小学奥数排列组合常见题型及解题策略备选题
排列组合经典题型及解法
排列组合是组合数学中的一个重要概念,涉及到对一组对象进行排列或组合的方式。
下面列举几个经典的排列组合题型及解法:
1. 排列问题:
-题型:从n个不同元素中选取m个元素,有多少种排列方式?
-解法:使用排列数的公式P(n, m) = n! / (n-m)!,其中n!表示n 的阶乘。
2. 组合问题:
-题型:从n个不同元素中选取m个元素,有多少种组合方式?
-解法:使用组合数的公式C(n, m) = n! / (m!(n-m)!),其中n!表示n的阶乘。
3. 重复排列问题:
-题型:从n个元素中选取m个元素进行排列,允许元素重复,有多少种排列方式?
-解法:使用重复排列数的公式P'(n, m) = n^m,其中^n表示n的m次方。
4. 重复组合问题:
-题型:从n个元素中选取m个元素进行组合,允许元素重复,有多少种组合方式?
-解法:使用重复组合数的公式C'(n, m) = C(n+m-1, m),其中C(n, m)表示组合数。
5. 圆排列问题:
-题型:将n个不同的物体围成一个圆圈,有多少种不同的排列方式?
-解法:使用圆排列数的公式P(n) = (n-1)!。
以上是一些常见的排列组合题型及其解法。
在实际问题中,可能会出现更加复杂和变化的情况,需要根据具体问题进行分析和推导解法。
奥数 数字排列组合解题技巧
奥数数字排列组合解题技巧在奥数(奥林匹克数学竞赛)中,数字排列组合是一个常见的考查点,涉及到的技巧和方法有很多。
以下是一些常见的解题技巧:1. 全排列与重复排列:-全排列:n个元素的全排列有n!种情况,其中n!表示n的阶乘。
-重复排列:有重复元素时,全排列的总数要除以重复元素的阶乘。
2. 循环置换:-对于n个元素的排列,可以通过循环置换的方式进行计算。
循环置换的计算可以借助循环节的长度和总元素个数。
3. 组合公式:-对于从n个元素中选取m个元素的组合数,使用二项式系数的组合公式:C(n, m) = n! / (m! * (n-m)!)4. 二项式定理:-利用二项式定理展开多项式,特别是在计算特殊值时,如计算(x+y)^n的展开式。
5. 递推关系:-有时候可以通过递推关系,找到某一项与前面项之间的关系,从而简化计算。
6. 逆向思维:-有时候可以从目标结果出发,逆向思考,找到排列组合的解。
7. 利用对称性:-利用对称性质,减少计算量。
例如,当问题中存在对称性时,可以利用对称性简化问题。
8. 鸽巢原理:-当分配的对象多于容器的个数时,至少有一个容器中含有两个或两个以上的对象。
这个原理在一些排列组合问题中经常被使用。
9. 图论中的排列组合:-在一些图论问题中,可以利用排列组合的知识,特别是在解决路径计数等问题时。
10. 二叉树与组合数学的关系:-一些问题可以通过构建二叉树的方式来求解,从而转化为组合数学的问题。
总的来说,对于奥数中的数字排列组合问题,关键是灵活运用数学知识,善于发现问题中的规律,并通过巧妙的思考和计算得到正确的结果。
排列组合应用题的类型及解题策略
排列组合应用题的类型及解题策略一.处理排列组合应用题的一般步骤为:①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。
二.处理排列组合应用题的规律(1)两种思路:直接法,间接法。
(2)两种途径:元素分析法,位置分析法。
解决问题的入手点是:特殊元素优先考虑;特殊位置优先考虑。
特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).解:分二步:首尾必须播放公益广告的有A22种;中间4个为不同的商业广告有A44种,从而应当填A22·A44=48. 从而应填48.(3)对排列组合的混合题,一般先选再排,即先组合再排列。
弄清要“完成什么样的事件”是前提。
三.基本题型及方法:1.相邻问题(1)、全相邻问题,捆邦法例2、6名同学排成一排,其中甲,乙两人必须排在一起的不同排法有( C )种。
A)720 B)360 C)240 D)120说明:从上述解法可以看出,所谓“捆邦法”,就是在解决对于某几个元素要求相邻问题时,可以整体考虑将相邻元素视作一个“大”元素。
(2)、全不相邻问题,插空法例3、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,问有多少不同的排法,解:先将6个歌唱节目排好,其中不同的排法有6!,这6个节目的空隙及两端共有七个位置中再排4个舞蹈节目有种排法,由乘法原理可知,任何两个舞蹈节目不得相邻的排法为种例4高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是(A)1800 (B)3600 (C)4320 (D)5040解:不同排法的种数为=3600,故选B说明:从解题过程可以看出,不相邻问题是指要求某些元素不能相邻,由其它元素将它隔开,此类问题可以先将其它元素排好,再将特殊元素插入,故叫插空法。
小学奥数排列组合常见题型及解题策略备选题
小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,,排法种数有A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
小学奥数排列组合[整理版]
奥数解排列组合应用题排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A = ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C = ,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+- .例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
二年级奥数计数精选题:排列组合
请关注我!谢谢你!
