2012年中考数学一轮复习考点7: 二元一次方程组
中考数学总复习《二元一次方程组》专项提升练习(附答案)
中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。
定义2:把两个方程合在一起,就组成了方程组。
定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。
定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。
认真读题,分析题中各个量之间的关系。
第2步:设未知数。
根据题意及各个量的关系设未知数。
第3步:列方程(组)。
根据题中各个量的关系列出方程(组)。
第4步:解方程(组)。
根据方程(组)的类型采用相应的解法。
第5步:答。
专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。
年中考第1轮基础复习21:八(上)第七章:二元一次方程组试题
第一部分:基础复习八年级数学(上)第七章:二元一次方程组一、中考要求:1.经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识.2.了解二元一次方程(组)的有关概念,会解简单的二元一次方程组(数字系数人能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性.3.了解二元一次方程组的图象解法,初步体会方程与函数的关系.4.了解解二元一次方程组的“消元”思想.从而初步理解化“未知”为“已知”和化复杂问题为简单问题的化归思想.二、中考卷研究(一)中考对知识点的考查:、年部分省市课标中考涉及的知识点如下表:序号所考知识点比率1 方程组的整数解2%2 解方程组2%3 列方程组解实际问题 2.5~6%4 二元一次方程与一次函数3~7%本章多考查二元一次方程组的解法及应用等.另外本章还多考查方程思想和转化思想以及我们收集和处理信息的能力、获取新知识的能力、分析问题和解决问题的能力以及创新实践能力.三、中考命题趋势及复习对策本章中方程组是刻画现实世界的一个有效的数学模型,考查方程组的题目约占总分的10%左右,题型有填空、选择、解答.中考对数学思想方法的考查一方程组的实际应用将进一步提高,一大批具有较强的时代气息,格调清新、设计自然、紧密联系日常生活实际的应用题将会不断涌现.针对中考命题趋势,在复习时应掌握方程组的解法,还应在方程组的实际应用上多下功夫,加大力度,多观察日常生活中的实际问题.★★★(I)考点突破★★★考点1:方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法.5.整体思想解方程组.(1)整体代入.如解方程组3(1) 55(1)3(5)x yy x-=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的 3(x+5)看作一个整体代入③中,可简化计算过程,求得y.然后求出方程组的解.(2)整体加减,如1+3y19313x+y113x⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x、y的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x-y=3④,可使③、④组成简单的方程组求得x,y.二、经典考题剖析:【考题1-1】(、汉中)若2x+y+4+(x-2)=0则3x+2y=_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y=3×2+2×(-6)=-6【考题1-2】(、北碚,5分)解方程组:x-y=4 2x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解.三、针对性训练:( 20分钟) (答案:242 )1、对方程组4x+7y=-194x-5y=17⎧⎨⎩①②,用加减法消去x,得到的方程为()A、2y=-2 B.2y=-36 C. 12y=-2 D.12y=-362.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是()A.11x=x=2x=73 C. D.19y=8y=3y=3x=3B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩3.若x=-2y=1⎧⎨⎩是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b)(a-b)的值为()A.-353B.353C.-16D.164.解方程组:⑴2x+5y=53x+2y=5 3x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵5.已知方程组ax+5y=154x-by=-2⎧⎨⎩①②由于甲看错了方程①中的a得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a、b为计算,求原方程组的解x与y的差.6.若a+b4b 与3a+b 是同类二次根式,求a、b的值.7.已知关于x,y的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性.二、经典考题剖析:【考题2-1】(、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品()A.赚50%B.赔50%C.赔25%D.不赔不赚解:D 点拨:利润=销售价-进价.【考题2-2】(、南山区正题3分)如图1-7-1,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x、y,那么下面可以求出这两个角的度数的方程组是()A.9015x yx y+=⎧⎨=-⎩B.90215x yx y+=⎧⎨=-⎩C.90152x yx y+=⎧⎨=-⎩D.290215xx y=⎧⎨=-⎩解::B 点拨:此题关键是找出等量关系AB⊥BC,隐含x+y=90°.【考题2-3】(、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
2012年数学中考第一轮复习:数与代数考点整理
2012年中考数学第一轮总复习讲义第1-10课时 数与代数(一)考点整理:1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数实数与数轴上的点是一一对应的。
数轴上即有有理数点,又有无理数点。
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 注:2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.5.实数比大小:(1)利用数轴:数轴上的两个数,右边的数总比左边的数大;(2)利用绝对值:正数>0>负数,正数>负数,两个负数,绝对值大的反而小;(5)平方法:先平方再作差(6)倒数法{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数 负无理数0,0,0a b a b a b a b a b a b a b ->⇔>-=⇔=-<⇔<(3)作差比较法:设、是两个任意实数,则41,11m m m m n m n m n n n n >⇔>=⇔=<⇔<()作商比较法:设m 、n 是两个正实数,则6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1; a 1也可表示为a -1,若ab=1⇔ a 、b 互为倒数;若ab =-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:同号为正,异号为负,并把绝对值相除。
第8章 二元一次方程
2012年中考数学一轮复习考点7: 二元一次方程组考点1: 二元一次方程(组)的概念相关试题:1. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( D )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z x y =⎧⎪⎨+=⎪⎩ 考点2: 二元一次方程(组)的解相关试题:1. (2011河北,19,8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解,求(a+1)(a -1)+7的值【答案】将x=2,y=3代入a y x 3+=中,得a=3。
∴(a+1)(a -1)+7=a 2-1+7=a 2+6=92. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是( B ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩3. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是( D )A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x4. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是(AA .12.x y =⎧⎨=⎩,B .12.x y =⎧⎨=-⎩,C .21.x y =⎧⎨=⎩,D .01.x y =⎧⎨=-⎩,5. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( A )A .-1B .1C .2D .3考点3: 二元一次方程组的解法相关试题:1. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 5,1.x y =⎧⎨=-⎩ .2. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是_______23x y =⎧⎨=⎩_____. 3. (2011江西南昌,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 43x y ì=ïïíï=-ïî . 4. (2011湖南永州,18,6分)解方程组:⎩⎨⎧=+=②13y 2x ①113y -4x【答案】解:①+②×3,得10x=50, 解得x=5,把x=5代入②,得2×5+y=13, 解得y=3.于是,得方程组的解为⎩⎨⎧==3y 5x . 5. (2011广东中山,12,6分)解方程组:2360y x x xy =-⎧⎨--=⎩. 【解】把①代入②,得2(3)60x x x ---=,解得,x=2把x=2代入①,得y=-1所以,原方程组的解为21x y =⎧⎨=-⎩. 6. (2011湖北宜昌,17,7分)解方程组⎩⎨⎧ x -y =1 2x +y =2【答案】解:①+②,得3x =3,∴x=1.将x =1代入①,得1-y =1, ∴y=0.∴原方程组的解是x=1,y=0.(7分)考点4: 二元一次方程(组)的数学应用相关试题:1. (2011福建泉州,12,4分)已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩则x -y 的值为 1 . 考点5: 二元一次方程(组)的实际应用相关知识:相关试题:1. (2011山东泰安,11 ,3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( B )A.⎩⎨⎧x+y=3012x+16y=400B.⎩⎨⎧x+y=3016x+12y=400C.⎩⎨⎧12x+16y=30x+y=400D.⎩⎨⎧16x+12y=30x+y=400 2. (2011台湾台北,30)某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。
