。
三、求解函数的单调区间1. 使用导数符号变化法求解函数的单调区间:首先求出函数f(x)的一阶导数,并求出导数的零点,然后将定义域分成几个子区间,然后再求解导数对应的区间上的符号,得到函数的单调性。
2. 使用导数的恒定性求解函数的单调区间:根据导数的恒定性可以快速求出函数的单调区间,比如函数的导数在某个区间上恒大于0,则函数在该区间为单调递增函数。
四、与单调性相关的知识1. 函数的最值。
在函数的单调性的基础上,可以求解函数的最值,对于单调递增函数来说,函数在定义域上的最小值为f(x1);对于单调递减函数来说,函数在定义域上的最大值为f(x2)。
第10讲 函数的单调性(解析版)
第10讲 函数的单调性【基础知识回顾】 1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值常用结论1.∀x 1,x 2∈D 且x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0(<0)或(x 1-x 2)[f (x 1)-f (x 2)]>0(<0)⇔f (x )在区间D 上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数. 3.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.4.复合函数的单调性:函数y =f (u ),u =φ(x )在函数y =f (φ(x ))的定义域上,如果y =f (u )与u =φ(x )的单调性相同,那么y =f (φ(x ))单调递增;如果y =f (u )与u =φ(x )的单调性相反,那么y =f (φ(x ))单调递减.1、下列函数中,定义域是R 且为增函数的是A .xy e -= B .3y x = C .ln y x = D .y x =【答案】B【解析】四个函数的图象如下显然B 成立.2、列函数中,既是偶函数,又在区间(1,2)内是增函数的为A .cos 2,y x x R =∈B .2log ||,0y x x R x =∈≠且C .,2x xe e y x R --=∈ D .31y x =+ 【答案】B【解析】函数x y 2log =为偶函数,且当0>x 时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B .3、已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝⎛⎭⎫13的x 的取值范围是( )A.⎝⎛⎭⎫13,23 B.⎣⎡⎭⎫13,23 C.⎝⎛⎭⎫12,23 D.⎣⎡⎭⎫12,23【答案】D【解析】因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝⎛⎭⎫13.所以0≤2x -1<13, 解得12≤x <23.故选D.4、函数y =|-x 2+2x +1|;单调递减区间是 . 【答案】(1-2,1),(1+2,+∞);(,(1,1+2).【解析】作出函数y =|-x 2+2x +1|的图像如图所示.由图像可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1),(1+2,+∞);单调递减区间是(-∞,1-2),(1,1+2).故应分别考向一 函数单调性的证明与判断例1、判断函数f(x)=x1+x2在区间[1,+∞)上的单调性并证明你的结论.【解析】 函数f (x )=21xx+在区间[1,+∞)上是单调减函数,证明如下: 设x 1、x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=1211x x +-2221x x +=2212212212(1)(1)1)(1)x x x x x x +-+++(=11122212()(1)1)(1)x x x x x x -++(. ∵x 1、x 2∈[1,+∞),且x 1<x 2,∴ x 1-x 2<0,1-x 1x 2<0.又(1+x 21)(1+x 22)>0,∴ f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).∴ f (x )=21xx+在[1,+∞)上为减函数. 变式1、试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.【解析】 设-1<x 1<x 2<1, f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.变式2、下列函数中,既是偶函数又在单调递增的函数是( ) A . B . C . D .【答案】B【解析】3y x =为奇函数,21y x =-+在(0,)+∞上为减函数,在(0,)+∞上为减函数,故选B .+∞(0,)3y x =1y x =+21y x =-+2xy -=2xy -=方法总结: 1. 判断函数的单调性,通常的方法有:(1)定义法;(2)图像法;(3)利用常见函数的单调性;(4)导数法.而要证明一个函数的单调性,基本方法是利用单调性定义或导数法.2. 应用函数单调性的定义证明函数的单调性,其基本步骤如下:取值→作差→变形→确定符号→得出结论其中,变形是十分重要的一步,其目的是使得变形后的式子易于判断符号,常用的方法是(1)分解因式;(2)配方;(3)通分约分等.考向二 函数的单调区间例1、求下列函数的单调区间 (1)y =-x 2+2|x|+1;(2)、函数y =|x |(1-x )的单调递增区间是________.【解析】(1)由2221,0-x 21,0x x x x x ⎧-++⎪⎨-+⎪⎩≥,<,即22(1)2,0-1)2,0.x x y x x ⎧--+⎪=⎨++⎪⎩≥(<画出函数图像如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0], [1,+∞).(2)y =|x |(1-x )=⎩⎨⎧x (1-x ),x ≥0,-x (1-x ),x <0=⎩⎨⎧-x 2+x ,x ≥0,x 2-x ,x <0,函数的大致图象如图所示.由图易知函数的单调递增区间是⎣⎢⎡⎦⎥⎤0,12. 变式1、函数f (x )=|x -2|x 的单调递减区间是________. 