台湾交大离散数学12
离散数学图论基础知识文稿演示
图的定义
定义8.1 一个图是一个序偶<V,E>,记为 G=<V,E>,其中: 1) V={v1,v2,v3,…,vn}是一个有限的非空集合,
vi(i=1,2,3,…,n)称为结点,简称点,V为结 点集; 2) E={e1,e2,e3,…,em}是一个有限的集合, ei(i=1,2,,…,m)称为边,E为边集,E中的 每个元素都有V中的结点对与之对应。即对任 意e∈E,都有e与<u,v>∈VV或者(u,v)∈ V&V相对应。
图论
▪ 一个图就是一个离散的拓扑结构,经常用于描 述和研究许多领域中的各种问题。
▪ 随着计算机科学的飞速发展,图论组合和算法 的研究在近代也成为计算机科学和数学中发 展最快的基础学科之一,也受到国际上的学术 界和高新技术企业方面特别重视。
图论
▪ 理论计算机科学中的算法理论经典问题(图中点对之 间最短路,货郎担问题,图重抅问题,HAMILTON 问 题,P-NP问题等),通信网络通讯(网络设计, 通讯速度 和容量, 网络可靠性和容错性等) ;
图论本身是应用数学的一部份,因此,历史上图论曾经 被好多位数学家各自独立地建立过。关于图论的文字 记载最早出现在欧拉1736年的论着中,他所考虑的原 始问题有很强的实际背景
图论
图论起源于著名的哥尼斯堡七桥 问题。
欧拉证明了这个问题没有解,并 且推广了这个问题,给出了对于 一个给定的图可以某种方式走遍 的判定法则。 这项工作使欧拉成为图论〔及拓 扑学〕的创始人。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学 的两台不同的电子计算机上,用了1200个小时,作了 100亿判断,终于完成了四色定理的证明。
不过不少数学家并不满足于计算机取得的成就,他们认 为应该有一种简捷明快的书面证明方法。
离散数学 集合
离散数学
无重复性是集合的四大性质之一。 五.空集(empty,null,void set):记为 空集是没有成员的集合。即 注.将空集作为集合实 际上是集合运算的封 x(x)(所谓的空集公理); 闭性所要求的 ! 所以={ }; 空集是集合(作这点规定是运算封闭性的要求)。 空集是唯一的。因为若有两个空集,则它们有完全 相同的元素(都没有任何元素),所以它们相等,是同 一集合。 六.全集(universe of discourse):记为X 全集是所要研究的问题所需的全部对象(元素) 所构成的集合。 全集给个体(研究的对象)划定适当的范围。
12
离散数学
两个集合不相等,记为AB ; 根据这个定义,关于集合我们可得下列性质: (1) 无序性:集合中的元素是无序的。例如 {a,b,c}= {b, a, c} = {b , c, a} 因此,为了使用方便,我们可任意书写集合中元 素的顺序。 但一般情况下,通常采用字母序、字典序;有时, 还需要强行命名一种序; 无序性是集合的四大性质之一。 (2)无重复性:集合中元素的重复是无意义的。例如 {a, a, a, a, b, b, b, c , c}= {a, b, c} 包(bag):若允许元素重复称为包。例如 {a, a, a, a, b, b, b, c , c} 一般记布尔系统 图论
2
离散数学 Discrete Mathematics
序言:
离散数学是现代数学的一个重要分支,计算机科学 基础理论的核心课程。它充分描述了计算机科学的 离散性特点,是随着计算机科学的发展而逐步建立 起来的新兴的基础性学科。 本课程作为计算机科学的基础性课程,把握离散数 学的关键性问题,介绍五大块内容:集合论、代数 系统、布尔代数、图论、数理逻辑。 这些和计算机科学密切相关的理论的结构按排,既 着重于各部分之间的紧密联系,又深入探讨各部分 内容的概念、例子、理论、算法、以及实际应用。
台湾交大离散数学
Pseudocode of Preorder Traversal
procedure preorder (T : ordered rooted tree) r = root of T list r for each child c of r from left to right begin T (c ) := subtree with c as its root preorder (T (c )) end
Discrete Mathematics Chapter 10 Trees §10.1 Introduction to Trees
m-Ary Trees
A root tree is called an m-ary tree if every internal vertex has no more than m children. The tree is called a full m-ary tree if every internal vertex has exactly m children. An m-ary tree with m = 2 is called a binary tree. An ordered rooted tree is a rooted tree where the children of each internal vertex are ordered. Ordered rooted trees are drawn so that the children of each internal vertex are shown in order from left to right. In an ordered binary tree (usually called just a binary tree), if an internal vertex has two children, the …rst child is called the left child and the second child is called the right child. The tree rooted at the left child (or right child, resp.) of a vertex is called the left subtree (or right subtree, resp.) of this vertex.
离散数学最全课后答案(屈婉玲版)
1.1.略1.2.略1.3.略1.4.略1.5.略1.6.略1.7.略1.8.略1.9.略1.10.略1.11.略1.12.将下列命题符号化, 并给出各命题的真值:(1)2+2=4 当且仅当3+3=6. (2)2+2=4 的充要条件是3+3≠6. (3)2+2≠4与3+3=6 互为充要条件. (4)若2+2≠4, 则3+3≠6, 反之亦然.(1)p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.(2)p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(3) ⌝p↔q, 其中, p: 2+2=4, q: 3+3=6, 真值为0.(4) ⌝p↔⌝q, 其中, p: 2+2=4, q: 3+3=6, 真值为1.1.13.将下列命题符号化, 并给出各命题的真值:(1)若今天是星期一, 则明天是星期二. (2)只有今天是星期一, 明天才是星期二. (3)今天是星期一当且仅当明天是星期二. (4)若今天是星期一, 则明天是星期三.令p: 今天是星期一; q: 明天是星期二; r: 明天是星期三.(1) p→q ⇔ 1.(2) q→p ⇔ 1.(3) p↔q ⇔ 1.(4) p→r 当p ⇔ 0 时为真; p ⇔ 1 时为假.1.14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服. (4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语. (7)他一面吃饭, 一面听音乐. (8)如果天下大雨, 他就乘班车上班. (9)只有天下大雨, 他才乘班车上班. (10)除非天下大雨, 他才乘班车上班. (11)下雪路滑, 他迟到了.(12)2 与4 都是素数, 这是不对的.(13)“2或4 是素数, 这是不对的”是不对的.(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.12) ⌝ (p∧q)或⌝p∨⌝q, 其中, p: 2 是素数, q: 4 是素数.(13) ⌝⌝ (p∨q)或p∨q, 其中, p: 2 是素数, q: 4 是素数.1.15.设p: 2+3=5.q: 大熊猫产在中国.r: 复旦大学在广州. 求下列复合命题的真值:(1)(p↔q) →r(2)(r→ (p∧q)) ↔ ⌝p(3) ⌝r→ (⌝p∨⌝q∨r)(4)(p∧q∧⌝r) ↔ (( ⌝p∨⌝q) →r)(1)真值为0.(2)真值为0.(3)真值为0.(4)真值为1.注意: p, q 是真命题, r 是假命题.1.16.略1.17.略1.18.略1.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r)(2)(p→⌝q) →⌝q(3) ⌝ (q→r) ∧r(4)(p→q) → (⌝q→⌝p)(5)(p∧r) ↔ ( ⌝p∧⌝q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式.1.20.略1.21.略1.22.略1.23.略1.24.略1.25.略1.26.略1.27.略1.28.略1.29.略1.30.略1.31.将下列命题符号化, 并给出各命题的真值:(1)若3+=4, 则地球是静止不动的.(2)若3+2=4, 则地球是运动不止的. (3)若地球上没有树木, 则人类不能生存.(4)若地球上没有水, 则 3 是无理数.(1)p→q, 其中, p: 2+2=4, q: 地球静止不动, 真值为0.(2)p→q, 其中, p: 2+2=4, q: 地球运动不止, 真值为1.(3) ⌝p→⌝q, 其中, p: 地球上有树木, q: 人类能生存, 真值为1.(4) ⌝p→q, 其中, p: 地球上有水, q: 3 是无理数, 真值为1.习题二2.1. 设公式A = p→q, B = p⌝∧q, 用真值表验证公式A 和B 适合德摩根律:⌝(A∨B) ⇔ ⌝A⌝∧B.p q A =p→q B =p⌝∧q⌝(A∨B)⌝A⌝∧B0 0 1 0 0 00 1 1 0 0 01 0 0 1 0 01 1 1 0 0 0因为⌝(A∨B)和⌝A⌝∧B 的真值表相同, 所以它们等值.2.2. 略2.3. 用等值演算法判断下列公式的类型, 对不是重言式的可满足式, 再用真值表法求出成真赋值.(1) ⌝ (p∧q→q)(2)(p→ (p∨q)) ∨ (p→r)(3)(p∨q) → (p∧r)(1) ⌝ (p∧q→q)⇔ ⌝ (⌝(p∧q) ∨ q) ⇔ ⌝ (⌝p ∨ ⌝q ∨ q) ⇔ p∧q∧⌝q ⇔ p∧0 ⇔ 0 ⇔ 0. 矛盾式.(2)重言式.(3) (p∨q) → (p∧r) ⇔ ⌝(p∨q) ∨ (p∧r) ⇔ ⌝p⌝∧q ∨ p∧r 易见, 是可满足式, 但不是重言式. 成真赋值为: 000, 001, 101, 111p q r←p ∍ ←q (p∍r0 0 0 1 1 1 1 00 0 1 1 1 1 1 00 1 0 1 0 0 0 00 1 1 1 0 0 0 01 0 0 0 0 1 0 01 0 1 0 0 1 1 11 1 0 0 0 0 0 01 1 1 0 0 0 1 12.4. 用等值演算法证明下面等值式:(1) p⇔ (p∧q) ∨ (p∧⌝q)(3) ⌝ (p↔q) ⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q) ⇔ (p∨q) ∧⌝ (p∧q)(1) (p∧q) ∨ (p∧⌝q) ⇔ p ∧ (q⌝∨q) ⇔ p ∧ 1 ⇔ p.(3) ⌝ (p↔q)⇔⌝ ((p→q) ∧ (q→p))⇔⌝ ((⌝p∨q) ∧ (⌝q∨p))⇔ (p∧⌝q) ∨ (q∧⌝p)⇔ (p∨q) ∧ (p∨⌝p) ∧ (⌝q∨q) ∧ (⌝p∨⌝q)⇔ (p∨q) ∧⌝ (p∧q)(4) (p∧⌝q) ∨ (⌝p∧q)⇔ (p∨⌝p) ∧ (p∨q) ∧ (⌝q∨⌝p) ∧ (⌝q∨q)⇔ (p∨q) ∧⌝ (p∧q)2.5. 求下列公式的主析取范式, 并求成真赋值:(1)( ⌝p→q) → (⌝q∨p)(2) ⌝ (p→q) ∧q∧r(3)(p∨ (q∧r)) → (p∨q∨r)(1)(⌝p→q) → (⌝q∨p)⇔ ⌝(p∨q) ∨ (⌝q∨p)⇔ ⌝p∧⌝q ∨ ⌝q ∨ p⇔ ⌝p∧⌝q ∨ ⌝q ∨ p(吸收律)⇔ (p⌝∨p)⌝∧q ∨ p∧(q⌝∨q)⇔ p⌝∧q ⌝∨p⌝∧q ∨ p∧q ∨ p⌝∧q⇔ m10 ∨ m00 ∨ m11 ∨ m10⇔ m0 ∨ m2 ∨ m3⇔ ∑(0, 2, 3).成真赋值为00, 10, 11.(2)主析取范式为0, 无成真赋值, 为矛盾式.(3)m0∨m1∨m2∨m3∨m4∨m5∨m6∨m7, 为重言式.2.6. 