2012年中考数学一轮考点复习训练:二元一次方程(组)
2012年中考数学一轮考点复习训练二元一次方程(组)一、选择题1.若1++y x 与()22--y x 互为相反数,则3)3(y x -的值为 ( ) A.1 B.9 C.–9 D.27 2.已知()0332=++++m y x x 中,y 为负数,则m 的取值范围是( ) A. m >9 B. m <9 C. m >-9 D. m <-93.解方程组23739x y x y +=⎧⎨+=⎩ ,①-②得( )A .32x = B. 32x =- C. 2x = D. 2x =-4.二元一次方程组20x y x y +=-=⎧⎨⎩的解是( ) A .02x y ==⎧⎨⎩ B .20x y ==⎧⎨⎩ C .11x y ==⎧⎨⎩ D .11x y =-=-⎧⎨⎩ 二、填空题1.已知x ,y 满足方程组23,37.x y x y -=⎧⎨+=⎩①② 求x +2y 的值为 . 2.方程组⎩⎨⎧=+=-836032y x y x 的解是 . 3.由于人民生活水平的不断提高,购买理财产品成为一个热门话题。
某银行销售A ,B ,C 三种理财产品,在去年的销售中,稳健理财产品C 的销售金额占总销售金额的40% 。
由于受国际金融危机的影响,今年A ,B 两种理财产品的销售金额都将比去年减少20%,因而稳健理财产品C 是今年销售的重点。
若要使今年的总销售金额与去年持平,那么今年稳健理财产品C 的销售金额应比去年增加______ %4.方程组答案:选择题1、答案:D2、答案:A3、答案:D4、答案:C② ①的解是 .2x -y = 3, x + y = 3填空题1、答案:42、答案:⎪⎩⎪⎨⎧==321y x 3、【答案】304、答案:1,2==y x。
2012年重庆市中考数学知识点总复习以及大题分解
试卷结构1、内容结构与比例:数与代数 50% 空间与图形 35% 统计与概率 15%二、一、有理数1、有理数有理数的意义,会比较有理数的大小2、借助数轴理解相反数绝对值的意义,会求相反数与绝对值3、掌握有理数的加、减、乘、除、乘方以及简单的混合运算4、运用有理数运算律简化运算,并解决简单问题二、实数1、了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根2、了解开方与乘方互为逆运算,知道实数与数轴上的点一一对应3、用有理数估计一个无理数的大致范围4、了解近似数的概念并会进行近似数的运算5、了解二次根式的概念及其加减乘除运算法则,会用它们进行有关的实数的简单四则运算(不要求分母有理化)三、代数式1、能分析简单问题的数量关系,并用代数式表示2、会求代数式的值,能根据简单的实际问题,探索所需的公式,并会进行计算四、整式与分式1、了解整数指数幂的意义和基本性质,会用科学计数法表示数2、了解正式的概念,会进行简单的正式加减运算,会进行简单的整式乘法运算3、会推导乘法公式:(a+b)(a—b)=a2-b2 (a+b)2=a2+2ab+b2,并能进行简单计算4、会提公因式、分式法进行因式分解5、了解分式的概念,会运用分式的基本性质进行约分和通分,会进行简单的分式加减乘除运算1、能够用等式表示具体问题中的数量关系2、用观察、画图等的手段估计方程解的过程3、会解一元一次方程、二元一次方程组、可化为一元一次方程的分式方程4、理解配方法5、根据具体问题实际意义,检验结果是否合理6、能用不等式表示具体问题中的大小关系7、会解简单的一元一次方程不等式(不等式组),并能在数轴上表示出解集8、能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的实际问题1、了解函数的概念和3中表示方法2、结合图像,对简单实际问题中的函数关系进行分析3、能确定自变量的取值范围,并求出函数值4、结核函数关系的分析,尝试对变量的变化规律进行初步预测5、根据已知条件确定函数的表达式6、会画一次函数的图像并理解kx+b=y(k不等于0)的性质7、理解正比例函数8、用一次函数结局实际问题9、会用描点法画出二次函数的图像,并从图像上认识二次函数的性质1、会比较角的大小,认识度分秒,并进行简单换算2、了解平行线及其性质3、了解补角、余角对顶角4、了解垂线、垂线段的概念5、会做垂线6、了解垂直平分线及其性质7、了解三角形的有关性质(内角、外角、中线、高、角平分线),了解三角形的稳定性质8、了解全等三角形的概念9、了解等腰三角形的相关概念10、了解直角三角形的概念11、会用勾股定理解决问题12、了解四边形的概念13、等腰梯形14、圆(弧、玄、圆心角),了解点与圆、直线与圆的位置关系15、圆心角、圆周角16、三角形的内心与外心17、了解切线18、计算弧长和扇形面积、圆锥的侧面积和全面积19、会做线段、角、角平分线、线段垂直平分线20、做三角形21、作圆22、判断简单物体的三视图及其侧面展开图23、轴对称24、作轴对称25、图形的平移26、图形的旋转27、图形的相似28、图形与坐标29、证明1、统计:个体、样本2、扇形统计图表示数据3、加权平均数4、会计算极差、方差,并明确其意义5、计算简单事件发生的频率第一章 数与代数第二章 方程与不等式第三章 函数第四章 空间与图形第五章 概率与统计考点一、有理数 1.有理数: (1)凡能写成)0p q ,p (pq 为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(相反数的证明) 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (aa 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; (3)0a 1aa >⇔=;0a 1aa <⇔-=; (4)|a|是重要的非负数,即|a|≥0=5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0. 6.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 7.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 8.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).9.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 10.有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .11.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .12.有理数乘方的法则: (1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时:(-a)n=-a n或(a -b)n=-(b-a)n,当n 为正偶数时:(-a)n=a n或(a-b)n =(b-a)n.13.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0⇔a=0,b=0;14.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.15.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 考点二、实数1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
人教版初中数学中考复习 一轮复习-一次方程及其解法(含参)(2)
x y 3的解,求a的值。
考点二:二元一次方程含参问题
已知方程组2mxx5nyy246, 与n3xx m5 yy
8 ,
36
有相同的解,求m,
n的值。
考点二:二元一次方程含参问题
类型二:解的性质
1.如果关于x、y的二元一次方程组2ax3x
2y 5 (a 2) y
的x与y的值相等, 4
那么a
D.无法判断
追问:m的值是多少?
考点三:二元一次方程与一次函数
2.在二元一次方程组
2x 3y 1 0 6x my 3 0
中,当m=
无数组解。
追问:请你讨论该方程解的情况。
时,这个方程有
考点三:二元一次方程与一次函数
3.已知方程组
2x ky 4
x
2
y
0
有正数解,则k的取值范围是
。
考点三:二元一次方程与一次函数
练习1.
已知xy
21是二元一次方程组mmxx nnyy
7的解,则m 1
n
考点二:二元一次方程含参问题
练习2.
已知xy
25和
x 1 是方程ax y 10
by
15的两个解,则a
考点二:二元一次方程含参问题
类型二:方程同解
1.已知关于x、y的二元一次方程组4xxayy
1 的解也是二元一次方程 3
x2 y 1
考点一:二元一次方程(组)及其解法
例2. 用代入法解方程组2xxyy1106
① ②
解:由①得x=10-y ③ 把③代入②,得2(10-y)+y=16 y=4 把y=4代入③,得x=6
所以这个方程的解为 xy
6 4
2012年全国各地中考数学解析_二元一次方程组
2012年全国各地中考数学解析汇编4 二元一次方程组1.(2012山东德州中考,5,3,)已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( )(A )3 (B )83(C )2 (D )1 2. (2012山东省临沂市,10,3分)关于x 的方程组⎩⎨⎧=+=n my x m x y -3的解是⎩⎨⎧==11y x ,则|m-n|的值是( )A.5B. 3C. 2D. 13.(2012山东省荷泽市,4,3)已知{21x y ==是二元一次方程组{81mx ny nx my +=-=的解,则2m-n 的值为( )4.(2012连云港,10,3分)方程组326x y x y +=⎧⎨-=⎩的解为 。
【5. (2012广州市,17, 9分)解方程组8312x y x y -=⎧⎨+=⎩6.(2012浙江省湖州市,18,6分)解方程组⎩⎨⎧==+1-8y 2x y x4.2 二元一次方程组的应用1. ( 2012年浙江省宁波市,24,10)为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信:已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元 (1) 求a,b 的值(2) 随着夏天的到来用水量将增加,为了节约开支,小王计划把6月份水费控制在家庭月收入的2 %,若小王家月收入为9200元,则小王家6月份最多能用水多少吨?2.(2012山东省滨州,1,3分)李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是()A.14250802900x yx y⎧+=⎪⎨⎪+=⎩B.15802502900x yx y+=+=⎧⎨⎩C.14802502900x yx y⎧+=⎪⎨⎪+=⎩D.15250802900x yx y+=+=⎧⎨⎩3.(2012湖南衡阳市,11,3)为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A .B .C .D .4. (2012呼和浩特,23,8分)(8分)如图,某化工厂与A,B两地有公路和铁路相连。