【答案】 [1,2]【解析】 f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f(x)的大致图象(如图所示),由图知f(x)的单调递减区间是[1,2].方法总结:求函数的单调区间的常用方法与判断函数的单调性的方法类似,有定义法、图像法、利用常见函数的单调性、导数法等.值得引起高度重视的是:(1)函数的单调区间是函数定义域的子区间,所以求单调区间,必须先求出定义域; (2)对于基本初等函数的单调区间,可以直接利用已知结论求解考向三 复合函数的单调区间例3、(2022·沭阳如东中学期初考试)函数y =log 5(x 2+2x -3)的单调递增区间是______. 【答案】(1,+∞)【解析】由题意,令x 2+2x -3>0,解得x <-3或x >1,因为t =x 2+2x -3在(1,+∞)上单调递增,所以函数y =log 5(x 2+2x -3)的单调递增区间为(1,+∞).变式1、.函数y =log 12(-x 2+x +6)的单调递增区间为( )A.⎝⎛⎭⎫12,3B.⎝⎛⎭⎫-2,12 C.(-2,3)D.⎝⎛⎭⎫12,+∞【答案】 A【解析】由-x 2+x +6>0,得-2<x <3,故函数的定义域为(-2,3),令t =-x 2+x +6,则y =log 12t ,易知其为减函数.由复合函数的单调性法则可知本题等价于求函数t =-x 2+x +6在(-2,3)上的单调递减区间.利用二次函数的性质可得t =-x 2+x +6在定义域(-2,3)上的单调递减区间为⎝⎛⎭⎫12,3.方法总结:求复合函数的单调性,首先要注意复合函数的定义域,其次要确定函数是有哪些基本函数复合而成,根据同增异减的性质确定复合函数的单调性。
函数的单调性讲义
函数的单调性讲义(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--海豚教育个性化简案海豚教育错题汇编海豚教育个性化教案海豚教育个性化教案(真题演练)海豚教育1对1出门考(_______年______月______日周_____)学生姓名_____________ 学校_____________ 年级______________ 等第1. 函数2()2f x x x=-的单调增区间是()A. (,1]-∞ B. [1,)+∞ C. R D.不存在2. 在区间(,0)-∞上为增函数的是()A.2y x=- B.2yx= C.||y x= D.2y x=-3.若函数f(x)=4x2-kx-8在[5,8]上是单调函数,则k的取值范围是( )A.(-∞,40] B.[40,64] C.(-∞,40]∪[64,+∞) D.[64,+∞)4.如果二次函数y=5x2-nx-10在区间(-∞,1]上是减函数,在[1,+∞)上是增函数,则n的值是( )A.1 B.-1 C.10 D.-105.函数()|2|f x x=-的单调递增区间是,6.函数f(x)图象如下图所示,函数的单调递减区间是________.7. 函数f(x)=822+--xx的单调减区间。
8. 若函数f(x)在(-2,3)上是增函数,则y=f(x+5)的递增区间是。
9. 已知函数21)(-=xxf.(1)求f(x)的定义域;(2)证明:函数f(x)在(0,+∞)上为减函数.评语:3A作业:周一:周二:周三:周四:周五:作业要求在月日之前完成。
函数的单调性讲义
Ⅰ基础巩固 一、用定义法求函数单调性:方法与步骤:令1212,x x x x <属于定义域,并且 ⇒比较()()12f x f x 与的大小⎧⎨⎩作差法,与0比较作商法,与1比较(作商时,只有同号,才能比较大小) ⇒()()()()()()1212f x f x f x f x f x f x <⇒⎧⎪⎨>⇒⎪⎩若单调递增若单调递减例1 :用定义法证明函数()()21,1x f x x +=-+∞+在上是减函数。
证明:原函数可变形为()111f x x =++,设()1212,1,x x x x ∈-+∞<且,则()()12f x f x -=12111111x x +--++()()211211x x x x -=++ 21210x x x x >∴->121,10,20x x x >-∴+>+> ()()120f x f x ∴-> ()()12f x f x ∴>∴()()21,1x f x x +=-+∞+在上是减函数。
练习1:用定义法证明函数()23R f x x =+在定义域内单调递增。
练习2、证明函数()31f x x =-+在其定义域内是减函数。
例2、用定义方法证明()212x f x -=在定义域内是单调递增函数。
证明:设1212,R x x x x ∈<且,()0f x > ,()()()11222121212222x x x x f x f x ---∴== 1212,0x x x x <∴-< ⇒()()()()()122112221x xf x f x f x f x -∴=<⇒< ()f x ∴在定义域R 内为减函数。
练习3、()()2log 21,0,f x x x =+>已知用定义法证明函数在定义域内单调递增。
2、同特殊方法判断函数单调性。
(1) 增(减)函数图像上任意两点()()()()1122,x ,,A x f B x f x 连续的斜率()0AB K ><=、 (2)若()y f x =在区间D 上位增(减)函数,且1212,,x x D x x ∈<,则()()()()()1212f x f x f x f x<>或 (3)复合函数的单调性为‘同增异减’(4)若()f x 为增函数,则()f x -1()f x 为减函数 (5)若()(),f xg x 均为增函数,则()()f x g x +仍为增:若()f x 为增函数,()g x 为减函数,则()()f x g x -为增函数。
函数的单调性(精品讲义)