二年级奥数计数精选题:排列组合
1.由2 、5、0、7四个数字可以组成多少个不同的四位数?
2.小红骑自行车上学,从家里到学校一共要花二十分钟。
小红看到马路一旁的树,从看到第一棵到151棵共花了6分钟。
已知小红家离家6千米,相邻树的间隔相同,问:相邻两树之间间隔多少米?1.解析:乘法原理:千位上有3种选法,百位上有3种选法,十位上有2种选法,个位上有1种选法3×3×2×1=18(种)。
2.解析:6千米=6000米(1)小红每分钟走多少米? 6000÷20=300米(2)第1棵到第151棵之间的距离 300×6=1800米(3)第一棵到第151棵之间有150个间隔 151-1=150(4)每个间隔12米 1800÷150=12米
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。
小学奥数精讲:排列组合常见解题方法
小学奥数精讲:排列组合常见解题方法小学奥数精讲:排列组合问题常见解题方法方法一:捆绑法“相邻问题”——捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。
例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有在一起的A、B两人也要排序,有种。
例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。
若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有法,2本外语书有种排法;根据分步乘法原理共有排法种排法;又3本数学书有种排种。
种排法。
又因为捆绑种排法。
根据分步乘法原理,总的排法有【提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。
解题过程是“先捆绑,再排列”。
方法二:插空法“不邻问题”——插空法,即在解决关于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。
例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。
第一将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中央”和“两端”共有四个空位置,也等于:︺D︺C︺E︺,此时可将A、B两人插到四个空位置中的任意两个位置,有共有排队方法:。
种插法。
由乘法原理,例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有8个空位,有种方法;用末了一个节目去插9个空位,有=504种。
小升初奥数—排列组合问题
小升初奥数—排列组合问题一、排列组合的应用【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
【解析】 (1)775040P =(种)。
(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ⨯= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ⨯=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。
【例 2】 某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】 四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。
第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312⨯=(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456+++++=(个)不同的四位数,即确保能打开保险柜至少要试56次.【例 3】 一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】 设A :BC DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P 种选法,而C 、E 应从剩下的7个数字中选择两个不同的数字,所以有27P 种选法,所以共有26P ×27P =1260种选法。
排列组合十种解题技巧与易错题归纳总结
排列组合问题十种题型及其解题技巧、易错归纳(一)至少变恰好例题1 某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36B .72C .108D .144【解析】根据题意,分3步进行分析:①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况,②单位乙在剩下的4人中任选2人招聘,有246C =种情况,③单位丙在剩下的2人中任选1人招聘,有122C =种情况, 则有1262144⨯⨯=种不同的录取方案,选D巩固1 2019年高考结束了,有5为同学(其中巴蜀、一中各2人,八中1人)高考发挥不好,为了实现“南开梦”来到南开复读,现在学校决定把他们分到123、、三个班,每个班至少分配1位同学,为了让他们能更好的融入新的班级,规定来自同一学校的同学不能分到同一个班,则不同的分配方案种数为( ) A .84B .48C .36D .28【解析】设这五人分别为1212,,,,A B B C C ,若A 单独为一组时,只要2种分组方法;若A 组含有两人时,有11428C C ⋅=种分组方法;若A 组含有三人时,有11224C C ⋅=种分组情况;于是共有14种分组方法,所以分配方案总数共有331484A =,故选A. (二)插空法例题2 电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( )A .5424A A ⋅B .5424C C ⋅C .4267A A ⋅ D .4267C C ⋅【解析】先排4个商业广告,有44A 种排法,然后利用插空法,4个商业广告之间有5个空,插2个公益广告,有25A 种排法,根据分步计数原理,所以共有5424A A ⋅种排法,选A.