扩张型算子及其不动点定理

合集下载

不动点原理

不动点原理

不动点原理不动点原理是数学中一个重要的概念,它在函数论、集合论、逻辑学等领域都有广泛的应用。

不动点原理最早由法国数学家布劳尔巴基提出,并在后来的发展中得到了广泛的推广和运用。

不动点原理的核心思想是寻找一个函数的不动点,即满足f(x)=x的点,这个概念在数学中有着重要的意义。

在函数论中,不动点原理被广泛应用于证明存在性定理。

通过构造适当的函数,可以利用不动点原理证明某些方程存在解。

例如,对于连续函数f(x),如果存在一个点x使得f(x)=x,那么这个点x就是函数f的不动点。

利用不动点原理,可以证明某些非线性方程存在解,这对于解决实际问题具有重要意义。

在集合论中,不动点原理也有着重要的应用。

通过不动点原理,可以证明一些集合的存在性和性质。

例如,对于一个映射T,X→X,如果存在x∈X使得T(x)=x,那么x就是这个映射的不动点。

利用不动点原理,可以证明某些映射的不动点存在性,进而推导出一些集合的性质和结论。

在逻辑学中,不动点原理被用于证明一些命题逻辑和谓词逻辑的性质。

通过构造适当的函数或映射,可以利用不动点原理证明一些逻辑命题的存在性和性质。

例如,对于一个命题逻辑公式φ(x),如果存在一个变元x使得φ(x)与x等价,那么这个x就是φ(x)的不动点。

利用不动点原理,可以证明一些逻辑命题的存在性和性质,推导出一些逻辑结论。

总之,不动点原理是数学中一个重要的概念,它在函数论、集合论、逻辑学等领域都有着广泛的应用。

通过寻找函数或映射的不动点,可以证明一些方程、集合、逻辑命题的存在性和性质,具有重要的理论和实际意义。

不动点原理的发展和应用,对于推动数学理论的发展和解决实际问题具有重要的意义。

不动点定理及应用张石生

不动点定理及应用张石生

不动点定理及应用张石生不动点定理是数学分析中的一个重要定理,也是实分析的基础之一。

它是通过将函数与自身的某个值进行比较,来研究函数性质的一个方法。

在实际问题中,不动点定理具有广泛的应用,如经济学、物理学、计算机科学等领域。

不动点定理的基本概念是,对于一个给定的函数f(x),如果存在一个点c使得f(c)=c,那么c就是f的一个不动点。

换句话说,不动点是指函数f的输入和输出相等的点。

不动点定理的核心思想是通过迭代法逼近不动点。

最著名的不动点定理是Banach不动点定理(也称为完备性原理),它的形式是:在完备度量空间中,任何一个压缩映射都有唯一的不动点。

其中,完备度量空间指的是一个具有一个完整的度量的空间,而压缩映射指的是一个将空间元素映射到自身并保持距离不变的映射。

不动点定理的应用非常广泛。

以下列举一些典型的应用领域。

1. 经济学:在经济学中,不动点定理常常用于证明经济学模型中的均衡存在和稳定性。

例如,通过将供求函数模型转化为一个演化方程,可以证明在某些条件下存在一个不动点,表示市场均衡;而通过分析不动点的稳定性,可以研究市场的长期发展趋势。

2. 物理学:在物理学中,不动点定理常用于分析非线性方程的解的存在性与性质。

例如,在动力系统的研究中,可以将动力学方程表示为一个不动点问题,通过分析不动点的性质来研究系统的稳定性和演化行为。

3. 计算机科学:在计算机科学中,不动点定理常常用于程序的求解和优化。

例如,在编译器优化中,可以将程序转化为一个抽象语法树,通过对抽象语法树的变换来求解程序的不动点,以达到提高程序性能的目的。

4. 几何学:在几何学中,不动点定理常用于证明几何变换的存在性和特性。

例如,在拓扑学中,可以通过不动点定理来研究拓扑空间的连续映射和同胚映射的性质。

综上所述,不动点定理是数学分析中的一个重要定理,它通过引入不动点的概念,研究函数的性质和方程的解的存在性。

在实际应用中,不动点定理被广泛用于经济学、物理学、计算机科学等领域,为解决实际问题提供了有力的工具和方法。

不动点定理研究

不动点定理研究

前言不动点理论的研究兴起于20世纪初,荷兰数学家布劳维在1909年创立了不动点理论[1].在此基础上,不动点定理有了进一步的发展,并产生了用迭代法求不动点的迭代思想.美国数学家莱布尼茨在1923年发现了更为深刻的不动点理论,称为莱布尼茨不动点理论[2].1927年,丹麦数学家尼尔森研究不动点个数问题,并提出了尼尔森数的概念[3].我国数学家江泽涵、姜伯驹、石根华等人则大大推广了可计算尼森数的情形,并得出了莱布尼茨不动点理论的逆定理[4].最后给出结果的是波兰数学家巴拿赫(Bananch)[6],他于1922年提出的压缩映像(俗称收缩映射)原理发展了迭代思想,并给出了Banach不动点定理[6].这一定理有着及其广泛的应用,像代数方程、微分方程、许多着名的数学家为不动点理论的证明及应用作出了贡献.例如,荷兰数学家布劳威尔在1910年发表的《关于流形的映射》[2]一文中就证明了经典的不动点定理的一维形式.即,设连续函数()fx()fx把单位闭区间[0,1]映到[0,1][0,1]中,则有0[0,1]x,使00()fxx.波利亚曾经说过:“在问题解决中,如果你不能解答所提的问题,那么就去考虑一个适当的与之相关联的辅助问题”.“不动点”就是一个有效的可供选择的辅助问题。

作为Brouwer不动点定理从有限维到无穷维空间的推广,1927年Schauder 证明了下面不动点定理,我们称其为Sehauder不动点定理I:定理2设E是Banach 空间,X为E中非空紧凸集,XXf:是连续自映射,则f在X中必有不动点.Sehauder 不动点定理的另一表述形式是将映射的条件加强为紧映射(即对任意Xx,xf是紧的),这时映射的定义域可不必是紧集,甚至不必是闭集。

1935年,Tyehonoff进一步将Sehauder不动点定理I推广到局部凸线性拓扑空间,得到了下面的不动点定理,我们称其为Tyehonoff不动点定理(吉洪诺夫不动点定理)。

banach不动点定理的证明

banach不动点定理的证明

Banach不动点定理是一个非常重要的结果,它描述了以下情况:给定一个赋范线性空间,如果一个连续线性算子在这个空间上有一个不动点,那么这个不动点就是唯一的。

换句话说,Banach不动点定理表明,如果一个函数在某个空间上的定义域内有一个不动点,那么这个不动点就是该函数在该空间上的唯一驻点。

让我们来看看这个定理的证明。

假设X是一个赋范线性空间,T是X上的一个线性算子。

设P是T的不动点。

我们首先需要证明P是唯一的。

为此,我们需要构造一个等价关系(或者说是有序关系)π(x) = π(y)当且仅当x-y = ε时与P有关的等价关系。

为了实现这一点,我们需要使用线性映射的极限性质。

假设T的限制TT(x)和T的限制TT(y)都存在。

由于T是连续的,我们可以得出x-y属于T的定义域,即存在ε> 0使得T(x-y) = ε。

由于T是线性的,我们可以得出TT(x-y) = T(ε) = 0。

因此,如果π(x) = π(y),那么x-y = ε成立。

因此,我们得到了一个等价关系π(x) = π(y)当且仅当x-y = ε,这与我们的定义相符。

现在假设存在另一个点Q属于T的定义域,并且Q与P不等价。

这意味着存在ε> 0使得Q-P = ε成立。

这意味着存在两个不同的点x和y满足x-y = ε。

这意味着存在ε/2 > 0使得x-y的补集与π(x)的补集与π(y)的补集都不相等。

根据我们的假设T的定义域的定义和π的定义,我们有Tx -Ty = ε/2,这意味着x-y=ε/2并不成立,这显然是矛盾的。

因此Q不能属于T的定义域,这证明了唯一性P和Q不唯一π的实例点定义集合σπ表示所有的实例点的集合它构成π的一度划分所以所有P与T都重合不含有异类的其他成员σπ对每个pi也这样根据前一个论证显然这已经说明了我们的第一步骤的所有关键要素——X的一个赋范线性子空间S=XT且该子空间对π是第一度划分π对S的所有实例点构成σπ并且所有实例点都属于S这就是Banach不动点定理的证明过程。

数学分析 Brouwer 不动点定理

数学分析 Brouwer 不动点定理

数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:Brouwer不动点定理;内容提要:Brouwer不动点定理; 鼓包函数与光滑化.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.这儿我们要用鼓包函数进行光滑的技巧,以及Gauss-Green公式.数学中的很多问题经常转化为解方程,解方程往往又转化为求不动点.在多元函数的微分学中,我们用了压缩映像原理找不动点的方法证明了反函数定理.下面我们介绍另一种常用的证明不动点的存在性的结果,它对映射的要求没有压缩映射那么高.这儿我们要用鼓包函数进行光滑的技巧,以及Gauss-Green公式.定理1(Brouwer不动点定理)设D为R n中的闭球,ϕ:D→D为连续映射,则ϕ必有不动点.函数的光滑化不失一般性,我们设D是以原点为中心的单位闭球.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.引理1设ψ:D→R n为连续的向量值函数,且当x∈S n−1=∂D时ψ(x)=x,则任给ε>0,存在光滑向量值函数ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <ε,∀x∈D.不失一般性,我们设D是以原点为中心的单位闭球.在证明定理之前先做一点准备工作.首先,为了利用微分学的手段,我们要对连续函数进行所谓的光滑化.引理1设ψ:D→R n为连续的向量值函数,且当x∈S n−1=∂D时ψ(x)=x,则任给ε>0,存在光滑向量值函数ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <ε,∀x∈D.证明.记f(x)=ψ(x)−x,则fS n−1≡0.我们先对f做光滑化.因为有界闭集上的连续函数具有一致连续性,任给ε>0,存在δ>0,使得当 x−y ≤δ时 f(x)−f(y) <ε/2.证明(续).取η=δ1+δ,令g (x )= f x 1−η , x ≤1−η,0, x >1−η,则g 连续,且当x ∈D 时 g (x )−f (x ) <ε/2.设φ是我们之前构造的一元鼓包函数,记φη(x )=c −1η−n φ(η−1 x ),其中c 是φ( x )在R n 中的积分.此时φη在R n 的积分为1,且其支集含于B η(0).令h (x )= R n g (y )φη(x −y )d y = R ng (x −y )φη(y )d y ,根据函数参变量积分的性质可知h 是光滑函数,再根据鼓包函数的性质可知h S n −1=0, h (x )−g (x ) ≤ε/2.记ρ(x )=x +h (x ),则ρ是满足要求的光滑函数.引理2设ρ:D→R n为C2的向量值函数,如果当x∈S n−1时ρ(x)=x,则ρ必有零点.引理2设ρ:D→R n为C2的向量值函数,如果当x∈S n−1时ρ(x)=x,则ρ必有零点.证明.(反证法)设ρ没有零点.在R n\{0}中记ω0=ni=1(−1)i−1 x −n x i d x1∧···∧d x i−1∧d x i+1∧···∧d x n,直接的计算表明dω0=0.同理,记ω=ρ∗ω0=ni=1(−1)i−1 ρ −nρi dρ1∧···∧dρi−1∧dρi+1∧···∧dρn其中ρi是ρ的分量,则仍有dω=0.证明(续).利用Gauss-Green公式以及ρ(x)=x(x∈S n−1)可得0=D dω=S n−1ω=S n−1ω0=S n−1ni=1(−1)i−1x i d x1∧···∧d x i−1∧d x i+1∧···∧d x n =Dn dx1···dx n=nν(D)>0,这就得出了矛盾.Brouwer不动点定理的证明.(反证法)设ϕ没有不动点.用直线段连接ϕ(x)和x,其延长线交球面于ψ(x).容易看出ψ:D→S n−1连续,且当x∈S n−1时ψ(x)=x.根据引理1,存在光滑映射ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <1,∀x∈D.根据引理2,ρ有零点,但这与上面的不等式以及 ψ ≡1相矛盾.Brouwer不动点定理的证明.(反证法)设ϕ没有不动点.用直线段连接ϕ(x)和x,其延长线交球面于ψ(x).容易看出ψ:D→S n−1连续,且当x∈S n−1时ψ(x)=x.根据引理1,存在光滑映射ρ:D→R n,使得ρ(x)=x,∀x∈S n−1; ρ(x)−ψ(x) <1,∀x∈D.根据引理2,ρ有零点,但这与上面的不等式以及 ψ ≡1相矛盾.例1设A=a ijn×n为n阶方阵,如果它的每一元素a ij都大于零,则称A为正矩阵.证明:正矩阵必有正特征值.证明.当x=(x1,···x n)∈R n时,记|x|= ni=1|x i|.考虑n−1维单形∆n={x∈R n||x|=1,x i≥0,i=1,···,n}.显然,当x∈∆n时|Ax|>0.考虑连续映射ϕ:∆n→∆n,x→Ax/|Ax|.因为∆n同胚于n−1维单位闭球,可以应用Brouwer不动点定理得到ϕ的不动点,不动点记为ξ,则|Aξ|就是A的正特征值.。