数学 中考 第一轮 单元讲义(含中考真题)第08章 二元一次方程组
第八章二元一次方程组本章小结小结1 本章概述二元一次方程组是从实际生活中抽象出来的数学模型,它是解决实际问题的有效途径,更是今后学习的重要基础.它是在一元一次方程的基础上来进一步研究末知量之问的关系的,教材通过实例引入方程组的概念,同时引入方程组解的概念,并探索二元一次方程组的解法,具体研究二元一次方程组的实际应用.小结2 本章学习重难点【本章重点】会解二元一次方程组,能够根据具体问题中的数量关系列出方程组.【本章难点】列方程组解应用性的实际问题.【学习本章应注意的问题】在复习解一元一次方程时,明确一元一次方程化简变形的原理,类比学习二元一次方程组、三元一次方程组的解法,同时在学习二元一次方程组、三元一次方程组的解法时,要认真体会消元转化的思想原理,在学习用方程组解决突际问题时,要积极探究,多多思考,正确设未知数,列出恰当的方程组,从而解决实际问题.小结3 中考透视在考查基础知识、基本能力的题目中,单独知识点考查类题目及多知识点综合考查类题目经常出现,在实际应用题及开放题中大量出现.所以在学习本章内容的过程中一定要结合其他相应的知识与方法,本章是中考的重要考点之一,围绕简单的二元一次方程组的解法命题,能根据具体问题的数量关系列出二元一次方程组,体会方程是描述现实世界的一个有效模型,并根据具体问题的实际意义用观察、体验等手段检验结果是否合理.考试题型以选择题、填空题、应用题、开放题以及综合题为主,高、中、低档难度的题目均有出现,占4~7分.知识网络结构图专题总结及应用一、知识性专题专题1 运用某些概念列方程求解【专题解读】在学习过程中,我们常常会遇到二元一次方程的未知数的指数是一个字母或关于字母的代数式,让我们求字母的值,这时巧用定义,可简便地解决这类问题例1 若212135a b a b x y ++--==0,是关于x,y 的二元一次方程,则a =_______,b =_______.分析 依题意,得 解得 答案:2545-【解题策略】准确地掌握二元一次方程的定义是解此题的关键.专题2 列方程组解决实际问题【专题解读】方程组是描述现实世界的有效数学模型,在日常生活、工农业生产、城市规划及国防领域都有广泛的应用,列二元一次方程组的关键是寻找相等关系,寻找相等关系应以下两方面入手;(1)仔细审题,寻找关键词语;(2)采用画图、列表等方法挖掘相等关系.例2 一项工程甲单独做需12天完成,乙单独做需18天完成,计划甲先做若干后离去,再由乙完成,实际上甲只做了计划时间的一半因事离去,然后由乙单独承担,而乙完成任务的时间恰好是计划时间的2倍,则原计划甲、乙各做多少天?分析 由甲、乙单独完成所需的时间可以看出甲、乙两人的工作效率,设总工作量2a+b +1=1, a -2b -1=1,2,545a b ==-为1,则甲每天完成112,乙每天完成118.解:设原计划甲做x 天,乙做y 天,则有 解这个方程组,得答:原计划甲做8天,乙做6天.【解题策略】若总工作量没有具体给出,可以设总工作量为单位“1”,然后由时间算出工作效率,最后利用“工作量=工作效率×工作时间”列出方程.二、规律方法专题专题3 反复运用加减法解方程组【专题解读】反复运用加减法可使系数较大的方程组转化成系数较小的方程组,达到简化计算的目的. 例3 解方程组分析 当方程组中未知数的系数和常数项较大时,注意观察其特点,不要盲目地利用加减法或代入法进行消元,可利用反复相加或相减得到系数较小的方程组,再求解.解:由①-②,得x-y =1,③ 由①+②,得x+y =5,④将③④联立,得解得 即原方程组的解为【解题策略】此方程组属于 型,其中|1c -2c |=k|a-b |,1c +2c =m|a+b|,k,m 为整数.因此这样的方程组通过相加和相减可得到型方程组,显然后一个方程组容易求解.专题4 整体代入法解方程组【专题解读】结合方程组的形式加以分析,对于用一般代入法和加减法求解比较繁琐的方程组,灵活灵用整体代入法解题更加简单.例4 解方程组 分析 此方程组中,每个方程都缺少一个未知数,且所缺少的未知数又都不相同,每个未知数的系数都是1,这样的方程组若一一消元很麻烦,可考虑整体相加、整体代入的方法.解:①+②+③+④,得3(x+y+z+m)=51,111,12181112 1.12218x y x y +=⨯+⨯= x =8, y =6. 8359x +1641y =28359,①1641x +8359y =21641.② x-y =1, ③x+y =5,④ x =3, y =2. x =3,y =2. ax+by=1c , bx+ay=2cx+y=m, x-y=k x+y+z=8,① x+y+m =12,② x+z+m =14,③ y+z+m =17.④即x+y+z+m=17,⑤⑤-①,得m=9,⑤-②,得z=5.⑤-③,得y=3,⑤-④,得x=0.所以原方程组的解为x=0, y=3, z=5, m=9.专题5 巧解连比型多元方程组【专题解读】连比型多元方程组通常采用设辅助未知数的方法来求解. 例5 解方程组 解:设234x y t x y t k +++===,则x+y =2k ,t+x =3k ,y+t =4k , 三式相加,得x+y+t =92k ,将x+y+t =92k 代入②,得92k =27,所以k =6,所以②-⑤,得x =3,②-④,得y =9,②-③,得t =15. 所以原方程组的解为三、思想方法专题 专题6 转化思想【专题解读】对于直接解答有难度或较陌生的题型,可以根据条件,将其转化成易于解答或比较常见的题型.例 6 二元一次方程x+y =7的非负整数解有 ( )A.6个B.7个C.8个D.无数个分析 将原方程化为y =7-x ,因为是非负整数解,所以x 只能取0,1,2,3,4,5,6,7,与之对应的y 为7,6,5,4,3,2,1,0,所以共有8个非负整数解.故选C.【解题策略】对二元一次方程求解时,往往需要用含有一个未知数的代数式表示出另一个未知数,从而将求方程的解的问题转化为求代数式的值的问题.专题7 消元思想【专题解读】 将未知数的个数由多化少,逐一解决的思想即为消元思想. 例7 解方程组[ 分析 解三元一次方程组可类比解二元一次方程组的代入法和加减法,关键是“消元”,把“三元”变为“二元”,再化“二元”为“一元”,进而求解.,234x y t x y t+++==① 27.x y t ++=X+y =12, ③t+x =18, ④y+t =24. ⑤x =3, y =9, t =15. 3x +4y+z =14,① x +5y +2z =17,② 2x +2y-z =3.③解法1:由③得z =2x +2y -3.④把④代入①,得3x +4y +2x +2y -3=14, 即5x +6y =17.⑤把④代入②,得x +5y +2(2x +2y -3)=17, 即5x +9y =23.⑥由⑤⑥组成二元一次方程组 解得把x =1,y =2代入④,得z =3. 所以原方程组的解为解法2:由①+③,得5x +6y =17.⑦ 由②+③×2,得5x +9y =23.⑧ 同解法1可求得原方程组的解为 解法3:由②+③-①,得3y =6,所以y =2.把y =2分别代入①和③,得 解得所以原方程组的解为【解题策略】消元是解方程组的基本思想,是将复杂问题简单化的一种化归思想,其目的 是将多元的方程组逐步转化为一元的方程,即三元 二元 一元.2011中考真题精选1. (2011四川凉山,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩考点:二元一次方程组的定义.分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.解答:解:A 、第一个方程值的xy 是二次的,故此选项错误;B 、第二个方程有x1,不是整式方程,故此选项错误;C 、含有3个未知数,故此选项错误;D 、符合二元一次方程定义,故此选项正确. 故选D .5x +6y =17, ⑤ 5x +9y =23, ⑥ x =1, y =2. x =1, y =2, z =3. x =1, y =2, z =3. x =1, y =2,z =3. 消元 转化 消元 转化点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案. 2. 下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C .⎪⎩⎪⎨⎧=-=+51302y x z x D .5723z x y =⎧⎪⎨+=⎪⎩ 考点:二元一次方程组的定义.分析:组成二元一次方程组的两个方程应共含有两个未知数,且未知数的项最高次数都应是一次的整式方程.解答:解:A 、第一个方程值的xy 是二次的,故此选项错误;B 、第二个方程有x1,不是整式方程,故此选项错误;C 、含有3个未知数,故此选项错误;D 、符合二元一次方程定义,故此选项正确. 故选D .点评:此题主要考查了二元一次方程的定义,一定要紧扣二元一次方程组的定义“由两个二元一次方程组成的方程组”,细心观察排除,得出正确答案.3. (2011河北,19,8分)已知错误!未找到引用源。
人教版中考数学第一轮复习第二章方程与不等式
第二章 方程与不等式第七讲 一次方程(组)【基础知识回顾】一、 等式的概念及性质:1、等式:用“=”连接表示 关系的式子叫做等式2、等式的性质:①、性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②、性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式 即:若a=b,那么a c= ,若a=b (c≠o )那么a c= 【名师提醒:①用等式性质进行等式变形,必须注意“都”,不能漏项②等式两边都除以一个数或式时必须保证它的值 】二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的解4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程三、一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤:1。
2。
3。
4。
5。
【名师提醒:1、一元一次方程的解法的各个步骤的依据分别是等式的性质和合并同类法则,要注意灵活准确运用;2、特别提醒:去分母时应注意不要漏乘项,移项时要注意。