求下列公式的主合取范式, 并求成假赋值:(1) ⌝ (q→⌝p) ∧⌝p(2)(p∧q) ∨ (⌝p∨r)(3)(p→ (p∨q)) ∨r(1) ⌝ (q⌝→p) ∧ ⌝p⇔ ⌝(⌝q⌝∨p) ∧ ⌝p⇔ q∧p ∧ ⌝p⇔ q∧0⇔ 0⇔ M0∧M1∧M2∧M3这是矛盾式. 成假赋值为00, 01, 10, 11.(2)M4, 成假赋值为100.(3)主合取范式为1, 为重言式.2.7. 求下列公式的主析取范式, 再用主析取范式求合取范式:(1)(p∧q) ∨r(2)(p→q) ∧ (q→r)(1)m1∨m3∨m5∨m6∨m7⇔M0∧M2∧M4(2)m0∨m1∨m3∨m7⇔M2∧M4∧M5∧M62.8. 略2.9. 用真值表求下面公式的主析取范式.(2) (p→q) → (p⌝↔q)p q(p q) (p ← q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0(2)从真值表可见成真赋值为01, 10. 于是(p → q) → (p⌝ ↔ q) ⇔ m1 ∨ m2.2.10. 略2.11. 略2.12. 略2.13. 略2.14. 略2.15. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2)(p→q) →r⇔ ⌝(⌝p∨q) ∨ r⇔ ⌝(⌝p∨q) ∨ r⇔ p⌝∧q ∨ r⇔ p⌝∧q∧(r⌝∨r) ∨ (p⌝∨p) ∧ (q⌝∨q)∧r⇔ p⌝∧q∧r ∨ p⌝∧q∧⌝r ∨p∧q∧r ∨ p∧⌝q∧r ∨ ⌝p∧q∧r ∨ ⌝p∧⌝q∧r= m101 ∨ m100 ∨ m111 ∨ m101 ∨ m011 ∨ m001⇔ m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7= ∑(1, 3, 4, 5, 7).而q→(p→r)⇔ ⌝q ∨ (⌝p∨r)⇔ ⌝q ∨ ⌝p ∨r⇔ (⌝p∨p)⌝∧q∧(⌝r∨r) ∨ ⌝p∧(⌝q∨q)∧(⌝r∨r)∨ (⌝p∨p)∧(⌝q∨q)∧r⇔ (⌝p⌝∧q∧⌝r)∨(⌝p⌝∧q∧r)∨(p⌝∧q∧⌝r)∨(p⌝∧q∧r)∨(⌝p∧⌝q∧⌝r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧⌝r)∨(⌝p∧q∧r)∨(⌝p∧⌝q∧r)∨(⌝p∧q∧r)∨(p∧⌝q∧r)∨(p∧q∧r)= m0 ∨ m1 ∨ m4 ∨ m5∨ m0 ∨ m1 ∨ m2 ∨ m3∨ m1 ∨ m3 ∨ m5 ∨ m7⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7⇔ ∑(0, 1, 2, 3, 4, 5, 7).两个公式的主吸取范式不同, 所以(p→q) →rœq→ (p→r).2.16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r 与q→ (p→r)(2) ⌝ (p∧q)与⌝ (p∨q)(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) œq→ (p→r)(2)⌝ (p∧q) ⇔m0∨m1∨m2⌝ (p∨q) ⇔m0所以⌝ (p∧q) œ⌝ (p∨q)2.17. 用主合取范式判断下列公式是否等值:(1)p→ (q→r)与⌝ (p∧q) ∨r(2)p→ (q→r)与(p→q) →r(1)p→ (q→r) ⇔M6⌝ (p∧q) ∨r⇔M6所以p→ (q→r) ⇔ ⌝ (p∧q) ∨r(2)p→ (q→r) ⇔M6(p→q) →r⇔M0∧M1∧M2∧M6所以p→ (q→r) œ(p→q) →r2.18. 略2.19. 略2.20.将下列公式化成与之等值且仅含{⌝, →} 中联结词的公式.(3) (p∧q)↔r.注意到A↔B ⇔ (A→B)∧(B→A)和A∧B ⇔ ⌝(⌝A⌝∨B) ⇔ ⌝(A⌝→B)以及A∨B ⇔ ⌝A→B. (p∧q)↔r⇔ (p∧q → r) ∧ (r → p∧q)⇔ (⌝(p⌝→q) → r) ∧ (r → ⌝(p⌝→q))⇔ ⌝((⌝(p⌝→q) → r) → ⌝(r → ⌝(p⌝→q)))注 联结词越少, 公式越长.2.21. 证明:(1) (p↑q) ⇔ (q↑p), (p↓q) ⇔ (q↓p).(p↑q) ⇔ ⌝(p∧q) ⇔ ⌝(q∧p) ⇔ (q↑p).(p↓q) ⇔ ⌝(p∨q) ⇔ ⌝(q∨p) ⇔ (q↓p).2.22. 略2.23. 略2.24. 略2.25. 设A, B, C 为任意的命题公式.(1)若A∨C⇔B∨C, 举例说明A⇔B 不一定成立. (2)已知A∧C⇔B∧C, 举例说明A⇔B 不一定成立. (3)已知⌝A⇔⌝B, 问: A⇔B 一定成立吗?(1) 取A = p, B = q, C = 1 (重言式), 有A∨C ⇔ B∨C, 但A œB.(2) 取A = p, B = q, C = 0 (矛盾式), 有A∧C ⇔ B∧C, 但A œB.好的例子是简单, 具体, 而又说明问题的. (3)一定.2.26. 略2.27.某电路中有一个灯泡和三个开关A,B,C. 已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上, A,B 的扳键向下.(2)A 的扳键向上, B,C 的扳键向下.(3)B,C 的扳键向上, A 的扳键向下.(4)A,B 的扳键向上, C 的扳键向下.设F 为1 表示灯亮, p,q,r 分别表示A,B,C 的扳键向上. (a)求F 的主析取范式.(b)在联结词完备集{⌝, ∧}上构造F. (c)在联结词完备集{⌝, →,↔}上构造F.(a)由条件(1)-(4)可知, F 的主析取范式为F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔m1∨m4∨m3∨m6⇔m1∨m3∨m4∨m6(b)先化简公式F⇔ (⌝p∧⌝q∧r) ∨ (p∧⌝q∧⌝r) ∨ (⌝p∧q∧r) ∨ (p∧q∧⌝r)⇔⌝q∧ ((⌝p∧r) ∨ (p∧⌝r)) ∨q∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝q∨q) ∧ ((⌝p∧r) ∨ (p∧⌝r))⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝ (⌝p∧r) ∧⌝ (p∧⌝r)) (已为{⌝, ∧}中公式)(c)F⇔ (⌝p∧r) ∨ (p∧⌝r)⇔⌝⌝ (⌝p∧r) ∨ (p∧⌝r)⇔⌝ (⌝p∧r) → (p∧⌝r)⇔ (p∨⌝r) →⌝ (⌝p∨r)⇔ (r→p) →⌝ (p→r) (已为{⌝, →,↔}中公式)2.28.一个排队线路, 输入为A,B,C, 其输出分别为F A,F B,F C. 本线路中, 在同一时间内只能有一个信号通过, 若同时有两个和两个以上信号申请输出时, 则按A,B,C 的顺序输出. 写出F A,F B,F C 在联结词完备集{⌝, ∨}中的表达式.根据题目中的要求, 先写出F A,F B,F C 的真值表(自己写) 由真值表可先求出他们的主析取范式, 然后化成{⌝, ∧}中的公式F A⇔m4∨m5∨m6∨m7⇔p (已为{⌝, ∧}中公式)F B⇔m2∨m3⇔⌝p∧q (已为{⌝, ∧}中公式)F C⇔m1⇔⌝p∧⌝q∧r (已为{⌝, ∧}中公式)2.29. 略2.30. 略习题三3.1. 略3.2. 略3.3. 略3.4. 略3.5. 略3.6. 判断下面推理是否正确. 先将简单命题符号化, 再写出前提, 结论, 推理的形式结构(以蕴涵式的形式给出)和判断过程(至少给出两种判断方法):(1)若今天是星期一, 则明天是星期三;今天是星期一. 所以明天是星期三. (2)若今天是星期一, 则明天是星期二;明天是星期二. 所以今天是星期一. (3)若今天是星期一, 则明天是星期三;明天不是星期三. 所以今天不是星期一. (4)若今天是星期一, 则明天是星期二;今天不是星期一. 所以明天不是星期二. (5)若今天是星期一, 则明天是星期二或星期三. (6)今天是星期一当且仅当明天是星期三;今天不是星期一. 所以明天不是星期三.设p: 今天是星期一, q: 明天是星期二, r: 明天是星期三. (1)推理的形式结构为(p→r) ∧p→r此形式结构为重言式, 即(p→r) ∧p⇒r 所以推理正确. (2)推理的形式结构为(p→q) ∧q→p 此形式结构不是重言式, 故推理不正确. (3)推理形式结构为(p→r) ∧⌝r→⌝p此形式结构为重言式, 即(p→r) ∧⌝r⇒⌝p故推理正确. (4)推理形式结构为(p→q) ∧⌝p→⌝q此形式结构不是重言式, 故推理不正确.(5)推理形式结构为p→ (q∨r)它不是重言式, 故推理不正确. (6)推理形式结构为(p⇒r) ∧⌝p→⌝r此形式结构为重言式, 即(p⇒r) ∧⌝p⇒⌝r故推理正确.推理是否正确, 可用多种方法证明. 证明的方法有真值表法, 等式演算法. 证明推理正确还可用构造证明法.下面用构造证明法证明(6)推理正确.前提: p⇒r, ⌝p结论: ⌝r证明: ①p⇒r 前提引入②(p→r) ∧ (r→p) ①置换③r→p ②化简律④⌝p 前提引入⑤⌝r ③④拒取式所以, 推理正确.3.7. 略3.8. 略3.9. 用三种方法(真值表法, 等值演算法, 主析取范式法)证明下面推理是正确的:若a 是奇数, 则a 不能被2 整除. 若a 是偶数, 则a 能被2 整除. 因此, 如果a 是偶数, 则a 不是奇数.令p: a 是奇数; q: a 能被2 整除; r: a 是偶数. 前提: p → ⌝q, r → q.结论: r → ⌝p.形式结构: (p → ⌝q) ∧ (r → q) → (r → ⌝p).……3.10.略3.11.略3.12.略3.13.略3.14.在自然推理系统P 中构造下面推理的证明:(1)前提: p→ (q→r), p, q结论: r∨s(2)前提: p→q, ⌝ (q∧r), r结论: ⌝p(3)前提: p→q结论: p→ (p∧q)(4)前提: q→p, q⇒s, s⇒t, t∧r结论: p∧q(5)前提: p→r, q→s, p∧q结论: r∧s(6)前提: ⌝p∨r, ⌝q∨s, p∧q结论: t→ (r∨s) (1)证明:①②p→(q→r)p前提引入前提引入③④q→rq①②假言推理前提引入⑤r③④假言推理⑥r∨s⑤附加律(2)证明:①②③⌝ (q∧r)⌝q∨⌝rr前提引入①置换前提引入④⑤⑥⌝qp→q⌝p②③析取三段论前提引入④⑤拒取式(3)证明:①p→q前提引入②⌝p∨q①置换③(⌝p∨q) ∧ (⌝p∨p)②置换④⌝p∨ (p∧q)③置换⑤p→ (p∧q) ④置换也可以用附加前提证明法, 更简单些.(4)证明:①②③④⑤s⇒t(s→t) ∧ (t→s)t→st∧rt前提引入①置换②化简前提引入④化简⑥s③⑤假言推理⑦⑧⑨⑩q⇒s(s→q) ∧ (q→s)s→qq前提引入⑦置换⑧化简⑥⑥假言推理○11 q →p前提引入○12 ○13 pp∧q⑩○11 假言推理⑩○12 合取(5)证明:①②p→rq→s前提引入前提引入③④p∧qp前提引入③化简⑤q③化简⑥r①④假言推理⑦s②⑤假言推理⑧r∧s⑥⑦合取(6)证明:①②t⌝p∨r附加前提引入前提引入③④p∧qp前提引入③化简⑤r②④析取三段论⑥r∨s⑤附加说明: 证明中, 附加提前t, 前提⌝q∨s 没用上. 这仍是正确的推理.3.15.在自然推理系统P 中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u结论: p→u(1)证明:①②ss→p附加前提引入前提引入③p①②假言推理④⑤⑥p→ (q→r)q→rq前提引入③④假言推理前提引入⑦r⑤⑥假言推理(2)证明:①②Pp∨q附加前提引入①附加③(p∨q) → (r∧s) 前提引入④⑤r∧sS②③假言推理④化简⑥⑦⑧s∨t(s∨t) →uu⑤附加前提引入⑥⑦假言推理3.16.在自然推理系统P 中用归谬法证明下面推理:(1)前提: p→⌝q, ⌝r∨q, r∧⌝s结论: ⌝p(2)前提: p∨q, p→r, q→s结论: r∨s(1)证明:①②Pp→⌝q结论否定引入前提引入③④⑤⑥⑦⌝q⌝r∨q⌝rr∧⌝sr①②假言推理前提引入③④析取三段论前提引入⑥化简⑧⌝r∧r⑤⑦合取⑧为矛盾式, 由归谬法可知, 推理正确.(2)证明:①⌝ (r∨s)结论否定引入②p∨q前提引入③p→r前提引入④q→s前提引入⑤r∨s②③④构造性二难⑥⌝ (r∨s) ∧ (r∨s)①⑤合取①②③④⑤⑥⑦pp q(rq(rss ←q←qr①②假言推理前提引入前提引入⑥为矛盾式, 所以推理正确.3.17.P53 17. 在自然推理系统P 中构造下面推理的证明:只要A 曾到过受害者房间并且11 点以前没用离开, A 就犯了谋杀罪. A 曾到过受害者房间. 如果A 在11 点以前离开, 看门人会看到他. 看门人没有看到他. 所以A 犯了谋杀罪.令p: A 曾到过受害者房间; q: A 在11 点以前离开了; r: A 就犯了谋杀罪; s:看门人看到A.前提: p⌝∧q → r, p, q → s, ⌝s.结论: r.前提: p⌝∧q → r, p, q → s, ⌝s; 结论: r.证明:①⌝s 前提引入②q → s 前提引入③⌝q ①②拒取④p 前提引入⑤p⌝∧q ③④合取⑥p⌝∧q → r 前提引入⑦r ⑤⑥假言推理3.18.