巩固2 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩下的4个车位连在一起,那么不同的停放方法的种数为( ) A .18B .24C .32D .64【解析】首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列33A ,当左边两辆,最右边一辆时,有车之间的一个排列33A , 当左边一辆,最右边两辆时,有车之间的一个排列33A ,当最右边三辆时,有车之间的一个排列33A ,总上可知,共有不同的排列法33424A ⨯=种结果,所以选B(三)特殊元素优先例题3 某所大学在10月份举行秋季越野接力赛,每个专业四人一组,其中计算机专业的甲、乙、丙、丁四位大学生将代表本专业参加拉力赛,需要安排第一棒到第四棒的顺序,四个人去询问教练的安排,教练对甲说:“根据训练成绩,你和乙都不适合跑最后一棒”;然后又对乙说:“你还不适合安排在第一棒”,仅从教练回答的信息分析,要对这四名同学讲行合理的比赛棒次安排,那么不同情形的种数共有( ) A .6B .8C .12D .24【解析】根据条件乙只能安排在第二棒或第三棒;若“乙”安排在第二棒,此时有:1222C A 4=种,若“乙”安排在第三棒,此时有:1222C A 4=种,则一共有8种,选B.(四)捆绑法例题4 为迎接双流中学建校80周年校庆,双流区政府计划提升双流中学办学条件.区政府联合双流中学组成工作组,与某建设公司计划进行6个重点项目的洽谈,考虑到工程时间紧迫的现状,工作组对项目洽谈的顺序提出了如下要求:重点项目甲必须排在前三位,且项目丙、丁必须排在一起,则这六个项目的不同安排方案共有() A .240种B .188种C .156种D .120种【解析】第一类:当甲在第1位时,第一步,丙、丁捆绑成的整体有4种方法,第二步,丙、丁内部排列用22A 种方法,第三步,其他三人共33A 种方法,共23234A A 42648=⨯⨯=种方法;第二类:当甲在第2位时,第一步,丙、丁捆绑成的整体有3种方法, 后面两步与第一类方法相同,共23233A A 32636=⨯⨯=种方法; 第三类:当甲在第3为时,与第二类相同,共36种方法; 总计,完成这件事的方法数为483636120N =++=,故选D.巩固3 某校迎新晚会上有6个节目,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起.则该校迎新晚会节目演出顺序的编排方案共有( ) A .120种B .156种C .188种D .240种【解析】先考虑将丙、丁排在一起的排法种数,将丙、丁捆绑在一起,与其他四人形成五个元素,排法种数为25252120240A A =⨯=,利用对称性思想,节目甲放在前三位或后三位的排法种数是一样的, 因此,该校迎新晚会节目演出顺序的编排方案共有2401202=种,选A. (五)不在问题的间接法例题5 某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( ) A .320B .313C .79D .1778【解析】设事件A :数学不排第一节,物理不排最后一节. 设事件B :化学排第四节.()41134333555578A C C A P A A A +==,()31123222555514A C C A P AB A A +==,故满足条件的概率是()()739P AB P A =.故选C.巩固4 某公司安排五名大学生从事A B C D 、、、四项工作,每项工作至少安排一人且每人只能安排一项工作,A 项工作仅安排一人,甲同学不能从事B 项工作,则不同的分配方案的种数为( ) A .96B .120C .132D .240【解析】若甲同学在A 项工作,则剩余4人安排在B 、C 、D 三项工作中,共有1211342136C C C C =种 若甲同学不在A 项工作,,则在C 或D 工作,共有111112423323()96C C C C C C ++=种,共36+96=132种,选C 巩固5 某次文艺汇演为,要将A ,B ,C ,D ,E ,F 这六个不同节目编排成节目单,如下表:序号 1 2 3 4 5 6 节目如果A ,B 两个节目要相邻,且都不排在第3号位置,那么节目单上不同的排序方式有 A .192种B .144种C .96种D .72种【解析】由题意知A ,B 两个节目要相邻,且都不排在第3号位置, 可以把这两个元素看做一个,再让他们两个元素之间还有一个排列,A ,B 两个节目可以排在1,2两个位置,可以排在4,5两个位置,可以排在5,6两个位置, 这两个元素共有种排法,其他四个元素要在剩下的四个位置全排列,节目单上不同的排序方式有,选B .(六)走街道问题例题6 如图,某城市中,M 、N 两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M 到N 不同的走法共有( )A .10B .13C .15D .25【解析】因为只能向东或向北两个方向,向北走的路有5条,向东走的路有3条,走路时向北走的路有5种结果,向东走的路有3种结果,根据分步计数原理知共有3515⨯=种结果,选C (七)隔板法例题7 设有1n +个不同颜色的球,放入n 个不同的盒子中,要求每个盒子中至少有一个球,则不同的放法有( )A .