】四、二元一次方程组及解法:1、 解二元一次方程组的基本思路是: ;2.解方程组的解法:① 消元法 ② 消元法【名师提醒:1、一个二元一次方程的解有 组,我们通常在实际应用中要求其正整数解 2、二元一次方程组的解应写成 五、列方程(组)解应用题:一般步骤:1、审:弄清题意,分清题目中的已知量和未知量2、设:直接或间接设未知数3、列:根据题意寻找等量关系列方程(组)4、解:解这个方程(组),求出未知数的值5、验:检验方程(组)的解是否符合题意6:答:写出答案(包括单位名称)【重点考点例析】 一、选择题1.一元一次方程2x=4的解是( )A .x=1 B .x=2 C .x=3 D.x=4x=ay=b 的形式2.已知方程组2535x yx y+=⎧⎨+=⎩,则x+y的值为()A.-1 B.0 C.2 D.3A.4150048000x yx y+=⎧⎨+=⎩B.4150068000x yx y+=⎧⎨+=⎩C.1500468000x yx y+=⎧⎨+=⎩D.1500648000x yx y+=⎧⎨+=⎩二、填空题12.方程组31x yx y+=⎧⎨-=⎩的解是.13.若方程组7353x yx y+=⎧⎨-=-⎩,则3(x+y)-(3x-5y)的值是.14.湖园中学学生志愿服务小组在“三月学雷锋”活动中,购买了一批牛奶到敬老院慰问老人,如果送给每位老人2盒牛奶,那么剩下16盒;如果送给每位老人3盒牛奶,则正好送完.设敬老院有x位老人,依题意可列方程为.15.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价元.三、解答题20.解方程组128 x yx y=+⎧⎨+=⎩.21.解方程组251x yx y+=⎧⎨-=⎩.【基础知识回顾】一、一元二次方程的定义:1、一元二次方程:含有个未知数,并且未知数最高次数是2的方程2、一元二次方程的一般形式:其中二次项是一次项是,是常数项【名师提醒:1、在一元二次方程的一般形式要特别注意强调a≠0这一条件2、将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正】二、一元二次方程的常用解法:1、直接开平方法:如果ax 2 =b 则X 2 = X1= X2=2、配方法:解法步骤:①、化二次项系数为即方程两边都二次项系数,②、移项:把项移到方程的边③、配方:方程两边都加上把左边配成完全平方的形式④、解方程:若方程右边是非负数,则可用直接开平方法解方程3、公式法:如果方程ax 2+bx+c=0(a≠0) 满足b 2-4ac≥0,则方程的求根公式为4、因式分解法:一元二次方程化为一般形式后,如果左边能分解因式,即产生A.B=0的形式,则可将原方程化为两个方程,即、从而得方程的两根【名师提醒:一元二次方程的四种解法应根据方程的特点灵活选用,较常用到的是法和法】三、一元二次方程根的判别式关于X的一元二次方程ax 2+bx+c=0(a≠0)根的情况由决定,我们把它叫做一元二次方程根的判别式,一般用符号表示①当时,方程有两个不等的实数根②当时,方程看两个相等的实数根方程有两个实数跟,则③当时,方程没有实数根【名师提醒:在使用根的判别式解决问题时,如果二次项系数中含有字母一定要保证二次项系数】四、一元二次方程根与系数的关系:关于X的一元二次方程ax 2 +bx+c=0(a±0)有两个根分别为X1、X2则x1+x2 = x1x2 =【重点考点例析】一、选择题1.方程x2-5x=0的解是()A.x1=0,x2=-5 B.x=5 C.x1=0,x2=5 D.x=0 2.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1 B.-1 C.2 D.-23.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根4.一元二次方程2x2-5x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解6.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是()A.4 B.-4 C.1 D.-17.若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥08.若关于x的方程x2-4x+m=0没有实数根,则实数m的取值范围是()A.m<-4 B.m>-4 C.m<4 D.m>49.关于x的一元二次方程(a-1)x2-2x+3=0有实数根,则整数a的最大值是()A.2 B.1 C.0 D.-110.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4 B.x-6=4 C.x+6=4 D.x+6=-4 11.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0 B.(x-1)2=0 C.(x+1)2=2 D.(x-1)2=2二、填空题三、解答题21.选择适当的方法解下列方程:(1)27(23)28x -=; (2)223990y y--= (3)221x +=; (4)2(21)3(21)20x x ++++= 23.关于x 的一元二次方程为(m-1)x 2-2mx+m+1=0.(1)求出方程的根;(2)m 为何整数时,此方程的两个根都为正整数?24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?25.要建一个面积为150m 2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一条墙,墙长为am ,另三边用竹篱笆围成,如图,如果篱笆的长为35m ,(1)求鸡场的长与宽各为多少?(2)题中墙的长度a 对题目的解起着怎样的作用?第九讲 分式方程【基础知识回顾】一、分式方程的概念分母中含有 的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是 把分式方程转化为整式方程:即分式方程 ﹥整式方程2、解分式方程的一般步骤:①、 ②、 ③、3、增根:转化 去分母 A B D E F在进行分式方程去分母的变形时,有时可能产生使原方程分母为 的根称为方程的增根。
2012年长沙市中考数学总复习 专题二 方程与不等式 一元一次方程和二元一次方程组课件
顺水航行速度=静水速度 水流速度 顺水航行速度 静水速度+水流速度 静水速度 逆水航行速度=静水速度-水流速度 逆水航行速度=静水速度-水流速度 静水速度
销售问题中各量之间的关系: 销售问题中各量之间的关系:
售价 - 进价 = 利润 利润率× 利润 = 利润率×进价 进价=利润率× 售价- 进价=利润率×进价 售价=标价× 售价=标价×打折的折扣
a1x + b1 y = c1, a2 x + b2 y = c2.
3. 二元一次方程组的解解: 二元一次方程组的解解: (1)加减消元解; 加减消元解; 加减消元解 (2)代式消元解 代式消元解. 代式消元解
例一、解方程 3 + ( x + 2) 2[(x − 1) − (2x + 1)] = 6
解:去去号由: 3x + 2 − 2x − 4 = 6
3 移项由: x − 2x = 6 − 2 + 4
合合由: x = 8
x + y = 7 ① 例二、解方程组 3x + y = 17 ②
由y = 7 − x ③ 3 把 ③ 式代式② 由:x + 7 − x = 17, 由x = 5 把x = 5代式① 由 : y = 2 解解一:由
(五)二元一次方程组 五 二元一次方程组 1.两个含有两个未已数,且未已数的次数 两个含有两个未已数, 两个含有两个未已数 是一次的整式方程组成的一组方程,叫做 是一次的整式方程组成的一组方程 叫做 二元一次方程组. 二元一次方程组 2.二元一次方程组的一般形式 二元一次方程组的一般形式: 二元一次方程组的一般形式
例例、若关于 x, y的二元一次方程组
x + y = 5k的解的是二元一次方程 x − y = 9k 3 2x + 3y = 6的解,则 k = _______ 4
专题07 二元一次方程组(原卷版)-备战2024年中考数学一轮复习之必考点题型全归纳与分层精练
专题07二元一次方程组【专题目录】技巧1:二元一次方程组的五种特殊解法技巧2:二元一次方程组中六种类型数学思想的应用技巧3:二元一次方程(组)的解的五种常见应用【题型】一、二元一次方程组的有关概念【题型】二、用代入法解二元一次方程组【题型】三、用加减法解二元一次方程组【题型】四、用整体消元法解二元一次方程组【题型】五、同解方程组【题型】六、列二元一次方程组【考纲要求】1、了解二元一次方程的概念,能把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式,能举例说明二元一次方程及其中的已知数和未知数;2、理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
【考点总结】一、二元一次方程组【注意】1.解二元一次方程组的步骤(1)代入消元法①变:将其一个方程化为y =ax +b 或者为x =ay+b 的形式②代:将y =ax +b 或者为x =ay+b 代入另一个方程③解:解消元后的一元一次方程④求:将求得的未知数值代入y =ax +b 或x =ay+b ,求另一个未知数的值⑤答:写出答案(2)加减消元法①化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式,②加减:将变形后的方程组通过加减消去一个未知数③解:解消元后的一元一次方程方程组的解.加减法解二元一次方程组的一般步骤:a .方程组的两个方程中,如果同一个未知数的系数不互为相反数又不相等,就用适当的数去乘方程的两边,使它们中同一个未知数的系数相等或互为相反数;b .把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;c.解这个一元一次方程;d.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.常见运用题型解应用题的步骤:①审清题意;②找等量关系;③设未知数;④列方程;⑤解方程;⑥验根;⑦作答.工作(或工程)问题:工作量=工作效率×工作时间利息问题:利息=本金×利率×期数;本息和=本金+利息行程问题:路程=速度×时间;其中,相遇问题:s 甲+s 乙=s 总;追及问题:(同地异时)前者走的路程=追者走的路程;(异地同时)前者走的路程+两地间的距离=追者走的路程利润问题:利润=卖价-进价;利润率=进价利润×100%.数字问题:两位数=10×十位数字+个位数字;三位数=100×百位数字+10×十位数字+个位数字④求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值2.解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法;(2)当方程组中某一个方程的常数项为0时,选用代入消元法;(3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法(4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法【技巧归纳】技巧1:二元一次方程组的五种特殊解法【类型】一、引入参数法解二元一次方程组1.用代入法解方程组:+y 6=0,①x -y )-4(3y +x )=85.②【类型】二、特殊消元法解二元一次方程组题型1:方程组中两未知数系数之差的绝对值相等2015x +2016y =2017,①016x +2017y =2018.②题型2:方程组中两未知数系数之和的绝对值相等3+14y =40,①+13y =41.②【类型】三、利用换元法解二元一次方程组4y )+4(x -y )=20,-x -y 2=0.【类型】四、同解交换法解二元一次方程组5.已知关于x ,y -by =4,-y =5+by =16,-7y =1的解相同,求(a -b)2018的值.