在自然推理系统P 中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩.今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(3)明天是晴天, 或是雨天;若明天是晴天, 我就去看电影;若我看电影, 我就不看书. 所以, 如果我看书,则明天是雨天.(1)令p: 今天是星期六; q: 我们要到颐和园玩; r: 我们要到圆明园玩; s:颐和园游人太多.前提: p→ (q∨r), s → ⌝q, p, s.结论: r.前提引入前提引入p p→q∨rq∨rs s → ⌝q⌝qr④⑤假言推理(1)的证明树③⑥析取三段论① p →r 前提引入 ② ⌝r 前提引入 ③ ⌝p ①②拒取式 ④ ⌝q →p 前提引入 ⑤q③④拒取式(2) 令 p : 小王是理科生, q : 小王是文科生, r : 小王的数学成绩很好. 前提: p →r , ⌝q →p , ⌝r 结论: q 证明:⌝qp →q⌝p⌝r →p(2)的证明树 r(3)令 p : 明天是晴天, q : 明天是雨天, r : 我看电影, s : 我看书. 前提: p ∨q , p →r , r →⌝s结论: s →q 证明:① ② s r →⌝s 附加前提引入 前提引入 ③ ⌝r ①②拒取式 ④ p →r 前提引入 ⑤ ⌝p ③④拒取式 ⑥ p ∨q 前提引入 ⑦q⑤⑥析取三段论习题四4.1. 将下面命题用0 元谓词符号化:(1)小王学过英语和法语. (2)除非李建是东北人, 否则他一定怕冷.(1) 令F(x): x 学过英语; F(x): x 学过法语; a: 小王. 符号化为F(a)∧F(b).或进一步细分, 令L(x, y): x 学过y; a: 小王; b1: 英语; b2: 法语. 则符号化为L(a, b1)∧L(a, b2).(2) 令F(x): x 是东北人; G(x): x 怕冷; a: 李建. 符号化为⌝F(a)→G(a) 或⌝G(a)→F(a).或进一步细分, 令H(x, y): x 是y 地方人; G(x): x 怕冷; a: 小王; b: 东北. 则符号化为⌝H(a, b)→G(a) 或⌝G(a)→ H(a, b).4.2. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)凡有理数都能被2 整除.(2)有的有理数能被2 整除. 其中(a)个体域为有理数集合, (b)个体域为实数集合.(1)(a)中, ∀xF(x), 其中, F(x): x 能被2 整除, 真值为0.(b)中, ∀x(G(x) ∧F(x)), 其中, G(x): x 为有理数, F(x)同(a)中, 真值为0. (2)(a)中, ∃xF(x), 其中, F(x): x 能被2 整除, 真值为1.(b)中, ∃x(G(x) ∧F(x)), 其中, F(x)同(a)中, G(x): x 为有理数, 真值为1.4.3. 在一阶逻辑中将下面命题符号化, 并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x, 均有x2-2=(x+ 2 )(x- 2 ).(2)存在x, 使得x+5=9.其中(a)个体域为自然数集合, (b)个体域为实数集合.(1)(a)中, ∀x(x2-2=(x+ 2 x- 2 真值为1.(b)中, ∀x(F(x) → (x2-2=(x+ 2 x- 2 其中, F(x): x 为实数, 真值为1. (2)(a)中, ∃x(x+5=9), 真值为1.(b)中, ∃x(F(x) ∧ (x+5=9)), 其中, F(x): x 为实数, 真值为1.4.4. 在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的. (4)有的人天天锻炼身体.没指定个体域, 因而使用全总个体域.(1) ⌝∃x(F(x) ∧⌝G(x))或∀x(F(x) →G(x)), 其中, F(x): x 为有理数, G(x): x 能表示成分数.(2) ⌝∀x(F(x) →G(x))或∃x(F(x) ∧⌝G(x)), 其中, F(x): x 在北京卖菜, G(x): x 是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x 是乌鸦, G(x): x 是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x 是人, G(x): x 天天锻炼身体.4.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快. (2)有的火车比有的汽车快. (3)不存在比所有火车都快的汽车. (4)“凡是汽车就比火车慢”是不对的.因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x 是火车, G(y): y 是轮船, H(x,y):x 比y 快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x 是火车, G(y): y 是汽车, H(x,y):x 比y 快.(3) ⌝∃x(F(x) ∧∀y(G(y) →H(x,y)))或∀x(F(x) →∃y(G(y) ∧⌝H(x,y))), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 快.(4) ⌝∀x∀y(F(x) ∧G(y) →H(x,y))或∃x∃y(F(x) ∧G(y) ∧⌝H(x,y) ), 其中, F(x): x 是汽车, G(y): y 是火车, H(x,y):x 比y 慢.4.6. 略4.7. 将下列各公式翻译成自然语言, 个体域为整数集®, 并判断各命题的真假.(1) ∀x∀y∃z(x - y = z);(2) ∀x∃y(x⋅y = 1).(1) 可选的翻译:①“任意两个整数的差是整数.”②“对于任意两个整数, 都存在第三个整数, 它等于这两个整数相减.”③“对于任意整数x 和y, 都存在整数z, 使得x - y = z.”选③, 直接翻译, 无需数理逻辑以外的知识. 以下翻译意思相同, 都是错的:“有个整数, 它是任意两个整数的差.”“存在一个整数, 对于任意两个整数, 第一个整数都等于这两个整数相减.”❶ “存在整数z, 使得对于任意整数x 和y, 都有x - y = z.”这3 个句子都可以符号化为∃z∀x∀y(x - y = z).0量词顺序不可随意调换.(2) 可选的翻译:①“每个整数都有一个倒数.”②“对于每个整数, 都能找到另一个整数, 它们相乘结果是零.”③“对于任意整数x, 都存在整数y, 使得x⋅y = z.”选③, 是直接翻译, 无需数理逻辑以外的知识.4.8. 指出下列公式中的指导变元, 量词的辖域, 各个体变项的自由出现和约束出现:(3)∀x∃y(F(x, y) ∧ G(y, z)) ∨ ∃xH(x, y, z)∀x∃y(F(x,y)∧ G(y,z))∨ ∃x H(x,y,z)前件∀x∃y(F(x, y)∧G(y, z)) 中, ∀ 的指导变元是x, ∀ 的辖域是∃y(F(x, y)∧G(y, z)); ∃ 的指导变元是y, ∃ 的辖域是(F(x, y)∧G(y, z)).后件∃xH(x, y, z) 中, ∃ 的指导变元是x, ∃ 的辖域是H(x, y, z).整个公式中, x 约束出现两次, y 约束出现两次, 自由出现一次; z 自由出现两次.4.9. 给定解释I 如下:(a)个体域D I 为实数集合\.(b)D I 中特定元素↓a =0.(c)特定函数↓f (x,y)=x-y, x,y∈D I.(d)特定谓词↓F(x,y): x=y,↓G(x,y): x<y, x,y∈D I. 说明下列公式在I 下的含义, 并指出各公式的真值:(1)∀x∀y(G(x,y) →⌝F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →⌝F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x-y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x-y≠0)), 真值为1.(4) ∀x∀y((x-y<0) → (x=y)), 真值为0.4.10.给定解释I 如下:(a)个体域D=Æ(Æ为自然数).(b)D 中特定元素↓a=2.(c)D 上函数↓f (x,y)=x+y,↓g (x,y)=x·y.(d)D 上谓词↓F (x,y): x=y.说明下列公式在I 下的含义, 并指出各公式的真值:(1) ∀xF(g(x,a),x)(2) ∀x∀y(F(f(x,a),y) →F(f(y,a),x))(3) ∀x∀y∃z(F(f(x,y),z)(4) ∃xF(f(x,x),g(x,x))(1) ∀x(x·2=x), 真值为0.(2) ∀x∀y((x+2=y) → (y+2=x)), 真值为0.(3) ∀x∀y∃z(x+y=z),真值为1.(4) ∃x(x+x=x·x),真值为1.4.11.判断下列各式的类型:(1) F(x, y) → (G(x, y) → F(x, y)).(3) ∀x∃yF(x, y) → ∃x∀yF(x, y).(5) ∀x∀y(F(x, y) → F(y, x)).(1) 是命题重言式p → (q → p) 的代换实例, 所以是永真式.(3) 在某些解释下为假(举例), 在某些解释下为真(举例), 所以是非永真式的可满足式.(5) 同(3).4.12.P69 12. 设I 为一个任意的解释, 在解释I 下, 下面哪些公式一定是命题?(1) ∀xF(x, y) → ∃yG(x, y).(2) ∀x(F(x) → G(x)) ∧ ∃y(F( y) ∧ H( y)).(3) ∀x(∀yF(x, y) → ∃yG(x, y)).(4) ∀x(F(x) ∧ G(x)) ∧ H( y).(2), (3) 一定是命题, 因为它们是闭式.4.13.略4.14.证明下面公式既不是永真式也不是矛盾式:(1) ∀x(F(x) →∃y(G(y) ∧H(x,y)))(2) ∀x∀y(F(x) ∧G(y) →H(x,y))(1) 取个体域为全总个体域.解释I1: F(x): x 为有理数, G(y): y 为整数, H(x,y): x<y在I1 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为真命题, 所以该公式不是矛盾式.解释I2: F(x),G(y)同I1, H(x,y): y 整除x.在I2 下: ∀x(F(x) →∃y(G(y) ∧H(x,y)))为假命题, 所以该公式不是永真式.(2) 请读者给出不同解释, 使其分别为成真和成假的命题即可.4.15.(1) 给出一个非闭式的永真式.(2) 给出一个非闭式的永假式.(3) 给出一个非闭式的可满足式, 但不是永真式.(1) F(x) ∨ ⌝F(x).(2) F(x) ∧ ⌝F(x).(3) ∀x(F(x, y) → F(y, x)).习题五5.1. 略5.2. 设个体域D={a,b,c}, 消去下列各式的量词:(1) ∀x∃y(F(x) ∧G(y))(2) ∀x∀y(F(x) ∨G(y))(3) ∀xF(x) →∀yG(y)(4) ∀x(F(x,y) →∃yG(y))(1) ∀x∃y(F(x) ∧G(y))⇔∀xF(x) ∧∃yG(y)⇔ (F(a) ∧F(b)) ∧F(c)) ∧ (G(a) ∨G(b) ∨G(c))(2) ∀x∀y(F(x) ∨G(y))⇔∀xF(x) ∨∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) ∨ (G(a) ∧G(b) ∧G(c))(3) ∀xF(x) →∀yG(y)⇔ (F(a) ∧F(b) ∧F(c)) → (G(a) ∧G(b) ∧G(c))(4) ∀x(F(x,y) →∃yG(y))⇔∃xF(x,y) →∃yG(y)⇔ (F(a,y) ∨F(b,y) ∨F(c,y)) → (G(a) ∨G(b) ∨G(c))5.3. 设个体域D={1,2}, 请给出两种不同的解释I1 和I2, 使得下面公式在I1 下都是真命题, 而在I2 下都是假命题.(1) ∀x(F(x) →G(x))(2) ∃x(F(x) ∧G(x))(1)I1: F(x):x≤2,G(x):x≤3F(1),F(2),G(1),G(2)均为真, 所以∀x(F(x) →G(x))⇔ (F(1) →G(1) ∧ (F(2) →G(2))为真.I2: F(x)同I1,G(x):x≤0则F(1),F(2)均为真, 而G(1),G(2)均为假,∀x(F(x) →G(x))为假. (2)留给读者自己做.5.4. 略5.5. 给定解释I 如下:(a)个体域D={3,4}.(b)↓f (x)为↓f (3)=4,↓f (4)=3. (c)↓F(x,y)为↓F(3,3)=↓F(4,4)=0,↓F(3,4)=↓F(4,3)=1.