Banach空间一类混合单调集值算子不动点定理及其应用

Banach空间一类混合单调集值算子不动点定理及其应用

存 在常数 N>0 使得 V Y ≤ , , , EE,≤ 都有 l l ≤NI l其 中 N 叫做 P 的正规 常数 . De E, 集 l , I 设 称 合 D 有最 大元 , 如果 存在 3 7 ED, 使对任 意 Y ED, 有 ≤ .
定 义 1 设 X, _ 8 y为 E 的子集 , X≤y, 称 如果 对任 意 E X, 在 Y 存 ∈Y, 使 ≤Y . 定 义 21 设 X 为半序集 , 是 X 的子集 , M一 2 [ ] M A: 是 一个 集值 算子 , 如果 对任 意 ∈M , ∈M , Y
nc ah空 间中的一类 混合单 调集值算 子不 动点定 理 , 应用到 一 阶集 值方 程 中 , 广 了文献 E 3 并 推 8 中相 应 结
果.
设 E是实 B n c a a h空间 , P是 E 中的非空 闭 凸集 , P为 E 的一 个锥 , 果 ix∈P,≥ 0 则 妇 ∈ 称 如 ) , P; ) z∈P, i若 i 一 ∈P, 则 一0 0 ( 表示 E 中零 元 ) 给定 E 的一 个锥 P 后 , P 中引 入半 序关 系 “ ” . 在 ≤ : 对 EE, ∈E, Y 若 — ∈P, 称 ≤Y E在该 半序下 成为一 个 B n c 则 . a ah空间. 们称 P为正 规的 , 我 如果
是非 空闭值 的.
收稿 日期 ; 0 7 1 - 8 2 0 — 22
基 金项 目 :国家 自然 科学 基 金 资 助 项 目(0 7 1 7 ; 州 师范 大 学 研 究 生科 研 创 新 计 划基 金 资 助 项 目(8 L 0 9 16 16 ) 徐 0 Y B 1) 作 者简 介 : 志 林 ( 90 )男 , 苏 沭 阳人 , 士 研 究 生 , 谢 18一 , 江 硕 主要 从 事 非 线性 泛 函分 析 和 中学 数 学 解 题研 究.

不动点定理

不动点定理

不动点定理在经济学中的应用数本1301 王敏摘要不动点定理是拓扑学中很著名的定理,从一维到多维空间都保持这一性质。

其次,在经济学特别是在博弈论中不动点定理有着广泛的应用,比如证明纳什均衡或者一般均衡的存在性。

关键词:不动点、博弈论、纳什均衡一、不动点定理定义1:设X 是一个拓扑空间。

如果X 中有两个非空的隔离子集A 和B ,使得B A X ⋃=,则称X 是一个不连通空间;否则,称X 是一个连通空间。

]1[ 引理1:设X 是一个连通空间,R X →:f 是一个连续映射,则)(f X 是R 中的一个区间。

]1[引理2:(介值定理)设R b a f →],[:是闭区间],[b a 到实数空间R 的一个连续映射,则对于)(f a 和)(f b 之间的任何一个实数r ,存在],[z b a ∈使得z z =)(f 。

]1[ 定理:(不动点定理)设]1,0[]1,0[:f →是一个连续映射,则存在]1,0[z ∈使得z =)(z f 。

]1[证明:如果0)0(f =或者1)1(f =,则定理显然成立。

下设0)0(f >,1)1(f <。

定义映射R →]1,0[:f 使得对于任何]1,0[x ∈有)()(x f x x F -=。

容易验证f 是一个连续映射,并且这时又0)0(<F 和0)1(>F 。

因此根据介值定理可得存在]1,0[z ∈,使得0)z (=F ,即z z =)(f 。

布劳威尔不动点定理说明:对于一个拓扑空间中满足一定条件的连续函数f ,存在一个点0x ,使得00)(f x x =。

这个定理表明:在高维球面上,任意映到自身的一一连续映射,必定至少有一个点是不变的,即映射:f n E E →n 是一个连续映射,其中n E 是n 维闭球体,则存在z n E ∈,使得z z =)(f 。