()1!n +种B .()1!n n ⋅+种C .()11!2n +种 D .()11!2n n ⋅+种 【解析】将两个颜色的球捆绑在一起,再全排列得21!(1)!2n n C n n +=+ 选D巩固6 将4个大小相同,颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里球的个数不小于该盒子的编号,则不同的放球方法有( )种. A .7B .10C .14D .20【解析】根据题意,每个盒子里的球的个数不小于该盒子的编号, 分析可得,1号盒子至少放一个,最多放2个小球,分情况讨论: ①1号盒子中放1个球,其余3个放入2号盒子,有C 41=4种方法;②1号盒子中放2个球,其余2个放入2号盒子,有C 42=6种方法;则不同的放球方法有4+6=10种,选B . (八)回归原始的方法例题8 某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场, 乙和丙必须排在相邻的顺序出场,请问不同的演出顺序共有( ) A .24种B .144种C .48种D .96种【解析】第一步,先安排甲有12A 种方案;第二步,安排乙和丙有2124A A 种方案;第三步,安排剩余的三个演员有33A 种方案,根据分步计数原理可得共有1213224396A A A A =种方案.故选D.巩固7 如图,下有七张卡片,现这样组成一个三位数:甲从这七张卡片中随机抽出一张,把卡片上的数字写在百位,然后把卡片放回;乙再从这七张卡片中随机抽出一张,把卡片上的数字写在十位,然后把卡片放回;丙又从这七张卡片中随机抽出一张,把卡片上的数字写在个位,然后把卡片放回。
小学奥数排列组合常见题型及解题策略备选题1
小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,,排法种数有A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
排列组合常见题型及解题策略(详解)
排列组合常见题型及解题策略一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复, 把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类 问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同报名方法(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法【解析】:(1)43(2)34 (3)34【例2】 把6名实习生分配到7个车间实习共有多少种不同方法【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38B 、83C 、38AD 、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的 结果。
所以选A 二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432种, 其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
四年级奥数排列组合题及答案
四年级奥数排列组合题及答案四年级奥数排列组合题及答案1.排列、组合等问题从6幅国画,4幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?解答:6×4=24种6×2=12种4×2=8种24+12+8=44种【小结】首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理。
当从国画、油画各选一幅有多少种选法时,利用的乘法原理。
由此可知这是一道利用两个原理的综合题。
关键是正确把握原理。
符合要求的选法可分三类:设第一类为:国画、油画各一幅,可以想像成,第一步先在6张国画中选1张,第二步再在4张油画中选1张。
由乘法原理有6×4=24种选法。
第二类为:国画、水彩画各一幅,由乘法原理有6×2=12种选法。
第三类为:油画、水彩画各一幅,由乘法原理有4×2=8种选法。
这三类是各自独立发生互不相干进行的。
因此,依加法原理,选取两幅不同类型的画布置教室的选法有24+12+8=44种。
2.排列组合从1到100的所有自然数中,不含有数字4的.自然数有多少个?解答:从1到100的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有l、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数只有100.所以一共有8+8×9+1=81个不含4的自然数.。
四年级奥数-排列组合(1)
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
与排列组合有关的常见题型及其解法
与与与与与与与与与与与与与与与与排列组合是数学中常见的一种概念,在计算机科学、统计学、概率论等领域也有广泛的应用。
常见的题型包括:
1.组合问题:求出从总共 n 个物品中选取 m
个物品的所有方案数。
解法:C(n,m)=n!/m!(n-m)!
2.排列问题:求出从总共 n 个物品中选取 m
个物品的所有排列数。
解法:A(n,m)=n!/(n-m)!
3.组合排列问题:求出从总共 n 个物品中选取 m
个物品,且有序排列的所有方案数。
解法:H(n,m)=n!/(n-
m)!m!