试求下列公式在I 下的真值:(1)∀x∃yF(x,y)(2)∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))(1)∀x∃yF(x,y)⇔ (F(3,3) ∨F(3,4)) ∧ (F(4,3) ∨F(4,4))⇔ (0∨1) ∧ (1∨0) ⇔1(2)∃x∀yF(x,y)⇔ (F(3,3) ∧F(3,4)) ∨ (F(4,3) ∧F(4,4))⇔ (0∧1) ∨ (1∧0) ⇔0(3) ∀x∀y(F(x,y) →F(f(x),f(y)))⇔ (F(3,3) →F(f(3),f(3)))∧ (F(4,3) →F(f(4),f(3)))∧ (F(3,4) →F(f(3),f(4)))∧ (F(4,4) →F(f(4),f(4)))⇔ (0→0) ∧ (1→1) ∧ (1→1) ∧ (0→0) ⇔15.6. 略5.7. 略5.8. 在一阶逻辑中将下列命题符号化, 要求用两种不同的等值形式.(1) 没有小于负数的正数.(2) 相等的两个角未必都是对顶角.(1) 令F(x): x 小于负数, G(x): x 是正数. 符合化为:∃⌝x((F(x) ∧ G(x)) ⇔ ∀x(G(x) → ⌝G(x)).(2) 令F(x): x 是角, H(x, y): x 和y 是相等的, L(x, y): x 与y 是对顶角. 符合化为:⌝∀x∀y(F(x) ∧ F(y) ∧ H(x, y) → L(x, y))⇔ ∃x∃y(F(x) ∧ F(y) ∧ H(x, y) ∧ ⌝L(x, y))⇔ ∃x(F(x) ∧ (∃y(F(y) ∧ H(x, y) ∧ ⌝L(x, y))).5.9. 略5.10.略5.11.略5.12.求下列各式的前束范式.(1) ∀xF(x) → ∀yG(x, y);(3) ∀xF(x, y) ↔ ∃xG(x, y);(5) ∃x1F(x1, x2) → (F(x1) → ∃⌝x2G(x1, x2)).前束范式不是唯一的.(1) ∀xF(x) → ∀yG(x, y)⇔ ∃x(F(x) → ∀yG(x, y))⇔ ∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔ ∃xG(x, y)⇔ (∀xF(x, y) → ∃xG(x, y)) ∧ (∃xG(x, y) → ∀xF(x, y))⇔ (∀x1F(x1, y) → ∃x2G(x2, y)) ∧ (∃x3G(x3, y) → ∀x4F(x4, y))⇔ ∃x1∃x2(F(x1, y) → G(x2, y)) ∧ ∀x3∀x4(G(x3, y) → F(x4, y))⇔ ∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).5.13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.(1) 令F(x): x 是汽车, G( y): y 是火车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y))⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(2)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.∃x(F(x) ∧ ∀y(G( y) → H(x, y)))⇔ ∃x∀y(F(x) ∧ (G( y) → H(x, y))).0错误的答案: ∃x∀y(F(x) ∧ G( y) → H(x, y)).(3)令F(x): x 是火车, G( y): y 是汽车, H(x, y): x 比y 跑得快.⌝∀x(F(x) → ∀y(G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) → (G( y) → H(x, y)))⇔ ⌝∀x∀y(F(x) ∧ G( y) → H(x, y)) (不是前束范式)⇔ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)).(4)令F(x): x 是飞机, G( y): y 是汽车, H(x, y): x 比y 跑得慢.⌝ ∃x(F(x) ∧ ∃y(G( y) ∧ H(x, y)))⇔ ⌝ ∃x∃y(F(x) ∧ G( y) ∧ H(x, y)) (不是前束范式)⇔ ∀x∀y ⌝ (F(x) ∧ G( y) ∧ H(x, y))⇔ ∀x∀y(F(x) ∧ G( y) → ⌝H(x, y)).5.14.略5.15.在自然推理系统F 中构造下面推理的证明:(1) 前提: ∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)), ∃xF(x)结论: ∃xR(x).(2) 前提: ∀x(F(x) → (G(a) ∧R(x))), ∃xF(x)结论: ∃x(F(x) ∧R(x))(3) 前提: ∀x(F(x) ∨G(x)), ⌝∃xG(x)结论: ∃xF(x)(4) 前提: ∀x(F(x) ∨G(x)), ∀x(⌝G(x) ∨⌝R(x)), ∀xR(x)结论: ∀xF(x)①∃xF(x) → ∀y((F(y) ∨ G(y)) → R(y)) 前提引入②∃xF(x) 前提引入③∀y((F(y) ∨ G(y)) → R(y)) ①②假言推理④(F(c) ∨ G(c)) → R(c) ③UI⑤F(c) ①EI⑥F(c) ∨ G(c) ⑤附加⑦⑧R(c)∃xR(x)④⑥假言推理⑦EG(2) 证明:①∃xF(x) 前提引入②F(c) ①EI③∀x(F(x) → (G(a) ∧ (R(x))) 前提引入④F(c) → (G(a) ∧R(c)) ④UI⑤G(a) ∧R(c) ②④假言推理⑥R(c) ⑤化简⑦F(c) ∧R(c) ②⑥合取⑧∃x(F(x) ∧R(x)) ⑥E G(3) 证明:①⌝∃xG(x) 前提引入②∀x⌝G(x) ①置换③⌝G(c)②UI④∀x(F(x) ∨G(x) 前提引入⑤F(c) ∨G(c) ④UI⑥F(c) ③⑤析取三段论⑦∃xF(x) ⑥E G(4) 证明:①∀x(F(x) ∨G(x)) 前提引入②F(y) ∨G(y) ①UI③∀x(⌝G(x) ∨⌝R(x)) 前提引入④⌝G(y) ∨⌝R(y)③UI⑤∀xR(x) 前提引入⑥R(y) ⑤UI⑦⌝G(y) ④⑥析取三段论⑧F(y) ②⑦析取三段论⑥∀xF(x) U G5.16.略5.18.略5.19.略5.20.略5.21.略5.22.略5.23.在自然推理系统F 中, 证明下面推理:(1) 每个有理数都是实数, 有的有理数是整数, 因此有的实数是整数.(2) 有理数, 无理数都是实数, 虚数不是实数, 因此虚数既不是有理数, 也不是无理数.(3) 不存在能表示成分数的无理数, 有理数都能表示成分数, 因此有理数都不是无理数.(1)设F(x):x 为有理数, R(x):x 为实数, G(x):x 是整数.前提: ∀x(F(x) →R(x)), ∃x(F(x) ∧G(x))结论: ∃x(R(x) ∧G(x))证明:①∃x(F(x) ∧G(x)) 前提引入②F(c) ∧G(c) ①EI③F(c) ②化简④G(c) ②化简⑤∀x(F(x) →R(x)) 前提引入⑥F(c) →R(c) ⑤UI⑦R(c) ③⑥假言推理⑧R(c) ∧G(c) ④⑦合取⑥∃x(R(x) ∧G(x)) ⑧EG(2)设: F(x):x 为有理数, G(x):x 为无理数, R(x)为实数, H(x)为虚数前提: ∀x((F(x) ∨G(x)) →R(x)), ∀x(H(x) →⌝R(x))结论: ∀x(H(x) → (⌝F(x) ∧⌝G(x)))证明:①∀x((F(x) ∨G(x) →R(x)) 前提引入②F(y) ∨G(y)) →R(y) ①UI③∀x(H(x) →⌝R(x)) 前提引入④H(y) →⌝R(y)③UI⑤⌝R(y) →⌝ (F(y) ∨G(y)) ②置换⑥H(y) →⌝ (F(y) ∨G(y)) ④⑤假言三段论⑦H(y) → (⌝F(y) ∧⌝G(y)) ⑥置换⑧∀x(H(x) → (⌝F(x) ∧⌝G(x)))⑦UG(3)设: F(x):x 能表示成分数, G(x):x 为无理数, H(x)为有理数前提: ∀x(G(x) →⌝F(x)), ∀x(H(x) →F(x))结论: ∀x(H(x) →⌝G(x))证明:①∀x(H(x) →F(x)) 前提引入②H(y) →F(y) ①UI③∀x(G(x) →⌝F(x)) 前提引入④G(y) →⌝F(y)③UI⑤F(y) →⌝G(y) ④置换⑥H(y) →⌝G(y) ②⑤假言三段论⑦∀x(H(x) →⌝G(x))⑥UG5.24.在自然推理系统F 中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合)令F(x): x 喜欢步行, G( x): x 喜欢骑自行车, H(x): x 喜欢乘汽车.前提: ∀x(F(x) → ⌝G(x)), ∀x(G(x) ∨ H(y)), ∃x⌝H(x).结论: ∃x⌝F(x).①∀x(G(x) ∨ H(y)) 前提引入②G(c) ∨ H(c) ①UI③∃x⌝H(x) 前提引入④⌝H(c) ③UI⑤G(c) ②④析取三段⑥∀x(F(x) → ⌝G(x)) 前提引入⑦F(c) → ⌝G(c) ⑥UI⑧⌝F(c) ⑤⑦拒取⑨∃x⌝F(x) ⑧EG5.25.略习题六6.1. 选择适当的谓词表示下列集合:(1)小于5 的非负整数(2)奇整数集合(3)10 的整倍数的集合(1){x|x∈®∧0≤x<5}(2){x|x=2k+1∧k∈®}(3){x|x=10k∧k∈®}6.2. 用列元素法表示下列集合:(1)S1={x|x 是十进制的数字}(2)S2={x|x=2∨x=5}(3)S3={x|x=x∈®∧3<x<12}(4)S4={x|x∈\∧x2-1=0∧x>3}(5)S5={〈x, y>|x, y∈®∧0≤x≤2∧-1≤y≤0}(1) S1={0,1,2,3,4,5,6,7,8,9}(2) S2={2,5}(3) S3={4,5,6,7,8,9,10,11}(4) S4=∅(5) S5={〈0, -1〉,〈1, -1〉,〈2, -1〉,〈0,0〉,〈1,0〉,〈2,0〉}6.3. 略6.4. 设F 表示一年级大学生的集合, S 表示二年级大学生的集合, M 表示数学专业学生的集合, R 表示计算机专业学生的集合, T 表示听离散数学课学生的集合, G 表示星期一晚上参加音乐会的学生的集合, H 表示星期一晚上很迟才睡觉的学生的集合. 问下列各句子所对应的集合表达式分别是什么? 请从备选的答案中挑出来.(1)所有计算机专业二年级的学生在学离散数学课. (2)这些且只有这些学离散数学课的学生或者星期一晚上去听音乐会的学生在星期一晚上很迟才睡觉.(3)听离散数学课的学生都没参加星期一晚上的音乐会.(4)这个音乐会只有大学一, 二年级的学生参加. (5)除去数学专业和计算机专业以外的二年级学生都去参加了音乐会.备选答案:①T⊆G∪H ②G∪H⊆T ③S∩R⊆T④H=G∪T ⑤T∩G=∅ ⑥F∪S⊆G⑦G⊆F∪S ⑧S- (R∪M) ⊆G ⑥G⊆S- (R∩M)答案:(1)③S∩R⊆T(2)④H=G∪T(3) ⑤T∩G=∅(4)⑦G⊆F∪S(5) ⑧S- (R∪M) ⊆G6.5. 确定下列命题是否为真:(1) ∅⊆∅(2) ∅∈∅(3) ∅⊆{∅}(4) ∅∈{∅}(5){a, b}⊆{a, b, c, {a, b, c}}(6){a, b}∈{a, b, c, {a, b }}(7){a, b} {a, b, {{a, b}}}(8){a, b}∈{a, b, {{a, b}}}(1) 真(2)假(3) 真(4) 真(5) 真(6) 真(7) 真(8) 假6.6. 略6.7. 略6.8. 略6.9. 略6.10.略6.11.略6.12.略6.13.略6.14.略6.15.略6.16.略6.17.略6.18.略6.19.略6.20.略6.21.略6.22.略6.23.略6.24.略6.25.略6.26.略6.27.略6.28.略6.29.略6.30.略6.31.略6.32.略6.33.略6.34.略6.35.略6.36.略6.37.略6.38.略6.39.略6.40.略6.41.略6.42.略6.43.略6.44.略6.45.略习题七7.1. 已知A={∅,{∅}},求A×P(A).A×P(A)={ 〈 ∅,∅〉,〈∅,{∅}〉,〈∅,{{∅}}〉,〈∅,{∅,{∅}}〉,〈{∅},∅〉,〈{∅},{∅}〉,〈{∅},{{∅}}〉, 〈{∅},{∅,{∅}}〉}7.2. 对于任意集合A,B,C, 若A×B⊆A×C,是否一定有B⊆C 成立? 为什么?不一定, 因为有反例: A=∅,B={1},C={2},B⊆C,A×B=∅=A×C.7.3. 设A, B, C, D 是任意集合,(1) 求证(A∩B)×(C∩D)=(A×C)∩(B×D).(2) 下列等式中哪个成立? 那些不成立?对于成立的给出证明, 对于不成立的举一反例.(A∪B)×(C∪D)=(A×C)∪(B×D)(A-B)×(C-D)=(A×C) - (B×D)(1) ∀〈x,y〉〈x,y〉∈(A∩B)×(C∩D) ⇔x∈A∩B∧y∈C∩D⇔ (x∈A∧x∈B) ∧ (y∈C∧y∈D) ⇔ (x∈A∧y∈C) ∧ (x∈B∧y∈D)⇔〈x,y〉∈(A×B) ∧〈x,y〉∈(C×D) ⇔〈x,y〉∈A×B∩C×D(A∩B)×(C∩D)=(A×C)∩(B×D)(2)都不成立, 反例: A={1,2},B={2,3},C={1,2},D={2,3}(A∪B)×(C∪D)={1,2,3}×{1,2,3}⊃(A×C)∪(B×D)(A-B)×(C-D)={1}×{1}⊂(A×C) - (B×D)7.4. 