二、博弈论和纳什均衡 博弈论又被称为对策论,既是现代数学的一个新分支,也是运筹学的一个重要学科。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用1 引言大家都知道,在微分方程、积分方程以及其它各类方程的理论中,解的存在性、唯一性以及近似解的收敛性等都是相当重要的课题,为了讨论这些方程解的存在性,我们可以将它们转化成求某一映射的不动点问题.本文就这一问题作一下详细阐述.2 背景介绍把一些方程的求解问题化归到求映射的不动点,并用逐次逼近法求出不动点,这是分析中和代数中常用的一种方法.这种方法的基本思想可以追溯到牛顿求代数方程的根时所用的切线法,19世纪Picard 运用逐次逼近法解常微分方程.后来,1922年,波兰数学家巴拿赫(Banach )将这个方法加以抽象,得到了著名的压缩映射原理,也称为巴拿赫不动点定理.3 基本的定义及定理定义1[1](P4) 设X 为一非空集合,如果对于X 中的任何两个元素x ,y ,均有一确定的实数,记为),,(y x ρ与它们对应且满足下面三个条件:①非负性:0),(≥y x ρ,而且0),(=y x ρ的充分必要条件是x =y ; ②对称性:),(y x ρ=),(x y ρ;③三角不等式:),(y x ρ),(),(y z z x ρρ+≤,这里z 也是X 中任意一个元素. 则称ρ是X 上的一个距离,而称X 是以ρ为距离的距离空间,记为()ρ,X .注 距离概念是欧氏空间中两点间距离的抽象,事实上,如果对任意的,),,,(),,,,(2121n n n R y y y y x x x x ∈==ΛΛ2/12211])()[(),(n n y x y x y x -++-=Λρ容易看到①、②、③都满足.定义2[1](P23) 距离空间X 中的点列}{n x 叫做柯西点列或基本点列,是指对任给的,0>ε存在,0>N 使得当N n m >,时,ερ<),(n m x x .如果X 中的任一基本点列必收敛于X 中的某一点,则称X 为完备的距离空间.定义3[2](P16) 设X 是距离空间,T 是X 到X 中的映射.如果存在一数,10,<≤a a 使得对所有的X y x ∈,,不等式),(),(y x a y x ρρ≤T T (1)成立,则称T 是压缩映射.压缩映射必是连续映射,因为当x x n →时,有0),(),(→≤x x a Tx Tx n n ρρ.例 设[]10,X =,Tx 是[]10,上的一个可微函数,满足条件:()[][]()1,01,0∈∀∈x x T ,以及 ()[]()1,01∈∀<≤'x a x T ,则映射X X T →:是一个压缩映射.证()()[]()()y x a y x a y x y x T Ty Tx Ty Tx ,1,ρθθρ=-≤--+'=-=()10,,<<X ∈∀θy x ,得证.定义4 设X 为一集合,X X T →:为X 到自身的映射(称为自映射),如果存在,0X x ∈使得00x Tx =,则称0x 为映射T 的一个不动点.例如平面上的旋转有一个不动点,即其旋转中心,空间中绕一轴的旋转则有无穷多个不动点,即其旋转轴上的点均是不动点,而平移映射a x Tx +=没有不动点.如果要解方程(),0=x f 其中f 为线性空间X 到自身的映射(一般为非线性的),令,I f T +=其中I 为恒等映射:,x Ix =则方程()0=x f 的解恰好是映射T 的一个不动点.因此可以把解方程的问题转化为求不动点的问题.下面就来介绍关于不动点的定理中最简单而又应用广泛的压缩映射原理:定理1[3](P36) 设X 是完备的距离空间,T 是X 上的压缩映射,那么T 有且只有一个不动点. 证 任取,0X x ∈并令ΛΛ,,,,11201n n Tx x Tx x Tx x ===+ (2)下证()2的迭代序列是收敛的,因T 是压缩映射,所以存在,10<≤a 使得()()y x a Ty Tx ,,ρρ≤,因此 ()()()();,,,,00101021Tx x a x x a Tx Tx x x ρρρρ=≤=()()()();,,,,002212132Tx x a x x a Tx Tx x x ρρρρ=≤=…………一般地,可以证明()()()();,,,,00111Tx x a x x a Tx Tx x x nn n n n n n ρρρρ≤≤≤=--+Λ于是对任意自然数p n ,,有()()()+++≤++++Λ211,,,n n n n p n n x x x x x x ρρρ()p n p n x x +-+,1ρ≤()0011,)(Tx x a a a p n n n ρ-++++Λ()()()0000,1,11Tx x aa Tx x a a a n p n ρρ-≤--= (3)由于10<≤a ,因此,当n 充分大时,(),,ερ<+p n n x x 故}{n x 是X 中的基本点列,而X 是完备的,所以存在_0_0,x x X x n →∈使得成立.再证_0x 是T 的不动点.易证,若T 是压缩映射,则T 是连续映射,而,lim _0x x n n =∞→因此,lim _0x T Tx n n =∞→所以_0_0_0,x x x T 即=是T 的一个不动点.最后,我们证明不动点的唯一性,若存在X x ∈*,使得,**x Tx =则,,,,*_0*_0*_0⎪⎭⎫ ⎝⎛≤⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x x a Tx x T x x ρρρ 而_0*_0*,0,,1x x x x a ==⎪⎭⎫ ⎝⎛<即所以ρ.证毕.注 (i )由(2)定义的序列收敛,且收敛到T 的唯一不动点,且迭代与初始值0x 的取法无关.(ii )误差估计式 方程x Tx =的不动点*x 在大多数情况下不易求得,用迭代程序,1n n Tx x =+即得到不动点*x 的近似解,在(3)式中令()()00*,1,,Tx x aa x x p nn ρρ-≤∞→得 (4) 此即误差的先验估计,它指出近似解n x 与精确解*x 之间的误差.如果事先要求精确度为(),,*ερ≤x x n 则由()ερ≤-00,1x Tx aa n,可计算出选代次数n ,在(4)式中取01,1Tx x n ==代入得()()0*0,1,x Tx aa xTx ρρ-≤.上式对任意初始值均成立,取10-=n x x ,即得()()1*,1,--≤n n n x x aax x ρρ, 此式称为后验估计,可从n x 与其前一步迭代结果1-n x 的距离来估计近似解与精确解*x 之间的误差.所以,压缩映射原理,不仅给出了不动点的存在性,而且给出求解方法,同时还指明了收敛速度及误差.(iii )a 值越小迭代收敛的速度越快.(iv )在T 满足()()()y x y x Ty Tx ≠<,,ρρ (5) 的条件下,T 在X 上不一定存在不动点.如令[)[)()+∞∈++=+∞=,011,,0x xx Tx X ,我们容易证明对一切[)y x y x ≠+∞∈,,0,时,有()()[)∞+<,但0,,,T y x Ty Tx ρρ中没有不动点.又如,若令x arctgx Tx R X +-==2π,,则T 满足条件(5),因任取,,,y x R y x ≠∈则由中值公式()()y x T y x Ty Tx ,,'在ξξ-=-之间,由于(),故得11'22<+=ξξξT ()()y x Ty Tx y x Ty Tx ,,,ρρ<-<-即, Tx 但没有不动点,因任何一个使x Tx =的x 须满足,2π=arctgx 在R 内这样的x 不存在.(v )压缩映射的完备性不能少. 如设(]1,0=X ,定义T 如下:2xTx =,则T 是压缩映射,但T 没有不动点.这是由于(]1,0空间的不完备性导致的.(vi )压缩映射条件是充分非必要条件. 如()[]b a x f ,映为自身,且 ()()y x y f x f -≤- , (6)任取[],,1b a x ∈令()[]n n n x f x x +=+211 , (7) 该数列有极限**,x x 满足方程()**xxf =,但由(6),(7)可得11-+-≤-n n n n x x a x x ,相当于,1=a 不是10<<a ,即不满足压缩映射的条件.定理 1从应用观点上看还有一个缺点,因为映射T 常常不是定义在整个空间X 上的,而仅定义在X 的子集E 上,而其像可能不在E ,因此要对初值加以限制,有以下结果:定理2 [4](P193-194)设T 在Banach 空间的闭球()(){}r x x X x r x B B ≤∈==00_,:,ρ上有定义,在X 中取值,即T :()X r x B →,0_又设[),1,0∈∃a 使得()()(),,,,,0_y x a Ty Tx r x B y x ρρ≤∈∀有()(),1,00r a Tx x -≤ρ且则迭代序列(2)收敛于T 在B 中的唯一不动点.证 只需证明(),,B x B B T ∈∀⊂ ()Tx x ,0ρ()()Tx Tx Tx x ,,000ρρ+≤()r a -≤1()x x a ,0ρ+()r ar r a =+-≤1,因此()B ,B T B Tx ⊂∈所以,由定理1B 在知T 中有唯一的不动点,证毕.有时T 不是压缩映射,但T 的n 次复合映射nT 是压缩映射,为了讨论更多方程解的存在性、唯一性问题,又对定理1进行了推广.定理3[5](P21)设T 是由完备距离空间X 到自身的映射,如果存在常数10,<≤a a 以及自然0n ,使得()()()X y x y x y T x Tn n ∈≤,,,00ρρ, (8)那么T 在X 中存在唯一的不动点.证 由不等式(8),0n T 满足定理1的条件,故0n T存在唯一的不动点,我们证明0x 也是映射T唯一的不动点.其实,由()()()000100Tx x T T x T Tx Tnn n ===+,可知0Tx 是映射0n T 的不动点.由0n T 不动点的唯一性,可得00x Tx =,故0x 是映射T 的不动点,若T 另有不动点1x ,则由,1111100x Tx Tx T x T n n ====-Λ可知1x 也是0n T 的不动点,再由0n T 的不动点的之唯一性,得到,01x x =证毕.4 不动点定理的应用4.1 不动点定理在数学分析中的应用该定理在数学分析中主要用于证明数列的收敛性、方程解的存在性和唯一性及求数列极限. 定理4.1.1 ① 对任一数列{}n x 而言,若存在常数r ,使得10,,11<<-≤-∈∀-+r x x r x x N n n n n n 恒有 ()A ,则数列{}n x 收敛.② 特别,若数列{}n x 利用递推公式给出:()n n x f x =+1 (),,2,1Λ=n 其中f 为某一可微函数,且()()(),1',B R x r x f R r ∈∀<≤∈∃使得则{}n x 收敛.证 ①此时rr x x r r r x x x x rx xx x np n n pn n k k pn n k k kn p n --≤---=-≤-≤-+++=-++=-+∑∑11.0101011111应用Cauchy 准则,知{}n x 收敛,或利用D ,Alenber 判别法,可知级数()1--∑n n x x 绝对收敛,从而数列()()ΛΛ,2,1011=+-=∑=-n x x xx nk k kn 收敛.② 若()B 式成立,利用微分中值定理:()()()()Λ,3,2,1111=-≤-'≤-=----+n x x r x x f x f x f x x n n n n n n n n ξ即此时()A 式亦成立,故由①知{}n x 收敛.注 若()B 式只在某区间I 上成立,则必须验证,{}n x 是否保持在区间I 中.例1 设数列{}n x 满足压缩性条件,,,3,2,10,11Λ=<<-≤--+n k x x k x x n n n n 则{}n x 收敛. 证 只要证明{}n x 是基本点列即可,首先对一切n ,我们有11-+-≤-n n n n x x k x x ,121212x x k x x k n n n -<<-<---Λn m >设,则 n n m m m m n m x x x x x x x x -++-+-≤-+---1211Λ123122x x k x x k m m -+-<--121x x k n -++-Λ()01121∞→→--<-n x x kk n ,证毕.注 该题体现了不动点定理证明数列的收敛性.例2 证明若()x f 在区间[]r a r a I +-≡,上可微,()1<≤'αx f ,且()()r a a f α-≤-1 , (9)任取()()(),,,,,,112010ΛΛ-===∈n n x f x x f x x f x I x 令则**,lim x x x n n =∞-为方程()x f x =的根(即*x 为f 的不动点)证 已知I x ∈0,今设I x n ∈,则()()()a a f a f x f a x n n -+-=-+1()()a a f a x f n -+-'≤ξ ()之间与在a x n ξ[由(9)](),1r r r =-+≤ααI x n ∈+1即这就证明了:一切I x n ∈应用微分中值定理,1,+∃n n x x 在ξ之间(从而I ∈ξ)()()()()111--+-'=-=-n n n n n n x x f x f x f x x ξ 1--≤n n x x α ()10<<α,这表明()1-=n n x f x 是压缩映射,所以{}n x 收敛.因f 连续,在()1-=n n x f x 里取极限知{}n x 的极限为()x f x =的根. 注 该题体现了不动点定理证明方程解的存在性. 例 3 ()x f 满足()()(),10<<-≤-k y x k y f x f (),,10n n x f x R x =∈∀+令取则{}n x 收敛,且此极限为方程()x x f =的唯一解.证 ① 因为()()01212111x x k x x k x x k x f x f x x nn n n n n n n n -≤≤-≤-≤-=-----+Λ所以 n n p n p n p n p n n p n x x x x x x x x -++-+-≤-+-+-+-+++1211Λ()01121x x k k k k n n p n p n -++++≤+-+-+Λ()10101<<--<k x x kk n因为01lim01=--∞→x x k k n n ,所以εε<--<->∀∀∃>∀+011,,,,0x x kk x x N n p N nn p n 有,由Cauchy 准则,知{}n x 收敛.② 设,lim *x x n n =∞→已知()n n x f x =+1,所以()()**lim x f f x f x n n 连续∞→=,所以()x f x x =是*的解.若另有解*y 是()x f x =的解,即()**yf y =,而()()()10******<<-≤-=-k x y k x f y f x y .所以**x y =,所以()x f x x =是*的唯一解.注 该题既体现了不动点定理证明数列的收敛性又体现了方程解的存在唯一性.定理4.1.2 已知数列{}n x 在区间I 上由()()Λ,2,11==+n x f x n n 给出,f 是I 上连续函数,若f 在I 上有不动点()()***xf x x =即满足()()()()*0*111≥--x x x f x,则此时数列{}n x 必收敛,且极限A 满足()A f A =,若()*式"""">≥改为对任意I ∈1x 成立,则意味着*x 是唯一不动点,并且,*x A =特别,若f 可导,且()(),10I x x f ∈<'<当则f 严增,且不等式()()""""*>≥可该为会自动满足()I x ∈∀1,这时f 的不动点存在必唯一从而*x A =,证 (分三种情况进行讨论):① 若*1x x >,则()()**12x x f x f x =≥=,一般地,若已证到*x x n ≥,则()()**1x x f x f x n n =≥=+.根据数学归纳法,这就证明了,一切*:x x n n ≥(即*x 是n x 之下界)另一方面,由()*式条件,已有()112x x f x ≤=,由f 单调增,知()()2123x x f x f x =≤=,….一般地若已证到1-≤n n x x ,由f 单调增,知()()n n n n x x f x f x =≤=-+11,这就证明了n x 单调减,再由单调有界原理,知{}n x 收敛.在()n n x f x =+1里取极限,因()x f 连续,可知{}n x 的极限A 适合方程()A f A =. ② *1x x <的情况,类似可证.③ *1x x =若,则一切n ,*x x n =结论自明.最后,假若()(),10I x x f ∈∀<'<由压缩映射原理可知{}n x 收敛.事实上,这时也不难验证()*条件成立,如:对函数()()x f x x F -≡应用微分中值定理,(注意到()()0,0*>'=x F x F ),知*x在ξ∃与x 之间,使得()()()()()()(),***x x F x x F xF x F x f x -'=-'+=≡-ξξ可见()()(),0*>--xx x f x 即条件()*严格成立,故*lim x xnn =∞→.