【类型】五、运用主元法解二元一次方程组6-3y -3z =0,-3y -z =0(x ,y ,z 均不为0),求xy +2yz x 2+y 2-z 2的值.技巧2:二元一次方程组中六种类型数学思想的应用【类型】一、整体思想1.先阅读,然后解方程组.-y-1=0,①(x-y)-y=5②时,由①,得x-y=1,③然后再将③代入②,得4×1-y=5,解得y=-1,从而进一步求得x=0.=0,=-1.这种方法被称为“整体代入法”.请用这样的方法解下面的方程组:0,2y=9.2.若x+2y+3z=10,4x+3y+2z=15,求x+y+z的值.【类型】二、化繁为简思想3.阅读下面解方程组的方法,然后解决问题:+18y=17,①+16y=15②时,我们如果直接考虑消元,会很繁琐,而采用下面的解法则是轻而易举的.解:①-②,得2x+2y=2,所以x+y=1.③③×16,得16x+16y=16,④②-④,得x=-1,将x=-1代入③,得y=2.=-1,=2.018x+2017y=2016,016x+2015y=2014.【类型】三、方程思想4.已知(5x-2y-3)2+|2x-3y+1|=0,求x+y的值.5.若3x2m+5n+9+4y4m-2n-7=2是二元一次方程,求(n+1)m+2018的值.【类型】四、换元思想6+x-y3=6,y)-5(x-y)=2.【类型】五、数形结合思想7.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,买5束鲜花和5个礼盒共需多少元?【类型】六、分类组合思想8-y =5,+by =-1+y =9,-4by =18有公共解,求a ,b 的值.技巧3:二元一次方程(组)的解的五种常见应用【类型】一、已知方程(组)的解求字母的值1.若关于x ,y-y =m ,+my =n=2,=1,则|m -n|的值为()A .1B .3C .5D .22=2,=3=-4,=2是关于x ,y 的二元一次方程2ax -by =2的两组解,求a ,b 的值.【类型】二、已知二元一次方程组与二元一次方程同解求字母的值3.已知关于x ,y+2y =3m ,-y =9m 的解也是方程3x +2y =17的解,求m 的值.【类型】三、已知二元一次方程组的解满足某一关系求字母的值4.已知m ,n 互为相反数,关于x ,y+ny =60,-y =8的解也互为相反数,求m ,n 的值.【类型】四、已知两个二元一次方程组共解求字母的值5.关于x ,y+5y =-6,-by =-4-5y =16,+ay =-8有相同的解,求(2a +b)2018的值.【类型】五、已知二元一次方程组的误解求字母的值6+y =5,-by =13时,由于粗心,甲看错了方程组中的a=72,=-2;乙看错了方程组中的b=3,=-7.(1)甲把a 错看成了什么?乙把b 错看成了什么?(2)求出原方程组的正解.【题型讲解】【题型】一、二元一次方程组的有关概念例1、若21a b =⎧⎨=⎩是二元一次方程组3522ax by ax by ⎧+=⎪⎨⎪-=⎩的解,则x +2y 的算术平方根为()A.3B.3,-3CD.【题型】二、用代入法解二元一次方程组例2、二元一次方程组224x yx y+=⎧⎨-=⎩的解是()A.2xy=⎧⎨=⎩B.2xy=⎧⎨=⎩C.31xy=⎧⎨=-⎩D.11xy=⎧⎨=⎩【题型】三、用加减法解二元一次方程组例3、由方程组+=43x my m⎧⎨-=⎩可得出x与y之间的关系是().A.x+y=1B.x+y=-1C.x+y=7D.x+y=-7【题型】四、用整体消元法解二元一次方程组例4、若方程组237351m nm n-=⎧⎨+=⎩的解是21mn=⎧⎨=-⎩,则方程组()()()()2132731521x yx y⎧+--=⎪⎨++-=⎪⎩的解是()A.11xy=⎧⎨=⎩B.11xy=⎧⎨=-⎩C.31xy=⎧⎨=⎩D.33xy=⎧⎨=-⎩【题型】五、同解方程组例5、已知关于x,y的方程组2342x yax by-=⎧⎨+=⎩,与3564x ybx ay-=⎧⎨+=-⎩,有相同的解,则a,b的值为()A.21ab=-⎧⎨=⎩B.12ab=⎧⎨=-⎩C.12ab=⎧⎨=⎩D.12ab=-⎧⎨=-⎩【题型】六、列二元一次方程组例6、《孙子算经》是中国古代重要的数学著作,纸书大约在一千五百年前,其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车:若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.2392x yx y⎧=+⎪⎪⎨⎪+=⎪⎩B.2392x yx y⎧=-⎪⎪⎨-⎪=⎪⎩C.2392x yx y⎧=+⎪⎪⎨-⎪=⎪⎩D.2392x yx y⎧=-⎪⎪⎨⎪-=⎪⎩二元一次方程组(达标训练)一、单选题1.(2022·广东·深圳外国语学校模拟预测)“绿水青山就是金山银山”,某地准备购买一些松树和柏树绿化荒山,已知购买2棵松树和3棵柏树需要120元,购买2棵松树比1棵柏树多20元,设每棵松树x 元,每棵柏树y 元,则列出的方程组正确的是()A .23120220x y x y +=⎧⎨-=⎩B .23120220x y x y +=⎧⎨+=⎩C .23120220x y y x +=⎧⎨-=⎩D .32120220x y x y +=⎧⎨+=⎩2.(2022·天津河北·一模)方程组282x y x y +=⎧⎨=⎩的解是()A .21x y =⎧⎨=⎩B .42x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .24x y =⎧⎨=⎩3.(2022·天津红桥·三模)方程组21230x y y x +=-⎧⎨+=⎩的解是().A .11x y =-⎧⎨=⎩B .12x y =-⎧⎨=-⎩C .23x y =-⎧⎨=⎩D .23x y =⎧⎨=-⎩4.(2022·上海杨浦·二模)下列方程中,二元一次方程的是()A .1xy =B .210x -=C .1x y -=D .11x y+=5.(2022·山东威海·一模)已知关于x ,y 的二元一次方程组231ax by ax by +=⎧⎨-=⎩的解为11x y =⎧⎨=-⎩,则2a b -的值是()A .2-B .2C .3D .3-二、填空题6.(2022·湖南娄底·二模)我国明代数学读本《算法统宗》一书中有这样道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果一托为5尺,那么索长与竿子长之和为______尺.7.(2022·江苏无锡·二模)已知方程组26221x y x y +=⎧⎨+=⎩,则x y +的值为______.三、解答题8.(2022·广东·广州市第一二三中学模拟预测)阅读材料:善于思考的小军在解方程组()1045x y x y y --=⎧⎪⎨--=⎪⎩①②时,采用了一种“整体代入”的解法:解:由①得x ﹣y =1③将③代入②得:4×1﹣y =5,即y =﹣1把y =﹣1代入③得x =0,∴方程组的解为01x y =⎧⎨=-⎩请你模仿小军的“整体代入”法解方程组,解方程232235297x y x y y -=⎧⎪-+⎨+=⎪⎩.二元一次方程组(提升测评)一、单选题1.(2022·广东·江门市新会东方红中学模拟预测)若最简二次根式3aa 、b 的值分别是()A .2和1B .1和2C .2和2D .1和12.(2022·福建·平潭翰英中学一模)已知12x y =⎧⎨=⎩是二元一次方程组m −n =8m +n =1的解,则43m n +的立方根为()A .±1BC .±D .1-3.(2022··二模)我们知道二元一次方程组233345x y x y -=⎧⎨-=⎩的解是31x y =⎧⎨=⎩.现给出另一个二元一次方程组2(21)3(31)33(21)4(31)5x y x y +--=⎧⎨+--=⎩,它的解是()A .123x y =-⎧⎪⎨=⎪⎩B .123x y =-⎧⎪⎨=-⎪⎩C .123x y =⎧⎪⎨=⎪⎩D .123x y =⎧⎪⎨=-⎪⎩4.(2022·福建宁德·二模)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有二人共车九人步;三人共车,二车空.问:人与车各几何?译文:若每辆车都坐2人,则9需要步行:若每辆车都坐3人,则两辆车是空的,问:车与人各多少?设有x 辆车,y 人,根据题意,列方程组是()A .2932y x y x =+⎧⎨=-⎩B .293(2)y x y x =+⎧⎨=-⎩C .2932y x y x =-⎧⎨=-⎩D .()2932y x y x =-⎧⎨=-⎩5.(2022·广东·揭阳市实验中学模拟预测)如果关于x ,y 的方程组436626x y x my -=⎧⎨+=⎩的解是整数,那么整数m 的值为()A .4,4-,5-,13B .4,4-,5-,13-C .4,4-,5,13D .4-,5,5-,13二、填空题6.(2022·江苏南通·二模)我国古代数学名著《孙子算经》中记载了一道题,原文:今有人盗库绢,不知所失几何.但闻草中分绢,人得六匹,盈六匹;人得七匹,不足七匹.问人、绢各几何?注释:(娟)纺织品的统称;(人得)每人分得;(匹)量词,用于纺织品等,(盈):剩下.若设贼有x 人,库绢有y 匹,则可列方程组为______.三、解答题7.(2022·广东·华南师大附中三模)解下列方程组:(1)1223334m n m n ⎧+=⎪⎪⎨⎪-=⎪⎩;(2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩;(3)0.10.3 1.3123x y x y +=⎧⎪⎨-=⎪⎩;(4)23433x y x y ⎧=⎪⎨⎪-=⎩.8.(2022·浙江温州·二模)为促进学生体育活动,学校计划采购一批球类器材,当每班购进5个排球和6个篮球时花费360元;购进10个排球和2个篮球时花费270元.(1)求排球和篮球的单价.(2)为扩充器材室储备,现还需购买120个排球和篮球,其中排球的数量不少于篮球数量的23,如何购买总费用最少.(3)经调查,为满足不同学生的需要,学校准备新增购进进价为每个60元的足球,篮球和排球的仍按需购进,进价不变,排球是篮球的4倍,共花费9000元,则学校至少可以购进多少个球类器材?。
2012年904班中考数学总复习讲义02
13. (2007安徽)据报道,我省农作物秸杆的资源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定我省每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率。