略7.5. 设A, B 为任意集合, 证明若A×A=B×B, 则A=B.∀x,x∈A⇔〈x,x〉∈A×A⇔〈x,x〉∈B×B⇔x∈BA=B7.6. 列出从集合A={1, 2}到B={1}的所有的二元关系.R1=∅ ,R2={〈1,1〉},R2={〈2,1〉},R3={〈1,1〉,〈2,1〉}.7.7. 列出集合A={2, 3, 4}上的恒等关系I A, 全域关系E A, 小于或等于关系L A, 整除关系D A.I A={〈2,2〉,〈3,3〉,〈4,4〉}E A=A×A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,2〉,〈3,3〉,〈3,4〉,〈4,2〉,〈4,3〉,〈4,4〉}L A={〈2,2〉,〈2,3〉,〈2,4〉,〈3,3〉,〈3,4〉,〈4,4〉}D A={〈2,2〉,〈2,4〉,〈3,3〉,〈4,4〉}7.8. 列出集合A={∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}上的包含关系.R⊆={〈∅,∅〉,〈∅,{∅}〉,〈∅,{∅,{∅}}〉,〈∅,{∅,{∅},{∅,{∅}}}〉,〈{∅},{∅}〉,〈{∅},{∅,{∅}}〉,〈{∅},{∅,{∅},〈∅,{ ∅}〉}〉,〈{∅,{∅}}, {∅,{∅}}〉,〈{∅,{∅}},{∅,{∅},{∅,{∅}}}〉, 〈{∅,{∅},{∅,{∅}}},{∅,{∅},{∅,{∅}}}〉}7.9. 设A={1, 2, 4, 6}, 列出下列关系R:(1) R={〈x, y〉|x, y∈A∧x+y≠2}(2) R={〈x, y〉|x, y∈A∧|x-y|=1}(3) R={〈x, y〉|x, y∈A∧x/y∈A}(4) R={〈x, y〉|x, y∈A∧y 为素数}(1)R={〈1,2〉,〈1,4〉,〈1,6〉,〈2,1〉,〈2,2〉,〈2,4〉,〈2,6〉,〈4,1〉,〈4,2〉,〈4,4〉,〈4,6〉,〈6,1〉,〈6,2〉,〈6,4〉,〈6,6〉}=E A-{〈1,1〉}(2)R={〈1,2〉,〈2,1〉}(3)R={〈1,1〉,〈2,2〉,〈4,4〉,〈6,6〉,〈2,1〉,〈4,2〉,〈4,1〉}(4)R={〈1,2〉,〈2,2〉,〈4,2〉,〈6,2〉}7.10.略7.11.R i 是X 上的二元关系, 对于x∈X 定义集合R i(x)={y|xR i y}.显然Ri(x) ⊆X. 如果X={-4, -3, -2, -1, 0, 1, 2, 3, 4}, 且令R1={〈x, y〉|x, y∈X∧x<y}R2={〈x,y〉|x, y∈X∧y-1<x<y+2}R3={〈x,y〉|x, y∈X∧x2≤y}求R1(0), R1(1), R2(0), R2(-1), R3(3).R1(0)={1,2,3,4}R1(1)={2,3,4}R2(0)={ -1,0}R2(-1)={ -2, -1}R3(3)= ∅7.12.设A={0, 1, 2, 3}, R 是A 上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2, 1〉, 〈2, 3〉, 〈3, 2〉}给出R 的关系矩阵和关系图.7.13.设A = {〈1, 2〉, 〈2, 4〉, 〈3, 3〉}B = {〈1, 3〉, 〈2, 4〉, 〈4, 2〉}求A∪B, A∩B, dom A, dom(A∪B), ran A, ran B, ran(A∩B), fld(A-B).A∪B={〈1,2〉, 〈1,3〉, 〈2,4〉, 〈3,3〉, 〈4,2〉}A∩B={〈2,4〉}dom A={1,2,3}dom(A∪B)={1,2,3,4}r an A={2,3,4}r an B={3,4,2}r an(A∩B)={4}fld(A-B)={1,2,3}7.14.设R={〈0,1〉,〈0,2〉,〈0,3〉,〈1,2〉,〈1,3〉,〈2,3〉}求R○R,R-1 ,R†{0,1},R[{1,2}].R○R={〈0,2〉, 〈0,3〉, 〈1,3〉}R-1={〈1,0〉,〈2,0〉,〈3,0〉,〈2,1〉,〈3,1〉,〈3,2〉}R†{0,1}={〈0,1〉, 〈0,2〉, 〈0,3〉, 〈1,2〉, 〈1,3〉}R[{1,2}]={2,3}7.15.设A={〈∅,{∅,{∅}}〉,〈{∅},∅〉}求A-1,A2,A3,A†{∅},A[∅],A†∅,A†{{∅}},A[{{∅}}].A-1={〈{∅,{∅}},∅〉,〈∅,{∅}〉},A2={〈{∅},{∅,{∅}}〉},A3=∅,A†{∅}={〈∅,{∅,{∅}}〉},A[∅]={∅,{∅}},1 2A †∅=∅,A †{{∅}}={〈{∅},∅〉}, A [{{∅}}]=∅7.16.设 A ={a ,b ,c ,d }, R 1,R 2 为 A 上的关系, 其中R 1={〈a ,a 〉,〈a ,b 〉,〈b ,d 〉} R 2={〈a ,d 〉,〈b ,c 〉,〈b ,d 〉,〈c ,b 〉} 2 3求 R 1○R 2, R 2○R 1,R 1 ,R 2 .R 1○R 2={〈a ,a 〉,〈a ,c 〉,〈a ,d 〉}, R 2○R 1={〈c ,d 〉}, R 2={〈a ,a 〉,〈a ,b 〉,〈a ,d 〉}, R 3={〈b ,c 〉,〈b ,d 〉,〈c ,b 〉}237.17.设 A ={a ,b ,c }, 试给出 A 上两个不同的关系 R 1 和 R 2,使得 R 1 =R 1, R 2 =R 2.R 1={〈a ,a 〉,〈b ,b 〉}, R 2={〈b ,c 〉,〈c ,b 〉}7.18.证明定理 7.4 的(1), (2), (4).(1) F ○ (G ∪H )=F ○G ∪F ○H任取〈x ,y 〉,〈x ,y 〉∈F ○ (G ∪H )⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ∪H )⇔∃t (〈x ,t 〉∈F ∧ (〈t ,y 〉∈G ∨〈t ,y 〉∈H ))⇔∃t ((〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨ (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈G ) ∨∃t (〈x ,t 〉∈F ∧〈t ,y 〉∈H )) ⇔〈x ,y 〉∈F ○G ∨〈x ,y 〉∈F ○H ⇔〈x ,y 〉∈F ○G ∩F ○H 所以有 F ○ (G ∩H )⊆ F ○G ∩F ○H .(2) (G ∪H ) ○F =G ○F ∪H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∪H ) ○F⇔∃t (〈x ,t 〉∈(G ∪H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∨〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∨∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F(4) (G ∩H ) ○F ⊆G ○F ∩H ○F 任取〈x ,y 〉,〈x ,y 〉∈(G ∩H ) ○F⇔∃t (〈x ,t 〉∈(G ∩H ) ∧〈t ,y 〉∈F )⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈H ) ∧〈t ,y 〉∈F ))⇔∃t ((〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧ (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇒∃t (〈x ,t 〉∈G ∧〈t ,y 〉∈F ) ∧∃t (〈x ,t 〉∈H ∧〈t ,y 〉∈F )) ⇔〈x ,y 〉∈G ○F ∨〈x ,y 〉∈H ○F ⇔〈x ,y 〉∈G ○F ∪H ○F7.19.证明定理 7.5 的(2), (3).(2) F [A ∪B ]=F [A ]∪F [B ]任取 y ,。
2024年4月离散数学真题
2024年4月高等教育自学考试全国统一命题考试离散数学(课程代码 02324)注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
2.应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
3.涂写部分、画图部分必须使用2B铅笔,书写部分必须使用黑色字迹签字笔。
第一部分选择题一、单项选择题:本大题共15小题,每小题2分,共30分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.含有3个命题变元的任一命题公式的指派个数是A.6个B.8个C.9个D.10个2.下列命题公式为矛盾式的是A.P→(P ⋁Q ⋁R)B.¬(Q→P) APC.(P→¬P)→¬PD.(P ⋀¬P)→Q3.含有2个命题变元的命题A是重言式的条件是A的主析取范式含有A.4个小项B.1个小项C.4个大项D.1个大项4.设论域元素为a、b,与∀xR(x) ∧(∋y)S(x) 等价的是A.(R(a) ⋀R(b)) ⋀(S(a) ⋀S(b))B.(R(a) ⋀R(b)) ⋀(S(a) ⋁S(b))C.(R(a) ⋁R(b)) ⋀(S(a) ⋀S(b))D.(R(a) ⋁R(b)) ⋀(S(a) ⋁S(b))5.谓词公式 ∀xF(x) ⋀G(x,y) 中变元x 为A.自由出现B.约束出现C.既不是自由出现也不是约束出现D.既是自由出现也是约束出现6.设论域是正整数,下列谓词公式中值为真的是A.)10(22=+∃∀y x y xB.)10(22=+∃∀y x x yC.)10(22=+∀∀y x y xD.)10(22=+∃∃y x y x7.设A ={a,∅},P(A)是A 的幂集,下列选项中正确的是A.{a}∈ P(A),{a}⊆P(A)B.{{A}}∈P(A),{{a}}⊆P(A)C.{a}∈P(A),{∅}∈P(A)D.{a}∈P(A),{∅}⊆P(A)8.一个8阶简单图的边数最大为A.20B.25C.28D.309.下面关于n 阶树的描述,错误..的是 A.连通图 B.连通且有n-1条边C.无回路且有n-1条边D.连通且无回路10.R={<0,1>,<1,2>,<2,3>},S={<2,1>,<1,2>,<3,3>},下列正确的是A.ran(R) ⊂ ran(R ∩S)B.ran(S) = ran(R ∪S)C.dom(R) = dom(S)D.dom(R) ∪ dom(S) = ran(R) ∪ ran(S)11.设A={1,2,3},则下列关系中是反自反关系的为A.R={<1,1>,<1,2>}B.R={<1,2>,<3,3>}C.R={<1,2>,<3,2>}D.R={<3,1>,<1,3>,<2,2>}12.设A={a,b,c} ,下列选项中既不是对称也不是反对称的是A.R={<a,a>,<a,b>,<b,a>,<c,b>,<b,c>}B.R={<a,a>,<b,b>}C.R={<a,c>,<a,b>}D.R={<a,c>,<b,b>}13. 设f: R →R,f(x) =⎩⎨⎧<-≥3232x x x ,,;g:R →R,g(x)=x+2,则g ∘f:R →R 是A.单射不满射B.满射不单射C.不单射不满射D.双射14.一个5阶简单图G,保证G 为连通图的最少边数为A.4B.5C.6D.715.下列各集合对于整除关系构成偏序集,不能..构成格的集合是 A.L 1={1,2,3,4} B.L 2={1,2,3,6}C. L 3={1,3,5,15}D.L 4={1,3,9,81}第二部分 非选择题二、填空题:本大题共10小题,每小题2分,共20分。
台湾交大离散数学1
The Negation Operator
The unary negation operator ":" (NOT) transforms a prop. into its logical negation.
For example, if p = “I have brown hair.”, then :p = “I do not have brown hair.”.
Predicates Quanti…ed predicate expressions Equivalences & derivations
Discrete Mathematics Foundations of Logic §1.1 Propositional Logic
§1.1 Propositional Logic
^ pn of n propositions
: and ^ operations together are su¢ cient to express any Boolean truth table with only 1 True value.