例4 设()nn n x c x c x x ++=>+1,011(1>c 为常数),求n n x ∞→lim .解 法一(利用压缩映射)因0>n x ,且0>x 时,0))(()1()1()('2'>-=⎥⎦⎤⎢⎣⎡++=x f c c x c x c x f x ,又由1>c 知111)1()()1()('022<-=-≤+-=<c c c c x c c c x f )0(>∀x ,故)(1n n x f x =+为压缩映射,{}n x 收敛,在nn n x c x c x ++=+)1(1中取极限,可得c x n n =∞→lim .法二(利用不动点)显然一切0>n x ,令()()x xc x c x f =++=1,知不动点c x =*,而f 单调增加且0)()()()1(22>-++=-+---=-⎥⎦⎤⎢⎣⎡++-c x x c c x c x x c cx c x cx c x x c x c x .表明()()()0*111≥--xx x f x 成立,根据不动点方法原理c xnn =∞→lim .注 该题体现了不动点定理用于求数列极限.定理4.1.3 (不动点方法的推广)设),(y x f z =为二元函数,我们约定,将),(x x f z =的不动点,称为f 的不动点(或二元不动点),已知),(y x f z =为0,0>>y x 上定义的正连续函数,z 分别对x ,对y 单调递增,假若:(1)存在点b 是),(x x f 的不动点;(2)当且仅当b x >时有()x x f x ,>,令()()()()()ΛΛ,4,3,,0,,,21121==>==--n a a f a a a a f a a a f a n n n , (10)则{}n a 单调有界有极限,且其极限A 是f 的不动点.证 只需证明{}n a 收敛,因为这样就可在(10)式中取极限,知A 是f 的不动点,下面分两种情况进行讨论:① 若1a a ≤,由f 对x ,对y 的单增性知112),(),(a a a f a a f a =≥=,进而2111123),(),(),(a a a f a a f a a f a =≥≥=,类似:若已推得121,---≥≥n n n n a a a a ,则),4,3(),(),(2111Λ==≥=---+n a a a f a a f a n n n n n n ,如此得{}n a 单调递增.又因a a a f a ≥=),(1,按已知条件这时只能b a ≤(否则b a >按已知条件(2),应有1),(a a a f a =>,产生矛盾),进而),(),(,),(),(121a b f a a f a b b b f a a f a ≤==≤= Λ,),(b b b f =≤,用数学归纳法可得一切b a n ≤,总之n a 单调递增有上界,故{}n a 收敛. ② 若a a ≤1,类似可证{}n a 单调递减有下界b ,故{}n a 收敛.注 按b 的条件可知b 是f 的最大不动点,b x >时不可能再有不动点,情况②时极限b A ≥是不动点,表明此时b A =.例5 若ΛΛ,)(,,)(,)(,031312131311231311--+=+=+=>n n n a a a a a a a a a a ,试证 (1)数列{}n a 为单调有界数列;(2)数列{}n a 收敛于方程313x x x +=的一个正根.证 (利用定理 4.1.3)设3131)(),(y x y x f z +==,显然f 当0,0>>y x 是正值连续函数,对y x ,单增,只需证明 ①b ∃使得),(b b f b =;②),(x x f x >当且仅当b x >① 注意到 f 的不动点,亦即是方程0313=--x x x 的根,分析函数313)(x x x x g --=,因0926)(",3113)('35322>+=--=xx x g xx x g (0>x 时),0)1(',)00('>-∞=+g g ,可知g 在(0,1)内有唯一极小点c x c >,时g x g ,0)('>严增,0)2(,0)1(><g g ,故g 在(0,1)内有唯一零点b (即f 的不动点).② b x >时0)()(=>b g x g ,即),(x x f x >;事实上,在0>x 的范围也只有在b x >时才有),(x x f x >,因为0)(,0)0(==b g g ,在),0(c 上)(x g 严减,),(b c 上)(x g 严增,所以),0(b 上0)(<x g ,即),(x x f x <.证毕.4.2 不动点定理在积分方程中的应用该定理在积分方程用于证明方程解的存在性、唯一性及连续性. 例6 第二类Fredholm 积分方程的解,设有线性积分方程τττμϕd x t k t t x b a )(),()()(⎰+=,(11)其中[]b a L ,2∈ϕ为一给定的函数,λ为参数,),(τt k 是定义在矩形区域b a b t a ≤≤≤≤τ,内的可测函数,满足+∞<⎰⎰ττdtd t k ba b a 2),(.那么当参数λ的绝对值充分小时,方程(11)有唯一的解[]b a L x ,2∈.证 令τττμϕd x t k t t Tx ba )(),()()(⎰+=.由 []d t d x d t k d x t k ba b a b a ba b a τττττττ222)(),()(),(⎰⎰⎰≤⎰⎰ττττd x dt d t k ba ba b a 22)(),(⎰⎰⎰=及T 的定义可知,T 是由[]b a L ,2到其自身的映射,取μ充分小,使[]1),(2/12<⎰⎰=dtd t k a ba b a ττμ,于是 2/12))()()(,(),(⎪⎭⎫ ⎝⎛-⎰⎰=dt ds s y s x t k Ty Tx b a b a τμρ()()2/122/12)()(),(ds s y s x dtd t k b a b ab a -⎰⎰⎰≤ττμ()),(),(2/12y x dtd t k b a b aρττμ⎰⎰=),(y x a ρ=故T 为压缩映射,由定理1可知,方程(11)在[]b a L ,2内存在唯一的解. 注 该题体现了不动点定理证明第二类Fredholm 积分方程解的存在唯一性.例7 设),(τt k 是定义在三角形区域t a b t a ≤≤≤≤τ,上的连续函数,则沃尔泰拉积分方程)()(),()(t d x t k t x t a ϕτττμ+⎰= (12)对任何[]b a C ,∈ϕ以及任何常数μ存在唯一的解[]b a C x ,0∈.证 作[]b a C ,到自身的映射()()()()(),,:t f d x t k t Tx T ta+=⎰τττμ则对任意的[],,,21b a C x x ∈有 ()()()()()()()[]⎰-=-tad x x t k t Tx t Tx ττττμ2121,()()()t x t x a t M bt a 21max --≤≤≤μ()(),,21x x a t M ρμ-=其中M 表示),(τt k 在t a b t a ≤≤≤≤τ,上的最大值,ρ表示[]b a C ,中的距离,今用归纳法证明),()!/)(()()(21221x x n a t M t x T t x T nnnnρλ-≤- (13)当1=n 时,不等式(13)已经证明,现设当k n =时,不等式(13)成立,则当1+=k n 时,有[]ττττμd x T x T t k t x T t x T k k t a k k )()(),()()(212111-⎰=-++[]),()(!/2111x x ds a s k M k t a k k ρμ-⎰≤++[]),()!1/()(21111x x k a t M k k k ρμ+-=+++,故不等式(13)对1+=k n 也成立,从而对一切自然数n 成立.由(13)()!/)()()(m ax ),(2121n a b M t x T t x T x T x T n n nn n bt a n n -≤-=≤≤μρ ),(21x x ρ对任何给定的参数μ,总可以选取足够大的n ,使得1!/)(<-n a b M n n nμ,因此n T 满足定理3的条件,故方程在[]b a C ,中存在唯一的解.注 该题体现了不动点定理证明沃尔泰拉积分方程在三角形区域上解的存在唯一性. 例8 设),(τt k 是[][]b a b a ,,⨯上的连续函数,()[]b a C t f ,∈,λ是参数,方程)()(),()(t f d x t k t x b a +⎰=τττλ, (14)当λ充分小时对每一个取定的)(t f 有唯一解.证 在[]b a C ,内规定距离)()(max ),(t y t x y x bt a -=≤≤ρ.考虑映射())(),())((t f d x t k t Tx b a +⎰=τττλ (15) 当λ充分小时T 是[][]b a C b a C ,,→的压缩映射.因为()()()()()()()()()⎰-=-=≤≤≤≤ba bt a bt a d y x t k t Ty t Tx Ty Tx ττττλρ,max max ,τττλd t y x t k b a bt a )()(),(max -⋅⎰⋅≤≤≤),(y x M ρλ⋅≤此处ττd t k M ba bt a ),(max ⎰=≤≤.故当λ1<M 时,T 是压缩映射,此时根据定理1,方程对任一[]b a C t f ,)(∈解存在唯一,任取初始值逼近,令()()()()t f d x t k t x b a+=⎰τττλ01,,则),(1)*,(01x x MM x x nnn ρλλρ⋅-≤,)(t x n 是第n 次的近似,)(*t x 是精确解.注 该题体现了不动点定理证明沃尔泰拉积分方程在矩形区域上解的存在唯一性.例9 设[]1,0C f ∈,求出积分方程ds s x t f t x to )()()(⎰+=λ []()1,0∈t 的连续解.解 法一 据例7方程对一切λ存在唯一解[]1,0)(∈t x ,改写方程))(()(),()()(10t kx ds s x s t k t f t x =⎰+=λ,其中⎩⎨⎧≥<=.,1,,0),(s t s t s t k 由逐次逼近法,取0)(0=t x ,得002201,,,x k x x k x kx x nn ===Λ,则)(lim )(t x t x n n ∞→=在[]1,0C 中收敛,即为原方程之解,容易看出,,)(),()()(),()(1021Λds s f s t k t f t x t f t x ⎰+==λ)(1t x n +()()()∑⎰=+=nk k k ds s f s t k t f 11,λ,其中),,(),(1s t k s t k =du s u k u t k s t k n t n ),(),(),(10-⎰= )2(≥n ,从而 ⎪⎩⎪⎨⎧≥--<=-,,)()!1(10),(1s t s t n s t s t k n n ()()()()()()()ds s f n s t s t s t t f t x tn n n ⎰⎥⎦⎤⎢⎣⎡--++-+-++=--+011221!1!21λλλλΛ, 故.)()()(lim )()(01ds s f et f t x t x s t t n n -+∞→⎰+==λλ法二 令ds s x t y t)()(0⎰=,则)()('t x t y =,如果)(t x 满足原方程,则)(t y 必满足方程⎩⎨⎧=+=0)0()()()('y t y t f t y λ (16) 易知方程(16)的解为 ds s f e t y s t t )()()(0-⎰=λ再令 ()()()()()()⎰-+=+=ts t ds s f et f t y t f t x 0λλλ (17)下面证明)(t x 为原方程之解,事实上,因为()t y 满足(16),则)()()()('t x t y t f t y =+=λ 所以ds s x t y t )()(0⎰=,由(17)知ds s x t f t x t )()()(0⎰+=λ,故ds s f e t f t x s t t )()()()(0-⎰+=λλ为原方程的连续解.4.3 不动点定理在线性代数方程组中的应用该定理在线性代数方程组用于证明方程解的存在性、唯一性. 例10 设有线性方程组()n i b x ax i nj j iji ,2,11Λ==-∑=, (18)如对每个1,1<≤∑=a ai nj ij(19)则该方程组有唯一解.证 在空间n R 中定义距离()i i ni y x y x -=≤≤11max ,ρ (其中i x 与i y 分别是x 与y 的第i 分量),则n R 按照1ρ是一个距离空间,且是完备的.在这个空间中,定义Tx y R R T nn =→,:由下式确定()∑==+=nj i j iji n i b x ay 1,,2,1Λ ,如令 ()()()()2211,y Tx y Tx==,则有()()()()()()()()()()()21112112121max max ,,j j nj ij ni iini x x a y yyyTxTx -=-==∑=≤≤≤≤ρρ()()2111max jj nj ij ni x x a -≤∑=≤≤()()∑-≤=≤≤≤≤nj ij n i j j nj a x x 11211max max由条件(19)可得()()()()()()2121,,x x a TxTx ρρ≤,即T 是压缩映射,从而它有唯一的不动点,即方程有唯一解且可用迭代法求得.上述结果可用于方程组(),,,,,21n n R x x x x b Ax ∈==Λ()()'21,,,n nn ijb b b b a A Λ==⨯ (20) 可知,当n i a aii nji j ij,2,1,,1Λ=<∑≠=时(19)存在唯一的解x ,且用如下的Jacobi 法求出x ,将(20)改写成 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+----=+--+-=+---=nn n n nn n nn n nnn n n a b a a a a a b a a a a a b a a a a ξξξξξξξξξξξξ000221122222221222121111112111211ΛΛΛΛΛΛΛ记 ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛------=nn n nnn nnn n n a b ab a b b a a a a a a aa a a a a A ΛΛΛΛΛΛΛΛ2221112122222211111112000 即为b x A x +=,任取()()()(),,,,002010nnRx ∈'=ξξξΛ用迭代法,令n n b x A x n n ,,2,1,1Λ=+=-,则x x n n =∞→lim .4.4 不动点定理在微分方程中的应用该定理在微分方程用于证明方程解的存在性、唯一性. 例11 考察微分方程()y x f dxdy,=,00y y x =, (21)其中()y x f ,在整个平面上连续,此外还设()y x f ,关于y 满足利普希茨(R .Lipschtz )条件:()(),,,,,,2'''R y y x y y k y x f y x f ∈-≤-其中0>k 为常数,那么通过点()00,y x ,微分方程(21)有一条且只有一条积分曲线. 证 微分方程(21)加上初值条件00y yx =,等价于下面的积分方程()()()dt t y t f y x y xx ,00⎰+=.我们取0>δ,使1<δk ,在连续函数空间[]δδ+-00,x x C 内定义映射:T()()()()[]()δδ+-∈+=⎰000,,0x x x dt t y t f y x Ty xx ,则有()()(()()[]⎰-=≤-xx x x dt t y t f t y t f Ty Ty 002121,,max,δρ()()⎰-≤≤-xx x x dt t y t y k 0021max δ()()().,m ax 21210y y k t y t y k x t δρδδ=-≤≤-因,1<δk 由定理1,存在唯一的连续函数()[]()δδ+-∈000,x x x x y 使()()()dt t y t f y x y xx ⎰+=0000,,由这个等式可以看出,()x y 0是连续可微函数,且()x y y 0=就是微分方程(21)通过点()00,y x 的积分曲线,但只定义在[]δδ+-00,x x 上,考虑初值条件(),000δδ±=±x y yx 并再次应用定理1,使可将解延拓到[]δδ2,200+-x x 上,依次类推,于是可将解延拓到整个直线上.通过上文的论述,我们加深了对不动点定理的理解,了解了求不动点的方法以及相应例题的证明技巧,知道了此定理应用的广泛性,而随着理论和实践的蓬勃发展对不动点定理的研究也将不断深化,所以我们研究的脚步不能停下.。