( 1.41)考点6:(1)因式分解的意义(A )提取公因式法(C )公式法(直接用公式不超过两次)(C )1.因式分解: 多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.2.分解因式的常用方法有:(1)提公因式法 如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.(2)运用公式法,即用下面的公式直接写出结果.))((,)(2),)((223322222b ab a b a b a b a b ab a b a b a b a +±=±±=+±-+=-(3)十字相乘法:对于二次项系数为l 的二次三项式,2q px x ++ 寻找满足ab=q ,a+b=p 的a ,b ,如有,则);)((2b x a x q px x ++=++对于一般的二次三项式),0(2≠++a c bx ax 寻找满足a 1a 2=a ,c 1c 2=c,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)((22112c x a c x a c bx ax ++=++(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. 分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.(5)求根公式法:如果),0(02≠=++a c bx ax 有两个根X 1,X 2,那么).)((212x x x x a c bx ax --=++(6)拆项、裂项法3.分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.注意:①因式分解与整式乘法的区别;②完全平方公式、平方差公式中字母,不仅表示一个数,还可以表示单项式、多项式.中考真题1(2011安徽)因式分解:22a b ab b ++= . (2011安徽芜湖)2.(2011安徽芜湖)因式分解 3322x x y xy -+=_____3.(2009安徽)因式分解:2221a b b ---= .4. (2008安徽)下列多项式中,能用公式法分解因式的是( )A.x 2-xyB. x 2+xyC. x 2-y 2D. x 2+y 2考点7:一元一次方程的解法(C )简单的二元一次方程组的解法(C )可化为一元一次方程或一元二次方程的分式方程的解法(方程中的分式不超过两个)(C ) 简单数字系数的一元二次方程的解法(公式法、配方法、因式分解法)(C )分式、等式、不等式的基本性质(B )简单的一元一次不等式的解法(B )两个一元一次不等式组成的不等式组的解法(C )在数轴上表示不等式(组)解集(C )1.(1)等式:表示相等关系的式子,叫做等式;(2)等式的基本性质:①等式两边加(或减)同一个数或一个整式所得的结果仍相等。
2012中考数学总复习知识点总结:003 方程(组)
第三章 方程(组)考点一、一元一次方程的概念 (6分)1、方程含有未知数的等式叫做方程。
2、方程的解能使方程两边相等的未知数的值叫做方程的解。
3、等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项。
考点二、一元二次方程 (6分)1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
考点三、一元二次方程的解法 (10分)1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
2012年中考数学分类解析(159套63专题)专题8_二元一次方程组
2012年全国中考数学试题分类解析汇编(159套63专题)专题8:二元一次方程组今升数学工作室 编辑一、选择题1. (2012浙江杭州3分)已知关于x ,y 的方程组x y=4a x y=3a-⎧⎨-⎩+3,其中﹣3≤a≤1,给出下列结论:①x=5y=1⎧⎨-⎩是方程组的解;②当a=﹣2时,x ,y 的值互为相反数;③当a=1时,方程组的解也是方程x+y=4﹣a 的解; ④若x≤1,则1≤y≤4. 其中正确的是【 】A .①②B .②③C .②③④D .①③④ 【答案】C 。
【考点】二元一次方程组的解,解一元一次不等式组。
【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断:解方程组x y=4a x y=3a -⎧⎨-⎩+3,得x=12ay=1a +⎧⎨-⎩。
∵﹣3≤a≤1,∴﹣5≤x≤3,0≤y≤4。
①x=5y=1⎧⎨-⎩不符合﹣5≤x≤3,0≤y≤4,结论错误;②当a=﹣2时,x=1+2a=﹣3,y=1﹣a=3,x ,y 的值互为相反数,结论正确; ③当a=1时,x+y=2+a=3,4﹣a=3,方程x+y=4﹣a 两边相等,结论正确; ④当x≤1时,1+2a≤1,解得a≤0,y=1﹣a≥1,已知0≤y≤4, 故当x≤1时,1≤y≤4,结论正确。
,故选C 。
2. (2012福建宁德4分)二元一次方程组⎩⎨⎧x +y =32x -y =6的解是【 】A .⎩⎨⎧x =6y =-3B .⎩⎨⎧x =0y =3C .⎩⎨⎧x =2y =1 D .⎩⎨⎧x =3y =0【答案】D 。
【考点】解二元一次方程组。
【分析】3x 3x y 33x=9x=3y 0y 02x y 6=+=⎧⎧−−−−→−−−−−→−−−−→=⇒⎨⎨=-=⎩⎩①+②得两边除以得代入①得①②。
故选D 。
3. (2012福建漳州4分)二元一次方程组x y 22x y 1+=⎧⎨-=⎩的解是【 】A .x 0y 2=⎧⎨=⎩ B .x 1y 1=⎧⎨=⎩ C .x 1y 1=-⎧⎨=-⎩ D .x 2y 0=⎧⎨=⎩【答案】B 。
二元一次方程组-中考数学复习知识讲解+例题解析+强化训练
2012年中考数学复习教材回归知识讲解+例题解析+强化训练二元一次方程组◆知识讲解1.二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.3.二元一次方程组的应用对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤:(1)选定几个未知数;(2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组;(3)解方程组,得到方程组的解;(4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.◆例题解析例1 已知21x y =⎧⎨=⎩是方程组2(1)21x m y nx y +-=⎧⎨+=⎩的解,求(m+n )的值.【分析】由方程组的解的定义可知21x y =⎧⎨=⎩,同时满足方程组中的两个方程,将21x y =⎧⎨=⎩代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值.【解答】把x=2,y=1代入方程组2(1)21x m y nx y +-=⎧⎨+=⎩中,得 22(1)12211m n ⨯+-⨯=⎧⎨+=⎩ 由①得m=-1,由②得n=0.所以当m=-1,n=0时,(m+n )=(-1+0)=-1.【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程.例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.•某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000•顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;•若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶.(1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶?(2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感?【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y顶,则210523178x y x y +=⎧⎨+=⎩解得:x=41;y=32答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶.(2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务.可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.例3 (2006,海南)某商场正在热销2008年北京奥运会吉祥物“福娃”和徽章两种奥运商品,根据下图提供的信息,•求一盒“福娃”玩具和一枚徽章的价格各是多少元?【分析】本题以图文形式提供了部分信息,主要考查学生运用二元一次方程组解决实际问题的能力.【解答】设一盒“福娃”玩具和一枚徽章的价格分别为x元和y元.依题意,得214523280x yx y+=⎧⎨+=⎩解这个方程组,得12510xy=⎧⎨=⎩故一盒“福娃”玩具的价格为125元,一枚徽章的价格为10元.例4 (2004,昆明市)为满足用水量不断增长的需求,昆明市最近新建甲,乙,•丙三个水厂,这三个水厂的日供水量共计11.8万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)【分析】(1)可设甲水厂的日供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3,由三个水厂的日供水量总和为11.8万m 3,可列方程x+3x+12x+1=11.8; (2)设每辆A 型汽车每次运土石xt ,B 型车每辆每次运土石yt ,•依题意可列方程组30206001530600x y x y +=⎧⎨+=⎩解方程后可求解.【解答】(1)设甲水厂的供水量是x 万m 3,则乙水厂的日供水量是3x 万m 3,丙水厂的日供水量是(12x+1)万m 3. 由题意得:x+3x+12x+1=11.8,解得x=2.4. 则3x=7.2,x+1=2.2.答:甲水厂日供水量是2.4万m 3,乙水厂日供水量是7.2万m 3,•丙水厂日供水量是2.2万m 3.(2)设每辆A 型汽车每次运土石xt ,每辆B 型汽车每次运土石yt ,由题意得:30206001530600x y x y +=⎧⎨+=⎩ ∴1015x y =⎧⎨=⎩ 答:每辆A 型汽车每次运土石10t ,每辆B 型汽车每次运土石15t .【点评】本例系统地考查了一元一次方程和二元一次方程组这两个重要内容,在同一背景下提供不同的动作方案是近年中考应用题的发展方法.◆强化训练一、填空题1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是_____.3.若方程组26ax yx by+=⎧⎨+=⎩的解是12xy=⎧⎨=-⎩,则a+b=_______.4.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k_____.5.已知x,y,t满足方程组23532x ty t x=-⎧⎨-=⎩,则x和y之间应满足的关系式是_______.6.(2008,宜宾)若方程组2x y bx by a+=⎧⎨-=⎩的解是1xy=⎧⎨=⎩,那么│a-b│=_____.7.某营业员昨天卖出7件衬衫和4条裤子共460元,今天又卖出9件衬衫和6条裤子共660元,则每件衬衫售价为_______,每条裤子售价为_______.8.(2004,泰州市)为了有效地使用电力资源,我市供电部门最近进行居民峰谷用电试点,每天8:00至21:00用电每千瓦时0.55元(“峰电”价),21:00至次日8:00•用电每千瓦时0.30元(“谷电”价),王老师家使用“峰谷”电后,•五月份用电量为300kW·h,付电费115元,则王老师家该月使用“峰电”______kW·h.二、选择题9.二元一次方程3x+2y=15在自然数范围内的解的个数是()A.1个 B.2个 C.3个 D.4个10.