Discrete Mathematics Foundations of Logic §1.1 Propositional Logic
Some Popular Boolean Operators
Formal Name Negation operator Conjunction operator Disjunction operator Exclusive-OR operator Implication operator Biconditional operator
Discrete Mathematics Foundations of Logic §1.1 Propositional Logic
交大_离散_期末考卷lisan200704a
交大_离散_期末考卷lisan200704a一、选择题(每题1分,共5分)A. 整数分解B. 背包问题C. 确定图是否是连通的D. 确定图是否有哈密顿回路2. 在离散数学中,下列哪个关系是自反的?A. 小于关系B. 整除关系C. 约等于关系D. 矩阵乘法关系A. R1={(1,1), (2,2), (3,3), (1,2)}B. R2={(1,1), (2,2), (3,3), (2,1)}C. R3={(1,1), (2,2), (3,3), (3,1)}D. R4={(1,1), (2,2), (3,3), (1,3)}A. 一个有6个顶点的完全图B. 一个有5个顶点的环图C. 一个有4个顶点的完全二部图D. 一个有3个顶点的路径图5. 在图论中,一个有n个顶点的树有多少条边?A. nB. n1C. n+1D. 2n二、判断题(每题1分,共5分)1. 离散数学中的图论部分主要研究网络的性质和结构。
()2. 所有的图都至少有一个哈密顿回路。
()3. 在一个有向图中,每个顶点的入度等于出度。
()4. 离散数学中的逻辑部分不涉及命题逻辑和谓词逻辑。
()5. 欧拉定理可以用来判断一个图是否存在欧拉回路。
()三、填空题(每题1分,共5分)1. 一个有n个顶点的连通图至少有______条边。
2. 在一个无向图中,如果任意两个顶点都相邻,则称该图为______。
3. 命题“如果今天下雨,那么我不去公园”的逆否命题是“如果我去公园,那么今天______”。
4. 一个集合的幂集是指该集合所有______的集合。
5. 在图论中,两个顶点之间的路径长度是指连接这两个顶点的路径上边的______。
四、简答题(每题2分,共10分)1. 简述什么是离散数学。
2. 解释什么是哈密顿回路。
3. 简述集合的笛卡尔积。
4. 什么是命题逻辑中的蕴含关系?5. 解释什么是图的同构。
五、应用题(每题2分,共10分)1. 给定集合A={1,2,3,4},求A的所有子集。
湘潭大学 刘任任版 离散数学课后习题答案 习题12
习 题 十 二1.一个简单图G 有多少不同的定向图?分析:由于简单图的每条边有两种不同的方向可供选择,因此具有q 条边的无向简单图G 共有2q 个不同的定向图。
解.设),(q p G 是简单图,则G 共有2q 个不同的定向图。
2.简单有向图的基础图一定是简单图吗?分析:有向图的基础图是将有向边变成无向边所得到的无向图,由于在有向图中(u,v )和(v,u) 是两条不同的边,能含有重边,从而不是简单图。
解:不一定,如右图。
3.设),(q p D 是简单有向图,证明:(1)若D 是强连通图,则)1(-≤≤p p q p (2)若D 是弱连通图,则)1(1-≤≤-p p q p分析:强连通图D 是指D 中任意两个顶点间存在双向的通路,因此D 的基础图G 必含H 回路,一条H 回路的边数至少有p 条边,因此p q ≤;另一方面,由于完全强连通图的边数等于)1(-p p ,因此简单有向图D 的边数)1(-≤p p q 。
弱连通图D 是指D 的基础图是连通图的有向图,根据习题5第16题(1)有具有q 个顶点的连通图的边至少有p-1条,因此q p ≤-1。
证明(1)因D 是强连通图,故D 中任意两个顶点v u ,之间既存在),(v u 通路,又存在有向),(u v 一通路,于是,D 的基础图G 必含H 回路.故p q ≤,又因D 是简单有向图.故D 中任何两个顶点之间最多有二条弧,从而)1(-≤p p q ,故)1(-≤≤p p q p .(2)因D 是弱连通图,故D 的基础图G 是连通的,若G 无回路,则1-=p q ,因此,)1(1-≤≤-p p q p4.设),(q p D 是有向图,证明:∑∑==-+==pi pi i D i Du d q u d11)()(分析:)(v d D +是指有向图D 中顶点v 的出度,即以顶点v 为尾的弧的条数;由于D 中的任一弧恰有一个头和一个尾,因此,每增加一条弧,对D 的所有顶点来说,肯定会增加一个出度,同时也会增加一个入度。
离散数学(第三版)课后习题答案
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=∅3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n∈I∧(∃m∈I)(n=2m+1)};2){n n∈I∧n≥0∧n<7};3){p p∈N∧p>2∧p<30∧⌝(∃d∈N)(d≠1∧d≠p∧(∃k∈N)(p=k⋅d))}。
3. 确定下列各命题的真假性:1)∅⊆∅2)∅∈∅3)∅⊆{∅}4)∅∈{∅}5){a,b}⊆{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}⊆{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为∅是集合{∅}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A⊂B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
离散数学PPT+课后答案第0章 引言 - 副本
➢ 上课学习要求:积极思考问题,踊跃发言,配 合教师完成课堂内容。
➢ 课程考试要求:闭卷笔试。
2020/3/6
10-9
电子科技大学离散数学课程组——国家精品课程,双语示范课程
http://222.197.183.243/wlxt/ncourse/ lsxx/web/default.aspx
电子科技大学离散数学课程组——国家精品课程,双语示范课程
离散数学
电子科技大学信息与软件工程学院
2020年3月6日星期五
电子科技大学离散数学课程组——国家精品课程 双语示范课程
离散数学的研究对象
离散数学是研究各种各样的 离散量的结构及离散量之间的关 系的一门学科,是计算机科学中 基础理论的核心课程。
第二,当今通过计算机运算的绝大多数课题,都是基于 若干离散对象之间的种种联系,即使是诸如求某一连续 函数的积分这样的问题,由计算机来处理时,仍然要将 连续函数做离散化处理,即所谓数值分析方法。
第三,计算机系统本身就是一个有限结构或有限离散结构。
10-4
电子科技大学离散数学课程组——国家精品课程 双语示范课程
▪ 作业15次(收作业:5次) ▪ 课堂测验3次(包括期中考试) ▪ 期末考试(平时作业占20%+半期考试(含课堂
测试)10%+期末考试70%)
2020/3/6
10-7
电子科技大学离散数学课程组——国家精品课程 双语示范课程
教材与参考书
教材:
离散数学及其应用(第2版) 傅彦,顾小丰,王庆先, 刘启和.高等教育出版社,2013.06 离散数学实验及习题解析. 傅彦,王丽杰,顾小丰,尚 明生.高等教育出版社,2007.11
离散数学教程(集合论与图论)-FudanUniversity
离散数学教程(集合论与图论)离散数学:计算机科学与技术的数学基础课内容:集合论,图论,组合数学,代数结构,数理逻辑集合论:(第1-4章)组合数学初步:(第5-7章)图论:(第8-11章)教师介绍⏹教师:吴永辉博士副教授⏹简历:⏹1984-1988 上海科技大学计算机系本科⏹1988-1991 复旦大学计算机系硕士⏹1991-2003 华东师范大学计算机系工作⏹1998-2001 复旦大学计算机系博士⏹2003-复旦大学计算机系工作⏹答疑E-mail: yhwu@《集合论与图论》课件制作软件⏹Microsoft PowerPoint⏹MathType Equation《集合论与图论》课程大纲⏹课程性质与目的⏹教学内容与要求⏹使用教材、参考书籍⏹命题说明和题型课程性质、目的与基本要求⏹课程性质本课程讲授计算机科学与技术的数学基础课《离散数学》的部分主要内容:集合论、图论与组合数学初步,是计算机专业的主干课程之一。
本课程前行课程为线性代数,数学分析(上)。
⏹课程目的使学生掌握集合论、图论与组合数学初步的基本内容,并对证明的思想和方法深入理解和体会,初步培养学生的思维过程的数学化。
⏹基本要求:⏹掌握集合论、组合学和图论的基本概念,清楚了解引入基本概念的实际背景、各概念间相互关系;掌握基本定理以及有关理论题的证明技巧;掌握解决计数问题的基本方法和技巧;掌握图论中各算法设计的思想、正确性证明以及算法的应用。
为进一步学习计算机其他课程打下坚实的基础。
教学方式本课程以课堂讲授为主。
考核方式⏹平时作业;⏹集合论、组合数学和图论3次课堂练习;⏹期中,期末的两次笔试考试。
教学内容与要求----集合论⏹第一章集合的基本概念掌握:集合的基本概念,集合的运算。
了解:集合论的悖论。
掌握证明两个集合相等的基本法和公式法。
⏹第二章关系掌握:关系的性质、运算和关系的闭包,以及等价关系和偏序关系。
了解:关系在关系数据库中的应用。
掌握证明的类型。
一些数学课程视频的链接
一些数学课程视频的链接1.1《数学分析》:复旦,陈纪修,214集,151小时/playlist_show/id_3559597_ascending_1_mode_pic_page_1.html /playlist_show/id_3657450.html1.2《数学分析》:中科大,史济怀,203集,149小时/playlist_show/id_3941515_ascending_1_mode_pic_page_1.html 1.3《微积分》:清华,58集,47小时/playlist_show/id_1543503_ascending_1_mode_pic_page_3.html 2.1《高等代数》:清华,18集,14小时/playlist_show/id_1602163.html2.2《高等代数》:厦大,杜妮,133集,93小时/playlist_show/id_4364793_ascending_1_mode_pic_page_1.html 2.3《线性代数》:中科大,李尚志,25集,35小时/playlist_show/id_3979326.html3.1《高等代数与解析几何》:南开,100集,67小时/playlist_show/id_5281512.html4.1《概率论与数理统计》:中科大,缪柏其,33集,35小时/playlist_show/id_5270389.html4.2《统计学》:加州伯克利分电视棒校,43集,35小时/playlist_show/id_3769636.html5.1《微分方程》:麻省理工,33集,网易公开课/special/opencourse/equations.html/playlist_show/id_4025396_ascending_1_mode_pic_page_1.html 5.3《常微分方程》:北师大,袁荣,61集,47小时/playlist_show/id_3950648_ascending_1_mode_pic_page_1.html 5.4《偏微分方程》:台湾国立交大,39集,48小时/playlist_show/id_3764702.html6.1《实变函数》:台湾国立交大,吴培元,35集,40小时/playlist_show/id_5609383.html7.1《复变函数》:台湾国立交大,吴培元,29集,33小时/playlist_show/id_4088706.html7.2《复变函数》钟玉泉三版:北师大,袁荣,61集,47小时/playlist_show/id_4253743_ascending_1_mode_pic_page_1.html 8.1《泛函分析》:台湾国立交大,吴培元,30集,30小时/playlist_show/id_15443160_ascending_1_mode_pic_page_1.html 9.1《抽象代数》:北大,石生明,61集,41小时/playlist_show/id_3250211_ascending_1_mode_pic_page_1.html 9.2《近世代数》张禾瑞:北师大,袁荣,60集,44小时/playlist_show/id_4102229.html10.1《点集拓扑》:河北师大,王彦英,28集,22小时/playlist_show/id_3250377.html11.1《微分几何与广义相对论教程》:北师大,梁灿彬,118集,107小时/playlist_show/id_3250546.html12.1《初等数论》:北师大,袁荣,51集/playlist/index_1958524.html/playlist_show/id_3250322.html14.1《数理逻辑》:中科院,陆钟万,29集,28小时/playlist_show/id_2901699.html15.1《图论》:北师大,袁荣,60集,42小时/playlist_show/id_4236391_ascending_1_mode_pic_page_1.html 16.1《离散数学》:吉大,69集,50小时/playlist_show/id_2026088.html16.2《离散数学》:中南,24集,17小时/playlist_show/id_2741559.html16.3《离散数学》:上交,35集,38小时/playlist_show/id_1593746_ascending_1_mode_pic_page_1.html 17.1《MATLAB基础视频》:14集,6小时/playlist_show/id_4993577.html17.2《MATLAB论坛视频》:67集,26小时/playlist_show/id_1710770_ascending_1_mode_pic_page_1.html 18.1《小波分析》:28集,29小时/playlist_show/id_5475022.html19.1《最优化-凸分析》:斯坦福大学,38集,47小时/playlist_show/id_5434039.html。
classbfs1209122546181085台湾交大随机微积分(离散)
CHAPTER1Probability Theory1.1.Probability space, (Ω,F,P) (probability space). notations.Definition1.1.(1)Possible outcomesωα,α∈A,are called sample points( )1.(2)The setΩ={ωα:α∈A}=the collection of all possible outcomes,i.e.,the setof all sample points,is called a sample space( ).,Ω .Example1.2.(1)Ω=N=the set of all natural numbers={ωn:ωn= n for all n∈N}.(2)Ω=R=the set of all real numbers.(3)Ω=the collection of all odd positive numbers.(4)Ω=the collection of all fruits,e.g.,apple∈Ω,pineapple∈Ω.(5)Ω=the collection of all colors.Definition1.3.A system F of subsets ofΩis called aσ-algebra if(i)Ω∈F;1A index set. A=N={1,2,3,...}, ωα ωn. A=R, possible outcomes uncountable .56 1.PROBABILITY THEORY(ii)A c∈F whenever A∈F;(iii)A n∈F for all n=1,2,3,...implies that∞n=1A n∈F., ?. , .Example1.4.(1)LetΩ={1,2,3}.Then(i)F1={∅,{1},{2,3},Ω}is aσ-algebra.(ii)F2={∅,{1},{2},{3},Ω}is not aσ-algebra,since{1}∈F2,but{1}c= {2,3}∈F2.(2)LetΩ=R and F=the collection of all subsets of R,then F is aσ-algebra.(3)LetΩ=N.Then(i)F1={∅,{1,3,5,7,...},{2,4,6,8,...},N}is aσ-algebra.(ii)F2={∅,{3,6,9,...},{1,4,7,...},{2,5,8,...},{1,3,4,6,7,9,...},{1,2,4,5,7,8,...}, {2,3,5,6,8,9,...},N}is aσ-algebra.(iii)F3={∅,{1,2},{3,4},{5,6},...,{1,2,3,4},{1,2,5,6},...,{1,2,3,4,5,6},...,Ω} is aσ-algebra.(4)LetΩ=N.Then(i)F1={A⊆N:A isfinite or A c isfinite}is not aσ-algebra.For example,the set A n={n}∈F1for all n,but the set∞n=1A n=N∈F1,since neither N nor N c hasfinite elements.(ii)F2={A⊆N:A is countable or A c is countable}is aσ-algebra., sample space σ-algebra. σ-algebras, Example1.4(3) F1,F2 F3.1.1.PROBABILITY SPACE 7Definition 1.5.Let Ωbe a non-empty set and let F be a σ-algebra on Ω,then (Ω,F )is called a measurable space ( ).Definition 1.6.Let (Ω,F )be a measurable space.A probability measure ( )is a real-valued function P :F −→R satisfying(i)P (E )≥0for all E ∈F ;(ii)(Countable additivity)Let (E n )be a sequence of countable collection of disjointsets in F .ThenP∞ n =1E n =∞ n =1P (E n ).(1.1)(iii)P (Ω)=1.2, σ-algebra A n ∈F for all n =1,2,3,...implies that ∞ n =1A n ∈F . ,(1.1) .Proposition 1.7.(1)P (E )≤1for all E ∈F .(2)P (∅)=0.(3)P (E c )=1−P (E ).(4)P (E ∪F )=P (E )+P (F )−P (E ∩F ).(5)If E ⊆F ,then P (E )≤P (F ).(6)If (E n )is the collection of sets in F ,then P ∞ n =1E n ≤∞ n =1P (E n ).