schauder不动点定理

schauder不动点定理

schauder不动点定理Schauder不动点定理是一个非常重要的定理,它说明了特定类型的函数在某种程度上是不可避免的,它被用来描述一种极为重要的现实机制:会导致某类变量可以在一定范围内的某种变化的范围内停止不动。

Schauder不动点定理是数学理论的一大里程碑,在各个学科领域都有重要的作用,如控制论、多元函数论等均依赖它。

一、Schauder不动点定理简介Schauder不动点定理又称Schauder-Tychonoff定理,它最早是由二十世纪五十年代来自德国的数学家Julius Schauder提出的。

它表明了某些特定类型的函数最终会趋向于不动,这些函数具有某种“退化稳定性”,也就是说它们不会随着时间而被极端变换所改变。

二、Schauder不动点定理的证明定理的证明来包括两个步骤:1. 现象的确认:根据定理的主体目标(即认识到某类特定函数变量的不动点),我们需要分析偏微分方程的逐步变化,测量变化的增加或减少;2. 现象的定义:定义不动点,即当非线性函数的偏导数大于零但小于一定参数时,在此函数近似值即不变时,其函数值为不动点,之后其值不会出现极端变化。

三、Schauder不动点定理的应用1. 控制系统:它可以用来测量控制系统变量的趋势变化,以及解决机器如何保持某种可靠性的问题,它能够帮助我们了解被控制变量时间规律和变化趋势;2. 多元函数论:它可以被运用于理解多元函数的变化,也就是说它可以用来求解多变量函数的极限,比如求解多元函数的极值;3. 抽象代数:它还可以应用于抽象代数,比如说,我们可以使用它来检验代数结构是否是完美的,并且可以用它来求解抽象(非实际)结构的不动点及其变化的趋势。