都江堰校区 (数学) 辅导讲义任课教师: 岳老师 Tel:课题函数的单调性基础盘查一 函数的单调性1.判断正误(1)所有的函数在其定义域上都具有单调性( ) (2)函数f (x )为R 上的减函数,则f (-3)>f (3)( )(3)在增函数与减函数的定义中,可以把“任意两个自变量”改为“存在两个自变量”( ) (4)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞)( )(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞)( ) 2.(人教A 版教材习题改编)函数y =x 2-2x (x ∈[2,4])的增区间为________.3.若函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则k 的取值范围是________. 基础盘查二 函数的最值4.判断正误(1)所有的单调函数都有最值( ) (2)函数y =1x 在[1,3]上的最小值为13( )5.(人教A 版教材例题改编)已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为________.【答案】1.(1)× (2)√ (3)× (4)× (5)×;2.[2,4];3.⎝⎛⎭⎫-∞,-12;4.(1)× (2)√;5.2考点一 函数单调性的判断[必备知识1]:单调性的定义设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则有: (1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2).设x 1,x 2∈[a ,b ],如果f (x 1)-f (x 2)x 1-x 2>0,则f (x )在[a ,b ]上是单调递增函数,如果f (x 1)-f (x 2)x 1-x 2<0,则f (x )在[a ,b ]上是单调递减函数. [必备知识2]:确定单调性的方法(1)利用已知函数的单调性,即转化为已知函数的和、差或复合函数,求单调区间.(2)定义法:先求定义域,再取值—作差—变形—确定符号—下结论.(3)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,可由图象的直观性写出它的单调区间.[典题例析]【例1】下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |【解析】选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.故选C.【例2】判断函数g (x )=-2xx -1在(1,+∞)上的单调性.【解】任取x 1,x 2∈(1,+∞),且x 1<x 2,则g (x 1)-g (x 2)=-2x 1x 1-1--2x 2x 2-1=2(x 1-x 2)(x 1-1)(x 2-1), 因为1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0,因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数.考点二 求函数的单调区间[必备知识2]:求函数的单调区间与确定单调性的方法一致[典题例析]【例3】 求下列函数的单调区间.(1)f (x )=3|x |; (2)f (x )=|x 2+2x -3|; (3)y =-x 2+2|x |+1.【解】(1)∵f (x )=3|x |=⎩⎪⎨⎪⎧3x , x ≥0,-3x , x <0.图象如图所示.f (x )在(-∞,0]上是减函数, 在[0,+∞)上是增函数.(2)令g (x )=x 2+2x -3=(x +1)2-4.先作出g (x )的图象,保留其在x 轴及x 轴上方部分,把它在x 轴下方 的图象翻到x 轴上方就得到f (x )=|x 2+2x -3|的图象,如图所示. 由图象易得:函数的递增区间是[-3,-1],[1,+∞); 函数的递减区间是(-∞,-3],[-1,1].(3)由于y =⎩⎪⎨⎪⎧ -x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1], 单调递减区间为[-1,0]和[1,+∞). 【例4】求函数y =x 2+x -6的单调区间. 【解】令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数.由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在(0,+∞)上是增函数. ∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).考点三 函数单调性的应用[必备知识3]复合函数单调性的判断利用函数单调性求最值的常用结论:如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增,则函数y =f (x ),x ∈[a ,c ]在x =b 处有最小值f (b ).【多角探明】函数单调性的应用,归纳起来常见的命题角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.角度一:求函数的值域或最值【例5】函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.【解析】当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.角度二:比较函数值或自变量的大小【例6】设函数f (x )是(-∞,+∞)上的减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a ) C .f (a 2+a )<f (a )D .f (a 2+1)<f (a )【解析】选D 由a 2+1-a =⎝⎛⎭⎫a -122+34,得a 2+1>a ,又∵f (x )是R 上的减函数,∴f (a 2+1)<f (a ). 【例7】(2014·广州模拟)已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为 ( )A .c <b <aB .b <a <cC .b <c <aD .a <b <c【解析】选B ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增,∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c . 