(7)(i)If (E n )satisfiesE 1⊆E 2⊆···⊆E n ⊆···,2 ,P measure.8 1.PROBABILITY THEORY then P (E n )converges to P∞ n =1E n ,i.e.,lim n →∞P (E n )=P ∞ n =1E n .(ii)If (E n )satisfies E 1⊇E 2⊇···⊇E n ⊇···,then P (E n )converges to P∞ n =1E n ,i.e.,lim n →∞P (E n )=P ∞ n =1E n .Definition 1.8.The triple (Ω,F ,P )is called a probability space ( ).Example 1.9.(1)LetΩ={H,T }( ),F ={∅,{H },{T },{H,T }},and let P be given byP (∅)=1,P ({H })=P ({T })=12,P ({H,T })=1.Then (Ω,F ,P )is a probability space.(2)LetΩ={ , , , , , }( ),F =the collection of all subsets of Ω,P satisfies P ({ })=P ({ })=···=P ({ })=1/6and P is a probability measure.Then (Ω,F ,P )is a probability space.(3)Let Ω={ω1,ω2,...,ωn ,...}be a countable set and let F be the collection of allsubsets of Ω.Assume that (p n )be a sequence of real numbers withp n ≥0for all n and ∞n =1p n =1.1.1.PROBABILITY SPACE9 Define a set function P:F−→R by P({ωn})=p n andP(E)=ωn∈E P({ωn})=ωn∈Ep n.Then P defines a probability measure.We call(Ω,F,P)a discrete probability space andΩa discrete sample space.probability space. probability space , notation.Question.Given a sample setΩand a collection of subsets ofΩ,C.Does there exist a collection of subsets ofΩ,say G,such that(i)C⊆G;(ii)G is aσ-algebra?Answer.Yes.We may take G to be the collection of all subsets ofΩ.F C σ-algebra. yes.C⊆H and H:σ-algebraH.σ-algebra : σ-algebra σ-algebra.Notation1.10.If G is the smallestσ-algebra containing C,then we say that G is generated by C and denote it by G=σ(C).Example1.11.LetΩ={1,2,3,4}and C={{1,2},{4}}.Thenσ(C)={∅,{1,2},{3},{4},{1,2,3},{1,2,4},{3,4},Ω}.10 1.PROBABILITY THEORYExample1.12.LetΩ=R and let C be the collection of all open intervals(a,b)in R. Then the sets in B=σ(C)are called Borel sets. , random variable .For example,R,Q,(a,b),[a,b),(a,b],[a,b]are inσ(C). R1 subsets Borel sets. Borel set , real analysis .Remark1.13.LetΩ=[0,1]and let B1be the collection of all Borel sets in[0,1],i.e.,B1=B∩[0,1]:={A∩[0,1]:A∈B}.For(a,b)∈B1,definem((a,b))=b−a.Then we can define a probability measure m:B1−→R.m is called the Lebesgue measure ( ).([0,1],B1,m) probability space .Exercise(1)Find theσ-algebra generated by the given collection of sets C.(a)Ω={1,2,3,4},C={{1,2,3},{4}};(b)Ω={1,2,3,4},C={{2,3,4},{3,4}};(c)Ω={1,2,3,4,5},C={{1,2,4},{1,4,5}};(d)Ω=R,C={[−1,0),(1,2)}(2)LetΩ={1,2,3,4,5,6}and let F=σ({{1,2,3,4},{3,4,5}}).Find a probabilitymeasure defined on(Ω,F).1.2.RANDOM VARIABLES11 (3)Consider a probability space(Ω.F,P),whereΩ={1,2,3,4,5},F is the collectionof all subsets ofΩ,andP({1})=P({2})=P({5})=14,P({3})=P({4})=P({6})=112.(a)LetX=2I{1}+3I{2,3}−3I{4,5}+I{6}.Find E[X]and E[X2].(b)LetY=I{1,2}+3I{2,4,5}−2I{4,5,6}.Find E[Y]and E[Y3].(4)LetΩ=R,F=all subsets so that A or A c is countable,P(A)=0in thefirstcase and=1in the second.Show that(Ω,F,P)is a probability space,i.e.,show that F is aσ-algebra and P is a probability measure.1.2.Random variablesLet(Ω,F,P)be a probability space.Definition1.14.We say a function X:Ω−→R to be a random variable(r.v., )if for every B∈B,{ω:X(ω)∈B}∈F,i.e.,X is measurable with respect to F.Notation1.15.For all random variable X and B∈F,{X∈B}:={ω∈Ω:X(ω)∈B}.12 1.PROBABILITY THEORYExample1.16.Suppose thatΩ=[0,1]and F=B1.(1)X1(ω)=ω.For B∈B,{X1∈B}={ω∈[0,1]:X1(ω)∈B}={ω∈[0,1]:ω∈B}=B∩[0,1]∈B1.Thus,X1is a random variable.(2)X2(ω)=ω2.For B∈B,{X2∈B}={ω∈Ω:X2(ω)∈B}={ω∈Ω:ω2∈B}., B∈B .. Example1.18(1) .Theorem1.17.The following statements are equivalent.(1)X is a random variable on(Ω,F).(2){X≤r}∈F for all r∈R.(3){X<r}∈F for all r∈R.(4){X≥r}∈F for all r∈R.(5){X>r}∈F for all r∈R., check random variable . Example1.16 X2 , check X2(ω)=ω2 random variable B , , . Theorem1.17 .Example1.18.(1)ConsiderΩ=[0,1],F=B1and X(ω)=ω2.(i)If r<0,{X≤r}={ω∈[0,1]:ω2≤r}=∅∈F.1.2.RANDOM VARIABLES13(ii)If0≤r≤1,{X≤r}={ω∈[0,1]:ω2≤r}=[0,√r]∈F.(iii)If r>1,{X≤r}=[0,1]∈F.Thus,X is a random variable.(2) random variable .LetΩ={1,2,3,4}and F=σ({1,2},{3},{4}).(a)X1(1)=2,X1(2)=3,X1(3)=4,X1(4)=5.Since{X1≤2}={1}∈F,X1is not a random variable.(b)X2(1)=X2(2)=2,X2(3)=10,X2(4)=−500.(i)If r<−500,{X2≤r}=∅∈F.(ii)If−500≤r<2,{X2≤r}={4}∈F.(iii)If2≤r<10,{X2≤r}={1,2,4}∈F.(iv)If r≥10,{X2≤r}=Ω∈F.Thus,X2is a random variable.Theorem1.19.(1)If X is a random variable,f is a Borel measurable function on(R,B),then f(X)is a random variable.(2)If X and Y are random variables,f is a Borel measurable function of two vari-ables,then f(X,Y)is a random variable.(3)If(X n)n≥1is a sequence of random variables,theninf n X n,supnX n,lim infn→∞X n,lim supn→∞X n,limn→∞X nare random variables., .lim sup lim inf Appendix A .14 1.PROBABILITY THEORYExample1.20.(1)Let(Ω,F,P)be a discrete probability space.Then every real-valued function onΩis a random variable.(2)Let(Ω,F,P)=([0,1],B1,m).Then the random variables are exactly the Borelmeasurable functions defined on([0,1],B1).Exercise(1)LetΩ={1,2,3,4,5,6},and letX1(ω)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩1,ω=1,2,ω=2,1,ω=3,1,ω=4,2,ω=5,2,ω=6,X2(ω)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩3,ω=1,2,ω=2,3,ω=3,3,ω=4,2,ω=5,2,ω=6,X3(ω)=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩3,ω=1,2,ω=2,1,ω=3,5,ω=4,4,ω=5,4,ω=6.(a)Let F=σ({{1},{2},{3},{4},{5},{6}}),which of X1,X2,X1+X2,X1+X3and X3are random variables on(Ω,F)?(b)Let F=σ({{1,2,3},{4,5}}),which of X1,X2,X1+X2,X1+X3and X3are random variables on(Ω,F)?(c)Let F=σ({{1,4},{2,5},{3}}),which of X1,X2,X1+X2,X1+X3andX3are random variables on(Ω,F)?(2)Suppose X and Y are random variables on(Ω,F,P)and let A∈F.Show thatif we letZ(ω)=⎧⎪⎨⎪⎩X(ω),ifω∈A,Y(ω),ifω∈A c,then Z is a random variable.(3)Let P be the Lebesgue measure onΩ=[0,1].DefineZ(ω)=⎧⎪⎨⎪⎩0,if0≤ω<1/2,2,if1/2≤ω≤1.For A∈B1,defineQ(A)=AZ(ω)d P(ω).(a)Show that Q is a probability measure.(b)Show that if P(A)=0,then Q(A)=0.(We say that Q is absolutelycontinuous with respect to P.)(c)Show that there is a set A for which Q(A)=0but P(A)>0.1.3.ExpectationDefinition1.21.The functionI A(ω)=⎧⎪⎨⎪⎩0,ifω∈A,1,ifω∈A.is called the indicator function of A.Remark1.22.The indicator function I A is a random variable if and only if A∈F.Definition1.23.(1)Let A i∈F for all i and let a random variable X be of the formX=∞i=1b i I A i.(1.2)Then X is called a simple random variable.(2)Let X be the form(1.2),we define the expectation( )of X to beE[X]=∞i=1b i P(A i)., .(A n) disjoint.Example1.24.Let(Ω,F,P)=([0,1],B1,m)and considerX=∞i=112iI[0,2−i).Then the expectation of X is given byE[X]=∞i=112iP([0,2−i))=∞i=114i=13.Remark1.25.Consider the generalization of the expectation3.Let X be a positive random variable.DefineΛmn=ω:n2m≤X(ω)<n+12m∈F,for all m,n∈N.LetX m=∞n=0n2mIΛmn.(X m Figure1.3)Due to the construction of X m,we see that for allω∈Ω, X m(ω)↑andlimm→∞X m(ω)=X(ω).(i)If E[X m]=+∞for some m,we define E[X]=+∞.3 Lebesgue integral, . Riemann integral .Riemann inegral ,Lebesgue integral . . step functions/simple functions, simple functions f . Figure1.1 Figure1.2.Figure1.1.Riemann integralFigure1.2.Lebesgue integral (ii)If E[X m]<∞for all m,defineE[X]=limm→∞E[X m]=limm→∞∞n=0n2mPn2m≤X<n+12m.positive random variable expectation,Definition1.26.Consider a general random variable X.Then we can write X asX=X+−X−,where X+=X∨0,X−=(−X)∨0.3.2.4.Figure1.3.X X m(1)Unless both of E[X+]and E[X−]are+∞,we defineE[X]=E[X+]−E[X−].(2)If E|X|=E[X+]+E[X−]<∞,X has afinite expectation.We denote byE[X]=ΩX d P=ΩX(ω)P(dω).(3)For A∈F,defineAX d P=E[X I A],(1.3) which is called the integral of X with respect to P over A.(4)X is integrable with respect to P over A if the integral(1.3)exists and isfinite. Remark1.27.(1)If X has a cumulative distribution function(c.d.f.)F withrespect to P,thenE[X]= ∞−∞x dF(x).Moreover,if g is Borel measurable function in R,E[g(X)]= ∞−∞g(x)dF(x).(2)If X has a probability density function(p.d.f.)f with respect to P,thenE[X]= ∞−∞xf(x)dxandE[g(X)]= ∞−∞g(x)f(x)dx.(3)If X has a probability mass function p with respect to P,thenE[X]=∞n=1x n p(x n),E[g(X)]=∞n=1g(x n)p(x n).Example1.28.(1)LetΩ={1,2,3,4},F=σ({1},{2},{3},{4})andP({1})=12,P({2})=14,P({3})=16,P({4})=112.LetX=5I{1}+2I{2}−4I{3,4}. ThenE[X]=5·12+2·12−416+112=2E[X2]=25·12+4·12+1616+112=352.(2)Suppose X is normally distributed on(Ω,F,P)with mean0and variance1,thenX has probability density function1√2πexp−x22.Thus,E[X]= ∞−∞x1√2πexp−x22=0,E[X3]= ∞−∞x31√2πexp−x22=0,(odd function)E[e X]= ∞−∞e x1√2πexp−x22=1√2π∞−∞exp−x22+xdx=1√2π∞−∞exp−12(x−1)2+12dx=e1/2.Proposition1.29.(1)(Absolute Integrability)A X d P<∞⇐⇒A|X|d P<∞.4(2)(Linearity)A (aX+bY)d P=aAX d P+bAY d P.(3)(Additivity over sets)If(A n)is disjoint,then∪n A n X d P=nA nX d P.(4)(Positivity)If X≥0P-a.e.5on A,thenAX d P≥0.(5)(Monotonicity)If X1≤X≤X2P-a.e.on A,thenA X1d P≤AX d P≤AX2d P.4 Riemann integral .5We say a property holds P-a.e.(almost everywhere)or P-a.s.(almost surely)means that the probability that this property holds is equal to1,i.e.,except a set with probability0,this property is true.(6)(Modulus Inequality)AX d P≤ A|X |d P .Theorem 1.30.(1)(Dominated Convergence Theorem)If lim n →∞X n =X P -a.e.on A and |X n |≤Y P -a.e.on A for all n withAY d P <∞.Thenlim n →∞AX n d P =A lim n →∞X n d P =AX d P .(2)(Monotone Convergence Theorem)If X n ≥0and X n X P -a.e.on A ,thenlimn →∞AX n d P =A lim n →∞X n d P =AX d P .(3)(Fatou’s Lemma)If X n ≥0P -a.e.on A ,thenA lim inf n →∞X n d P ≤lim infn →∞AX n d P .(4)(Jensen’s Inequality)If ϕis a convex function,X and ϕ(X )are integrable,thenϕ(E [X ])≤E [ϕ(X )].Exercise(1)Let λbe a fixed number in R ,and define the convex function ϕ(x )=e λx forall x ∈R .Let X be a normally distributed random variable with mean μand variance σ2,i.e.,the probability density function of X is given byf (x )=1√2πσexp −(x −μ)22σ2 .(a)Find E [e λX ].(b)Verify that Jensen’s inequality holds (as it must):E ϕ(X )≥ϕ(E [X ]).(2)For each positive integer n ,define f n to be the normal density with mean zeroand variance n ,i.e.,f n (x )=1√2nπexp −x22n.(a)What is the function f (x )=lim n →∞f n (x )?(b)What is limn →∞∞−∞f n (x )dx ?(c)Note thatlimn →∞∞−∞f n (x )dx =∞−∞f (x )dx.Explain why this does not violate the ”Monotone Convergence Theorem”.(3)Let P be the Lebesgue measure on Ω=[0,1].Define Z (ω)=⎧⎪⎨⎪⎩0,if 0≤ω<1/2,2,if 1/2≤ω≤1.For A ∈B 1,defineQ (A )=AZ (ω)d P (ω).(a)Show that Q is a probability measure.(b)Show that if P (A )=0,then Q (A )=0.(We say that Q is absolutelycontinuous with respect to P .)(c)Show that there is a set A for which Q (A )=0but P (A )>0.。
离散数学教程
二、提高 [4] Kenneth H. Rosen. Discrete Mathematics and its Applications. (4th, 5th Edition). 机械工业出版 社, McGraw-Hill. (中、英文版)
本书第4版是全球500多所大学的指定教材, 获得了极大的成功。中文版也已被国内大学广泛 采用为教材。第5版在前四版的基础上做了大量的 改进,使其成为更有效的教学工具。
/*集合论题集,经典习题,集合基础*/
五 定义1.4(全集):在取定一个集合U以 后,对于U的任何子集而言,称U为全集。
定理1.2:
(1)A (2) AA (3) AU
1.2 集合的子集——证明的方法
证明:(1)A (2) AA (3) AU (1)反证法:假设结论不成立,导出矛盾 结果。 不是A的子集,导致矛盾 (2,3)基本法:由子集定义 x左x右,则左右
第十二章
生成函数与递推关系
掌握:用生成函数和递推关系解决组合计数 问题的方法,以及求解递推关系的生成函数方法。 了解:求解递推关系的特征根方法。
教学内容与要求----图论
第五章 图的基本概念
掌握:图的基本术语,路、回路和连通的基本概念, 求最短路的算法及算法正确性证明,欧拉图和哈密顿图的 基本概念、判别方法以及有关定理。
理论计算机科学经典网站
国内: 国际: /~suresh/theory/the ory-home.html
命题说明和题型
1 填空题:基本概念的理解和掌握 2 判断题:概念的掌握与应用 3 计算、证明题:概念的综合应用,数学 方法的运用
《离散数学》试卷及答案精选全文完整版
H(x):x是身体健康的;
S(x):x是科学家
C(x):x是事业获得成功的人
置换规则。
3、设集合|A|=101,S ,且|S|为奇数,则这样的S有2101/2或2100个。
4、设mi是公式G的的主析取范式中的一个极小项,则mi的对偶式不一定是(填“是”/“不是”/“不一定是” ) G的主合取范式中的一个极大项。
5、由3个元素组成的有限集上所有的等价关系有5个
6、给定解释I如下: (1) Di:={2,3}; (2) a=3; (3) 函数f(x)为f(2)=2,f(3)=3; (4) 谓词:F(x)为F(2):=1,F(3):=0;G(x,y)为当i=j时,G(i,j):=1;当i≠j时,G(i,j):=0;其中i,j=2,3;
ac>0并且cu>0
若u>0,则c>0,a>0,因此有ac>0;
若u<0,则c<0,a<0, 也有ac>0;
因此有(a+bi)R(u+vi)
所以R在C*是传递的。所以R是C*上的等价关系。
2、在一阶逻辑自然推理系统F中,构造下面推理的证明。个体域是人的集合。
“每位科学家都是勤奋的,每个勤奋又身体健康的人在事业中都会获得成功。存在着身体健康的科学家。所以,存在着事业获得成功的人。”(15分)
2.设A={1,2,3…10},定义A上的二元关系R={<x,y>|x,y∈A∩x+y=10},试讨论R关于关系的五个方面的性质并说明理由(5分)
解答:R={<1,9>,<9,1>,<2,8>,<8, 2 >,<3,7>,<7,3>,<4,6>,<6, 4 >,<5, 5 >}
离散数学(1.2逻辑联接词)资料
P
┐P
F
T
T
F
4
第一章 命题逻辑(Propositional Logic) 1.2逻辑
联结词(Logical Connectives)
例1. P: 天津是一个城市. Q: 3是偶数.
于是: ┐P: 天津不是一个城市. ┐Q: 3不是偶数.
例2. P:苏州处处清洁. Q:这些都是男同学. ┐P:苏州不处处清洁 (注意,不是处处不清洁). ┐Q:这些不都是男同学.
联结词“ ”的定义真值表
P
Q
PQ
F
F
T
F
T
F
T
F
F
T
T
T
18
第一章 命题逻辑(Propositional Logic) 1.2逻辑
联结词(Logical Connectives)
注:(1)P仅当Q 可译为P→Q P当Q 可译为Q→P P当且仅当Q 译为P Q
(2)“ ”属于二元(binary)运算符。 (3) 双条件命题P Q所表达的逻辑关系是, P与Q互
(5)如果 2+2=4, 则太阳从东方升起。 (P →Q, T)
P
Q
如果 2+2=4, 则太阳从西方升起。 (P →R, F)
R
如果 2+2 4, 则太阳从东方升起。 (┐P →Q , T) 如果 2+2 4, 则太阳从西方升起。 (┐P →R, T)
注意: (1)与自然语言的不同:前件与后件可以没有任何内在联系! (2) 在数学中,“若P则Q”往往表示前件P为真,则后件Q为真的
(2) ”“ 属于二元(binary)运算符。
例5. 将下列命题符号化。 (1)天不下雨,则草木枯黄。 P:天下雨。 Q:草木枯黄。 则原命题可表示为: ┐P→Q。
离散数学 通路回路与图的连通性 ppt课件
则 k(G) = (G) = 0, 上式显然成立。
若G是连通图, 则因每一顶点的所有关联边构成一 个边割集,
所以 (G)≤(G)。
下面证明k (G)≤ (G)。
若 (G) = 1, 则G有一割边,
此时 k(G) = (G) = 1, (*) 式成立。
离散数学 通路回路与图的连通性
32
若 (G)≥2, 则必可删去某 (G)边, 使G不连通,而删 去其中(G) – 1条边, G仍然连通, 且有一条桥e = {u, v}。
通度和边连通度。按图中G1的连接法,如果3 个站被破坏,或者3条铁路被破坏,余下的站
仍能继续相互联系,也就是仍具有连通性。
但按图中G2的连接法,如果v站被破坏,余下
的站就不能保持连通。
离散数学 通路回路与图的连通性
31
定理 对任意的图G = (V, E),
有 k(G)≤ (G)≤ (G)
(*)
证明 若G是平凡图或非连通图,
离散数学 通路回路与图的连通性
11
二、图的连通性:
在图G中,如果A到B存在一条通路,则称A到B是可达的。 1、无向图的连通性 如果无向图中,任意两点是可达的,图为连通图。否则为 不连通图。 当图是不连通时,定是由几个连通子图构成。称这样的连 通图是连通分支。
离散数学 Leabharlann 路回路与图的连通性12无向图的连通性
离散数学 通路回路与图的连通性
13
设 A={1,2,…,8}, R={ <x,y>| x,y∈A∧x≡y(mod 3) }
即:A上模3等价关系的关系图为:
离散数学 通路回路与图的连通性
14
【例】 求证:若图中只有两个奇度数顶点,则二 顶点必连通。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Discrete Mathematics (2009 Spring) Relations (Chapter 8, 5 hours)
Chih-Wei Yi
Dept. of Computer Science National Chiao Tung University
f(a, b ) : a j b g. What
(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 2) , (2, 4) , (3, 3) , (4, 4) , (5, 5)
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Relations on a Set
De…nition A (binary) relation from a set A to itself is called a relation on the set A. E.g., the "<" relation from earlier was de…ned as a relation on the set N of natural numbers. The identity relation IA on a set A is the set f(a, a) j a 2 Ag. Let A be the set f1, 2, 3, 4g. Which ordered pairs are in the relation R = f(a, b ) j a divides b g? How many relations are there on a set with n elements?
R of
Example 1 Function composition f g is an example. Example 2 A = f1, 2, 3g, B = fa, b , c , d g, C = fx , y , z g.
R : A $ B , R = f(1, a), (1, b ), (2, b ), (2, c )g. S : B $ C , S = f (a, x ), (a, y ), (b , y ), (d , z ) g. S R = f(1, x ), (1, y ), (2, y )g.
1
(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 2) , (2, 4) , (3, 3) , (4, 4) , (5, 5)
=
(1, 1) , (2, 1) , (3, 1) , (4, 1) , (5, 1) , (2, 2) , (4, 2) , (3, 3) , (4, 4) , (5, 5)
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Re‡exivity
De…nition A relation R on A is re‡exive if 8a 2 A, aRa. A relation is irre‡exive i¤ its complementary relation is re‡exive. E.g., the relation : E.g., < is irre‡exive.
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Combining Relations
Since relations from A to B are subsets of A B , two relations from A to B can be combined through set operations. Let A = f1, 2, 3g and B = f1, 2, 3, 4g. The relations R1 = f(1, 1), (2, 2), (3, 3)g and R2 = f(1, 1), (1, 2), (1, 3), (1, 4)g can be combined to obtain R1 \ R2 = f(1, 1)g , R1 [ R2 = f(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (3, 3)g , R2 = f(2, 2), (3, b ) 2 / R g = (A
B)
R.
Note this is just R if the universe of discourse is U = A thus the name complement. The complement of R is R .
B;
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
R1
R2
R1 = f((1, 2), (1, 3), (1, 4)g .
Quiz: What is R1
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Composite Relations
Let R : A $ B , and S : B $ C . Then the composite S R and S is de…ned as: S R = f(a, c ) j aRb ^ bSc g .
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Examples of Binary Relations
Let A = f0, 1, 2g and B = fa, b g. Then R = f(0, a), (0, b ), (1, a), (2, b )g is a relation from A to B . For instance, we have 0Ra, 0Rb, etc..
(1, 1) , (1, 2) , (1, 3) , (1, 4) , (1, 5) , (2, 2) , (2, 4) , (3, 3) , (4, 4) , (5, 5)
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
f(a, b ) j organism a eats food b g.
Discrete Mathematics Chapter 8 Relations §8.1 Relations and Their Properties
Complementary Relations
De…nition Let R : A $ B be any binary relation. Then, R : A $ B , the complement of R , is the binary relation de…ned by R:
Examples
Example Let A = f1, 2, 3, 4, 5g and R : A $ A : are R and R 1 ? Solution R=
f(a, b ) : a j b g. What
R
8 9 < (2, 1) , (2, 3) , (2, 5) , (3, 1) , (3, 2) , (3, 4) , (3, 5) , = R= (4, 1) , (4, 2) , (4, 3) , (4, 5) , (5, 1) , (5, 2) , (5, 3) , : ; (5, 4)
Can we have visualized expressions of relations?
Let A be the set of all cities, and let B be the set of the 50 states in the USA. De…ne the relation R by specifying that (a, b ) belongs to R if city a is in state b. For instance, (Boulder,Colorado), (Bangor,Maine), (Ann Arbor,Michigan), (Middletown,New Jersey), (Middletown,New York), (Cupertino,California), and (Red Bank,New Jersey) are in R . “eats” :
Examples
Example Let A = f1, 2, 3, 4, 5g and R : A $ A : are R and R 1 ? Solution R=
f(a, b ) : a j b g. What
8 9 < (2, 1) , (2, 3) , (2, 5) , (3, 1) , (3, 2) , (3, 4) , (3, 5) , = R= (4, 1) , (4, 2) , (4, 3) , (4, 5) , (5, 1) , (5, 2) , (5, 3) , : ; (5, 4)
<: N $ N :
f(n, m) j n < mg. a < b means (a, b ) 2<.
A binary relation R corresponds to a predicate function PR : A B ! fT , F g de…ned over the 2 sets A and B .