四、总结Schauder不动点定理是数学界的重要定理,用来表明某类特定类型的变量在某一范围内变化时最终会停止不动。

它的运用触及到了多个学科,如控制论、抽象代数、多变量函数等,并可用来量化控制系统的变化趋势,提供关于如何保持变量稳定的指导意见,以及解决多元函数论极值问题等。

不动点定理及其应用

不动点定理及其应用

不动点定理及其应用一、不动点定理不动点定理fixed —point theorem :如果f 是1n +维实心球1{,11}n B x R n x +=∈+≤ 到自身的连续映射(1,2,3)n =⋅⋅⋅,则f 存在一个不动点1n x B +∈(即满足(0)0f x x =)。

(一)、压缩算子:1、定义: 设(1)X距离空间;(2)算子:T X X →的映射。

若(01),..,s t x y X θθ∃≤<∀∈,恒有(,)(,)Tx Ty x y ρθρ≤, 则称T 是X 上的压缩算子.θ为压缩系数.2、性质:压缩算子T 是连续的 证 :若nx x →,即(,)0n x x ρ→,则(,)(,)0n n Tx Tx x x ρθρ≤→例:11:T R R →,则 ①12Tx x =是压缩算子因为1111(,)(,),2222Tx Ty Tx Ty x y x y ρρθ=-=-==②0Tx x =是压缩算子(0θ= ) ③Tx x =不是压缩算子(1θ= )(二)、不动点定理1、定义:设(1)X --—— 是完备的距离空间;(2):T X X →的压缩算子.则T 在X 上存在唯一的不动点*x ,即***,..x X s t x Tx ∃∈=2、注意(1)定理的证明过程就是求不动点的方法,称为构造性的证明. (2)定理的条件是结论成立的充分非必要条件。

(3)迭代的收敛性和极限点与初始点无关。

但T 的选取及初始点0x 的选取对迭代速度有影响。

初始点离极限点越近,其收敛速度越快,而不影响精确度。

(4)误差估计①事前(或先验)误差:根据预先给出的精确度,确定计算步数。

此方法有时理论上分析困难。

设迭代到第n 步,将*n xx ≈,则误差估计式为*0010(,)(,)(,)11n nn x x Tx x x x θθρρρθθ≤=--②事后(或后验)误差:计算到第n 步后,估计相邻两次迭代结果的偏差1(,)n n x x ρ-,若该值小于预定的精度要求,则取*n x x ≈。

几类不动点定理的推广及证明

几类不动点定理的推广及证明

几类不动点定理的推广及证明引言:不动点定理是数学中一个重要的定理,它在浩繁领域都有广泛的应用。

不动点,顾名思义,是指函数中某一点在映射后仍保持不变的点。

不动点定理从不动点的角度给出了函数存在或唯一性的条件。

本文将介绍几类不动点定理的推广,并给出证明。

一、Banach不动点定理的推广及证明:Banach不动点定理是最经典的不动点定理之一。

它适用于完整器量空间中的压缩映射,并保证了该映射存在唯一的不动点。

然而,在非完整器量空间中的压缩映射是否存在不动点呢?为了解决这个问题,可以引入相似性映射的观点。

相似性映射是指满足$d(f(x),f(y))\leq k\cdot d(x,y)$的映射,其中$k\in(0,1)$,$d$表示器量空间中的距离函数。

依据较弱的条件,我们可以推广Banach不动点定理到非完整器量空间中的相似性映射,并得到存在不动点的结论。

证明:设$X$为一个非完整器量空间,$f:X\rightarrow X$为一个相似性映射,即存在$k\in(0,1)$,使得$d(f(x),f(y))\leqk\cdot d(x,y)$对任意$x,y\in X$成立。

我们需要证明$f$存在一个不动点。

起首选取$X$中的任意点$x_0$,定义序列$\{x_n\}$如下:$$x_n=f(x_{n-1}),\ n=1,2,3,\cdots$$接下来,我们证明$\{x_n\}$是一个Cauchy序列。

由相似性映射的性质可知:$$d(x_{n+1},x_n)=d(f(x_n),f(x_{n-1}))\leq k\cdotd(x_n,x_{n-1})$$不妨设$m>n$,则有:$$d(x_m,x_n)\leq\sum_{i=n}^{m-1}d(x_{i+1},x_i)\leq\sum_{i=n}^{m-1}k^{i-n}d(x_1,x_0)$$利用等比数列求和公式,可以得到:$$d(x_m,x_n)\leq\frac{k^n}{1-k}\cdot d(x_1,x_0)$$ 由于$k\in(0,1)$,故$\frac{k^n}{1-k}$是一个有界数列。

拉普拉斯算子

拉普拉斯算子

拉普拉斯算⼦黎曼流形维基百科,⾃由的百科全书黎曼流形(Riemannian manifold)是⼀个微分流形,其中每点p的切空间都定义了点积,⽽且其数值随p平滑地改变。

它容许我们定义弧线长度,⾓度,⾯积,体积,曲率,函数梯度及向量域的散度。

每个R n的平滑⼦流形可以导出黎曼度量: 把R n的点积都限制于切空间内。

实际上,根据纳什嵌⼊定理, 所有黎曼流形都可以这样产⽣。

我们可以定义黎曼流形为和R n的平滑⼦流形是等距同构的度量空间,等距是指其内蕴度量(intrinsic metric)和上述从R n导出的度量是相同的。

这对建⽴黎曼⼏何是很有⽤的。

黎曼流形可以定义为平滑流形,其中给出了⼀个切丛的正定⼆次形的光滑截⾯。

它可产⽣度量空间:如果γ : [a, b] → M是黎曼流形M中⼀段连续可微分的弧线,我们可以定义它的长度L(γ) 为(注意:γ'(t) 是切空间M在γ(t)点的元素; ||·||是切空间的内积所得出的范数。

)使⽤这个长度的定义,每个连通的黎曼流形M很⾃然的成为⼀个度量空间(甚⾄是长度度量空间):在x与y两点之间的距离d(x, y) 定义为:d(x,y) = inf{ L(γ) : γ是连接x和y的⼀条光滑曲线}。

虽然黎曼流形通常是弯曲的,“直线”的概念依然存在:那就是测地线.在黎曼流形中,测地线完备的概念,和拓扑完备及度量完备是等价的:每个完备性都可以推出其他的完备性,这就是Hopf-Rinow定理的内容.。

微分流形维基百科,⾃由的百科全书[] 可微流形的定义设的⾃然数或者为,拓扑空间被称为是m维可微流形,如果,1.为豪斯多夫空间2.被m维坐标邻域所覆盖,换句话说,存在的m维坐标邻域族,使得3.满⾜的任意,坐标转换为映射。

当r = 0时,流形称为是拓扑流形;当时,流形称为是光滑流形。

?拓扑空间维基百科,⾃由的百科全书汉漢▼上图为三点集合{1,2,3}上四个拓扑的例⼦和两个反例。

caratheodory测度扩张定理。

caratheodory测度扩张定理。

caratheodory测度扩张定理。

Carathéodory测度扩张定理是关于测度的一个重要结果。

具体
来说,它是关于如何将某个函数的定义域扩展为一个测度空间,以便使得该函数成为可测函数。

设X为一个非空集合,β为X上的一个代数(即包含X且对
有限并、差、交和补运算封闭的集合族),而μ为β上的一个
函数,满足以下性质:
1. 对于任意的A∈β,μ(A)≥0。

2. 若A₁、A₂、...是β上互不相交的一列集合,则μ(∪Aβ) = ∑μ(Aβ)。

则存在一种扩张方式,将集合族β扩展为一个完备的sigma代
数β(即包含β且对可数并、差、交和补运算封闭的集合族),并定义一个测度函数μ*,满足:
1. 对于任意的A∈β,μ*(A)≥0。

2. 若A₁、A₂、...是β上互不相交的一列集合,则μ*(∪Aβ)
= ∑μ*(Aβ)。

3. 若A₁、A₂、...是β上互不相交的一列集合,则μ*(∪Aβ)
= μ(∪Aβ)。

即扩张后的测度函数在原集合上与原测度函数相同。

这个定理的意义在于,它告诉我们无论是从代数β上出发,还
是从测度函数μ上出发,都能找到一种方式来扩张定义域,使
得函数μ成为一个完备的测度空间上的测度函数。

这种扩张方式是唯一的,在测度论中具有重要的应用和意义。

第三讲 有限维空间的特性 凸性及Brouwer和Schauder不动点定理

第三讲 有限维空间的特性 凸性及Brouwer和Schauder不动点定理

定理 3(到有限维子空间的最佳逼近投影)设 是 空间, 是 的
有限维子空间,则
,存在
,使得

若 严格凸,则
是唯一的。

为 在 Y 上的最佳逼近投影。
证明:取极小化序列

,证明
有界, 是有限维的,从而可以取出收敛子列。
定理 4 若 空间的有界集列紧,则该空间是有限维的。
证明:用定理 3 反证。
定理 5(F.Riesz 引在
,使得
。若 严格凸,则
是唯一的。
证明,直接用下确界的定义。
Problem 1 利用现有概念研究例 1‐例 8 的空间 Exe P39 ,2,3,4,6,11,12,17
5 凸集与不动点
凸的几何概念
凸集,凸包,闭凸集,闭凸包,吸收凸集,对称凸集,平衡凸集,半
连续
,则称

下半连续,若 在 的每一点都下半连续,则称 在 中下半
(1)
且是次线性的,即
凸,则
(2) 吸收 (3) 对称(平衡) (4) 是 空间, 闭
是半范数。 下半连续; 有界
则;
,则 吸收且 一致连续;
且 有界对称(平衡),
则 是与 等价的范数。
推论 若 是 的紧凸子集,则必存在正整数
使得 同胚于
的单位球。
证明 (1) 取 是包含 的最小线性流行,设其维数为