角度三:解函数不等式【例8】f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)【解析】选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值【例9】已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎦⎤-∞,138 C .(-∞,2]D .⎣⎡⎭⎫138,2【解析】选B 由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138 .[类题通法]函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数单调区间,与已知单调区间比较求参数; ②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的. (4)利用单调性求最值.应先确定函数的单调性,然后再由单调性求出最值.一、选择题1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数;②函数y =x 2在R 上是增函数;③函数y =-1x 在定义域上是增函数;④y =1x的单调区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个【解析】选A 函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数,如-3<5而f (-3)>f (5);④y =1x 的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)【解析】选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.(2015·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( )A .f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23 B .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫13 C .f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13<f ⎝⎛⎭⎫32D .f ⎝⎛⎭⎫32<f ⎝⎛⎭⎫23<f ⎝⎛⎭⎫13【解析】选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫1+12=f ⎝⎛⎭⎫1-12=f ⎝⎛⎭⎫12,又13<12<23<1,∴f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫12>f ⎝⎛⎭⎫23,即f ⎝⎛⎭⎫13>f ⎝⎛⎭⎫32>f ⎝⎛⎭⎫23. 4.(创新题)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12【解析】选C 由已知得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.5.函数y =|x -3|-|x +1|的( )A .最小值是0,最大值是4B .最小值是-4,最大值是0C .最小值是-4,最大值是4D .没有最大值也没有最小值 【解析】选C y =|x -3|-|x +1|=⎩⎪⎨⎪⎧-4 (x ≥3)-2x +2 (-1≤x <3)4 (x <-1)作出图象可求.6.(2015·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负【解析】选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0. 由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C. 二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是________. 【解析】由题意知f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1);则⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________. 【解析】函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a , 画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性, 因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.【解析】由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).10.设函数f (x )=ax +1x +2a 在区间(-2,+∞)上是增函数,那么a 的取值范围是________.【解析】f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,∵函数f (x )在区间(-2,+∞)上是增函数.∴⎩⎪⎨⎪⎧2a 2-1>0,-2a ≤-2⇒⎩⎨⎧2a 2-1>0,a ≥1⇒a ≥1.答案 [1,+∞)三、解答题11.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.【解】(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数.∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.12.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值.【证明】(1)设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f(x)在R上为减函数.(2)∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).而f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.13.函数f(x)对任意的m、n∈R,都有f(m+n)=f(m)+f(n)-1,并且x>0时,恒有f(x)>1.(1)求证:f(x)在R上是增函数;(2)若f(3)=4,解不等式f(a2+a-5)<2.【解】(1)设x1<x2,∴x2-x1>0,∵当x>0时,f(x)>1,∴f(x2-x1)>1.f(x2)=f[(x2-x1)+x1]=f(x2-x1)+f(x1)-1,∴f(x2)-f(x1)=f(x2-x1)-1>0⇒f(x1)<f(x2),∴f(x)在R上为增函数.(2)∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).。
《函数的单调性与导数》 讲义
《函数的单调性与导数》讲义一、函数单调性的定义在数学中,函数的单调性是指函数在某个区间上的增减性质。
具体来说,如果对于区间内的任意两个自变量的值\(x_1\)和\(x_2\),当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么就称函数在这个区间上是单调递增的;反之,如果当\(x_1 < x_2\)时,都有\(f(x_1) > f(x_2)\),则称函数在这个区间上是单调递减的。
我们可以通过图像来直观地理解函数的单调性。
单调递增的函数图像是从左往右逐渐上升的,而单调递减的函数图像则是从左往右逐渐下降的。
二、导数的定义导数是微积分中的一个重要概念。
对于函数\(y = f(x)\),在点\(x\)处的导数定义为:\f'(x) =\lim_{\Delta x \to 0} \frac{f(x +\Delta x) f(x)}{\Delta x}\导数表示了函数在某一点处的变化率,也就是函数曲线在该点处的切线斜率。
三、函数单调性与导数的关系函数的单调性与导数之间有着密切的联系。
若函数\(f(x)\)在区间\((a,b)\)内可导,那么:(1)如果在\((a,b)\)内,\(f'(x) >0\),则函数\(f(x)\)在\((a,b)\)上单调递增。
这是因为导数大于零,意味着函数在每一点处的变化率都是正的,即函数值随着自变量的增加而增加,所以函数是单调递增的。
(2)如果在\((a,b)\)内,\(f'(x) <0\),则函数\(f(x)\)在\((a,b)\)上单调递减。
导数小于零,说明函数在每一点处的变化率为负,函数值随着自变量的增加而减小,从而函数是单调递减的。
(3)如果在\((a,b)\)内,\(f'(x) =0\),则函数\(f(x)\)在\((a,b)\)上是常函数。
导数为零,意味着函数在该区间内的变化率为零,函数值保持不变,即为常函数。
函数的单调性(公开课课件)
利用单调性解方程
利用函数的单调性,可以求解方程。
通过分析函数的单调性,可以确定方程解的范围,从而求解方程。例如,对于一元二次方程$ax^2 + bx + c = 0$,如果$a > 0$,则函数$f(x) = ax^2 + bx + c$在区间$(-infty, -frac{b}{2a})$上单调递减,在区间$(-frac{b}{2a}, +infty)$上单调递增 ,因此方程的解必定落在$(-frac{b}{2a}, +infty)$区间内。
格单调的。
函数单调性的扩展
05
多变量函数的单调性
01 02
定义
对于多变量函数,如果函数在某个区域内的任意两点x1和x2,当x1<x2 时,函数值f(x1)<=f(x2),则称函数在此区间内单调递增;反之,则称 函数在此区间内单调递减。
判断方法
通过求导数或求偏导数,判断函数的增减性。
03
应用
在经济学、物理学等领域中,多变量函数的单调性有着广泛的应用。
严格单调函数的反例
总结词
非严格单调函数
详细描述
严格单调函数在其整个定义域内单调递增或递减,没有拐点或水平切线。反例可以是通 过构造一个有拐点或水平切线的函数来证明。例如,函数$f(x) = x^3 + x$在$(-infty, +infty)$内是严格单调递增的,但如果在某点处添加一个水平切线,则该函数不再是严
详细描述
单调增函数是指函数在某个区间内,对于任 意两个自变量$x_1$和$x_2$($x_1 < x_2$ ),如果$x_1$和$x_2$都在这区间内,那么 函数值$f(x_1) leq f(x_2)$。也就是说,函数 的图像随着$x$的增加而上升。
函数的单调性讲义
第2节 单调性问题5/32基础知识诊断 回顾教材 务实基础【知识梳理】考点1 单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.考点2 讨论单调区间问题 类型一 不含参数单调性讨论第一步:求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); 第二步:变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);第三步:求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);第四步:未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); 第五步:正负未知看零点(若导函数正负难判断,则观察导函数零点);第六步:一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. 第七步:借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段); 第八步:综上所述得圆满.类型二 含参数单调性讨论第一步:求导化简定义域 (化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);第二步:变号保留定号去 (变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);第三步:恒正恒负先讨论 (变号部分因为参数的取值恒正恒负); 第四步:然后再求有效根;第五步: 根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); 第六步:导数图像定区间(作图原理同穿针引线法解高次不等式); 第七步:综上所述得圆满.基础知识诊断 回顾教材 务实基础 考点一 单调性基础问题1.求单调区间【例1】(2020•南岗期末)函数21()9ln 2f x x x =-的单调递减区间是( ) A .(03),B .(3)-∞,C .(3)+∞,D .(33)-,2.根据单调区间求参数范围【例2】(2021•宁德期末)已知函数12)(++=x ax x f ,若函数)(x f 在区间)0[∞+,上单调递增,则实数a 的取值范围是( ) A .0≥a B .2≥a C .2<a D .2≤a【例3】(2021•呼和浩特月考)若函数123)(23++-=x x a x x f 区间]321[,上不单调,则实数a 的取值范围 是( ) A .)252(,B .)252[,C .)3102(,D .)3102[,【解题总结】以上是单调问题常见题型三剑客,即求单调、已知单调求参范围、已知不单调求参范围,这里要注意一个细节,即是否取等.【训练1】(2021•太原期末)函数()xxf x e =的单调递增区间是( ) A .(1]-∞-, B .(1]-∞,C .[1)-+∞,D .[1,)+∞【训练2】(2020•全国Ⅰ理)已知函数2()x f x e ax x =+-. (1)当1a =时,讨论()f x 的单调性;【训练3】(2020•兴庆期末)若函数()ln mf x x x=-在[1,3]上为增函数,则m 的取值范围为( ) A .(-∞,1]-B .[3-,)+∞C .[1-,)+∞D .(-∞,3]-【训练4】(2020•梅州期末)若函数()21af x x x =++在区间[0,)+∞上单调递增,实数a 的取值范围是( )A .0a ≥B .2a ≥C .2a <D .2a ≤考点二 讨论单调区间问题1.不含参数单调性讨论【例4】(2020•新课标Ⅰ)已知函数)2()(+-=x a e x f x . (1)当1=a 时,讨论)(x f 的单调性;【例5】(2020•新课标Ⅰ)已知函数x ax e x f x -+=2)( (1)当1=a 时,讨论)(x f 的单调性;【拓展提升】(2020•新课标Ⅰ)已知函数1ln 2)(+=x x f .(1)设0>a ,讨论函数ax a f x f x g --=)()()(的单调性.【解题总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段. 3.利用草稿图像辅助说明.【训练1】(2020•新课标Ⅰ) 已知函数x x x f 2sin sin )(2=.(1)讨论)(x f 在区间)0(π,的单调性;【训练2】(2019•新课标Ⅰ)已知函数11ln )(-+-=x x x x f (1)讨论)(x f 的单调性;【训练3】(2014•新课标Ⅰ)已知函数x e e x f x x 2)(--=-. (1)讨论)(x f 的单调性;2.含参数单调性讨论情形一 变号函数为一次函数【例7】(2019•重庆模考)已知函数)(1ln )(R a x ax x f ∈++=. (1)讨论函数)(x f 的单调性;情形二 变号函数为准一次函数【例8】(2019•广东二模)已知函数()21x f x ae x =+-.(其中常数 71828.2=e ,是自然对数的底数.) (1)讨论函数)(x f 的单调性;【训练4】(2020•广西联考)已知函数x a x x f ln 1)(--=, (1)求函数)(x f 的极值.【训练5】(2020•重庆二模)已知函数x b x a x f +=ln )((其中2≤a 且0≠a ),且)(x f 的一个极值点为ex 1=. (1)求函数)(x f 的单调区间;情形三 变号函数为二次函数型知识点讲解:变号函数为二次函数时,变号函数为0的方程一般有两个不同实数根1x ,2x (无根情况下二次函数恒正或恒负,只有一根时情况类似,故不作为讨论重点),理论上要分12x x >,12x x <进行讨论; 若函数()f x 有定义域限制,则方程往往会涉及根的分布问题,需要结合定义域对根的分布进行分类讨论. 可因式分解【例9】(2017•新课标Ⅰ)已知函数x a ax x x f )12(ln )(2+++=. (1)讨论函数)(x f 的单调性;不可因式分解型【例10】(2014•山东) 设函数11ln )(+-+=x x x a x f ,其中a 为常数. (1)若0=a ,求曲线)(x f y =在点))1(1(f ,处的切线方程; (2)讨论)(x f 的单调区间.【训练6】(2019•新课标Ⅰ)已知函数b ax x x f +-=232)(. (1)讨论)(x f 的单调性;【训练7】(2020•新课标Ⅰ) 已知函数23)(k kx x x f +-=.(1)讨论)(x f 的单调性;【训练8】(2020•马鞍山二模) 已知函数x e ae x f x x +-=-)()0(>a (1)讨论)(x f 的单调性;情形四 变号函数为准二次函数型【例11】(2017•新课标Ⅰ) 已知函数x a a e e x f x x 2)()(--=. (1)讨论)(x f 的单调性.【解题总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.考点三 零点比大小破解双参范围(拓展提升)1.()kx b f x 恒成立,求bk的最值和取值范围; 2.()kx bf x 恒成立,求bk的最值和取值范围. 如图3-3-1所示,通常的方法是构造函数()()g x f x kx ,则min()g x b 时,从而达到解决此类型的目的,这种解答方法适合解答题,但此类型题目出现在选填压轴题的几率更大,常规思路由于计算量大,对一道客观题来说没必要,故需要采纳一些高观点低运算的方法,此类型可以利用数形结合的思想,如图3-3-2所示,通常()yf x 是一个凹函数(()0)f x ,如()kx bf x 意味着()yf x 与ykx b 相切时即恒成立,(0)bk,是直线和x 轴的交点,记为2(0)x ,,将()y f x 的唯一零点1x 求出,满足12bx x k即可.图3-3-1 图3-3-2 图3-3-3 图3-3-4 同理,在比较()kx bf x 时,也是一类型转化,此时()yf x 为凸函数(()0)f x ,也将图3-3-3的方案转化为图3-3-4,构造12bx x k;四个图中的虚线直线是不可能满足题目要求的,此方法叫零点比大小. 【例12】(2021•成都期末)设k b R ,,不等式1ln kx b x 在(0),上恒成立,则bk的最小值是( ) A .2e B .1eC .21eD .e【例13】(2021•镇海月考)不等式42(4)x e x ax b a b R a 、,对任意实数x 恒成立,则44b a 的最大值为( ) A .ln2 B .1ln2C .2ln2D .22ln2【跟踪训练13】(2021•浙江月考)已知a b R ,,若1x e ax b 对任意实数x 恒成立恒成立,则1b a a的取值范围为_______.【跟踪训练14】(2020•武汉二模)函数()ln f x x ,()()2g x a e x b .不等式()()f x g x 在(0)x ,恒成立,则ba的最小值是()A.12eB.1eC.e D.e。
函数的单调性和奇偶性精品讲义
第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。
〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。
概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。
函数单调性基础讲义
函数单调性基础讲义一、单调性的定义二、初中有关函数单调性 三、高中函数单调性 四、复合函数单调性题型梳理一、判断函数单调性 1、求证:函数11)(--=xx f 在区间)0,(-∞上是单调增函数。
2、下列函数中,在区间)2,0(上递增的是 ( ) (A )xy 1=(B )x y -= (C )1-=x y (D )122++=x x y 3、设函数)(x f 是减函数,且0)(>x f ,下列函数中为增函数的是 ( )(A ))(1x f y -= (B ))(2x f y = (C ))(log 21x f y = (D )2)]([x f y = 4、(2009·福建高考)下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是 ( )A.f (x )=1xB.f (x )=(x -1)2C.f (x )=e xD.f (x )=ln(x +1)5、.函数y =x 2+b x +c (x ∈[0,+∞))是单调函数的充要条件是 ( )A.b ≥0B.b ≤0C. b >0D. b <06、判断下列说法正确的是 。
(1)若定义在R 上的函数)(x f 满足(2)(1)f f >,则函数)(x f 是R 上的单调增函数; (2)若定义在R 上的函数)(x f 满足(2)(1)f f >,则函数)(x f 在R 上不是单调减函数; (3)若定义在R 上的函数)(x f 在区间(]0,∞-上是单调增函数,在区间[)+∞,0上也是单调增函数,则函数)(x f 是R 上的单调增函数;(4)若定义在R 上的函数)(x f 在区间(]0,∞-上是单调增函数,在区间()+∞,0上也是单调增函数,则函数)(x f 是R 上的单调增函数。
7、函数1)(2-=x x f 在),0(+∞上是___ ___;函数x x x f 2)(2+-=在)0,(-∞上 是__ _ ____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课 题函数的单调性与最值问题教学目标1. 通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;2. 能够熟练应用定义判断数在某区间上的单调性;3. 理解函数的最大(小)值及其几何意义;4. 学会运用函数图象理解和研究函数的性质.重点、难点重点:函数的单调性及其几何意义;函数的最大(小)值及其几何意义; 难点:用定义判断函数在某区间上的单调性;运用函数图象理解和研究函数的性质.考点及考试要求考点一: 函数的单调性与最大(小)值(选择、填空、解答)教学内容 知识框架一、函数的单调性的定义1.增减函数的定义:对于给定区间上的函数()f x ;① 如果对于属于这个区间的任意两个自变量的值x x 12,,当x x <12时,都有()()f x f x <12,那么就说()f x 在这个区间上是增函数; ② 如果对于属于这个区间的任意两个自变量的值x x 12,,当x x <12时,都有()()f x f x >12,那么就说()f x 在这个区间上是减函数。
2.用定义证明函数的单调性的步骤是:① 在相应区间内任取自变量x x <12;② 比较()f x 1与2()f x 的大小:作差(作商)——变形——判断符号(与1的大小); ③ 根据定义下结论,注明区间。
二、求函数的单调区间1.函数的单调区间:如果函数()y f x =在某个区间上是增函数(或减函数),就说()f x 在这一区间上具有(严格的)单调性,这一区间叫做()f x 的单调区间。
2.复合函数单调性:复合函数[()]f g x 的单调性与构成它的函数()u g x =,()y f u =的单调性密切相关,其规律如下表:函数 单调性()y f u = 增 增 减 减 ()u g x = 增 减 增 减 [()]y f g x =增 减 减 增说明:(1)① 函数的单调性是函数的局部性质,是相对于区间而言的。
② 函数的定义域不一定是函数的单调区间,但函数的单调区间必是定义域的子区间。
(2)复合函数[()]y f g x =的单调规律是“同则增,异则减”,即.()f u 与.()g x 若具有相同的单调性.........则.)]([x g f 必为增函数;若具有不同的单调性则................[()]f g x 必为减函数.....。
讨论复合函数单调性的步骤是:① 求出复合函数的定义域;② 把复合函数分解成若干个常见的基本函数,并判定其单调性; ③ 把中间变量的变化范围转化成自变量的变化范围; ④ 根据上述复合函数的单调性规律判定其单调性。
(3)当一个函数的增区间(或减区间)有多个时,不能并起来,只能用逗号隔开。
三、应用函数的单调性比较大小1、若函数()f x 在区间D 上是增函数,,a b D ∈,且()()f a f b <,则a b <;2、若函数()f x 在区间D 上是增函数,,a b D ∈,且()()f a f b >,则a b >;3、若函数()f x 在区间D 上是减函数,,a b D ∈,且()()f a f b <,则a b >;4、若函数()f x 在区间D 上是减函数,,a b D ∈,且()()f a f b >,则a b <。