已知x ay b=⎧⎨=⎩是方程组||223xx y=⎧⎨+=⎩的解,则a+b的值等于()A.1 B.5 C.1或5 D.0 11.已知│2x-y-3│+(2x+y+11)2=0,则()A.21xy=⎧⎨=⎩B.3xy=⎧⎨=-⎩C.15xy=-⎧⎨=-⎩D.27xy=-⎧⎨=-⎩12.在解方程组278ax bycx y-=⎧⎨+=⎩时,一同学把c看错而得到22xy=-⎧⎨=⎩,正确的解应是32xy=⎧⎨=⎩,那么a,b,c的值是()A.不能确定 B.a=4,b=5,c=-2C.a,b不能确定,c=-2 D.a=4,b=7,c=213.(2008,河北)如图4-2所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是()A.20g B.25g C.15g D.30g14.4辆板车和5辆卡车一次能运27t货,10辆板车和3辆卡车一次能运20t 货,设每辆板车每次可运xt货,每辆卡车每次能运yt货,则可列方程组()A.452710327x yx y+=⎧⎨-=⎩B.452710320x yx y-=⎧⎨+=⎩C.452710320x yx y+=⎧⎨+=⎩D.427510203x yx y-=⎧⎨-=⎩15.七年级某班有男女同学若干人,女同学因故走了14名,•这时男女同学之比为5:3,后来男同学又走了22名,这时男女同学人数相同,那么最初的女同学有()A.39名 B.43名 C.47名 D.55名16.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,•捐款情况如下表:捐款/元 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组.()A.272366x yx y+=⎧⎨+=⎩B.2723100x yx y+=⎧⎨+=⎩C.273266x yx y+=⎧⎨+=⎩D.2732100x yx y+=⎧⎨+=⎩17.甲,乙两人分别从两地同时出发,若相向而行,则ah 相遇;若同向而行,则bh 甲追 上乙,那么甲的速度是乙的速度为( )A .a b b +倍B .b a b +倍C .b a b a +-倍D .b a b a-+倍 18.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺张数,•信封个数分别为( )A .150,100B .125,75C .120,70D .100,150三、解答题19.解下列方程组:(1)(2008,天津市)35821x y x y +=⎧⎨-=⎩(2)(2005,南充市)271132x y y x -=⎧⎪⎨--=⎪⎩20.(2008,山东省)为迎接2008年奥运会,•某工艺厂准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,•生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,•如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?21.(2008,重庆市)为支持四川抗震救灾,重庆市A,B,C三地现在分别有赈灾物资00t,100t,80t,需要全部运往四川重灾地区的D,E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20t.(1)求这批赈灾物资运往D,E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60t,A地运往D县的赈灾物资为xt(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍,其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25t.则A,B•两地的赈灾物资运往D,E两县的方案有几种?请你写出具体的运送方案:(3)已知A,B,C三地的赈灾物资运往D,E两县的费用如表所示:为及时将这批赈灾物资运往D,E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?22.(2003,常州市)甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?答案1.3;-1 2.-7 3.8 4.k=3355.15y-x=6 6.1 7.20元 80元 8.1009.•C 10.C 11.D 12.B 13.A 14.C 15.C 16.A 17.C 18.A19.(1)由②得y=2x -1 ③把③代入①得:3x+5(2x -1)=8即x=1把x=1代入③得y=1∴原方程组的解为11x y =⎧⎨=⎩(2)化简方程组,得2763x y x y =+⎧⎨+=⎩ ④代入⑤,得y=-3.将y=-3代入,得x=1故原方程组的解是:13x y =⎧⎨=-⎩ 20.设生产奥运会标志x 套,生产奥运会吉祥物y 套,根据题意,得4520000,31030000.x y x y +=⎧⎨+=⎩①×2-②得:5x=10000.∴x=2000.把x=2000代入①得:5y=12000.∴y=2400.答:该厂能生产奥运会标志2000套,生产奥运会吉祥物2400套.21.(1)设这批赈灾物资运往D 县的数量为a (t ),运往E 县的数量为b (t ).由题意,得280,220.a b a b +=⎧⎨=-⎩解得180,100.a b =⎧⎨=⎩ 答:这批赈灾物资运往D 县的数量为180t ,运往E 县的数量为100t .(2)由题意,得1202225x x x-<⎧⎨--≤⎩解得40,45.xx>⎧⎨≤⎩即40<x≤45,∵x为整数,∴x的取值为41,42,43,44,45.则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41t,运往E县59t;B地的赈灾物资运往D县79t,运往E县21t.方案二:A地的赈灾物资运往D县42t,运往E县58t;B地的赈灾物资运往D县78t,运往E县22t.方案三:A地的赈灾物资运往D县43t,运往E县57t;B地的赈灾物资运往D县77t,运往E县23t.方案四:A地的赈灾物资运往D县44t,运往E县56t;B地的赈灾物资运往D县76t,运往E县24t.方案五:A地的赈灾物资运往D县45t,运往E县55t;B地的赈灾物资运往D县75t,运往E县25t.(3)设运送这批赈灾物资的总费用为w元,由题意,得w=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800.因为w随x的增大而减小,且40<x≤45,x为整数.所以,当x=41时,w有最大值,则该公司承担运送这批赈灾物资的总费用最多为:w=60390(元).22.(1)乙班共付出70×2=140(元),乙班比甲班少付出189-140=49(元).(2)设甲班第一次买苹果xkg,第二次买苹果ykg(x<y).①当x≤30时,则y>30(否则,x+y≤60<70).依题意有703 2.5189x yx y+=⎧⎨+=⎩或者7032189x yx y+=⎧⎨+=⎩解之,得2842xy=⎧⎨=⎩或者4921xy=⎧⎨=⎩(不合题意,舍去)②若30<x≤50,则30<y≤50,或y>50,当y>50,x+y>80>70,不合题意.当30<y≤50时,70×2.5=175<189,也不合题意.③若x>50,y>x,则x+y>70,不合题意.故甲班第一次买苹果28kg,第二次买苹果42kg.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年中考数学一轮复习考点6: 一元一次方程考点1: 一元一次方程的解 相关试题:1. ( 2011重庆江津, 3,4分)已知3是关于x 的方程2x -a=1的解,则a 的值是( ) A.-5 B.5 C.7 D.22. (2011湖南邵阳,13,3分)请写出一个解为x=2的一元一次方程:_____________。
3. (2011广东湛江15,4分)若2x =是关于x 的方程2310x m +-=的解,则的值为 .考点2: 一元一次方程的解法 相关试题:1. (2011山东滨州,20,7分)依据下列解方程0.30.5210.23x x +-=的过程,请在前面的括号内填写变形步骤,在后面的括号内填写变形依据。
解:原方程可变形为352123x x +-= ( ______________________ ) 去分母,得3(3x +5)=2(2x -1). ( ______________________ ) 去括号,得9x +15=4x -2. (_________________________ ) ( ____________________ ),得9x -4x =-15-2. ( ______________________ ) 合并,得5x =-17. ( 合并同类项 )( ____________________ ),得x =175-. (_________________________)( 系数化为1 ),得x =175-. ( 等式性质2 )考点3: 一元一次方程的应用 相关知识:1. (2011山东菏泽,7,3分)某种商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打 A .6折 B .7折 C .8折 D .9折2. (2011山东日照,4,3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有( )(A )54盏 (B )55盏 (C )56盏 (D )57盏3. (2011甘肃兰州,11,4分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)2070x x -=B .(1)2070x x +=C .2(1)2070x x +=D .(1)20702x x -= 4. (2011四川重庆,16,4分)某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成.乙种盆景由10朵红花、12朵黄花搭配而成.丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了 朵.【答案】43805. (2011重庆市潼南,15,4分)某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a 度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a = 度.【答案】406. (2011湖南湘潭市,13,3分)湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为______________.7. (2011安徽,16,8分)江南生态食品加工厂收购了一批质量为10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2000千克,求粗加工的该种山货质量. 【答案】设粗加工的该种山货质量为x kg ,根据题意,得答:粗加工的该种山货质量为2000 kg .8. (2011福建福州,17(2),8分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,两校各植树多少棵?【答案】答:励东中学植树279棵,海石中学植树555棵.9. (2011浙江台州,20,8分)毕业在即,九年级某班为纪念师生情谊,班委决定花800元班会费买两种不同单价的留念册,分别给50位同学和10位任课老师每人一本留做纪念。