证明 由 列紧知道
, 有 ‐网 ,由 凸知道

于 ,做
,使
有不动点 ,且 收敛到 的不动点。
推论 1 设 是 空间 中的紧凸集,
连续,则 必有一个
不动点

紧映射: 空间 中的子集 上的映射
连续且映有界集为

Brouwer不动点定理的几种证明

Brouwer不动点定理的几种证明

Brouwer不动点定理的几种证明学院名称:专业名称:学生姓名:指导教师:二○一一年五月摘要Brouwer不动点定理是很著名的定理.其中,关于它的证明很多有:代数拓扑的证明、组合拓扑的证明、微分拓扑的证明等.都涉及拓扑学上许多复杂的概念和结果.关于该定理,也可以用图论的方法证明,用离散离散理论解决连续系统中问题.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍来体现这一思想.关键词:Brouwer;不动点.ABSTRACTBrouwer fixed point theorem is very famous theorem . Among them , about its proof many : algebra topologies, proof of the proof, differential combined topology etc. The proof of topological Involves many complex on the concept of limited and results.About this theorem, also can use graph method to prove, in a discrete discrete theory in solving continuous system. This article tries to summarize the other proof method based on the method of graph theory prove Brouwer fixed point theorem for detailed introduction to reflect this thought.Keywords: Brouwer; Fixed point.目录第一章引言 (1)1.1 研究背景 (1)1.2 本课题的研究内容 (1)第二章 Brouwer不动点定理的证明 (2)2.1 Brouwer不动点定理的图论证明 (2)引理2.1.1(sperner,1982) (3)定理2.1.2 (Brouwer) (3)2.2 Brouwer不动点定理的初等证明 (5)2.2.1 基本概念与引理 (5)定理2.2.2.1(Banach不动点定理) (5)定理2.2.2.2(KKM定理) (5)2.2.3 Brouwer不动点定理的证明 (7)定理2.2.3.2 (FKKM定理) (7)定理2.2.3.5(Brouwer不动点定理) (8)2.3 Brouwer不动点定理的nor分析证明 (9)2.3.6 Brouwer不动点定理 (18)参考文献 (19)致谢 (20)第一章引言1.1 研究背景Brouwer不动点定理是非线性分析和拓扑学中的重要基本定理,它的叙述简洁,应用广泛,但证明却很不简单.不论是代数拓扑的证明[1],还是组合拓扑的证明[2],以及微分拓扑的证明[3],都涉及拓扑学上许多复杂的概念和结果.1978年著名的微分拓扑学家nor给出了一中新证明[4],只用到多变量微分学的知识和某些基本分析定理.关于该定理,也可以用图论的方法证明,这种离散理论解决连续系统中问题的思想,对我们也给了很大的启示.本文试图在总结其他证明方法的基础上,对图论的方法证明Brouwer不动点定理进行详细的介绍.1.2 本课题的研究内容整理Brouwer不动点定理的初等、图论方面的证明和nor给出的用多变量微分学和某些基本分析定理的新证明.详细介绍Brouwer不动点定理的图论方法证明,体现离散理论解决连续系统中问题的思想.12第二章 Brouwer 不动点定理的证明2.1 Brouwer 不动点定理的图论证明Brouwer 不动点定理:若2∆表示平面上一个三角形区域围成的闭区域,f 是2∆到自身的连续映射,则f 至少有一个不动点,即存在一点20p ∈∆,使得00()f p p =.首先把2∆剖分成若干小三角形区域,即221m i i δ=∆=,221,n ij i ji j mδδ≠≤≤的面积为零.把2∆的三个顶点分别标志位0,1,2.每个2i δ的顶也用{0,1,2}中的数标志.若2i δ的顶i p 在2∆上的边上,且2∆的这条边端点之标号为k 与m ,2i δ的顶也标成k 与m ,称这些标志位正常标志,在正常标志中小三角形2i δ的三顶分别标志0,1,2时,称2i δ为正常三角形,见图a.2∆的这种标志的剖分称为三角剖分.1图 2.1v v 1v 59v 10v 11图 2.23引理2.1.1(sperner ,1982)在2∆的三角剖分中,正常三角形为奇数个.证:记20δ为2∆的外部区域,22212,,...,m δδδ是2∆进行三角剖分得到三角形子区域.以{}22212,,...,m δδδ为顶集造一个图G ,对于i 与j 接非零的情形,仅当2i δ与2j δ有公共边具此边端点标志为0与1时,才在此二顶间连一边,对20δ与2(0)i i δ≠的情形,仅当2i δ的0-1标志的边落在2∆的0-1标志的边上时,在顶20δ与2i δ间连一边,见图b.由于上述图G 中奇次项的个数是偶数,如果20()d δ是奇数,则22212(),(),...,()m d d d δδδ中奇数个奇次项,又2()3,1,2,...,i d i m δ<=.故22212,,...,m δδδ中的奇次项是一次项.而仅当2i δ是正常三角形时,2()1i d δ=,所以正常三角形有奇数个.下证20()d δ是奇数.事实上,20()d δ是2∆上0-1边上以0与1为端点的小区间的个数.当的这条0-1边之内点为任何小三角形之顶时,,是奇数.当的这条边内有小三角形之顶时,由于标志是正常的,的则这种小三角形在的这条0-1边上之端点标志位0或1.这时又有两种情况,(i )在这条0-1边上的小三角形顶皆标志0或皆标志1,则,(ii )在2∆这条0-1边上的小三角形之顶点标0与标1都有时,我们把端点标号一样的小区间收缩成一点,标号不变,则f 的这条0-1边上的标号序列为0-1交错列010101…01,这里出现奇数个以0,1为端点的小区间,故20()d δ为奇数.证毕. 定理2.1.2 (Brouwer)f 是2∆到自己的连续映射,则存在'20p ∈∆,使''00()f p p =. 证:012,,p p p 是2∆的三个顶点,则对任意2p ∈∆,可以写成001122p a p a p a p =++,则0i a ≥,201i i a ==∑,其中的012,,,p p p p 是二维向量,且012(,,)p a a a =,'''012()(,,)f p a a a =.令{}2'012012(,,)|(,,),,0,1,2i i i S a a a a a a a a i =∈∆≥=. 如果能证出 012S S S φ≠,则存在012012(,,)a a a S S S ∈,且',0,1,2ii a a i ≤=;又22'01i i i i a a ====∑∑,故必有'''001122,,a a a a a a ===,即f 有不动点. 下证2i i S φ=≠.事实上,考虑2∆的正常标志的三角形剖分,使得标志i 的每个顶点属于,0,1,2i S i =.2∆上任意一点'''012012(,,),()(,,)p a a a f p a a a ==时,存在一个i S ,使i p S ∈,且0i a >;否则当每个0i a >时,'ii a a >.于是22'00ii i i a a ==>∑∑,矛盾.若一个三4角形顶点i p S ∈且0i a >时,p 标志以i ,这种标志是正常标志,例如2∆的顶点(0,1,2)i p i =有1i a =,故i i p S ∈,标成i ;在2∆的01p p 边上各点的20a =,我们只能把这边上的点标以0或1;02p p 边上的点同理只能标志0或2;12p p 上的点只能标志1或2,故正常标志.由引理知,至少有一个正常三角形,其中顶点分别属于012,,S S S .我们是剖分无限变密,且小三角形中的最大直径足够小,则有分别在012,,S S S 中的三个点,两两相距可以任意小,又f 是连续的,故012,,S S S 是闭集.于是,012S S S φ≠.证毕.52.2 Brouwer 不动点定理的初等证明2.2.1 基本概念与引理定义2.2.1.1 设E 是一线性空间,其一切子集构成的集族记为2E .子集A E ⊂称为有限闭的,若它与每一有限维平面L E ⊂的交按L 上的Eucild 拓扑是闭的;一个集族{}A λλσ∈称为有限交性质,如果它的每一有限子集的交不空.定义2.2.1.2 设E 是一线性空间,X 是E 上的任意子集,称:2E G X →是一个KKM 映像,如果对任何有限子集{}12,,...mx x xX ⊂,有:{}121,,...()m mi i x x x G x =∞⊂引理2.2.1.3 设集合n X R ⊂非空,则距离函数()inf y Xd x x y ∈=-是Lipschitz的,即有:()()d x d y x y -≤- ,n x y R ∀∈2.2.2 利用Banach 不动点定理证明KKM 定理 定理2.2.2.1(Banach 不动点定理)有限维空间中有界闭凸集上的连续自映射必有不动点. 定理2.2.2.2(KKM 定理)设E 是一线性空间,X 是E 的子集,:2E G X →是一KKM 映像.如果对于任何x X ∈,()G x 是有限闭的,则集族{}()|G x x X ∈具有有限交性质.证: 反证法.假设存在{}12,,...mx x xX ⊂使得1()m i i G x φ==.设L 是由{}12,,...mx x x 张成的有限维平面,d 是上的Eucild 的度量.令{}12,,...mD co x x x =,则D L ⊂.由假定每个1,2,...,()i i m L G x =在L 中闭,故(,())0i d x L G x =的充分必要条件是()i x LG x ∈.定义函数: 1()(,())mi i x d x L G x λ==∑由于1()mii G x φ==,故对于每一x D ∈,()0x λ>.由引理1知:6()()x y n x y λλ-≤- ,x y D ∀∈不妨设D 包含原点,否则用11m ii D x m =-∑代替D 即可.令:11()(,())()mi i i f x d x L G x x t x λ==∑ x D ∀∈ 式中,1t >是待定参数.则:f D D →连续,且对任意,x y D ∈,有:1111()()(,())(,())()()mmiii i i i f y f x d y L G x x d x L G x x t y t x λλ==-≤-∑∑1111(,())(,())()()m miii i i i d y LG x x d x LG x x t y t y λλ==≤-∑∑1111(,())(,())()()mmiii i i i d x L G x x d x L G x x t y t x λλ==+-∑∑下面对式(3)右端两项分别进行估计.首先由引理1.对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d y L G x x d x LG x x t y t y λλ==-∑∑11()()mi i x x y t y λ=≤-∑ 其次根据式(2),对任意,x y D ∈,有:1111(,())(,())()()mmiii i i i d x L G x x d x L G x x t y t x λλ==-∑∑11(,())()()()()mi i i d x L G x x x y t x y λλλλ=≤-∑1((,()))()()mi i i n d x L G x x x y t x y λλ=≤-∑综合式(3)、(4)、(5)知:(,)()()h x y f y f x x y t-≤-7式中,111(,)(,())()()()m mi i i i i nh x y x d x L G x x y x y λλλ===+∑∑.在有界闭集D D⨯上连续,因此有最大值M .取足够大的{}max ,1t M ≥,则,f 构成D 上的一个压缩映射.由Banach 不动点定理知道,,有一不动点x D ∈.令{}{}|(,())0,1,2,...i I i d x LG x i m -=>∈则()ii Ix G x -∈∉.另外:11()(,())()mi i i x f x d x L G x x t x λ---===∑{}1(,())|()()i i i i i Ii Id x LG x x x i I G x t x λ--∈∈=∈∞∈⊂∑导致了矛盾.故定理2成立.2.2.3 Brouwer 不动点定理的证明引理2.2.3.1 设集族{}A λλσ∈是n R 中的非空闭集合,其中一个有界,具有有限交性质,则该集族看非空交.证明:反证法.假设A λλσφ∈=,则它的余集为全空间,即()n CA C A R λλλσλσ∈∈==即开集CA λ.的并覆盖全空间,当然也覆盖集族中的有界闭集.由有限覆盖定理知,存在有限个开集12,,...,m CA CA CA .覆盖住0A ,即:012m A CA CA CA ⊂从而:012m CA A A A ⊃,即:012()m A A A A φ= 这与假设相矛盾,从而引理2成立.定理2.2.3.2 (FKKM 定理)设X 是n R 中的非空紧凸集,:n G X R →是闭值的KKM 映射,且存在一点0x 使0()G x 有界,则集族{}()|G x x X ∈有非空交.证明 :根据定理2知集族{}()|G x x X ∈具有有限交性质,于是根据引理2知定理3成立.引理2.2.3.3. 设X 是n R 中的非空紧凸集,映射:n G X R →连续,则至少存8在一点y X -∈使得:()inf ()x Xy G y x G y ---∈-=-引理2.2.3.4. 设X 是n R 中的非空紧凸集,映射:n G X R →连续.若对于X 中每一满足()x G x ≠的点x ,连结x 和()G x 的线段[],()x G x 至少包含X 中2点.则G 在X 中有不动点.定理2.2.3.5(Brouwer 不动点定理)设:n n G D R R ⊂→是闭集D 上的压缩映像,()G D D ⊂,则对任意0x D ∈,迭代序列:1()k k x G x += 0,1,...k =存在唯一的极限点.证明:由引理2.2.3.3,2.2.3.4可知Brouwer 不动点定理2.2.3.5成立.92.3 Brouwer 不动点定理的nor 分析证明2.3.1 考虑所有实数n 元组的集合1{{,...,}|(1)}n n i E x x x x i n ==≤≤是实数,在n E 上引进三种线性运算之后,{,,,,}n n R E =+⋅<>就称为n 维欧式空间,其中1(,...,)n x x x =称为n R 的点或向量,诸i x 称为点x 的坐标或向量x 的分量;向量(,...,)i n x x x =和(,...,)i n y y y =相加,结果是一个向量,定义为11(,...,)n n x y x y x y +=++ 实数α和向量x 相乘,结果是一个向量,定义为1,...,)(n x x x ααα=向量x 和y 的内积是一个实数,定义为 1,ni ii x y x y =〈〉=∑于是,向量的长度定义为x ==向量x 和y 的之间的距离就是x y -=由于对任何α有2,,2,,0x y x y x x x y y y αααα〈++〉=〈〉+〈〉+〈〉≥ 所以判别式2,,,0x y x x y y 〈〉-〈〉〈〉≤ 即是对任何x 和y n R ∈有Canchy By -∏不等式 |,|x y x y 〈〉≤⋅10等式成立的充要条件是:相差一个常数因子.因此我们可以定义的夹角,x y 〈〉︿的余弦为cos ,x y 〈〉︿,x y x y〈〉⋅=显然,,cos x y 〈〉≤︿1||;x 和y 相差正数因子时,,cos x y 〈〉≤︿1|;相差负数因子时,,cos x y 〈〉=-︿1||;此外由于222,x y x y x y -=+-〈〉222,cos x y x y x y +-〈〉⋅︿=2与通常的余弦定律一致,所以,cos x y 〈〉︿的定义是合理的.从而,向量x 和y 正交定义为, ,x y 〈〉︿=0.向量x 可以用从原点到点x 的有向线段来表示,也可以平行移动到任何位置,只依赖于方向和长度.因此,在图示中,两个向量相加可以用平行四边形法则,也可以用三角形法则.图 2.3(a) 图 2.3(b)2.3.2 命*I 是n R 中的一个区域.如果对任何向量*x I ∈,都相应的地有一个向量()n y x R ∈,就说y 是把*I 映入n R 的一个映像(变换).如果()y x 的诸分量1(,...,)(1)i n y x x i n ≤≤是1(,...,)n x x 的连续函数,就说y 是连续向量场.注意,在说到连续可微时,总是指函数对各个变元的一阶偏导数在包含*I 的一个n 维开领域中处处存在且连续.引理2.3.2.1 命*I 是有界闭域,v 是*I 上的连续可微向量场.于是存在Lipchitz 常数c ,使得*()(),,v x v y c x y x y I -≤-∈证明,由于v 是*I 上的连续,所以对任何*I ξ∈,存在()0δξ>,使得v 在方体 (,()){|||()(1)}n i i I x R x i n ξδξξδξ=∈-<≤≤11处处连续可微,命 *(,())sup ||iij x I jI v c x ξδξξ∈∈∂=∂ 于是,根据微分中值定理,对任何,(,())x y I ξδξ∈有22()()|(,...,)(,...,)|i n i n iv x v y v x x v y y -≤-∑1222{|(,...,)(,,...,)|i n i n iv x x x v y x x ≤-+∑1212|(,...,)(,,...,)|i n i n v y x x v y y x -+ .........1212|(,...,)(,,...,)|}i n i n v y y x v y x x -,,||ij i i ij i ji jc x y c x y ≤-≤-∑∑今证存在0δ>,不依赖于*I ξ∈,使得对任何,(,())x y I ξδξ∈,上述吧不等式成立.否则,对任何正整数p ,存在*p I ξ∈以及1,(,)p p p x y I pξ∈,使得()()p p ij p p ijx x v y c x y -≤-∑由于*I 是有界闭集,根据Bolzano-Weierstrass 定理,可设*p I ξξ→∈,从而,,p p x y ξ→.于是,当p 充分大时,,(,())p p x y I ξδξ∈,所以,()()p p ij p p ijv x v y c x y -≤-∑矛盾.这样一来,如果命 *,()()sup x y I M v x v y ∈=- ,max{,}ij i jMc c δ=∑则对任何*,x y I ∈有()()v x v y c x y -≤-引理2.3.2.2 命*I 是有界闭域,v 是*I 上的连续可微向量场.命u :*n I R →是一个变换,定义为*()(),u x x t v x x I =+⋅∈ 于是,当||t 充分小时,u 是把*I 变成区域*()u I 的一一变换,区域*()u I 的体积可以表示为t 的多项式.证明:据引理1,设是的Lipschitz 常数.于是,当1||t c<时,变换u 是一一的.因为,若x y ≠而()()v x u y =,则由(()())x y t v y v x -=- 推出||x y t c x y x y -≤-<-,矛盾. 其次,由于所以的Jacobi 行列式是12,,()[]1,0,ii j ji jv J u tx i j i jδδ∂=+∂=⎧=⎨≠⎩因而可以表为的多项式:1()1()()n n J u a x t a x t =+++其中诸()i a x t 显然是的连续函数.注意,当0t =时,这个行列式之值为1,所以只要||t 充分小,则()J u 恒为正.于是,则反函数定理,当||t 充分小时,u 是把区域*I 变成区域*()u I 的一一连续可微变换,它的逆变换也是连续可微的.因此,按照体积的积分定义以及n 重积分的换元法则,区域的体积可以表示为**1()(())n u I vol u I du du =⎰⎰*12()I J u dx dx =⎰⎰01n n a a t a t =+++其中 **1()i i n I a a x dx dx =⎰⎰*0,1,,,1i n a ==,nc k 中的1n -维单位球面定义为 1{|1}n n S x h x -=∈= 命v 是1n S -上的向量场.如果对任何1n x S -∈都有,()0x v x =,就说v 是1n S -上的向量场.今设v 是1n S -上的连续可微的单位切向量场,即是对任何1n x S -∈有()1v x =. 考虑区域图 2.4*13{|}22n I x k x =∈≤≤13命*()(),xv x x v x I x=∈ 于是,v 被扩充为*I 上的连续可微的切向量. 再考虑变换*:n u I k → *()(),u x x tv x x I =+∈ 由于()u x ==可见变换u 把半径为13()22r r ≤≤的球面1(){|}n n S r x R x r -=∈=变到半径为的球面1(n S -上.引理2.3.2.3 当t 充分小时,变换u 把1()n S r -变成1(n S -证明:设11,3t t c<<,其中c 是在上的Lipschitz 常数.对于任何固定的10(n u S -∈命*()(),w x tv x x I =∈ 由于1()2tv x t x =⋅<, 所以13()()()22tv x w x tv x <-≤≤< 此外, ()()()()w x w y t v x v y t c x y -=⋅-≤⋅⋅-而1t c ⋅<,可见w 是把欧氏空间的闭集映入自身的压缩映像,据压缩映像原理,有唯一的原动点00()x w x =,即00()x tv x =+,所以1x =000()u tv ξξ=+,其中100n x S ξ-=∈.这就证明了对任何10(n u S -∈,存在唯一的10n S ξ-∈,使得00()u u ξ=14图 2.52.3.3 现在让我们对半径为r 的n 维球体(){|}n n B r x R x r =∈≤的体积给出一个计算公式(())n n n vol B r c r =其中 111312,2221322,23n nn n n cn n n c n n c n n n π----⎧⎪⎪-=⎨--⎪⎪-⎩为偶数为奇数 事实上,例如12342,,3c c c ππ===,按归纳法有10(())2[rn n n vol B r vol B dx -=⎰ 221012()2rn n n n c r x dx --=-⎰ 2102cos nn n c r d πθθ-=⎰算出上述积分,就得到所要的结果.图 2.6152.3.4 现在我们问:球面1n S -上是否存在连续可微的单位切向量?这个问题的回答有些古怪.如果1n -是奇数,回答是肯定的,事实上我们可以给出所要的向量,例如121321()(,,,),n n n v x x x x x x x x S --=---∈但是,如果1n -是偶数,回答则是否定的定理1.偶数维球面上不存在连续可微的单位切向量场.证明:假若不然,当n 是奇数时,若1n S -上存在连续可微的单位切向量场v ,则据引理3,变换()()u x x tv x =+当t 充分小时把区域*13{|}22n I x R x =∈≤≤变成区域*(){n u I x R x =∈≤≤,所以*()u I 的体积是*(())[[n n vol u I vol B vol B =-31[()()22n n n n c =-*()n vol I =由于n 是奇数,这个体积不可能是t 的多项式,因而和引理2的结果矛盾. 定理1还可以稍加推广如下.定理2.偶数维球面上不存在处处不为零的连续向量场.证明:假若不然,命v 是1n S -上处处不为零的连续向量场, 1()n x Sm Min v x -∈=.于是0m >.据Weierstrass 逼近定理[8],中有界闭集上的连续函数可以用多项式函数均匀逼近,所以存在一个多项式映像1:n n p S R -→,即诸()i p x 都是1(,,)n x x 的多项式,图 2.716使得 1()(),n p x v x m x S --<∈ , 命 1()()(),,n u x p x p x x x x S -=-∈即 1()()()n i i j j i j u x p x p x x x =⎛⎫=- ⎪⎝⎭∑ 显然,上的联讯可微向量场,此外,21(),(),(),0,n u x x p x x p x x x x S -=-=∈所以u 是1n S -上的切向量场,最后,()0u x =蕴涵()(),p x p x x x =, 所以(),()0p x v x =,()()p x v x m -=>矛盾,从而u 在1n S -上处处不为零.因此()()()u x w x u x =就是1n S -上连续可微的单位切向量场.但是,如果1n -是偶数,定理1说,这是不可能的.例.地球表面的风的分布可以视为向量场,向量的长度和方向分别表示在该点的风力和风向.风力的分布当然是连续的,所以这个定理说,地球表面上总有一处是完全无风的.2.3.5 现在介绍一种方法,怎么样从维球体傻瓜的向量场构造出维球面上的切向量场.考虑1n k +,设111{|0}{|1}{|1}n n n n n n n k x k x S x k x B x k x +++=∈==∈==∈≤图 2.8n B 的边界球面1{|1}n n S x k x -=∈=是n S 的赤道.假设给了n B 上一个处处不为零的连续向量场u ,使得1n x S -∈时,()u x x =.首先,利用北极投影把n B 映成南半17球1{|0}n n n S x S x -+=∈≤,奇数对任何n x B ∈,从北极(0,0,1)N 到1(,,0)n x x x 的连线与n S 的交点ξ就是所要的对应点.容易验证,北极投影的确定义是2121()(2,,2,1),1n n x x x x x B x ξ=-∈+ 他的递变是111()(,,,0),1n n n x S ξξξξξ-+=∈-显然,这两个变换都是连续可微的.对于任何固定的n x B ∈, n k 中的直线()x tu x + ()t a <经过北极投影变成n S 上的球面曲线(())x tu x ξ+ (注意,北极投影显然对整个n k 上的点都有定义,不过n k 中不属于的点背变到北半球上罢了).我们来证明:这条曲线在0t ≤时速度向量()u ξ是n S -在ξ处的切向量.事实上,按定义有 0()(())|t d u x tu x dt ξξ==+ 2201[(2()),,(2()),()1]1()t d x tu x x tu x x tu x dt x tu x =⎧⎫⎪⎪=⋅+++-⎨⎬++⎪⎪⎩⎭ {22121221(1)[2(),,2(),2,()][2,,2,1]2()[1]n x u x u x x u x x x x x u x x =+⋅--++ 由于()u x 连续依赖于x ,而x 连续依赖于ξ,可见()u ξ连续依赖于n S ξ-∈.此外,{}22222221(),(1)[4,()(1)2,()][4(1)]2,()[1]u x x u x x x u x x x x u x x ξξ=+⋅+--+-+ {2222221(1)2,()(1)2,()[1]0x x u x x x u x x =+-++=可见,u 是n S -上的连续切向量场.最后,还应指出μ在n S -上处处不为零,因为()0μξ=蕴涵,()0x u x =,从而有推出所有的()0i x μ=,与假设矛盾.只要当1n x S -∈时,(),()x x u x x ξ==所以()(0,,0,1)μξ=指向正北.同样,如果我们利用南极投影和向量场u 我们将得到北半球{}1|0n n n S x S x ++=∈≥上的处处不为零的连续向量场μ,但是在赤道1n S -上这个向量场指向正南.为了得到整个球面n S 上的连续向量场,我们利用向量场u -,这样18相应的向量场μ在赤道1n S -上也指向正北.与南半球上的向量场一致.这样一来,我们从所给的向量场u 构造出在整个上处处不为零的连续向量场μ.2.3.6 Brouwer 不动点定理定理3.把n 球体映入自身的任何连续映象f 至少有一个不动点,即存在n x B ∈,使()f x x =证明:假若不然,对任何n x B ∈,()f x x ≠.命1,(),1n x x u x x y x B x y-=-∈-- 其中()x f x =显然,当1n x S -∈时,()u x x =; ()u x 连续依赖于x ,因为,1x y ≠.此外,u 在n B 上处处不为零,因为()0u x =蕴涵,x x x y y x x y --=-或,,x x x x y y x x y +=+ 所以,,,,,,x x x x y x y x x x x y +=+ 即 ,,x x y x =由此再据()0u x =即得y x =于是,u 是n B 上处处不为零的连续向量场.使得1n x S -∈时,()u x x =.据F ,可以由此构造n S 上处处不为零的连续切向量场μ.据定理2,当是偶数时是不可能的.因此,我们证明了当n 是偶数时的Brouwer 定理.奇数的情形则由偶数的情形立即推出.事实上,如果2121:k k f B B --→没有不动点,那么22:k k F B B →也没有不动点,这里12121(,,)((,,),0)k k F x x f x x -=.参考文献[1] 江泽涵,拓扑学引论(第二分册)[M].1965年,上海科技出版社,126.[2] 中国科学院数学研究所,《对策论(博弈论)》[M].1965年,人民教育出版社,1960.[3] V.Guillemin,A.Pollack,Differential Topology,Prentice-Hall,Inc.1974.[4] nor. Analytic proofs of the"Hainy Ball Theorem"and the Brouwer Fixed Point Theorem[M]. 1978年,521—524.[5] 王树禾,图论(第二版)[M].2009年,科技出版社,15.[6] 熊金城,点集拓扑讲义(第三版)[M].2003年,高等教育出版社,251.[7] 燕子宗,杜乐乐,刘永明,Brouwer不动点定理的初等证明[J].长江大学学报,2008,5(1),15-17.[8] 岳崇山,用组合发证明三维情况的Brouwer不动点定理 [J].数学学报,1962,No.7,p.33.[9] 江上欧,压缩映象原理的产生与应用,河北北方学院学报,2006,6(1),3-6.[10] J.Dieudonne,Elements d’Analyse,I.fondements de l’Analyse moderme Ganthier-Villars,1972.19致谢回首既往,自己一生最宝贵的时光能于这样的校园之中,能在众多学富五车、才华横溢的老师们的熏陶下度过,实是荣幸之极.在这四年的时间里,我在学习上和思想上都受益非浅.这除了自身努力外,与各位老师、同学和朋友的关心、支持和鼓励是分不开的.论文的写作是枯燥艰辛而又富有挑战的.老师的谆谆诱导、同学的出谋划策及家长的支持鼓励,是我坚持完成论文的动力源泉.在此,我特别要感谢我的论文指导老师刘永平老师.从论文的选题、文献的采集、框架的设计、结构的布局到最终的论文定稿,从内容到格式,从标题到标点,她都费尽心血.没有刘老师的辛勤栽培、孜孜教诲,就没有我论文的顺利完成.在此我还要感谢和我一起学习和生活的同学,与他们的交流使我受益颇多.最后要感谢我的家人以及我的朋友们对我的理解、支持、鼓励和帮助,正是因为有了他们,我所做的一切才更有意义;也正是因为有了他们,我才有了追求进步的勇气和信心.这也将是我克服困难、不断前进的精神动力.郝斌斌2011年4月于兰州城市学院20。