4.组合数反推:已知组合数 C(n,m),求出 n 和 m
的值。
解法:通过枚举法进行求解。
5.组合问题中的变化:求出从总共 n 个物品中选取 m
个物品的所有方案数,其中有 k
个物品是必选的。
解法:C(n-k,m-k)
6.排列问题中的变化:求出从总共 n 个物品中选取 m
个物品的所有排列数,其中有 k
个物品是必选的。
解法:A(n-k,m-k)
7.带有限制条件的组合问题:求出从总共 n 个物品中。
小学奥数思维训练-排列组合(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
排列组合解题策略大全
排列组合解题策略大全一、合理分类与分步1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有多少种? 分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有44A 种排法;2)若甲在第二,三,四位上,则有131333A A A 种排法,由分类计数原理,排法共有7813133344=+A A A A (种) 解法二(排除法):甲在排头:44A ,乙在排尾: 44A ,甲在排头且乙在排尾: 33A ,故符合题意的不同的排法为: 5443544378A A A A --+=.注: 甲在排头和乙在排尾都包含甲在排头的同时乙在排位,所以多减了要补回来.2、从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:① 若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A④(同例1)若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数433288883374088A A A A +++=(种)二、特殊元素和特殊位置优先法1、0,1,2,3,4,5可以组成多少个没有重复数字的五位奇数? 分析:特殊元素:0,1,3,5;特殊位置:首位和末位先排末位:13C ,再排首位:14C ,最后排中间三位:34A 共有:13C 14C 34A =2882、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?先种这两种特殊的花在除中间和两端外剩余的3个位置:24A ;再在其余5个位置种剩余的5种花:55A ;总共:24A 55A =1440三、排列组合混合问题先选后排法解决排列组合混合问题,先选后排是最基本的指导思想。
四年级奥数-排列组合
排列组合排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是A 、1440种B 、3600种C 、4820种D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为A 、480种B 、240种C 、120种D 、96种答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
排列组合的21种经典题型及解法
排列组合的21种经典题型及解法1.单选题:单选题要求考生从给定的选项中选出一个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案。
2.多选题:多选题要求考生从给定的选项中选出多个最佳答案。
解法:根据题目的问题和给定的选项,仔细分析,排除干扰,找出最佳答案,并判断是否有多个最佳答案。
3.判断题:判断题要求考生根据题目的问题和给定的信息,判断给出的答案是正确还是错误。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,判断出正确答案。
4.填空题:填空题要求考生根据题目的问题和给定的信息,填入正确的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,填入正确的答案。
5.问答题:问答题要求考生根据题目的问题和给定的信息,给出详细的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出详细的答案。
6.排序题:排序题要求考生根据题目的问题和给定的信息,按照要求的顺序进行排列。
解法:根据题目的问题和给定的佶息,仔细分析,排除干扰,按照要求的顺序进行排列。
7.计算题:计算题要求考生根据题目的问题和给定的信息,运用数学计算得出答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,运用数学计算得出答案。
8.简答题:简答题要求考生根据题目的问题和给定的信息,给出简短的答案。
解法:根据题目的问题和给定的信息,仔细分析,排除干扰,给出简短的答案。
9.完形填空:完形填空要求考生根据文章的内容,从文中空缺处填入正确的单词或词组。
解法:根据文章的内容,仔细分析,排除干扰,从文中空缺处填入正确的单词或词组。
10.阅读理解:阅读理解要求考生根据文章的内容,回答问题或做出判断。
解法:根据文章的内容,仔细分析,排除干扰,回答问题或做出判断。
11.词汇题:词汇题要求考生根据题目的问题和给定的单词,找出正确的答案。
解法:根据题目的问题和给定的单词,仔细分析,排除干扰,找出正确的答案。
12.语法题:语法题要求考生根据题目的问题和给定的句子,选择正确的语法形式。
小学二年级奥数排列组合习题及解析
小学二年级奥数排列组合习题及解析
小学二年级奥数排列组合习题及解析
1、老奶奶家有20个鸡蛋,还养了一天能下一个蛋的.老母鸡,如果她家一天吃两个鸡蛋,老奶奶家的鸡蛋可以连续吃多少天?
2、某公园里有三棵树,他们的树龄分别由1、2、
3、
4、
5、6这六个数字中的不同的两个数字组成,而且其中一棵树的树龄正好是其他两棵树龄和的一半,你知道这三棵树各是多少岁数呢?