考点一: 函数的单调性与最大(小)值典型例题题组一:利用定义证明函数的单调性 1、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.2、求证函数()(0)af x x a x=+>在(0,)a 上是减函数,在(,)a +∞上是增函数。
3、函数21)(++=x ax x f 在区间2-+∞(,)上是增函数,求a 的取值范围。
题组二:基本初等函数单调性的应用1. (1)已知函数()()2212f x x a x =+-+在区间(,4]-∞上是减函数,则实数a 的取值范围是 .(2)已知函数()()2212f x x a x =+-+的递减区间是(,4]-∞,则实数a 的取值集合是 .2.若函数)(3)1(2R x mx x m y ∈++-=的图象关于y 轴对称,则它的单调递增区间为 ; 3.函数x x y +-=2的递减区间是____.4.求2()12f x x x =--的单调区间5.已知)0(221)(2≠+=a x ax x f ,在[2,4]上是单调函数,求a 的范围.6.求复合函数的单调区间:22y x x =-的递增区间是 。
7.已知函数2()f x x bx c =++,对于任意实数t 都有(2)(2)f t f t +=-,比较(1),(2),(4)f f f 的大小。
8.函数26y x x =+--的值域为题组三:抽象函数的有关问题1. )(x f 是定义在(0,+∞)上的增函数,则不等式)]2(8[)(->x f x f 的解集_____.2. 函数()f x 的增区间是(4,7)-,则(3)y f x =-的递增区间是( ) A 、(2,3)- B 、(1,10)- C 、(1,7)- D 、(4,10)3.已知函数()f x 在区间()0+∞,上是减函数,那么()21f a a -+与3()4f 的大小关系 为 。
5. 已知函数2240()40x xx f x x xx ⎧+≥=⎨-<⎩,若2(2)()f a f a ->,则实数a 的取值范围是 。
6.已知函数()f x 在R 上是增函数,若0a b +>,则( )A .()()()()f a f b f a f b +>-+-B .()()()()f a f b f a f b +>---C .()()()()f a f a f b f b +->+-D .()()()()f a f a f b f b +->--7.设(,),(,)a b c d 都是函数()f x 的单调增区间,且1212(,),(,),x a b x c d x x ∈∈<,则1()f x 与2()f x 的大小关系是( )A 、12()()f x f x <B 、12()()f x f x >C 、12()()f x f x =D 、不能确定 8.设()f x 是定义在(0,)+∞上的增函数,(2)1f =,且()()()f xy f x f y =+,求满足不等式()(3)2f x f x +-≤的x 的取值范围.9.设)(x f 定义域为(0,+∞),且在(0,+∞)上是增函数,)()()(y f x f yxf -=.(1)求证:)()()(,0)1(y f x f xy f f +== (2)若1)2(=f ,解不等式:2)31()(≤+-x f x f10.函数()f x 对任意的,a b R ∈,都有()()()1f a b f a f b +=+-,并且当0x >时,()1f x >. (1)求证:()f x 是R 上的增函数;(2)若(4)5f =,解不等式2(32)3f m m --<.11.定义在R 上的函数满足:当0x <时,()1,(0)0f x f >≠,对于任意实数,x y ,都有)()()(y f x f y x f ⋅=+。
(1)当0x >时,求证0()1f x <<; (2)求证:()f x 是R 上的减函数; (3)解不等式:()2(4)21f x f x x -⋅+≥知识概括、方法总结与易错点分析 知识点:函数的单调性 方法总结:图像法易错点:函数的单调性的应用针对性练习1.函数 的增区间是( )。
A .B .C .D .2. 在 上是减函数,则a 的取值范围是( )。
A .B .C .D .3.当时,函数 的值有正也有负,则实数a 的取值范围是( )A .B .C .D .4.若函数)(x f 在区间(a ,b )上为增函数,在区间(b ,c )上也是增函数,则函数)(x f 在区间(a ,c )上( )(A )必是增函数 (B )必是减函数 (C )是增函数或是减函数(D )无法确定增减性5.已知函数f (x )=⎩⎪⎨⎪⎧a x, x <0,(a -3)x +4a , x ≥0.满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则a的取值范围是( )A .(0,3)B .(1,3)C .(0,14]D .(-∞,3)6.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2) C .(-2,3) D .(0,5)7.已知定义域为R 的函数f (x )在区间(,5)-∞上单调递减,对任意实数t ,都有(5)(5)f t f t +=-,那么下列式子一定成立的是 ( )A .f (-1)<f (9)<f (13)B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13)D .f (13)<f (-1)<f (9) 8.已知在定义域内是减函数,且,在其定义域内判断下列函数的单调性:①( 为常数)是___________; ②( 为常数)是___________;③是____________; ④是__________.9.函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是__ . 10.已知[0,1]x ∈,则函数221y x x =+--的最大值为_______, 最小值为_______。
11.若函数2()2f x x ax =-+与()1ag x x =+在区间[1,2]上都是减函数,则a 的取值范 围是 。
12.讨论函数2()1f x x =-在区间[1,1]-上的单调性,并证明你的结论13.已知()f x 是定义在[1,1]-上的增函数,且2(1)(1)f x f x <--,求x 的取值范围。