brouwer不动点定理的证明

brouwer不动点定理的证明

brouwer不动点定理的证明Brouwer不动点定理的证明Brouwer不动点定理是数学中的一项重要定理,它由荷兰数学家L.E.J. Brouwer于1910年首次提出并证明。

该定理是拓扑学中的基本结果,它描述了连续映射在拓扑空间上的固定点存在性。

不动点是指一个映射将某个元素映射为其本身的点,而Brouwer不动点定理则告诉我们,对于某些特定条件下的连续映射,总能够找到至少一个不动点。

为了更好地理解Brouwer不动点定理的证明过程,我们首先需要了解一些相关的概念。

在拓扑学中,一个拓扑空间是由一组集合及其上的拓扑结构组成的,其中拓扑结构描述了集合中的点之间的邻近关系。

而连续映射则是保持拓扑空间中邻近关系的映射。

Brouwer不动点定理的证明思路是通过反证法来进行的。

假设存在一个连续映射f,它在拓扑空间X上没有不动点,即对于任意的x∈X,都有f(x)≠x。

我们将通过构造一个矛盾来证明这个假设是错误的。

我们定义一个闭球B,它是X中所有与中心点x相距小于等于r的点的集合,即B={y∈X∣d(x,y)≤r},其中d(x,y)表示x与y之间的距离,r是一个正数。

由于X是一个拓扑空间,我们可以将闭球B 看作一个紧致的子集,即它是有界且闭合的。

接下来,我们考虑由映射f作用在闭球B上得到的映射f(B)。

根据连续映射的定义,f(B)也是一个紧致的子集。

然而,根据我们的假设,映射f在X上没有不动点,所以f(B)中的任意一个点都不可能与原始闭球B中的点重合。

换句话说,f(B)中的每个点都与B中的点距离至少为r。

现在,我们将在X中构造一系列的闭球B1、B2、B3...,其中Bi+1是Bi的子集,且每个闭球Bi的半径为r/i,i是一个正整数。

由于每个Bi都是紧致的,所以根据Cantor定理,存在一个点x∗,它同时属于闭球B1、B2、B3...。

换句话说,x∗是X中的一个聚点。

接下来,我们考虑f(x∗)。

根据我们之前的假设,f(x∗)≠x∗,所以根据连续映射的定义,f(x∗)与x∗之间的距离至少为r。

概率度量空间中膨胀型映象的若干不动点定理

概率度量空间中膨胀型映象的若干不动点定理

概率度量空间中膨胀型映象的若干不动点定理
王向东
【期刊名称】《许昌师专学报》
【年(卷),期】1992(011)001
【总页数】5页(P1-5)
【作者】王向东
【作者单位】无
【正文语种】中文
【中图分类】O189.11
【相关文献】
1.概率度量空间上非膨胀型映象的一个不动点定理及其应用 [J], 刘苍毅;张忠秀;张尊国
2.概率度量空间中压缩型映象的不动点定理 [J], 郑雪芬
3.概率度量空间中扩张型映象的若干不动点定理 [J], 张文源
4.非阿基米德Menger概率度量空间中Altman型映象公共不动点定理及其在动态规划中的应用 [J], 张树义;丛培根;张芯语
5.非阿基米德概率度量空间中一个多值压缩型映象的不动点定理 [J], 刘宇平
因版权原因,仅展示原文概要,查看原文内容请购买。

caratheodory测度扩张定理。 -回复

caratheodory测度扩张定理。 -回复

caratheodory测度扩张定理。

-回复什么是Carathéodory测度扩张定理?Carathéodory测度扩张定理是实分析中的一个重要定理,它提供了如何将一个有限测度空间的测度扩展到一个更大的σ-代数上的方法。

这一定理最初是由德国数学家Carathéodory在20世纪早期提出的,后来被广泛应用于测度论、概率论和实分析等领域。

首先,我们需要了解一些基本概念。

在实分析中,测度是一种广义上的长度、面积或体积的度量。

具体而言,一个测度是定义在某个集合类上的函数,它满足一系列条件,比如非负性、空集的测度为零以及可列可加性等。

测度理论的目标是研究如何构造和应用测度以及它们之间的性质。

Carathéodory测度扩张定理则是解决了如何将一个有限测度扩展到一个更大的σ-代数上的问题。

σ-代数是一种包含空集并对取余集、可列并以及可列交封闭的集合类。

对于给定的有限测度空间,Carathéodory测度扩张定理提供了一种方法,将这个测度扩展到这个空间生成的σ-代数上。

具体来说,Carathéodory测度扩张定理需要经历以下步骤:第一步,构造一个外测度:首先,我们需要构造一个外测度,这是一个预测测度的函数,它可以衡量任意子集的大小。

通过对原有测度进行外部扩展,我们可以将其扩展到生成的σ-代数上。

第二步,确定可测集:通过外测度,我们可以确定可测集的集合,并将其定义为测度空间。

第三步,构造Carathéodory测度:对于可测集的集合,我们可以构造Carathéodory测度,这是一个定义在该集合上的函数,并满足测度的一系列特性。

第四步,证明测度的可列可加性:最后,我们需要证明通过Carathéodory 测度扩展的测度满足可列可加性。

也就是说,任意可数个可测集的并集的测度等于它们各自测度的和。

通过这四个步骤,Carathéodory测度扩张定理提供了一种方法,可以将一个有限测度扩展到一个更大的σ-代数上,并保持其一系列测度特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,
a 3

a
`

听> 1 时
,
,
T
在 X 中存 在 唯 一 不 动 点
不坊设
.
.

于定理 1

( 1 )
由于 T 是 满 射
,

x
,

犷二
*
:
,






x
,
,
,
; ,
,
〔N
.
类似

的方 法易 证得 “ }
是 二 中一个 c
a
u c
h y 序列
因 x 完备
故可 设

曳 泛

〔X

下证
T



.
事实上
.
于 是 由 条 件 ①
,
〔N
,
d (劣

_
,
,


)
=
d (T

,
,
T
,

,
+
1
) )
+
1 a
:
)
+
a
,
d (戈 d (义
:
,

1 ,
,
一 ;
d (劣
a

,
,
1
,
劣 x

)
+
+
a
3
d (劣
,
,

,
)
a
`
。 *
义卜
)
,
+
d (劣 )

,
,
,

)

(1

a
a
:
) d (义
a
,
。一
,
,
x
,
)> (a
+
a
的简 单 结构 及其 势
.


,
,
讨 论 了 它 们不 动点 的存 在条 件
并 讨 论 了其 不 动 点 集
为叙 述 方 便
,
我们 约 定
:
F ( 了) 表示 映射 r 的不 动点集

,
F ( 写 T ) 表 示 映射 5 和 T 的公共 不 动点 集 ,
,
R
+
表 示 非 负实 数 集
,
,
R 表 示 实 数集
,

) > 0 即得 到“
.


+
a
s

1
,
这 与定 理 的假 设不 合 故
.
二 二

:
即 F ( T ) 是 单 点 集 一证 毕
定理 2
a 设 T 是 X 到 其 自身 上 的 映 射 若 〕
,
;
任R
+
,
£= 2
,
4 5
,
,

,
,
a
:
〔 R
s
.
t
.
V

,
y
`
_




,
-
一戈
一一
- ,
-
韩 山 师 专 学 报 ( 自然科 学 版 ) 一 ———
,
显然
x
,
,
日枷 价 g N


.

.
%

+ , l
奔`
,
于 是 由 条 件②有
d (

,
T
)
=
d (T
x
.
*+
1 *
+
,
T
1
,

)
.
>
+
a

d
. (劣
x
`
)
a
+
a
:
d (`
,
,
T” )
,
+
a
3
d (戈
.
+ 1 。
,
T
`
)
a
“(
,
`
,
%
.

)
+

d (劣
+ 、
,

)

k 0
0 即得
a 3
d (之 d (之
1 9 8 9
一 一一
~


— —————


一~ 一
~
~
—一
一一



,
斗夕
d (T
T , )》
+
a

d (劣
,
T
,
x
)

+
a
:
d (夕 T

,
夕) +
a 。
d (%
,
T 夕)
a
o
d (夕 T
,
)
+
a
d (戈
,
刀)

其中
a
:
+
a
:
+
a

>
1
,
a
:
+
a
3
>
1
: 贝
( 1 ) T 在 X 中存 在 不 动 点 ; ( 2 ) 尸 ( T ) 是 闭集 且 当

3

a
`
+
叽> l 时
,
r 在X
中存 在 唯 一 不 动 点
.
扩 张 型 算 子 及 其 不 动 点 定 理 ( 1 ) 由于 T 是满 射

,
, ,

,
故V二 〔X

,

=
T

,
,
,
,

任N v

可 得 一 点 列 { x 汁二 不 妨 设
V
n
.
〔可
,

,


: ,
十 ,
.
(否 则 问 题 已 解 决 )
;
N 表 示 正整 数 集
N 表 示 非 负整 数 集
另外
,
.
除特 别声 明外
,
(X
,
由 表示 完 备 的 度 量 里 间
,
其 中 d 表示 距 离 函 数
.
2 定理 及 其证 明 号

.
定理
R
,
1
丫%

,
设 T 是X 到 终 自 牙 上 的映 射
,
r
,
T

连续
.
若 如` 〔R

,
f

夕 4
,
5及a
t
,
a
3

`
.
t
.
夕任 尤
a
,
,

, 今夕
d (T
T 夕) )
d (劣
a
4
,
厂万 )
,
+
a
Z
J (y
s
,
丁y )
,
+
a
:
d (戈
,
T y )
+
d (y
T二 )
+
a
d ( 二 夕)

其中
a
:
+
a :
+
a

> I
,

.
( 1 ) ( 2 )
T 在 X 中存 在 不 动 点
F (T ) 是
一个 闭集
,
且当
8
韩 山 师 专 学 报 ( 自然 科 学 版
8

扩 张 型 算 子 及 其 不 动 点 定 理
陈仕 洲

木 文 定 义 并 研 究 了 几 类 扩 张 型 算子
集的简单 结构 及 其势
.

,
获 得 了 它 们 的 不 动 点 存 在定 理
,
讨 论 了不动点
盯 引
本 文 研 究 了儿 类 扩 张 型 算 子


,
是 x 中一 个 c
:
a
u c
hy 序列
.
因 x 完备 故
,
+
可设

,
、之 任X


由 T
的连 续性 及
.
=
T
“x
,

即得
2
=
T
“二

下证
是 T 的不动 点
,
事实 上
,
,
若 T 二斧
z
,
则 由条 件 ① 得
d (2
T封
=
( d >
+
T ( T劝
a
,
T约
,
d (T d (之
l ,
Z

)
+
a
a
:
d (之
`
相关文档
最新文档