1、解析:(1)20个鸡蛋,每天吃2个
20÷2=10天,在这10天里,母鸡又下了10个鸡蛋
(2)10个鸡蛋,每天吃2个
10÷2=5天,在这5天里,母鸡又下了5个鸡蛋
(3)5个鸡蛋,每天吃2个
5÷2=2天……1个,在这2天里,母鸡又下了2个鸡蛋
(4)2个鸡蛋+余下的1个鸡蛋,每天吃2个
3÷2=1天……1个,在这1天里,母鸡又下了1个鸡蛋
(5)1个鸡蛋+余下的1个鸡蛋,每天吃2个
2÷2=1天
(6)总天数
10+5+2+1+1=19天
2、解析:纯凑数(12+56)÷2=34。
小学奥数排列组合专题训练
小学奥数排列组合专题训练概述本文档旨在提供给小学生们一些关于排列组合的专题训练题目,帮助他们提升奥数能力。
通过解决这些题目,孩子们可以加深对排列组合概念的理解,并提高解决问题的能力。
题目一:选购水果某个小摊位上有5个不同种类的水果:苹果、香蕉、橙子、草莓和葡萄。
小明想要选购其中3种水果,问他有多少种不同的选择方式?> 解答:根据排列组合的原理,选择3种水果的方式共有$${5\choose 3}$$种。
计算结果为10种。
题目二:站队小学班级有20名学生,他们需要排成一队。
其中有4个女生和16个男生。
问有多少种不同的排队方式?如果要保证女生们都站在一起,有多少种不同的排队方式?> 解答:对于第一个问题,可以使用排列组合的原理计算。
共有20个学生,因此不同的排队方式为$${20 \choose 4}$$种,计算结果为4845种。
>> 对于第二个问题,首先需要将4个女生看作一组。
将这一组看作一个人,那么问题就变成了有17个人需要排队的情况。
因此,不同的排队方式为$${17 \choose 1}$$种,计算结果为17种。
题目三:组队竞赛一支小学班级共有10名学生,他们要组成3人一组进行游戏。
问组队的方式有多少种?> 解答:对于每个小组,需要选择3名学生。
首先选择一名学生,有10种选择;然后选择另外两名学生,有9种选择。
由于小组内部的学生顺序不重要,所以需要将结果除以3!(3的阶乘,即6)。
因此,不同的组队方式为$${10 \times 9 \over 3!}$$种,计算结果为60种。
题目四:颜色排列小学班级有5个同学,他们要在一行上排成一队。
其中有2个红色衣服的同学、1个黄色衣服的同学和2个蓝色衣服的同学。
问他们有多少种不同的排列方式?> 解答:根据排列组合的原理,不同的排列方式为$${5 \choose 2, 1, 2}$$种。
计算结果为30种。
结论通过以上的训练题目,小学生们可以巩固排列组合的概念,并学会运用排列组合的原理解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3C8【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,,排法种数有A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A. 360B. 188C. 216D. 96【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432 种其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A 种【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(具体数字作答)【解析】: 111789A A A =504【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是【解析】:不同排法的种数为5256A A =3600【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。
那么安排这6项工程的不同排法种数是【解析】:依题意,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。
【例5】某市春节晚会原定10个节目,导演最后决定添加3个与“抗冰救灾”有关的节目,但是赈灾节目不排在第一个也不排在最后一个,并且已经排好的10个节目的相对顺序不变,则该晚会的节目单的编排总数为 种.【解析】:11191011A A A =990【例6】.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?【解析】:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.【例7】 3个人坐在一排8个椅子上,若每个人左右两边都有空位,则坐法的种数有多少种?【解析】: 解法1、先将3个人(各带一把椅子)进行全排列有A 33,○*○*○*○,在四个空中分别放一把椅子,还剩一把椅子再去插空有A 14种,所以每个人左右两边都空位的排法有3314A A =24种. 解法2:先拿出5个椅子排成一排,在5个椅子中间出现4个空,*○*○*○*○*再让3个人每人带一把椅子去插空,于是有A 34=24种.【例8】 停车场划出一排12个停车位置,今有8辆车需要停放.要求空车位置连在一起,不同的停车方法有多少种?【解析】:先排好8辆车有A 88种方法,要求空车位置连在一起,则在每2辆之间及其两端的9个空档中任选一个,将空车位置插入有C 19种方法,所以共有C 19A 88种方法.注:题中*表示元素,○表示空. 四.元素分析法(位置分析法):某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。
【例1】 2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有( )A. 36种B. 12种C. 18种D. 48种【解析】:方法一: 从后两项工作出发,采取位置分析法。
2333A 36A =方法二:分两类:若小张或小赵入选,则有选法24331212=A C C ;若小张、小赵都入选,则有选法122322=A A ,共有选法36种,选A.【例2】 1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?【解析】:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种。
.【例3】 有七名学生站成一排,某甲不排在首位也不排在末位的排法有多少种?【解析】 法一:1656A 3600A = 法二: 25653600A A = 法三:3600666677=--A A A五.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。
【例1】(1) 6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A 、36种B 、120种C 、720种D 、1440种(2)把15人分成前后三排,每排5人,不同的排法种数为(A )510515A A (B )3355510515A A A A (C )1515A (D )3355510515A A A A ÷(3)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?【解析】:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)答案:C(3)看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.五.定序问题缩倍法(等几率法):在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.【例1】.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是( )【解析】:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有多少种不同的插法?【解析】:法一:39A 法二:99661A A 【例3】将A 、B 、C 、D 、E 、F 这6个字母排成一排,若A 、B 、C 必须按A 在前,B 居中,C在后的原则(A 、B 、C 允许不相邻),有多少种不同的排法? 【解析】:法一:36A 法二:66331A A六.标号排位问题(不配对问题) 把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.【例1】 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A 、6种B 、9种C 、11种D 、23种【解析】:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .【例2】 编号为1、2、3、4、5的五个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A 10种B 20种C 30种D 60种答案:B【例3】:同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,则4张贺年卡不同的分配方式共有( )(A )6种 (B )9种 (C )11种 (D )23种【解析】:设四个人分别为甲、乙、丙、丁,各自写的贺年卡分别为a 、b 、c 、d 。
第一步,甲取其中一张,有3种等同的方式;第二步,假设甲取b ,则乙的取法可分两类:(1)乙取a ,则接下来丙、丁取法都是唯一的,(2)乙取c 或d (2种方式),不管哪一种情况,接下来丙、丁的取法也都是唯一的。
根据加法原理和乘法原理,一共有3129⨯+=()种分配方式。
故选(B )【例4】:五个人排成一列,重新站队时,各人都不站在原来的位置上,那么不同的站队方式共有( )(A )60种 (B )44种 (C )36种 (D )24种答案:B 六.不同元素的分配问题(先分堆再分配):注意平均分堆的算法【例1】 有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1) 分成1本、2本、3本三组;(2) 分给甲、乙、丙三人,其中一个人1本,一个人2本,一个人3本;(3) 分成每组都是2本的三个组;(4) 分给甲、乙、丙三人,每个人2本;(5) 分给5人每人至少1本。
【解析】:(1)332516C C C (2)33332516A C C C (3)33222426A C C C (4)222426C C C (5)2111115554321544C C C C C C A A【例2】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答). 【解析】:第一步将4名大学生按,2,1,1分成三组,其分法有21142122C C C A ⋅⋅; 第二步将分好的三组分配到3个乡镇,其分法有33A 所以满足条件得分配的方案有211342132236C C C A A ⋅⋅⋅= 说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.【例3】 5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有(A )150种 (B)180种 (C)200种 (D)280种【解析】:人数分配上有1,2,2与1,1,3两种方式,若是1,2,2,则有3113521322C C C A A ⨯=60种, 若是1,1,3, 则有1223542322C C C A A ⨯=90种,所以共有150种,选A 【例4】 将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( )A .70B .140C .280D .840答案:( A )【例5】 将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有( )(A )30种 (B )90种 (C )180种 (D )270种【解析】:将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有12542215C C A ⋅=种方法,再将3组分到3个班, 共有331590A ⋅=种不同的分配方案,选B.【例6】 某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有( )种A .16种B .36种C .42种D .60种 【解析】:按条件项目可分配为2,1,0,0与1,1,1,0的结构,∴2223343243362460C C A C A +=+= 故选D ;【例7】(1)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A 、480种B 、240种C 、120种D 、96种答案:B .(2)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有多少种? 答案:44431284333A A C C C【例8】 有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担 这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种【解析】:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .【例9】.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发 建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?【解析】:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种【例10】 四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?【解析】:先取四个球中二个为一组,另二组各一个球的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.七.相同元素的分配问题隔板法:【例1】:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有多少种不同的放法?【解析】:向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17 个球分成3份,每份至少一球,运用隔板法,共有120216=C 种。