其中送给任课老师的留念册的单价比给同学的单价多8元。
请问这两种不同留念册的单价分别为多少元?【答案】解:设送给任课老师的留念册的单价为x元,根据题意,得:答:送给任课老师的留念册的单价为20元,送给任课同学的留念册的单价为12元。
10. (2011浙江省嘉兴,21,10分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程;(2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:5++=baxy,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.【答案】(1)设舟山与嘉兴两地间的高速公路路程为s千米,答:舟山与嘉兴两地间的高速公路路程为360千米.(2)答:轿车的高速公路里程费是0.4元/千米.11. (2011江苏连云港,21,6分)根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分钟缩短为36分钟,其速度每小时将提高260km,求提速后的火车速度.(精确到1km/h)【答案】解:设提速后的火车速度是x km/h,答:提速后的火车速度是352km/h.2012年中考数学一轮复习考点7: 二元一次方程组考点1: 二元一次方程(组)的概念 相关试题:1. (2011四川凉山州,3,4分)下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z x y=⎧⎪⎨+=⎪⎩ 考点2: 二元一次方程(组)的解 相关试题:1. (2011河北,19,8分)已知2x y =⎧⎪⎨=⎪⎩x ,yy a =+的解,求(a+1)(a -1)+7的值 【答案】92. (2011湖南益阳,2,4分)二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩3. (2011广东肇庆,4,3分)方程组⎩⎨⎧=+=-422y x y x 的解是A .⎩⎨⎧==21y x B .⎩⎨⎧==13y xC .⎩⎨⎧-==2y xD .⎩⎨⎧==02y x4. (2011山东东营,4,3分)方程组31x y x y +=⎧⎨-=-⎩,的解是A .12.x y =⎧⎨=⎩,B .12.x y =⎧⎨=-⎩,C .21.x y =⎧⎨=⎩,D .01.x y =⎧⎨=-⎩,5. (2011山东枣庄,6,3分)已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b-的值为( )A .-1B .1C .2D .3 考点3: 二元一次方程组的解法 相关试题:1. (2011安徽芜湖,13,5分)方程组237,38.x y x y +=⎧⎨-=⎩的解是 .2. (2011山东潍坊,15,3分)方程组524050x y x y --=⎧⎨+-=⎩的解是___________________.3. (2011江西南昌,12,3分)方程组257x y x y ì+=ïïíï-=ïî的解是 . 4. (2011湖南永州,18,6分)解方程组:⎩⎨⎧=+=②13y 2x ①113y -4x5. (2011广东中山,12,6分)解方程组:2360y x x xy =-⎧⎨--=⎩.6. (2011湖北宜昌,17,7分)解方程组⎩⎨⎧ x -y =12x +y =2考点4: 二元一次方程(组)的数学应用 相关试题:1. (2011福建泉州,12,4分)已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩则x -y 的值为考点5: 二元一次方程(组)的实际应用 相关知识: 相关试题:1. (2011山东泰安,11 ,3分)某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎨⎧x+y=3012x+16y=400B.⎩⎨⎧x+y=3016x+12y=400C.⎩⎨⎧12x+16y=30x+y=400D.⎩⎨⎧16x+12y=30x+y=4002. (2011四川绵阳9,3)灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人?A.男村民3人,女村民12人 B.男村民5人,女村民10人C.男村民6人,女村民9人 D.男村民7人,女村民8人3. (2011浙江省,13,3分)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为元.【答案】4404.(2011江苏扬州,24,10分)古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A、B两个工程队先后接力完成。
A工程队每天整治12米,B工程队每天整治8米,共用时20天。
答:A、B两工程队分别整治河道60米和120米。
6. (2011山东威海,22,9分)为了参加2011年威海国际铁人三项(游泳、自行车、长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【答案】解:设自行车路段的长度为x米,长跑路段的长度y米,可得方程组:解这个方程组,得答:自行车路段的长度为32千米,长跑路段的长度2千米.7. (2011山东烟台,20,8分)小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【答案】解:设平路有x米,坡路有y米解这个方程组,得所以x+y=700.所以小华家离学校700米.8. (2011湖南常德,23,8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元”;乙说:“我乘这种出租车走了23千米,付了35元”.请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?【答案】解:设这种出租车的起步价是x元,超过3千米后每千米收费y元,根据题得所以这种出租车的起步价是5元,超过3千米后每千米收费1.5元9. (2011广东株洲,19,6分)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?【答案】解法一:设A 饮料生产了x 瓶,则B 饮料生产了(100-x )瓶,依题意得: 2x+3(100-x)=270解得:x=30 100-x=70答:A 饮料生产了30瓶,B 饮料生产了70瓶.解法二:设A 饮料生产了x 瓶,B 饮料生产了y 瓶,依题意得:解得: .答:A 饮料生产了30瓶,B 饮料生产了70瓶.10. (2011四川宜宾,20,7分)某县为鼓励失地农民自主创业,在2011年对60位自主创业的失地穷民进行了奖励,共计奖励了10万元,奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【答案】解.设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有x ,y 人,根据题意列出方程组:解得⎩⎨⎧==2040y x答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.11. (2011湖南怀化,18,6分)解方程组:38.53 4.x y x y +=⎧⎨-=⎩⎩⎨⎧==22y x 12. (2011山东临沂,21,7分)去年秋季以来,我市某镇遭受百年一遇的特大干旱,为支援该镇抗旱,上级下拨专项抗旱资金80万元用于打井.已知用这80万元打灌溉用井和生活用井共58口,每口灌溉用井和生活用井分别需要资金4万元和0.2万元,求这两种井各打多少口?【解】设灌溉用井打x 口,生活用井打y 口,由题意得解这个方程组,得⎩⎨⎧,=,=40y 18x答:灌溉用井打18口,生活用井打40口.13. (2011湖南衡阳,22,6分)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【解】 设李大叔去年甲种蔬菜种植了 x 亩,乙种蔬菜种植了 y 亩,则 解得64x y =⎧⎨=⎩, 答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩.2012年中考数学一轮复习考点8:不等式与不等式组考点1:一次不等式(组)的概念考点2:一次不等式(组)的解集考点3:一元一次不等式(组)的解法考点4:一元一次不等式(组)的数学应用1. (2011湖北鄂州,7,3分)若关于x,y的二元一次方程组3133x y ax y+=+⎧⎨+=⎩的解满足2x y+<,则a的取值范围为______.【答案】a<4考点5:一元一次不等式(组)的实际应用实际应用题1. (2011湖南湘潭市,21,6分)某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x米,求x的整数解.【答案】,当x为整数时,则取值为:7、8.2.(2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.6.0元 B.7.0元 C.8.0元 D.9.0元3.(2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料中20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载__________捆材料.【答案】424. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5-分.小明参加本次竞赛得分要超过100分,他至少要答对道题.【答案】145. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】∴生产桌子60人,生产椅子24人6. (2011浙江温州,23,12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于...85%,求其中所含碳水化合....物.质量的最大值.【答案】解:(1) 400×5%=20.答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x克,由题意得:x+4x+20+400×40% =400,∴x=44,∴4x=176答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y克,则所含碳水化合物的质量为(380-5y)克,∴4y+(380-5y)≤400×85%,∴y≥40,∴380-5y≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为而克,则n≥(1-85%-5%)×400∴n≥40,∴4n≥160,∴400×85%-4n≤180,∴所含碳水化合物质量的最大值为180克.7. (2011湖南邵阳,22,8分)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛。