最新初中数学—分式的知识点总复习含答案解析(4)

合集下载

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)

2024中考数学复习核心知识点精讲及训练—分式(含解析)1.了解分式、分式方程的概念,进一步发展符号感;2.熟练掌握分式的基本性质,会进行分式的约分、通分和加减乘除四则运算,发展学生的合情推理能力与代数恒等变形能力;3.能解决一些与分式有关的实际问题,具有一定的分析问题、解决问题的能力和应用意识;4.通过学习能获得学习代数知识的常用方法,能感受学习代数的价值。

考点1:分式的概念1.定义:一般地,如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式.其中A叫做分子,B叫做分母.2.最简分式:分子与分母没有公因式的分式;3.分式有意义的条件:B≠0;4.分式值为0的条件:分子=0且分母≠0考点2:分式的基本性质分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,这个性质叫做分式的基本性质,用式子表示是:A A M A A MB B M B B M⨯÷==⨯÷,(其中M是不等于零的整式).考点3:分式的运算考点4:分式化简求值(1)有括号时先算括号内的;(2)分子/分母能因式分解的先进行因式分解;(3)进行乘除法运算(4)约分;(5)进行加减运算,如果是异分母分式,需线通分,变为同分母分式后,分母不变,分子合并同类项,最终化为最简分式;(6)带入相应的数或式子求代数式的值【题型1:分式的相关概念】【典例1】(2022•怀化)代数式x,,,x2﹣,,中,属于分式的有()A.2个B.3个C.4个D.5个【答案】B【解答】解:分式有:,,,整式有:x,,x2﹣,分式有3个,故选:B.【典例2】(2023•广西)若分式有意义,则x的取值范围是()A.x≠﹣1B.x≠0C.x≠1D.x≠2【答案】A【解答】解:∵分式有意义,∴x+1≠0,解得x≠﹣1.故选:A.1.(2022•凉山州)分式有意义的条件是()A.x=﹣3B.x≠﹣3C.x≠3D.x≠0【答案】B【解答】解:由题意得:3+x≠0,∴x≠﹣3,故选:B.2.(2023•凉山州)分式的值为0,则x的值是()A.0B.﹣1C.1D.0或1【答案】A【解答】解:∵分式的值为0,∴x2﹣x=0且x﹣1≠0,解得:x=0,故选:A.【题型2:分式的性质】【典例3】(2023•兰州)计算:=()A.a﹣5B.a+5C.5D.a 【答案】D【解答】解:==a,故选:D.1.(2020•河北)若a≠b,则下列分式化简正确的是()A.=B.=C.=D.=【答案】D【解答】解:∵a≠b,∴,故选项A错误;,故选项B错误;,故选项C错误;,故选项D正确;故选:D.2.(2023•自贡)化简:=x﹣1.【答案】x﹣1.【解答】解:原式==x﹣1.故答案为:x﹣1.【题型3:分式化简】【典例4】(2023•广东)计算的结果为()A.B.C.D.【答案】C【解答】解:==.故本题选:C.1.(2023•河南)化简的结果是()A.0B.1C.a D.a﹣2【答案】B【解答】解:原式==1.故选:B.2.(2023•赤峰)化简+x﹣2的结果是()A.1B.C.D.【答案】D【解答】解:原式=+==,故选:D.【题型4:分式的化简在求值】【典例5】(2023•深圳)先化简,再求值:(+1)÷,其中x=3.【答案】,.【解答】解:原式=•=•=,当x=3时,原式==.1.(2023•辽宁)先化简,再求值:(﹣1)÷,其中x=3.【答案】见试题解答内容【解答】解:原式=(﹣)•=•=x+2,当x=3时,原式=3+2=5.2.(2023•大庆)先化简,再求值:,其中x=1.【答案】见试题解答内容【解答】解:原式=﹣+====,当x=1时,原式==.3.(2023•西宁)先化简,再求值:,其中a,b是方程x2+x﹣6=0的两个根.【答案】,6.【解答】解:原式=[﹣]×a(a﹣b)=×a(a﹣b)﹣=﹣=;∵a,b是方程x2+x﹣6=0的两个根,∴a+b=﹣1ab=﹣6,∴原式=.1.(2023春•汝州市期末)下列分式中,是最简分式的是()A.B.C.D.【答案】C【解答】解:A、=,不是最简分式,不符合题意;B、==,不是最简分式,不符合题意;C、是最简分式,符合题意;D、==﹣1,不是最简分式,不符合题意;故选:C.2.(2023秋•岳阳楼区校级期中)如果把分式中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.扩大4倍D.缩小2倍【答案】B【解答】解:∵==×2,∴如果把分式中的x和y都扩大2倍,那么分式的值扩大2倍,故选:B.3.(2023•河北)化简的结果是()A.xy6B.xy5C.x2y5D.x2y6【答案】A【解答】解:x3()2=x3•=xy6,故选:A.4.(2023秋•来宾期中)若分式的值为0,则x的值是()A.﹣2B.0C.2D.【答案】C【解答】解:由题意得:x﹣2=0且3x﹣1≠0,解得:x=2,故选:C.5.(2023秋•青龙县期中)分式的最简公分母是()A.3xy B.6x3y2C.6x6y6D.x3y3【答案】B【解答】解:分母分别是x2y、2x3、3xy2,故最简公分母是6x3y2;故选:B.6.(2023春•沙坪坝区期中)下列分式中是最简分式的是()A.B.C.D.【答案】A【解答】解;A、是最简二次根式,符合题意;B、=,不是最简二次根式,不符合题意;C、==,不是最简二次根式,不符合题意;D、=﹣1,不是最简二次根式,不符合题意;故选:A.7.(2023春•原阳县期中)化简(1+)÷的结果为()A.1+x B.C.D.1﹣x【答案】A【解答】解:原式=×=×=1+x.故选:A.8.(2023•门头沟区二模)如果代数式有意义,那么实数x的取值范围是()A.x≠2B.x>2C.x≥2D.x≤2【答案】A【解答】解:由题意得:x﹣2≠0,解得:x≠2,故选:A.9.(2023春•武清区校级期末)计算﹣的结果是()A.B.C.x﹣y D.1【答案】B【解答】解:﹣==.故答案为:B.10.(2023春•东海县期末)根据分式的基本性质,分式可变形为()A.B.C.D.【答案】C【解答】解:=﹣,故选:C.11.(2023秋•莱州市期中)计算的结果是﹣x.【答案】﹣x.【解答】解:÷=•(﹣)=﹣x,故答案为:﹣x.12.(2023秋•汉寿县期中)学校倡导全校师生开展“语文阅读”活动,小亮每天坚持读书.原计划用a天读完b页的书,如果要提前m天读完,那么平均每天比原计划要多读的页数为(用含a、b、m的最简分式表示).【答案】.【解答】解:由题意得:平均每天比原计划要多读的页数为:﹣=﹣=,故答案为:.13.(2023春•宿豫区期中)计算=1.【答案】1.【解答】解:===1,故答案为:1.14.(2023•广州)已知a>3,代数式:A=2a2﹣8,B=3a2+6a,C=a3﹣4a2+4a.(1)因式分解A;(2)在A,B,C中任选两个代数式,分别作为分子、分母,组成一个分式,并化简该分式.【答案】(1)2a2﹣8=2(a+2)(a﹣2);(2)..【解答】解:(1)2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2);(2)选A,B两个代数式,分别作为分子、分母,组成一个分式(答案不唯一),==.15.(2023秋•思明区校级期中)先化简,再求值:(),其中.【答案】,.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣1时,原式==.16.(2023秋•长沙期中)先化简,再求值:,其中x=5.【答案】,.【解答】解:原式=(﹣)•=•=,当x=5时,原式==.17.(2023•盐城一模)先化简,再求值:,其中x=4.【答案】见试题解答内容【解答】解:原式=(+)•=•=•=x﹣1,当x=4时,原式=4﹣1=3.18.(2022秋•廉江市期末)先化简(﹣x)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】﹣,0.【解答】解:原式=(﹣)•=﹣•=﹣,∵(x+1)(x﹣1)≠0,∴x≠±1,当x=0时,原式=﹣=0.1.(2023秋•西城区校级期中)假设每个人做某项工作的工作效率相同,m个人共同做该项工作,d天可以完成若增加r个人,则完成该项工作需要()天.A.d+y B.d﹣r C.D.【答案】C【解答】解:工作总量=md,增加r个人后完成该项工作需要的天数=,故选:C.2.(2023秋•长安区期中)若a=2b,在如图的数轴上标注了四段,则表示的点落在()A.段①B.段②C.段③D.段④【答案】C【解答】解:∵a=2b,∴=====,∴表示的点落在段③,故选:C.3.(2023秋•东城区校级期中)若x2﹣x﹣1=0,则的值是()A.3B.2C.1D.4【答案】A【解答】解:∵x2﹣x﹣1=0,∴x2﹣1=x,∴x﹣=1,∴(x﹣)2=1,∴x2﹣2+=1,∴x2+=3,故选:A.4.(2023秋•鼓楼区校级期中)对于正数x,规定,例如,,则=()A.198B.199C.200D.【答案】B【解答】解:∵f(1)==1,f(1)+f(1)=2,f(2)==,f()==,f(2)+f()=2,f(3)==,f()==,f(3)+f()=2,…f(100)==,f()==,f(100)+f()=2,∴=2×100﹣1=199.故选:B.5.(2023秋•延庆区期中)当x分别取﹣2023,﹣2022,﹣2021,…,﹣2,﹣1,0,1,,,…,,,时,计算分式的值,再将所得结果相加,其和等于()A.﹣1B.1C.0D.2023【答案】A【解答】解:当x=﹣a和时,==0,当x=0时,,则所求的和为0+0+0+⋯+0+(﹣1)=﹣1,故选:A.6.(2022秋•永川区期末)若分式,则分式的值等于()A.﹣B.C.﹣D.【答案】B【解答】解:整理已知条件得y﹣x=2xy;∴x﹣y=﹣2xy将x﹣y=﹣2xy整体代入分式得====.故选:B.7.(2023春•铁西区月考)某块稻田a公顷,甲收割完这块稻田需b小时,乙比甲多用0.3小时就能收割完这块稻田,两人一起收割完这块稻田需要的时间是()A.B.C.D.【答案】B【解答】解:乙收割完这块麦田需要的时间是(b+0.3)小时,甲的工作效率是公顷/时,乙的工作效率是公顷/时.故两人一起收割完这块麦田需要的工作时间为=(小时).故选:B.8.(2023春•临汾月考)相机成像的原理公式为,其中f表示照相机镜头的焦距,u表示物体到镜头的距离,v表示胶片(像)到镜头的距离.下列用f,u表示v正确的是()A.B.C.D.【答案】D【解答】解:∵,去分母得:uv=fv+fu,∴uv﹣fv=fu,∴(u﹣f)v=fu,∵u≠f,∴u﹣f≠0,∴.故选:D.9.(2023•内江)对于正数x,规定,例如:f(2)=,f()=,f(3)=,f()=,计算:f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=()A.199B.200C.201D.202【答案】C【解答】解:∵f(1)==1,f(2)=,f()=,f(3)=,f()=,f(4)==,f()==,…,f(101)==,f()==,∴f(2)+f()=+=2,f(3)+f()=+=2,f(4)+f()=+=2,…,f(101)+f()=+=2,f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f(99)+f(100)+f(101)=2×100+1=201.故选:C.10.(2023春•灵丘县期中)观察下列等式:=1﹣,=﹣,=﹣,…=﹣将以上等式相加得到+++…+=1﹣.用上述方法计算:+++…+其结果为()A.B.C.D.【答案】A【解答】解:由上式可知+++…+=(1﹣)=.故选A.11.(2023秋•顺德区校级月考)先阅读并填空,再解答问题.我们知道,(1)仿写:=,=,=.(2)直接写出结果:=.利用上述式子中的规律计算:(3);(4).【答案】(1),;;(2);(3);(4).【解答】解:(1),=;=,故答案为:,;;(2)原式=1﹣+++...++=1﹣=;故答案为:;(3)==1﹣+﹣+﹣+⋯⋯+=1﹣=;(2)原式=×()+×()+×()+...+×()=()==.12.(2023秋•株洲期中)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;,这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:,;解决下列问题:(1)分式是真分式(填“真”或“假”);(2)将假分式化为带分式;(3)如果x为整数,分式的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)x﹣2+;(3)﹣1或﹣3或11或﹣15.【解答】解:(1)分式是真分式;故答案为:真;(2);(3)原式=,∵分式的值为整数,∴x+2=±1或±13,∴x=﹣1或﹣3或11或﹣15.13.(2023秋•涟源市月考)已知,求的值.解:由已知可得x≠0,则,即x+.∵=(x+)2﹣2=32﹣2=7,∴.上面材料中的解法叫做“倒数法”.请你利用“倒数法”解下面的题目:(1)求,求的值;(2)已知,求的值;(3)已知,,,求的值.【答案】(1);(2)24;(3).【解答】解:(1)由,知x≠0,∴.∴,x•=1.∵=x2+=(x﹣)2+2=42+2=18.∴=.(2)由=,知x≠0,则=2.∴x﹣3+=2.∴x+=5,x•=1.∵=x2+1+=(x+)2﹣2+1=52﹣1=24.∴=.(3)由,,,知x≠0,y≠0,z≠0.则=,=,y+zyz=1,∴+=,+=,+=1.∴2(++)=++1=.∴++=.∵=++=,∴=.14.(2022秋•兴隆县期末)设.(1)化简M;(2)当a=3时,记M的值为f(3),当a=4时,记M的值为f(4).①求证:;②利用①的结论,求f(3)+f(4)+…+f(11)的值;③解分式方程.【答案】(1);(2)①见解析,②,③x=15.【解答】解:(1)=====;(2)①证明:;②f(3)+f(4)+⋅⋅⋅+f(11)====;③由②可知该方程为,方程两边同时乘(x+1)(x﹣1),得:,整理,得:,解得:x=15,经检验x=15是原方程的解,∴原分式方程的解为x=15.15.(2023春•蜀山区校级月考)【阅读理解】对一个较为复杂的分式,若分子次数比分母大,则该分式可以拆分成整式与分式和的形式,例如将拆分成整式与分式:方法一:原式===x+1+2﹣=x+3﹣;方法二:设x+1=t,则x=t﹣1,则原式==.根据上述方法,解决下列问题:(1)将分式拆分成一个整式与一个分式和的形式,得=;(2)任选上述一种方法,将拆分成整式与分式和的形式;(3)已知分式与x的值都是整数,求x的值.【答案】(1);(2);(3)﹣35或43或﹣9或17或1或7或3或5.【解答】解:(1)由题知,,故答案为:.(2)选择方法一:原式==.选择方法二:设x﹣1=t,则x=t+1,则原式=====.(3)由题知,原式====.又此分式与x的值都是整数,即x﹣4是39的因数,当x﹣4=±1,即x=3或5时,原分式的值为整数;当x﹣4=±3,即x=1或7时,原分式的值为整数;当x﹣4=±13,即x=﹣9或17时,原分式的值为整数;当x﹣4=±39,即x=﹣35或43时,原分式的值为整数;综上所述:x的值为:﹣35或43或﹣9或17或1或7或3或5时,原分式的值为整数.16.(2023春•兰州期末)阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可以化为带分数,如:.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如,这样的分式就是假分式;再如:这样的分式就是真分式.类似的,假分式也可以化为带分式(即:整式与真分式的和的形式),如:.解决下列问题:(1)分式是真分式(填“真分式”或“假分式”);(2)将假分式化为整式与真分式的和的形式:=2+.若假分式的值为正整数,则整数a的值为1,0,2,﹣1;(3)将假分式化为带分式(写出完整过程).【答案】(1)真分式;(2)2+;1,2,﹣1;(3)x﹣1﹣.【解答】解:(1)由题意得:分式是真分式,故答案为:真分式;(2)==2+,当2+的值为正整数时,2a﹣1=1或±3,∴a=1,2,﹣1;故答案为:2+;1,2,﹣1;(3)原式===x﹣1﹣.1.(2023•湖州)若分式的值为0,则x的值是()A.1B.0C.﹣1D.﹣3【答案】A【解答】解:∵分式的值为0,∴x﹣1=0,且3x+1≠0,解得:x=1,故选:A.2.(2023•天津)计算的结果等于()A.﹣1B.x﹣1C.D.【答案】C【解答】解:====,故选:C.3.(2023•镇江)使分式有意义的x的取值范围是x≠5.【答案】x≠5.【解答】解:当x﹣5≠0时,分式有意义,解得x≠5,故答案为:x≠5.4.(2023•上海)化简:﹣的结果为2.【答案】2.【解答】解:原式===2,故答案为:2.5.(2023•安徽)先化简,再求值:,其中x=.【答案】x+1,.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.6.(2023•广安)先化简(﹣a+1)÷,再从不等式﹣2<a<3中选择一个适当的整数,代入求值.【答案】;﹣1.【解答】解:(﹣a+1)÷=•=.∵﹣2<a<3且a≠±1,∴a=0符合题意.当a=0时,原式==﹣1.7.(2023•淮安)先化简,再求值:÷(1+),其中a=+1.【答案】,.【解答】解:原式=÷(+)=÷=•=,当a=+1时,原式==.8.(2023•朝阳)先化简,再求值:(+)÷,其中x=3.【答案】,1.【解答】解:原式=[+]•=•=,当x=3时,原式==1.。

最新最新初中数学—分式的知识点总复习含解析

最新最新初中数学—分式的知识点总复习含解析

一、选择题1.下列等式从左到右的变形正确的是( )A .22b by x xy= B .2ab b a a =C .22b b a a=D .11b b a a +=+ 2.化简a b a b b a+--22的结果是( ) A .1B .+a bC .-a bD .22a b -3.若a =﹣0.22,b =﹣2-2,c =(﹣12)-2,d =(﹣12)0,则它们的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b4.如果把5xy x y+中的x 和y 都扩大为原来的10倍,那么这个分式的值( )A .不变B .扩大为原来的50倍C .扩大为原来的10倍D .缩小为原来的1105.设2222x 18n x 33x x 9+=+++--,若n 的值为整数,则x 可以取的值得个数是( ) A .5B .4C .3D .26.若x 2-6xy +9y 2=0,那么x yx y-+的值为( ) A .12yB .12y-C .12D .12-7.把分式2aa b+中a 、b 都扩大2倍,则分式的值( ) A .扩大4倍 B .扩大2倍 C .缩小2倍 D .不变 8.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为A .40.7310-⨯B .47.310-⨯C .57.310-⨯D .67.310-⨯9.已知x 2-4xy +4y 2=0,则分式x yx y-+的值为( ) A .13-B .13C .13yD .y 31-10.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( ) A .2B .-2C .3D .-311.如果把分式2x y zxyz-+中的正数x ,y ,z 都扩大2倍,则分式的值( )A .不变B .扩大为原来的两倍C .缩小为原来的14D .缩小为原来的1812.目前,世界上能制造出的小晶体管的长度只有0.00000004m 将0.00000004用科学记数法表示为( ) A .3410-⨯ B .80.4 10⨯C .8410⨯D .8410-⨯13.函数13y x =+的自变量x 的取值范围是( ) A .3x >-B .3x ≥-C .3x ≠-D .3x ≤-14.(2017河北)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4+446-=B .004+4+4=6C .34+4+4=6D .14446-÷+=15.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义16.在某次数学小测中,老师给出了5个判断题.如图为张晓亮的答卷,每个小题判断正确得20分,他的得分应是( )A .100分B .80分C .60分D .40分17.将分式2a bab+中的a 、b 都扩大为原来的2倍,则分式的值( ) A .缩小到原来的12倍 B .扩大为原来的2倍 C .扩大为原来的4倍D .不变18.若m+2n =0,则分式22221m n m m mn m m n +⎛⎫+÷ ⎪--⎝⎭的值为( ) A .32B .﹣3nC .﹣32n D .9219.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①② B .③④ C .①③ D .②④ 20.将0.00086用科学记数法表示为( ) A .8.6×104 B .8.60×104 C .8.6×10-4 D .8.6×10-6 21.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=22.下列运算正确的是( ) A .1133a a﹣=B .2322a a a +=C .326()•a a a ﹣=﹣D .32()()a a a ÷﹣﹣=23.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<24.计算下列各式①(a 3)2÷a 5=1;②(-x 4)2÷x 4=x 4;③(x -3)0=1(x ≠3);④(-a 3b )3÷5212a b =-2a 4b 正确的有( )题 A .4B .3C .2D .125.如果把分式2++a ba b中的a 和b 都扩大为原来的10倍,那么分式的值( ) A .不变B .缩小10倍C .是原来的20倍D .扩大10倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项. 【详解】 A 、22b by x xy=,其中y≠0,故选项错误; B 、2ab baa =,其中左边隐含a≠0,故选项正确; C 、2b ab a a =,故选项错误. D 、根据分式基本性质知道11b b aa ++≠,故选项错误; 故选B . 【点睛】此题考查分式的基本性质,解题的关键是熟练掌握分式的基本性质.2.B解析:B 【解析】 【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果. 【详解】解:原式=22a b a b --=()()a b a b a b+--=a+b , 故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.B解析:B 【解析】 【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案. 【详解】∵a =﹣0.22=﹣0.04;b =﹣2﹣2=﹣14=﹣0.25,c =(﹣12)﹣2=4,d =(﹣12)0=1, ∴﹣0.25<﹣0.04<1<4, ∴b <a <d <c , 故选B . 【点睛】本题考查了负整数指数幂,熟练掌握负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1是解题关键.4.C解析:C 【解析】 【分析】首先分别判断出x 与y 都扩大为原来的10倍后,分式的分子、分母的变化情况,然后判断出这个代数式的值和原来代数式的值的关系即可. 【详解】解:∵x 与y 都扩大为原来的10倍,∴5xy 扩大为原来的100倍,x+y 扩大为原来的10倍, ∴5xyx y+的值扩大为原来的10倍, 即这个代数式的值扩大为原来的10倍. 故选:C . 【点睛】本题考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,要熟练掌握,解答此题的关键是分别判断出分式的分子、分母的变化情况.5.B解析:B 【解析】 【分析】先通分,再加减,最后化简.根据化简结果为整数,确定x 的取值个数. 【详解】 n=222218339x x x x ++++-- =()()()()()()()()2323218333333x x x x x x x x x -++-++-+-+-=()()262621833x x x x x ---+++-=()()()2333x x x ++-=23x - 当x-3=±1、±2,即x=4、2、1、5时 分式23x -的值为整数. 故选B .【点睛】本题考查了异分母分式的加减法及分式为整数的相关知识.解决本题的关键是根据化简结果得到分式值为整数的x的值.6.C解析:C【解析】【分析】根据完全平方公式求出x与y的关系,代入计算即可.【详解】x2-6xy+9y2=0,(x-3y)2=0,∴x=3y,则x yx y-+=3132y yy y-=+,故选:C.【点睛】本题考查的是求分式的值,掌握完全平方公式、分式的计算是解题的关键.7.D解析:D【解析】【分析】根据题意进行变形,发现实质上是分子、分母同时扩大2倍,根据分式的基本性质即可判断.【详解】根据题意,得把分式2aa b+中的a、b都扩大2倍,得2222222()a aa b a b⋅⋅=++,根据分式的基本性质,则分式的值不变.故选D.【点睛】此题考查了分式的基本性质.8.C解析:C【解析】【分析】数学术语,a×10的n次幂的形式.将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数,这种记数方法叫科学记数法。

分式知识点总结及复习汇总

分式知识点总结及复习汇总

分式知识点总结及复习汇总一、分式的定义和性质:分式是形如$\frac{a}{b}$的数,其中$a$为分子,$b$为分母,$a$和$b$都为整数且$b \neq 0$。

分式可以表示一个数,也可以表示一个运算过程。

分式可以进行四则运算,包括加减乘除。

分式的相反数:$\frac{a}{b}$的相反数为$-\frac{a}{b}$。

分式的倒数:$\frac{a}{b}$的倒数为$\frac{b}{a}$,其中$a、b$不为零。

分式的化简:将分式化简为最简分式,即分子和分母的最大公约数为1的形式。

二、分式的运算法则:1.加法:两个分式相加,分母相同,分子相加。

2.减法:两个分式相减,分母相同,分子相减。

3.乘法:两个分式相乘,分子相乘,分母相乘。

4.除法:一个分式除以另一个分式,被除数乘以除数的倒数。

三、分式的化简方法:1.求最大公约数:分式的分子和分母同时除以它们的最大公约数。

2.因式分解:将分式的分子和分母进行因式分解,然后约去相同的因式。

四、分式与整式的相互转化:1.分式转化为整式:将分式中的分子除以分母,得到的结果为整数。

2.整式转化为分式:将一个整数写成分子,分母为1的形式。

五、分式的应用:1.比例问题:可以利用分式来表示两个比例的关系。

2.部分与整体的关系:可以用分式表示部分与整体的关系。

3.商业问题:例如打折、利润等问题,可以用分式来表示计算。

4.几何问题:例如面积、体积等问题,可以用分式来表示计算。

六、分式的简化步骤:1.因式分解。

2.分子、分母约去最大公约数。

3.整理化简结果。

七、分式的应用举例:1.甲乙两人分别在一段时间内完成一件工作,甲用时5小时完成,乙用时8小时完成,那么甲乙两人一起完成这件工作需要多少小时?解:甲和乙一起完成工作的效率是每小时$\frac{1}{5}$和$\frac{1}{8}$,所以他们一起完成工作的效率是$\frac{1}{5}+\frac{1}{8}=\frac{13}{40}$。

八年级初二数学_分式的复习知识点、练习和答案_全面详细易懂

八年级初二数学_分式的复习知识点、练习和答案_全面详细易懂

第十六章 分式16.1分式16.1.1从分数到分式1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x 2. 当x 取何值时,下列分式有意义?5-x y 8+ )(7-x x 71 6)m m m +( 3. 当x 为何值时,分式的值为0?2-x x y564)-x 2)-x x (( ()7m 245y y 2++16.1.2分式的基本性质1.重点: 理解分式的基本性质. 2.难点: 灵活应用分式的基本性质将分式变形.随堂练习1.填空: (1) x x x 3222+= ()3+x (2) 32386b b a =()33a (3) c a b ++1=()cn an + (4) ()222y x y x +-=()y x -2.约分:(1)c ab b a 2263 (2)2228m n n m (3)532164xyzyz x - (4)x y y x --3)(23.通分:(1)321ab 和c b a 2252 (2)xya 2和23xb 2316.2分式的运算16.2.1分式的乘除(一)1.重点:会用分式乘除的法则进行运算.2.难点:灵活运用分式乘除的法则进行运算 .随堂练习计算(1)ab c 2c b a 22⋅ (2)322542n mm n ⋅- (3)⎪⎭⎫ ⎝⎛-÷x x y 27 (4)-8xy xy 52÷16.2.1分式的乘除(二)1.重点:熟练地进行分式乘除法的混合运算.2.难点:熟练地进行分式乘除法的混合运算.随堂练习计算 (1))2(216322ba a bc ab -⋅÷ (2)(2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)(4)22222)(x y x xy y xy x x xy -⋅+-÷-16.2.1分式的乘除(三)1.重点:熟练地进行分式乘方的运算.2.难点:熟练地进行分式乘、除、乘方的混合运算.随堂练习1.判断下列各式是否成立,并改正.(1)23)2(a b =252a b (2)2)23(a b -=2249ab - (3)3)32(x y -=3398xy (4)2)3(b x x -=2229b x x - 2.计算 (1) 22)35(y x (2)332)23(c b a - (3)32223)2()3(x ay xy a -÷ (4)23322)()(z x z y x -÷- 5))()()(422xy xy y x -÷-⋅- (6)232)23()23()2(ayx y x x y -÷-⋅- 16.2.2分式的加减(一)1.重点:熟练地进行异分母的分式加减法的运算.2.难点:熟练地进行异分母的分式加减法的运算.随堂练习计算 (1)ba ab b a b a b a b a 22255523--+++(2)m n m n m n m n n m -+---+22(3)96312-++a a16.2.2分式的加减(二)1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.随堂练习计算 (1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 答案六、(1)2x (2)ba ab - (3)3 16.2.3整数指数幂1.重点:掌握整数指数幂的运算性质.2.难点:会用科学计数法表示小于1的数.随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= ( 5)2 -3= ( 6)(-2) -3=2.计算(1) (x 3y -2)2 (2)x 2y -2 ·(x -2y)3 (3)(3x 2y -2) 2 ÷(x -2y)3六、1.(1)-4 (2)4 (3)1 (4)1(5) 81 (6)81- 2.(1)46y x (2)4x y (3) 7109yx 16.3分式方程(一)1.重点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.2.难点:会解可化为一元一次方程的分式方程,会检验一个数是不是 原方程的增根.随堂练习解方程 (1)623-=x x (2)(2)1613122-=-++x x x (3)114112=---+x x x1.重点:利用分式方程组解决实际问题.2.难点:列分式方程表示实际问题中的等量关系.1、甲、乙两人准备整理一批新到的实验器材,甲单独整理需要40分完工;若甲、乙共同整理20分钟后,乙需要再单独整理20分才能完工。

分式知识点的总结及复习

分式知识点的总结及复习

分式知识点的总结及复习分式是数学中的一个重要概念,对于理解和解决各种问题非常有帮助。

分式的概念、性质以及操作都是数学中的基础知识点,非常值得我们重视和复习。

下面给出分式的总结及复习,希望能对大家有所帮助。

一、分式的定义和表示方法1.分式是由两个整数用除号连接起来的表达式,形如a/b,其中a和b都是整数,b不等于0。

a被称为分子,b被称为分母。

分子和分母都可以为正整数、负整数或零。

2.分式也可以表示为a÷b,即a除以b。

二、分式的化简1.如果分式的分子和分母都可以被同一个非零整数整除,则可以进行约分。

约分后得到的分式与原分式的值相等。

2.两个分数相加(减)时,要先找到它们的公共分母,然后将分子相加(减),再写上公共分母。

3.两个分数相乘时,将分子相乘,分母相乘。

4.两个分数相除时,将除号转为乘号,即分子乘以分母的倒数。

5.分子和分母同时乘以一个非零整数不改变分数的值。

这也是化简分式中常用的方法。

三、分式的乘除混合运算1.分式的乘法:把分子与分子相乘,分母与分母相乘。

然后可以进行约分。

2.分式的除法:用除号变成乘号,然后求倒数,即分子和分母交换位置。

然后进行乘法运算,可以进行约分。

四、分式的加减混合运算1.分式的加法:确定两个分式的公共分母,然后将分子相加,写上公共分母。

最后可以进行约分。

2.分式的减法:确定两个分式的公共分母,然后将分子相减,写上公共分母。

最后可以进行约分。

五、分式的化简与方程的解1.在代数中,分式经常出现在方程的求解中。

如果方程中含有分式,我们需要对方程进行化简,使得分母消失,然后求解方程。

2.常用的化简方法有通分、去括号、移项等。

六、分式的应用1.在实际生活中,分式的应用非常广泛。

比如:计算机网络中的带宽分配、物资的平均分配等都涉及到分式的应用。

2.分式在商业计算、金融投资等领域也有广泛应用。

七、分式的习题练习1.简化下列分式:(a)12/30(b)-18/12(c)40/802.求下列分式的值:(a)1/4+3/8(b)5/6-2/3(c)2/3×3/4(d)1/2÷2/33.解方程:2/(x-1)-3/(x+2)=1/(x+1)以上是分式知识点的总结及复习,对于掌握分式知识以及应用都有一定的帮助。

分式知识点总结及复习

分式知识点总结及复习

分式知识点总结及复习一、基本概念分式是指两个整数之间用分数线表示的表达式,其中分数线上方的整数称为分子,下方的整数称为分母。

分子和分母可以是正整数、负整数或零。

二、分数的分类1. 真分数:分子小于分母的分数,如1/2、3/4。

2. 假分数:分子大于等于分母的分数,如7/4、11/3。

3. 带分数:由整数部分和真分数部分组成的复合分数,如2 1/2、33/4。

三、分数的基本运算1. 分数的加法:分母相同时,分子相加;分母不同时,通分后分子相加。

2. 分数的减法:分母相同时,分子相减;分母不同时,通分后分子相减。

3. 分数的乘法:分子相乘,分母相乘。

4. 分数的除法:将除法转化为乘法,即将除数取倒数后与被除数相乘。

5. 分数的约分:将分子和分母的公约数除去,使分数达到最简形式。

6. 分数的比较:分数大小的比较依据是分子和分母的大小关系。

四、分式的应用1. 长度比较:如果表示相同长度的量,分母较大的分数表示的长度较小。

2. 面积比较:如果表示相同形状的图形面积,分母较大的分数表示的面积较小。

3. 比例求解:对于一个比例关系,可以使用分数来表示两个量之间的关系。

4. 混合运算:在实际的数学题中,分式常常与整数、小数一起进行混合运算。

五、常用的分数的表示法1. 百分数:百分数是分数的一种表示形式,以分母为100。

2. 小数:小数是另一种分数的表示形式,可以将分数化为小数进行计算。

六、常见的分数问题1. 分数的相加减问题:根据题意确定分数的运算方式,并进行对应的计算。

2. 分数的乘法除法问题:将乘法转化为分数的相乘运算,将除法转化为分数的相除运算。

3. 分数的约分问题:找到分子与分母的公约数,并进行约分化简。

4. 比较分数大小问题:比较分子与分母的大小关系来确定分数的大小。

七、常见的解分数问题的方法解决分数问题可以通过下面的方法来进行:1. 手算:将分数转化为小数进行计算,或者使用分数与整数的运算规则进行计算。

新初中数学分式知识点总复习含答案解析

新初中数学分式知识点总复习含答案解析

新初中数学分式知识点总复习含答案解析一、选择题1.下列计算错误的是( )A .()326327x x -=-B .()()325y y y --=-gC .326-=-D .()03.141π-= 【答案】C【解析】【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算【详解】A . ()326327x x -=-,不符合题意; B . ()()325y y y --=-g ,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意;故选:C【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.2.下列运算中,正确的是( )A .2+=B .632x x x ÷=C .122-=-D .325a a a ⋅= 【答案】D【解析】【分析】根据实数的加法对A 进行判断;根据同底数幂的乘法对B 进行判断;根据负整数指数幂的意义对C 进行判断;根据同底数幂的除法对D 进行判断.【详解】解:A 、2不能合并,所以A 选项错误;B 、x 6÷x 3=x 3,所以B 选项错误;C 、2-1=12,所以C 选项错误; D 、a 3•a 2=a 5,所以D 选项正确.故选:D .【点睛】此题考查实数的运算,负整数指数幂,同底数幂的乘法与除法,解题关键在于掌握先算乘方,再算乘除,然后进行加减运算;有括号先算括号.3.下列运算中,不正确的是()A.a b b aa b b a--=++B.1a ba b--=-+C.0.55100.20.323a b a ba b a b++=--D.()()221a bb a-=-【答案】A【解析】【分析】根据分式的基本性质分别计算即可求解.【详解】解:A. a b b aa b b a--=-++,故错误.B、C、D正确.故选:A【点睛】此题主要考查分式的基本性质,熟练利用分式的基本性质进行约分是解题关键.4.已知11m n-=1,则代数式222m mn nm mn n--+-的值为()A.3 B.1 C.﹣1 D.﹣3【答案】D【解析】【分析】由11m n-=1利用分式的加减运算法则得出m-n=-mn,代入原式=222m mn nm mn n--+-计算可得.【详解】∵11m n-=1,∴n mmn mn-=1,则n mmn-=1,∴mn=n-m,即m-n=-mn,则原式=()22m n mnm n mn---+=22mn mnmn mn---+=3mnmn-=-3,故选D.【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.5.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1【答案】D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.6.x 的取值范围为( ) A .5x ≠-B .0x >C .5x ≠- 且0x >D .0x ≥【答案】D【解析】【分析】根据分式有意义的条件可得x+5≠0,再根据二次根式有意义的条件可得x≥0,由此即可求得答案.【详解】由题意得:x+5≠0,且x≥0,解得:x≥0,故选D .【点睛】本题考查了分式有意义的条件 二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.7.若分式12x x +-在实数范围内有意义,则x 的取值范围是( ) A .2x >B .2x <C .1x ≠-D .2x ≠【答案】D【解析】【分析】根据分式有意义的条件即可求出答案.【详解】由题意可知:x-2≠0,x≠2,故选:D .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.8.数字0.00000005m ,用科学记数法表示为( )m .A .70.510-⨯B .60.510-⨯C .7510-⨯D .8510-⨯ 【答案】D【解析】【分析】科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将0.00000005用科学记数法表示为8510-⨯.故选D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为n a 10⨯的形式,其中1a 10≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.下列计算正确的是( ).A 2=-B .2(3)9--=C .0( 3.14)0x -=D .2019(1)|4|5---=- 【答案】D【解析】【分析】直接利用二次根式的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】A 2=,故此选项错误;B 、(-3)-2=19,故此选项错误; C 、(x-3.14)0=1,故此选项错误;D 、(-1)2019-|-4|=-5,正确.故选:D .【点睛】此题考查二次根式的性质以及负指数幂的性质、零指数幂的性质,正确化简各数是解题关键.10.0000036=3.6×10-6;故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.11.500米口径球面射电望远镜,简称FAST,是世界上最大的单口径球面射电望远镜,被誉为“中国天眼”.2018年4月18日,FAST望远镜首次发现的毫秒脉冲星得到国际认证,新发现的脉冲星自转周期为0.00519秒,是至今发现的射电流量最弱的高能毫秒脉冲星之一.将0.00519用科学记数法表示应为( )A.-20.51910⨯B.-35.1910⨯C.-451.910⨯D.-651910⨯【答案】B【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤a<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】12.计算11-+xx x的结果是()A.2xx+B.2xC.12D.1【答案】D 【解析】原式=11xx-+=xx=1,故选D.【点睛】本题考查了同分母分式的加减法,熟记法则是解题的关键. 13.下列各分式中,是最简分式的是().A.22x yx y++B.22x yx y-+C.2x xxy+D.2xyy【答案】A【解析】【分析】根据定义进行判断即可.【详解】解:A 、22x y x y++分子、分母不含公因式,是最简分式; B 、22x y x y-+=()()x y x y x y +-+=x -y ,能约分,不是最简分式; C 、2x x xy+=(1)x x xy +=1x y +,能约分,不是最简分式; D 、2xy y =x y,能约分,不是最简分式. 故选A .【点睛】本题考查分式的化简,最简分式的标准是分子,分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,然后对每一选项进行整理,即可得出答案.14.下列各式:①2193-⎛⎫= ⎪⎝⎭;②031-=;③()232639-=-ab a b ;④()2221243x y xy x y -÷=-; ⑤()2018201920182232--=⨯;其中运算正确的个数有( )个. A .1B .2C .3D .4 【答案】B【解析】【分析】分别利用负整数指数幂、零指数幂、积的乘方、同底数幂的除法等对各式进行运算,即可做出判断.【详解】解:①22111913193-⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭,故①正确; ②031-=-,故②错误;③()232232263(3)()9-=-=ab a b a b ,故③错误; ④()21243-÷=-x y xy x ,故④错误;⑤()2018201920182019201820182018222222232--=+=+⨯=⨯,故⑤正确;∴运算正确的个数有2个,故选:B .【点睛】本题主要考查了负整数指数幂、零指数幂、积的乘方和同底数幂的除法,熟练掌握相关的运算法则是解题的关键.15.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】 211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.【点睛】 本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.16.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-.故选B .【点睛】本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.17.213-⎛⎫ ⎪⎝⎭的相反数是( ) A .9B .-9C .19D .19- 【答案】B【解析】【分析】 先根据负指数幂的运算法则求出213-⎛⎫ ⎪⎝⎭的值,然后再根据相反数的定义进行求解即可. 【详解】2211113193-⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭=9, 9的相反数为-9, 故213-⎛⎫ ⎪⎝⎭的相反数是-9, 故选B .【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.18.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

分式知识点总结及例题

分式知识点总结及例题

分式知识点总结及例题一、分式的概念分式是指以分数的形式表示的数,通常由分子和分母两部分组成,分子表示分数的一部分,分母表示分数的总份额。

分式通常用来表示比例、部分和整体的关系。

二、分式的基本性质1. 分式的分子和分母可以分别约分。

2. 分式的值与分子和分母的乘除有关。

3. 分式的运算可以转化为通分和通分的计算问题。

三、分式的化简分式的化简是指将分式表示的数化为最简形式的操作,主要包括分子分母约分、常数和分式的转化等。

四、分式的加减法分式的加减法是指对分式的分子和分母进行通分后,进行加减运算的操作。

五、分式的乘法和除法分式的乘法是指对分式的分子和分母分别进行乘法运算后,化简为最简形式的操作。

分式的除法是指对分式进行倒数运算,然后化简为最简形式的操作。

六、分式的应用分式在实际问题中有着广泛的应用,如物体的比例尺、物体的比重、长方形的面积和周长等问题都可以用分式进行表示和计算。

七、例题1. 化简分式$\frac{6}{8}$解:分子和分母可以同时除以2,得到$\frac{6}{8}=\frac{3}{4}$,所以$\frac{6}{8}$的最简形式为$\frac{3}{4}$。

2. 计算$\frac{3}{5}+\frac{2}{3}$解:先将两个分式通分,得到$\frac{3}{5}+\frac{2}{3}=\frac{9}{15}+\frac{10}{15}=\frac{19}{15}$,再化简得$\frac{19}{15}=1 \frac{4}{15}$。

3. 计算$\frac{5}{6} \times \frac{2}{3}$解:将两个分式分别相乘得到$\frac{5}{6} \times \frac{2}{3}=\frac{10}{18}$,再将$\frac{10}{18}$化简为最简形式,得$\frac{10}{18}=\frac{5}{9}$。

4. 计算$\frac{4}{5} \div \frac{2}{3}$解:将两个分式进行倒数运算,得到$\frac{4}{5} \div \frac{2}{3}=\frac{4}{5} \times\frac{3}{2}=\frac{12}{10}=1 \frac{2}{10}=1 \frac{1}{5}$。

八年级数学 分式章节知识点总结及典型例题解析

八年级数学 分式章节知识点总结及典型例题解析

八年级数学分式章节知识点总结及典型例题解析1.分式的定义:分式是由分子、分母两个整式组成的表达式,分母不能为零。

例:下列式子中,有分式的是:$\frac{2x+1}{3xy^3a^{-b}5a^{-b}159a^{2}15xy^{11}}$、$\frac{8a^2b}{2}$、$\frac{1}{x-y}$、$\frac{4x-3y}{2x+y}$、$\frac{2}{b^2-5a^2}$、$\frac{-x-2xy^2}{x-7}$。

2.分式有意义和无意义:1)使分式有意义:令分母不等于零,解方程求解;2)使分式无意义:令分母等于零,解方程求解;注意:$(x+1)^2 \neq 0$ 有意义。

例如:分式$\frac{x-5}{2-x}$,当$x=2$时,分式无意义;当$x=5$时,分式有意义。

3.分式的值为零:使分式的值为零:令分子等于零且分母不等于零。

注意:当分子等于使分母等于零时,要舍去。

例如:分式$\frac{x^2-11}{x-2a}$,当$x=\sqrt{11}$时,分式的值为零。

4.分式的基本性质的应用:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。

例如:$\frac{A}{B}=\frac{AC}{BC}$,$\frac{A}{B}=\frac{A/C}{B/C}$。

没有明显问题的段落,无需删除或改写。

1.如果成立,那么a的取值范围是什么?2.例2:求出33/(ab)的值。

3.例3:将分式(1-b+c)/(a(b-c))中的a和b扩大10倍后,分式的值会怎样变化?4.例4:将分式10x/(x+y)中的x和y都扩大10倍后,分式的值会怎样变化?5.例5:将分式xy/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?6.例6:将分式(x-y)/(x+y)中的x和y都扩大2倍后,分式的值会怎样变化?7.例7:将分式(x-y)/xy中的x和y都扩大2倍后,分式的值会怎样变化?8.例8:将分式2x/(x+3y)中的x和y都缩小12倍后,分式的值会怎样变化?9.例9:将分式3x^3/(2y^2)中的x和y都扩大2倍后,分式的值保持不变的是什么?10.根据分式的基本性质,分式(ABC-D)/(a-b)可变形为(a+b)(D-ABC)/(a-b)。

最新最新初中数学—分式的知识点总复习附答案解析

最新最新初中数学—分式的知识点总复习附答案解析

一、选择题1.若m+2n =0,则分式22221m n m m mn m m n+⎛⎫+÷ ⎪--⎝⎭的值为( )A .32B .﹣3nC .﹣32n D .922.已知02125,,0.253a b c --⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭,a ,b ,c 的大小关系是( ) A .a >b >c B .b >a >c C .c >a >b D .c >b >a 3.蜜蜂建造的蜂巢坚固省料,其厚度约为0.000073米,0.000073用科学计数法表示为 A .40.7310-⨯ B .47.310-⨯ C .57.310-⨯ D .67.310-⨯4.下列运算中,正确的是( )A .;B .;C .;D .;5.将分式2x x y+中的x 、y 都扩大2倍,则分式值( )A .扩大为原来的2倍B .缩小为原来的2倍C .保持不变D .无法确定 6.把0.0813写成科学计教法8.13×10n (n 为整数)的形式,则n 为( ) A .2B .-2C .3D .-37.若02018a =,2201720192018b =⨯- , 2017201845()()54c =-⨯ ,则a ,b ,c 的大小关系式( ) A .a b c <<B .b c a <<C .c b a <<D .a c b <<8.化简22222a ab b a b++-的结果是( ) A .a ba b+- B .b a b- C .a a b+ D .b a b+ 9.下列各分式的值可能为零的是( ).A .2211m m +-B .11m +C .211m m +-D .211m m -+10.下列运算正确的是( )A .623x x x=B .221x a ax b b++=++ C .1122x xx x ---=-- D .0.71070.20.323a b a ba b a b--=++11.若a +b =0, 则ba的值为( ) A .-1B .0C .1D .-1或无意义12.若把分式x yxy+中的x 和y 都扩大2倍,那么分式的值( )A .扩大2倍B .不变C .缩小2倍D .缩小4倍13.函数 y =21x x --的自变量 x 的取值范围是( ) A .x > -1且x ≠ 1 B .x ≠ 1且x ≠ 2C .x ≥ -1且x ≠ 1D .x ≥ -114.若115a b =,则a b a b-+的值是( ) A .25B .38C .35D .11515.下列命题中:①已知两实数a 、b ,如果a >b ,那么a 2>b 2;②同位角相等,两直线平行;③如果两个角是直角,那么这两个角相等;④如果分式332x x -+无意义,那么x =﹣23;这些命题及其逆命题都是真命题的是( ) A .①② B .③④ C .①③ D .②④ 16.用小数表示45.610-⨯为( )A .5.6000B .0.00056C .0.0056D .0.05617.新冠肺炎疫情爆发以来,口罩成为需求最为迫切的防护物资.在这个关键时刻,我国某企业利用自身优势转产口罩,这背后不仅体现出企业强烈的社会责任感,更是我国人民团结一心抗击疫情的决心.据悉该企业3月份的口罩日产能已达到500万只,预计今后数月内都将保持同样的产能,则3月份(按31天计算)该企业生产的口罩总数量用科学记数法表示为( ) A .71.5510⨯只B .81.5510⨯只C .90.15510⨯只D .6510⨯只18.若a=20180,b=2016×2018-20172,c=(23-)2016×(32)2017,则a ,b ,c 的大小关系正确的是( ) A .a<b<cB .a<c<bC .b<a<cD .c<b<a19.下列计算错误的是( ) A .()326327x x -=-B .()()325y y y --=-C .326-=-D .()03.141π-=20.若20.3a =-,23b -=-,021(3)3c d -⎛⎫=-=- ⎪⎝⎭,,则( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .c a d b <<<21.若222110.2,2,(),()22a b c d --=-=-=-=-,则它们的大小关系是( ) A .a b d c <<< B .b a d c <<< C .a d c b <<<D .c a d b <<<22.使分式211x x -+的值为0,这时x 应为( )A .x =±1 B .x =1C .x =1 且 x≠﹣1D .x 的值不确定23.若分式242x x --的值为0,则x 等于( )A .±2 B .±4 C .-2D .224.下列计算:①3362a a a ⋅=;②2352m m m +=;③()224-24a a =-;④()21048a a a a ⋅÷=;⑤()-21-510=;⑥22m a mn a n+=+,其中正确的个数为( ) A .4个B .3个C .2个D .1个25.老师设计了一个接力游戏,用小组合作的方式完成分式的运算,规则是:每人只能看见前一个人给的式子,并进行一步计算,再将结果传递给下一个人,最后完成计算.其中一个组的过程是:老师给甲,甲一步计算后写出结果给乙,乙一步计算后写出结果给丙,丙一步计算后写出结果给丁,丁最后算出结果.接力中,自己负责的一步出现错误的是( )A .甲B .乙C .丙D .丁【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】直接利用分式的混合运算法则进行化简,进而把已知代入求出答案. 【详解】 解:原式=2()m n m n m m n ++--•(+)()m n m n m-=3()m m m n -•(+)()m n m n m-=3()m n m+, ∵m+2n =0, ∴m =﹣2n ,∴原式=32n n --=32.故选:A . 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.2.C解析:C 【解析】 【分析】根据负整数指数幂和零指数幂法则计算,比较即可. 【详解】2129==10.25=4342a b c --⎛⎛⎫=-== ⎪ ⎝⎭⎝⎭,,, ∵4>94>1, ∴c >a >b . 故选C . 【点睛】此题考查了负整数指数幂和零指数幂的运算,掌握其运算法则是解答此题的关键.3.C解析:C 【解析】 【分析】数学术语,a×10的n 次幂的形式.将一个数字表示成(a×10的n 次幂的形式),其中1≤|a|<10,n 表示整数,这种记数方法叫科学记数法。

最新初中数学—分式的知识点总复习附答案解析(4)

最新初中数学—分式的知识点总复习附答案解析(4)

一、选择题1.a 的取值范围是( )A .4a ≠-B .4a ≥-C .4a >-D .4a >-且0a ≠2.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2= B .x ?2=-C .x 3=D .x ?3=-3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=- B .x 6=C .x 5≠D .x 5=4.分式:22x 4- ,x42x- 中,最简公分母是 A .()()2x 4?42x --B .()()x 2x ?2+C .()()22x 2x 2-+- D .()()2x 2?x 2+-5.下列运算,正确的是 A .0a 0= B .11a a-=C .22a a b b=D .()222a b a b -=-6.在式子:2x、5x y + 、12a - 、1x π-、21xx +中,分式的个数是( ) A .2B .3C .4D .57.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠8.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 9.计算32-的结果是( ) A .-6B .-8C .18-D .1810.下列计算,正确的是( )A .2(2)4--=B 2=-C .664(2)64÷-=D =11.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <cB .a <c <bC .b <a <cD .c <b <a12.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+13.2018年3月3日,新浪综合网报道:“中科院发明首个抗癌DNA 纳米机器人,可精准阻断肿瘤血管饿死肿瘤!”.中国科学家团队研发出的这种可编程、基于 DNA 折纸技术的纳米机器人大小只有90×60×2nm ,nm 是长度计量单位,1nm=0.000000001米,则2nm 用科学记数法表示为( )A .2×109米 B .20×10-8米 C .2×10-9米 D .2×10-8米 14.下列各式变形正确的是() A .x y x yx y x y -++=---B .22a b a bc d c d --=++ C .0.20.03230.40.0545a b a bc d c d--=++D .a b b ab c c b--=-- 15.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .2011201316.若分式55x x -+的值为0,则x 的值为( ) A .0B .5C .-5D .±5 17.下列分式中:xy x ,2y x -,+-x yx y,22x y x y +-不能再约分化简的分式有( )A .1个B .2个C .3个D .4个18.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 19.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b-+是最简分式;其中正确的有()个. A .1个B .2个C .3个D .4个20.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1921.若(x -2016)x =1,则x 的值是( ) A .2017 B .2015 C .0 D .2017或022.若一种DNA 分子的直径只有0.00000007cm ,则这个数用科学记数法表示为( ) A .90.710-⨯B .90.710⨯C .8710-⨯D .710⨯823.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.计算()22ab ---的结果是( )A .42b a -B .42b aC .24a b -D .24a b25.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+-【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:根据二次根式与分式有意义的条件和分式有意义的条件即可求出a 的范围. 详解:由题意可知:a+4>0 ∴a >-4 故选C .点睛:解题的关键是正确理解二次根式有意义的条件和分式有意义的条件,本题属于基础题型.2.A解析:A由题意得:20260x x -=⎧⎨-≠⎩ ,解得:2x =.故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.D解析:D 【解析】 ∵2224(2)(2)x x x =-+-,422(2)x xx x =---, ∴分式22 442xx x --、的最简公分母是:2(2)(2)x x +-. 故选D.5.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.6.B解析:B 【解析】 解:分式有2x 、12a -、21x x +共3个.故选B . 点睛:此题主要考查了分式的定义,正确把握分式的定义是解题关键.解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 8.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.9.D解析:D 【解析】3311228-==. 故选D. 10.C解析:C 【解析】 【详解】 解:A .()2124--=,所以A 错误;B 2=,所以B 错误;C .()666664242264÷-=÷==,所以C 正确;D ==D 错误,故选C .11.C【解析】 【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.12.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.13.C解析:C【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 详解:0.000000001×2=2×10﹣9. 故选C .点睛:本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.D解析:D 【解析】 【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变,可得答案. 【详解】 A 、原式x yx y-=+,所以A 选项错误; B 、原式=2a b c d-+(),所以B 选项错误;C、原式=203405a bc d-+,所以C选项错误;D、a b b ab c c b--=--,所以D选项正确.故选D.【点睛】本题考查了分式基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个不为零的整式,分式的值不变.15.A解析:A【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案.【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A.【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.16.B解析:B【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】由式子x-5=0,解得x5=±.而x=5时分母5x+≠0,x=-5时分母5x+=0,分式没有意,即x=5,故选B.【点睛】要注意分母的值一定不能为0,分母的值是0时分式没有意义.17.B解析:B【分析】找出各项中分式分子分母中有没有公因式,即可做出判断.【详解】xyx=y, 22x y x y +-= ()()x y x y x y ++-= 1x y - 所以,不能约分化简的有:- 22y x +-x yx y共两个, 故答案选B. 【点睛】本题考查的知识点是分式的约分,解题的关键是熟练的掌握分式的基本性质.18.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m =3.5×10﹣5m .故选B . 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.21.D解析:D【解析】【分析】根据零指数幂:a0=1(a≠0)和1的任何次幂都是1可得x=0或x-2016=1,再解即可.【详解】由题意得:x=0或x-2016=1,解得:x=0或2017.故选:D.【点睛】此题主要考查了零次幂和乘方,关键是掌握零指数幂:a0=1(a≠0).22.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:若一种DNA分子的直径只有0.00000007cm,则这个数用科学记数法表示为8710-⨯.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.23.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.24.B解析:B 【解析】 【分析】根据负整数指数幂和幂的乘方和积的乘方解答. 【详解】 原式=(-1)-2a -2b 4 =21a •b 4 =42b a. 故选B . 【点睛】本题主要考查了负整数指数幂,同时要熟悉幂的乘方和积的乘方.25.D解析:D 【解析】根据分式的基本性质,可知A 不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确.故选:D.。

八年级数学《分式》知识点

八年级数学《分式》知识点

八年级数学《分式》知识点一、分式的概念形如 A/B(A、B 是整式,B 中含有字母且 B 不等于 0)的式子叫做分式。

其中 A 叫做分子,B 叫做分母。

理解分式的概念时,需要注意以下几点:1、分式的分母中必须含有字母。

例如:5/x 是分式,而 5/3 就不是分式,因为它的分母 3 是常数。

2、分母的值不能为 0。

如果分母 B 的值为 0,那么分式就没有意义。

3、分式是两个整式相除的商,其中分子是被除式,分母是除式。

4、整式和分式统称为有理式。

二、分式有意义的条件分式有意义的条件是分母不等于 0。

即:对于分式 A/B,当B≠0 时,分式有意义。

例如:对于分式 2/(x 1),要使其有意义,则x 1≠0,即x≠1。

三、分式的值为 0 的条件分式的值为 0 时,需要同时满足两个条件:1、分子等于 0,即 A = 0。

2、分母不等于 0,即B≠0。

例如:对于分式(x 2)/(x + 1),当 x 2 = 0 且 x +1≠0 时,分式的值为 0。

由 x 2 = 0 得 x = 2,又因为 x +1≠0,即x≠ 1,所以当 x = 2 时,该分式的值为 0。

四、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于 0 的整式,分式的值不变。

即:A/B = A×M/B×M,A/B = A÷M/B÷M(M 为不等于 0 的整式)例如:将分式 2x/(3y)的分子分母同时乘以 2,得到 4x/(6y),分式的值不变。

利用分式的基本性质,可以进行分式的约分和通分。

五、约分把一个分式的分子和分母的公因式约去,叫做约分。

约分的关键是确定分子和分母的公因式。

确定公因式的方法:1、系数:取分子和分母系数的最大公约数。

例如:在分式 8x/12 中,8 和 12 的最大公约数是 4,所以分子分母同时除以 4 进行约分。

2、字母:取分子和分母相同字母的最低次幂。

例如:在分式 x²y/xy²中,相同字母是 x 和 y,x 的最低次幂是 1,y 的最低次幂是 1,所以公因式是 xy,约分后为 x/y。

初中数学分式知识点总复习

初中数学分式知识点总复习

初中数学分式知识点总复习分式是初中数学中的基本概念之一,也是数学思维的重要内容。

下面是关于初中数学分式知识点的总复习。

一、分式的定义与性质1.分式的定义:分式是指以分数形式表示的数,由分子和分母组成。

2.分式的性质:a.分子和分母都可以是整数,也可以是代数式;b.分式可以约分,约分后仍表示同一个数;c.分式中的分子与分母可以互换位置,得到的分式的值不变;d.分式的相反数是将分子和分母的符号都取反;e.分式的倒数是将分子和分母交换位置。

二、分式的四则运算1.分式的加法和减法:a.分母相同的分数相加(减),直接将分子相加(减),分母保持不变;b.分母不同的分数相加(减),先找到它们的最小公倍数,然后进行通分,再进行相加(减)。

2.分式的乘法:a.将分式的分子与分式的分子相乘,分母与分母相乘,得到的结果做约分;b.可以将分子和分母约分后再相乘,这样可以减小计算量。

3.分式的除法:a.将除法转化为乘法,即将除号变为乘号,并将除数倒置,即分子与被除数相乘,分母与除数相乘;b.乘法运算时,需要将分子和分母约分。

三、分式的比较大小1.同分母的分数:a.分子大的分数大;b.分子相等时,分母小的分数大。

2.不同分母的分数:先通分,再比较。

a.先找到它们的最小公倍数;b.通分后,再比较。

四、分式的应用1.等分原理:两个量中任一个与一定数量的这两个量之和相等,则这两个量相等。

2.平分原理:两个量中任一个与一定数量的这两个量之商相等,则这两个量之商相等。

3.配分原理:两个分式相加(减)为一定量,则每个分式与一定数量之和(差)相等。

4.共分母原理:两个分数的分母相等,则这两个分数相加(减)为:分子的和(差)/分母。

5.分数求未知数:通过已知数量的分式关系,得到未知数的值。

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点

一、基本概念
1.分式:分子和分母都是多项式的数叫做分式。

2.分式方程:含有一个或多个未知数的分式等式叫做分式方程。

二、分式方程的解
1.分式方程的解:使得方程两边分式等价的数叫做分式方程的解。

2.适合分式方程的解:使得分式方程的任意代入都可以使分式方程成立的解叫做适合分式方程的解。

三、分式方程的解的判定
1.分式方程的解的判定方法:将找到的解代入方程,若等式两边可以变成同一个数,则该解为分式方程的解。

2.分式方程的解的验证方法:将方程两边合并,并对两边进行化简,最后验证等式是否成立。

四、分式方程的解的性质
1.分式方程的根的性质:若一个数是分式方程的根,则这个数的相反数也是该方程的根。

2.分式方程的根的性质的应用:利用分式方程的根的性质,可以通过已知根推出其他根。

五、分式方程的解的求解
1.解分式方程的一般步骤:先合并同类项,再化简,最后通过代数运算求解未知数。

2.解分式方程的具体方法:可以通过交叉相乘、通分和消分的方法来解决不同类型的分式方程。

六、分式方程的应用
1.代入法解分式方程:利用推导和分项代入法,将问题转化为分式方程,然后再用分式方程的解来解决问题。

2.混合运算解分式方程:先利用等式性质将分子展开,再通过合并同类项化简,最后求解分式方程得到解。

总结:。

最新最新初中数学—分式的知识点总复习含答案解析

最新最新初中数学—分式的知识点总复习含答案解析

一、选择题1.分式b ax ,3c bx -,35acx 的最简公分母是( )A .5cx 3B .15abcxC .15abcx 3D .15abcx 52.下列分式是最简分式的是( )A .22a aab+B .63xy aC .211x x -+D .211x x ++3.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c4.下列运算正确的是( ) A .2-3=-6B .(-2)3=-6C .(23)-2=49D .2-3=185.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠6.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 7.计算32-的结果是( ) A .-6 B .-8C .18-D .188.如果112111S t t =+,212111S t t =-,则12S S =( ) A .1221t t t t +- B .2121t t t t -+ C .1221t t t t -+ D .1212t t t t +- 9.分式a x ,22x y x y +-,2121a a a --+,+-x y x y 中,最简分式有( ). A .1个 B .2个C .3个D .4个10.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( )A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的1311.下列各式:2116,,4,,235x y xx y x π++-中,分式有( ) A .1个B .2个C .3个D .4个12.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 13.若0x y y z z xabc a b c---===<,则点P(ab ,bc)不可能在第( )象限 A .一 B .二 C .三 D .四14.计算21424m m ++-的结果是( ) A .2m + B .2m -C .12m + D .12m - 15.若,则用u 、v 表示f 的式子应该是( )A .B .C .D .16.已知m ﹣1m 7,则1m+m 的值为( ) A .±11B 11C .±7D .1117.下列计算正确的是( )A .3x x=xB .11a b ++=abC .2÷2﹣1=﹣1D .a ﹣3=(a 3)﹣118.纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为( ) A .3.5×10﹣6米 B .3.5×10﹣5米 C .35×1013米 D .3.5×1013米 19.计算(16)0×3﹣2的结果是( ) A .32 B .9C .19-D .1920.若(1-x )1-3x =1,则x 的取值有( )个. A .1个B .2个C .3个D .4个21.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d22.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个23.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 324.下列计算正确的有①()011-=;②21333-⨯=;③()()33m mx x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个 25.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积. 【详解】最简公分母为3⨯5⨯a ⨯b ⨯c ⨯x 3=15abcx 3 故答案选:C. 【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.2.D解析:D 【解析】A 选项中,分式的分子、分母中含有公因式a ,因此它不是最简分式.故本选项错误;B 选项中,分式的分子、分母中含有公因数3,因此它不是最简分式.故本选项错误;C 选项中,分子可化为(x +1)(x -1),所以该分式的分子、分母中含有公因式(x +1),因此它不是最简分式.故本选项错误;D 选项中,分式符合最简分式的定义.故本选项正确. 故选:D .点睛:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,看分子和分母中有无公因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.3.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b2ac 的最简公分母是:22220a b c . 故选C.4.D解析:D 【解析】选项A. 2-3=18,A 错. 选项B. (-2)3=-8,B 错.选项C. (23)-2=94 ,C 错误. 选项D. 2-3=18,正确 .所以选D. 5.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 6.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误;D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.7.D解析:D 【解析】3311228-==. 故选D. 8.B解析:B 【解析】∵112111S t t =+,212111S t t =-, ∴S 1=1212t t t t +,S 2=1221t t t t -,∴12112211221221t t s t t t t t t s t t t t +-==+-, 故选B .【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.9.B解析:B 【解析】 试题解析:a x,+-x y x y 是最简分式, 221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.10.B解析:B 【解析】解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xyx y+,即将分式00xyx y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .11.A解析:A 【解析】分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 详解:216,,4,,23x y xx y π++的分母中均不含有字母,因此它们是整式,而不是分式.15x -的分母中含有字母,因此是分式. 故选A .点睛:本题主要考查分式的定义,注意π不是字母,6xπ是常数,所以不是分式,是整式.12.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.13.A解析:A 【解析】 【分析】根据有理数的乘法判断出a ,b ,c 中至少有一个是负数,另两个同号,然后求出三个数都是负数时x 、y 、z 的大小关系,得出矛盾,从而判断出a 、b 、c 不能同时是负数,确定出点P 不可能在第一象限. 【详解】 解:∵abc <0,∴a ,b ,c 中至少有一个是负数,另两个同号, 可知三个都是负数或两正数,一个是负数, 当三个都是负数时:若x yabc a-=, 则20x y a bc -=>,即x >y ,同理可得:y >z ,z >x 这三个式子不能同时成立, 即a ,b ,c 不能同时是负数, 所以,P (ab ,bc )不可能在第一象限. 故选:A. 【点睛】本题主要考查分式的基本性质和点的坐标的知识,熟悉点的坐标的基本知识是本题的解题关键,确定一个点所在象限,就是确定点的坐标的符号.14.D解析:D 【解析】 【分析】先通分,再加减.注意化简. 【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D 【点睛】考核知识点:异分母分式加减法.通分是关键.15.B解析:B 【解析】 【分析】已知等式左边通分并利用同分母分式的加法法则计算,表示出f 即可. 【详解】,变形得:f=.故选B . 【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.17.D解析:D 【解析】 【分析】分子和分母同乘以(或除以)一个不为0的数,分数值不变. 【详解】A 、3x x=x 2,错误;B 、11a b ++=+1+1a b ,错误; C 、2÷2﹣1=4,错误; D 、a ﹣3=(a 3)﹣1,正确; 故选D . 【点睛】此题考查分式的基本性质,关键是根据把分式的分子和分母扩大还是缩小相同的倍数,分式的值不变解答.18.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】∵1米=109纳米,某种植物花粉的直径约为35000纳米,∴35000纳米=35000×10﹣9m=3.5×10﹣5m.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.19.D解析:D【解析】【分析】根据零指数幂的性质以及负指数幂的性质先进行化简,然后再进行乘法运算即可.【详解】(16)0×3﹣2=11199⨯=,故选D.【点睛】本题考查了实数的运算,涉及了零指数幂、负指数幂的运算,正确化简各数是解题关键.20.B解析:B【分析】利用零指数幂,乘方的意义判断即可.【详解】解:∵(1-x)1-3x=1,∴1-x≠0,1-3x=0或1-x=1,解得:x=13或x=0,则x的取值有2个,故选B【点睛】本题考查了零指数幂,以及有理数的乘方,熟练掌握运算法则是解题的关键.21.B解析:B【解析】【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a、b、c、d的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可.【详解】∵20221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1pa (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.22.A解析:A 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.23.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.24.C解析:C【解析】【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可.【详解】①()011-=,正确; ②2113333--⨯==,正确; ③当m 为偶数时,()()33m m x x -≠-,错误; ④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C .【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键. 25.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.。

最新初中数学—分式的知识点总复习含答案解析

最新初中数学—分式的知识点总复习含答案解析

一、选择题1.函数y =x 的取值范围是( ) A .x ≥﹣2 B .x ≥﹣2且x ≠1C .x ≠1D .x ≥﹣2或x ≠12.若分式||11x x -+的值为0,则x 的值为( ) A .1B .﹣1C .±1 D .无解3.把分式2210x y xy+中的x y 、都扩大为原来的5倍,分式的值( )A .不变B .扩大5倍C .缩小为15D .扩大25倍4.分式x 22x 6-- 的值等于0,则x 的取值是 A .x 2=B .x ?2=-C .x 3=D .x ?3=-5.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 6.下列分式:24a 5b c ,23c 4a b ,25b2ac中,最简公分母是 A .5abcB .2225a b cC .22220a b cD .22240a b c7.下列运算,正确的是 A .0a 0=B .11a a-=C .22a a b b=D .()222a b a b -=-8.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a---=- 9.下列变形正确的是( ).A .11a ab b +=+ B .11a ab b--=-- C .221a b a b a b-=-- D .22()1()a b a b --=-+ 10.下列等式成立的是( )A .|﹣2|=2B ﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣211.分式a x ,22x y x y +-,2121a a a --+,+-x y x y 中,最简分式有( ). A .1个B .2个C .3个D .4个12.若代数式2x -在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍 B .扩大3倍 C .扩大6倍 D .不变 15.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 16.(下列化简错误的是( )A )﹣1=2B =2C 52=± D )0=117.()()2323x y z x y z +++-的结果为( ) A .1B .33-+m m C .33m m +- D .33mm + 18.甲、乙两人分两次在同一粮店内买粮食,两次的单价不同,甲每次购粮100千克,乙每次购粮100元.若规定:谁两次购粮的平均单价低,谁的购粮方式就合算.那么这两次购粮( ) A .甲合算 B .乙合算C .甲、乙一样D .要看两次的价格情况19.已知m ﹣1m ,则1m+m 的值为( )A .B C .D .1120.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个21.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .236212x x -+D .()2--y x x y22.下列分式从左到右的变形正确的是( )A .2=2x x y yB .22=x x y yC .22=x x xx D .515(2)2xx23.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个24.计算21424m m ++-的结果是( ) A .2m + B .2m -C .12m + D .12m - 25.将分式()0,0xyx y x y≠≠-中的x .y 扩大为原来的3倍,则分式的值为:( ) A .不变;B .扩大为原来的3倍C .扩大为原来的9倍;D .减小为原来的13【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据二次根式、分式有意义的条件可得关于x 的不等式组,解不等式组即可得. 【详解】解:由题意得:2010x x +≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1, 故选B. 【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.A解析:A【解析】试题解析:∵分式||11xx-+的值为0,∴|x|﹣1=0,且x+1≠0,解得:x=1.故选A.3.A解析:A【详解】∵要把分式2210x yxy+中的x y、都扩大5倍,∴扩大后的分式为:()()()22222225551055251010x yx y x yx y xy xy+++==⨯⨯⨯,∴把分式2210x yxy+中的x y、都扩大5倍,分式的值不变.故选A.点睛:解这类把分式中的所有字母都扩大n倍后,判断分式的值的变化情况的题,通常是用分式中每个字母的n倍去代替原来的字母,然后对新分式进行化简,再把化简结果和原来的分式进行对比就可判断新分式和原分式相比值发生了怎样的变化.4.A解析:A【解析】由题意得:20260xx-=⎧⎨-≠⎩,解得:2x=.故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0. 5.B解析:B【解析】A选项中,1(1)1a a aa a a----==--,所以A正确;B选项中,1(1)1a a aa a a-----=-=---,所以B错误;C选项中,11a aa a---=-,所以C正确;D 选项中,11a aa a+---=,所以D 正确. 故选B.6.C解析:C 【解析】根据最简公分母的定义:“通常取各分母的系数的最小公倍数与各分母中所有字母因数的最高次幂的积作为各分母的公分母,这个公分母叫做这几个分式的最简公分母”可知,分式:24a 5b c ,23c 4a b ,25b 2ac 的最简公分母是:22220a b c . 故选C.7.B解析:B 【解析】A 选项中,因为只有当0a ≠时,01a =,所以A 错误;B 选项中,11=a a-,所以B 正确; C 选项中,22a b的分子与分母没有公因式,不能约分,所以C 错误;D 选项中,222()2a b a ab b -=-+,所以D 错误; 故选B.8.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .9.B解析:B 【解析】 A 选项中,11a b ++不能再化简,所以A 中变形错误; B 选项中,11a ab b--=--,所以B 中变形正确; C 选项中,221()()a b a b a b a b a b a b--==-+-+,所以C 中变形错误;D 选项中,2222()()1()()a b a b a b a b --+==++,所以D 中变形错误; 故选B.10.A解析:A 【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A 、|﹣2|=2,计算正确,故本选项正确;B ﹣1)0=1,原式计算错误,故本选项错误;C 、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误; D 、﹣(﹣2)=2,原式计算错误,故本选项错误; 故选:A .点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.11.B解析:B 【解析】试题解析:a x ,+-x yx y是最简分式,221()()x y x y x y x y x y x y ++==-+--,2211121(1)1a a a a a a --==-+--.故选B.12.D解析:D 【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可. 【详解】根据题意得x+3≥0且x−2≠0, 所以x 的取值范围为x ≥−3且x≠2. 故答案选D. 【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.A解析:A【解析】试题分析:==;故选A.考点:分式的基本性质.14.B解析:B【解析】【分析】根据分式的基本性质即可求出答案.【详解】原式=1862333mn mn mn m n m n m n==⨯---故选B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.C解析:C【解析】【分析】分别利用负指数幂的性质以及二次根式的性质、零指数幂的性质分别化简得出答案.【详解】A ﹣1=2,正确,不合题意;B ,正确,不合题意;C 52=,故此选项错误,符合题意;D 0=1,正确,不合题意; 故选:C . 【点睛】此题主要考查了负指数幂的性质以及二次根式的性质、零指数幂的性质,正确掌握相关运算法则是解题关键.17.A解析:A 【分析】先计算除法运算,然后进行减法运算即可得出答案. 【详解】原式=3m m +-6(3)(33)m -+× 32m -= 3m m ++ 33m += 33m m ++=1 故答案选A. 【点睛】本题考查的知识点是分式的混合运算,解题的关键是熟练的掌握分式的混合运算.18.B解析:B 【解析】 【分析】分别算出两次购粮的平均单价,用做差法比较即可. 【详解】解:设第一次购粮时的单价是x 元/千克,第二次购粮时的单价是y 元/千克,甲两次购粮共花费:100x+100y ,一共购买了粮食:100+100=200千克,甲购粮的平均单价是:1001002002x y x y++=;乙两次购粮共花费:100+100=200元,一共购买粮食:()100100100x y x y xy++=(千克),乙购粮的平均单价是:2xyx y+;甲乙购粮的平均单价的差是:()()()()22420222x y xy x y x y xy x y x y x y >+--+-==+++,即22x y xyx y++>, 所以甲购粮的平均单价高于乙购粮的平均单价,乙的购粮方式更合算,故选B . 【点睛】本题考查的知识点是做差法,解题关键是注意一个数的平方为非负数.19.A解析:A 【分析】根据完全平方公式即可得到结果. 【详解】1m-=m21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴,221m +=9m∴,22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭,1m+m ∴=.故选A. 【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.20.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;4==④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.21.B解析:B 【分析】利用最简分式的定义判断即可. 【详解】A 、原式=()()11 111x x x x +=+--,不合题意;B 、原式为最简分式,符合题意;C 、原式=()()()666262x x x x +--=+,不合题意,D 、原式=()()2x y x y x x y x--=-,不合题意;故选B . 【点睛】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.22.D解析:D 【分析】根据分式的基本性质逐项判断. 【详解】解:A 、当y=-2时,该等式不成立,故本选项错误; B 、当x=-1,y=1时,该等式不成立,故本选项错误;C.22=x x x x --+-,故本选项错误; D 、正确. 故选D. 【点睛】本题考查分式的基本性质,属于基础题型,分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.23.C解析:C【解析】【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可.【详解】①()011-=,正确; ②2113333--⨯==,正确; ③当m 为偶数时,()()33m m x x -≠-,错误; ④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误.故选C .【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键. 24.D解析:D【解析】【分析】先通分,再加减.注意化简.【详解】21424124(2)(2)2m m m m m m -++==+-+-- 故选:D【点睛】考核知识点:异分母分式加减法.通分是关键.25.B解析:B【解析】 解:把分式xy x y +中的x 、y 扩大为原来的3倍后为3333x y x y ⋅+=3xy x y+,即将分式00xy x y x y≠≠-(,)中的x 、y 扩大为原来的3倍后分式的值为原来的分式的值的3倍.故选B .。

最新初中数学—分式的知识点总复习含答案解析

最新初中数学—分式的知识点总复习含答案解析

一、选择题1.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x+ C .x +1 D .x ﹣1 2.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 3.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 4.化简:(a-2)·22444a a a --+的结果是( ) A .a-2 B .a +2 C .22-+a a D .22+-a a 5.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .D .6.若分式的值为零,则x 的值为( )A .0B .﹣2C .2D .﹣2或27.分式 (a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的8.用科学记数方法表示0.0000907,得( )A .49.0710-⨯B .59.0710-⨯C .690.710-⨯D .790.710-⨯ 9.如果23,a -=- 20.3b =-, 213c -⎛⎫=- ⎪⎝⎭, 015d ⎛⎫=- ⎪⎝⎭那么,,a b c ,d 三数的大小为( )A .a b c d <<<B .b a d c <<<C .a d c b <<<D .a b d c <<<10.已知+=3,则分式的值为( )A .B .9C .1D .不能确定 11.若分式的值为0,则x 的值为( ) A .0B .2C .﹣2D .2或﹣2 12.如果把223y x y -中的x 和y 都扩大5倍,那么分式的值( ) A.扩大5倍 B.不变 C.缩小5倍 D.扩大10倍13.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-414.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( ) A .不变B .扩大3倍C .缩小为原来的13D .扩大9倍 15.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤ 16.若04(2)(3)x x ----有意义,那么x 的取值范围是( )A .x >2B .x >3C .x ≠2或x ≠3D .x ≠2且x ≠317.已知115ab a b =+,117bc b c =+,116ca c a =+,则abc ab bc ca ++的值是( ) A .121 B .122 C .123 D .12418.在代数式,,+,,中,分式有( ) A .1个 B .2个 C .3个 D .4个19.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣220.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有 A .1个 B .2个 C .3个 D .4个21.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯22.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个 23.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x = 24.化简-的结果是( ) A .B .C .D . 25.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分式混合运算法则计算即可.【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ . 故选:A .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键.2.C解析:C .【解析】 试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值. 试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++=222(1)a a a -+ ∵012=-+a a∴2-a 2=a+1,21a a += 原式=2211111(1)(1)1a a a a a a a +====+++ 故选C .考点:分式的值.3.C解析:C【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零.考点:分式的约分4.B解析:B .【解析】试题解析:原式=(a-2)•2(2)(2)(2)a a a +--=a+2, 故选B .考点:分式的乘除法. 5.D解析:D【解析】试题解析:A 、原式=8a 6,错误;B 、原式=-3a 3b 5,错误;C 、原式=,错误; D 、原式=,正确; 故选D .考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法. 6.B解析:B【解析】试题分析:要使分式的值为0,必须分式分子的值为0并且分母的值不为0. 解:由分子x 2﹣4=0解得:x=±2. 当x=2时分母x 2﹣2x=4﹣4=0,分式没有意义;当x=﹣2时分母x 2﹣2x=4+4=8≠0. 所以x=﹣2.故选B .7.B解析:B 【解析】 ,分式的值缩小为原来的 .故选B .8.B解析:B【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.9.D解析:D【解析】试题解析:因为a=-3-2=-211=-39, b=-0.32=-0.09,c=(-13)-2=21913=⎛⎫- ⎪⎝⎭, d=(-15)0=1, 所以c >d >a >b .故选D .【点睛】本题主要考查了(1)零指数幂,负整数指数幂和有理数的乘方运算:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.(2)有理数比较大小:正数>0;0>负数;两个负数,绝对值大的反而小.10.A解析:A 【解析】试题解析:∵113x y +=, ∴x+y=3xy, ∴23223333===23255x xy y xy xy xy x xy y xy xy xy -+⨯-+++. 故选A .解析:B【解析】根据分式的值为0,分子为0,分母不为0可得且x+2≠0,解得x=2,故选B. 12.B解析:B【解析】试题分析:如果把223yx y-中的x和y都扩大5倍,则变为()()()252253523y yx y x y=--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题13.C解析:C【解析】试题分析:根据负整指数幂的性质1(0)ppa aa-=≠计算,可得12⎛⎫-⎪⎝⎭2141()2==-.故选C 14.A 解析:A 【解析】将2210x yxy+中的x、y都扩大为原来的3倍得到:22331033x yx y+()()()()=229990x yxy+=2210x yxy+.故选A.点睛:用3x、3y代换原式中的x、y,然后用分式性质化简即可. 15.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.【点睛】本题考查函数自变量的取值范围.16.D解析:D【解析】试题解析:根据题意得:x-2≠0且x-3≠0解得: x≠2且x≠3考点:1.非零数的零次幂;2.负整数指数幂.17.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.18.B解析:B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B19.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得x+2≠0,解得x≠﹣2,故选:D.20.C解析:C试题分析:分式是指分母含有字母的代数式.考点:分式的定义21.B解析:B【解析】根据科学记数法的书写规则,易得B.22.B解析:B 【解析】①是最简分式; ②,不是最简分式; ③=,不是最简分式; ④是最简分式;最简分式有①④,共2个;故选:B.23.C解析:C【解析】∵()()02x 12x 2----无意义,∴x −1=0或x −2=0,∴x=1或x=2.故选C. 24.D解析:D【解析】 试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D25.D解析:D【解析】根据有理数的乘方、负整数指数幂、零指数幂的意义化简a 、b 、c 、d 的值,然后比较大小.由a=−0.09,b=−19,c=9,d=1,得到:c>d>a>b ,故选B.。

最新最新初中数学—分式的知识点总复习附答案解析

最新最新初中数学—分式的知识点总复习附答案解析

一、选择题1.有个花园占地面积约为 800000平方米,若按比例尺 1 : 2000缩小后,其面积大约相当于( )A .一个篮球场的面积B .一张乒乓球台台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积2.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A . B . C . D .3.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++4.把分式22x yx y -+中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的8倍B .扩大到原来的4倍C .缩小到原来的14 D .不变5.计算4-(-4)0的结果是( ) A .3B .0C .8D .46.若a =-0.3-2,b =-3-2,c =(-13)-2,d =(-13)0,则( ) A .a <d <c <b B .b <a <d <c C .a <d <c <b D .a <b <d <c 7.7x-有意义的x 的取值范围是( ) A .x≠3 B .x <7且x≠3 C .x≤7且x≠2 D .x≤7且x≠38.化简21(1)211x x x x ÷-+++的结果是( ) A .11x + B .1x x+ C .x +1 D .x ﹣19.函数中自变量x 的取值范围是( )A .x≠2B .x≥2C .x≤2D .x >210.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .511.分式中,最简分式个数为( )个. A .1 B .2 C .3D .412.如果把223yx y-中的x 和y 都扩大5倍,那么分式的值( )A.扩大5倍B.不变C.缩小5倍D.扩大10倍 13.无论a 取何值,下列分式总有意义的是( ) A .21a a+ B .211a a -+ C .211a - D .11a + 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 16.化简﹣的结果是( )m+3 B .m-3 C . D .17.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的 C .不变 D .缩小为原来的 18.下列运算错误的是 A . B .C .D .19.已知一粒大米的质量约为0.0000021千克,这个数用科学记数法表示为( )A .0.21×10-5B .2.1×10-5C .2.1×10-6D .21×10-620.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x =21.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等; ④平行线间的距离处处相等. 说法错误的有( )A .1个B .2个C .3个D .4个22.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-623.把分式2210x y xy+中的x y ,都扩大为原来的3倍,分式的值( )A .不变B .扩大3倍C .缩小为原来的13D .扩大9倍 24.下列变形正确的是( )A .x y y xx y y x --=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a b a b a b++=++25.将分式3aba b-中的a 、b 都扩大到3倍,则分式的值 ( ) A .不变B .扩大3倍C .扩大9倍D .扩大6倍【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】试题解析:设其缩小后的面积为xm 2, 则x :800000=(1:2000)2,x=0.2m 2,其面积相当于报纸的一个版面的面积, 故选C . 考点:数学常识.2.A解析:A 【解析】试题分析:因为轮船在静水中的最大航速为30千米/时,江水的流速为x 千米/时,所以轮船在顺流航行中的航速为(30+x )千米/时,轮船在逆流航行的航速为(30-x )千米/时,根据以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,可得:,故选A .考点:列分式方程.3.D解析:D 【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab3。

最新最新初中数学—分式的知识点总复习有答案解析

最新最新初中数学—分式的知识点总复习有答案解析

一、选择题1.在物理并联电路里,支路电阻1R 、2R 与总电阻R 之间的关系式为12111R RR =+,若1R R ≠,用R 、1R 表示2R 正确的是A .121RR R R R =- B .121RR R R R=- C .121R RR RR -=D .121R R R RR -=2.如图,设k=甲图中阴影部分面积乙图中阴影部分面积(a >b >0),则有 ( )甲 乙甲(A )k >2 (B )1<k <2 (C )121<<k (D )210<<k 3.若xy y x =+,则yx 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、2 4.下列分式约分正确的是( )A .236a a a =B .1-=-+y x y xC .316222=b a abD .m mn m n m 12=++5.已知,则的值是( )A .B .﹣C .2D .﹣26.化简:(a-2)·22444a a a --+的结果是( )A .a-2B .a +2C . 22-+a aD .22+-a a 7.下列运算正确的是( ) A .(2a 2)3=6a 6 B .-a 2b 2•3a b 3=-3a 2b 5 C . D .乙甲8.分式(a 、b 均为正数),字母的值都扩大为原来的2倍,则分式的值( )A .扩大为原来的2倍B .缩小为原来的C .不变D .缩小为原来的9.若分式23x x --有意义,则x 满足的条件是( ) A .x ≠0 B .x ≠2 C .x ≠3 D .x ≥310.下列算式,计算正确的有( )①10-3=0.0001; ②(0.0001)0=1; ③3a -2=213a; ④(-2)3÷(-2)5=-2-2. A .1个 B .2个 C .3个 D .4个 11.若分式211x x -+的值为零,则x 的值为( ) A .0 B .1C .1-D .±112.在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B.2 C.3 D .413.如果把分式22a bab+中的a 和b 都扩大了2倍,那么分式的值( ) A .扩大2倍B .不变C .缩小2倍D .缩小4倍14.雾霾已经成为现在生活中不得不面对的重要问题,PM2.5是大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为( ) A .2.5×10﹣6B .0.25×10﹣6C .2.5×10﹣5D .0.25×10﹣515.在式子31x - 、2xy π 、2334a b c、2x x 中,分式的个数是( )A .1个B .2个C .3个D .4个16.H7N9禽流感病毒的直径大约是0.000 000 076米,用科学记数法可表示为( )米.A .7.6×10﹣11B .7.6×10﹣8C .7.6×10﹣9D .7.6×10﹣5 17.若分式的值为0,则x 的值为A .B .C .D .不存在18.已知空气的单位体积质量是0.001239g /cm 3,则用科学记数法表示该数为( )g /cm 3. A .1.239×10﹣3 B .1.2×10﹣3C .1.239×10﹣2D .1.239×10﹣419.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤20.(2015秋•郴州校级期中)下列计算正确的是( )A .B .•C .x÷y•D .21.在代数式,,+,,中,分式有( )A .1个B .2个C .3个D .4个 22.式子①,②,③,④中,是分式的是( )A .①② B.③④ C.①③ D.①②③④23.在式子x y 3,πa ,13+x ,31+x ,a a 2中,分式有A .1个B .2个C .3个D .4个24.在函数中,自变量的取值范围是( ) A .>3B .≥3且≠4C .>4D .≥325.下列各式12x y +,52a b a b --,2235a b -,3m ,37xy中,分式共有( )个.A .2B .3C .4D .5【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题解析:12111R R R =+, 21111R R R =- 1211R R R RR -=得R 2═11RR R R-. 故选B .2. C解析: C 【解析】试题分析:甲图中阴影部分的面积=22a b -,乙图中阴影部分的面积= ()a a b -,22()1a a b a b k a b a b a b -===--++,∵a >b >0∴0<b a b +<12,∴ 121<<k . 考点:分式的约分. 3.B解析:B 【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可. y x 11+=1==+xyxy xy y x 考点:分式的通分,整体带入.4.D解析:D 【解析】试题分析:A.约分的结果为a3;B.不能进行约分;C.约分的结果为ab3。

新最新初中数学—分式的知识点总复习有答案解析

新最新初中数学—分式的知识点总复习有答案解析

一、选择题1.若04(2)(3)x x ----有意义,那么x 的取值范围是( )A .x >2B .x >3C .x ≠2或x ≠3D .x ≠2且x ≠3 2.下列分式变形中,正确的是( ).A . b a b a b a +=++22B .1-=++-y x y xC . ()()m n n m m n -=--23D .bm am b a = 3.已知:分式的值为零,分式无意义,则的值是( ) A .-5或-2B .-1或-4C .1或4D .5或24.已知+=3,则分式的值为( )A .B .9C .1D .不能确定5.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14B .14-C .4D .-46.下列代数式y 2、x 、13π、11a -中,是分式的是 A .y2 B .11a - C .xD .13π7.在物理并联电路里,支路电阻1R 、2R 与总电阻R 之间的关系式为12111RR R =+,若1R R ≠,用R 、1R 表示2R 正确的是A .121RR R R R =- B .121RR R R R=- C .121R RR RR -=D .121R R R RR -=8.若分式的值为0,则x 的值为A .B .C .D .不存在9.计算222x yx y y x+--的结果是( ) A .1B .﹣1C .2x y +D .x y +10.无论a 取何值,下列分式总有意义的是( ) A .21a a + B .211a a -+ C .211a - D .11a +11.若式子212x x m-+不论x 取任何数总有意义,则m 的取值范围是( )A .m≥1B .m>1C .m≤1D .m<112.下列各式、、、+1、中分式有( )A .2个B .3个C .4个D .5个 13.已知0≠-b a ,且032=-b a ,则ba ba -+2的值是( ) A .12- B . 0 C .8 D .128或 14.如果为整数,那么使分式22221m m m +++的值为整数的的值有( )A .2个B .3个C .4个D .5个15.已知115ab a b =+,117bc b c =+,116ca c a =+,则abcab bc ca++的值是( ) A .121 B .122 C .123 D .12416.在代数式,,+,,中,分式有( )A .1个B .2个C .3个D .4个 17.要使分式有意义,则x 的取值应满足( )A .x=﹣2B .x ≠C .x >﹣2D .x ≠﹣2 18.在,,中,是分式的有( )A .0个B .1个C .2个D .3个19.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯ 20.如果把中的x 和y 都扩大到5倍,那么分式的值( )A .扩大5倍B .不变C .缩小5倍D .扩大4倍 21.若02(1)2(2)x x ----无意义,则x 的取值范围是( )A .1x ≠且2x ≠B .1x ≠或2x ≠C .1x =且2x =D .1x =或2x =22.在函数中,自变量的取值范围是( ) A .>3B .≥3且≠4C .>4D .≥323.用科学记数方法表示0.00000601,得( )A .0.601×10-6B .6.01×10-6C .60.1×10-7D .60.1×10-6 24.下列变形正确的是( )A .x y y xx y y x--=++ B .222()x y x y y x x y +-=-- C .2a a a ab b+=D .0.250.25a b a ba b a b++=++25.函数22y x x =+--的自变量x 的取值范围是( ) A .2x ≥B .2x >C .2x ≠D .2x ≤【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题解析:根据题意得:x-2≠0且x-3≠0 解得: x ≠2且x ≠3 故选D .考点:1.非零数的零次幂;2.负整数指数幂.2.C解析:C 【解析】试题分析:分式的约分首先将分子和分母进行因式分解,然后约去公共的因式.A 、B 无法进行约分,C 正确;D 需要保证m 不能为零. 考点:分式的约分3.A解析:A 【分析】当分式的分子为零,且分母不为零时,则分式的值为零;当分式的分母为零时,则分式无意义. 【详解】 根据题意可得:,=0,解得:x=-3,y=1或-2,则x+y=-2或-5.【点睛】考核知识点:分式的性质.4.A解析:A【解析】试题解析:∵113x y+=, ∴x+y=3xy, ∴23223333===23255x xy y xy xy xy x xy y xy xy xy -+⨯-+++.故选A .5.C解析:C 【解析】试题分析:根据负整指数幂的性质1(0)pp a a a -=≠计算,可得12⎛⎫- ⎪⎝⎭2141()2==-. 故选C6.B解析:B 【解析】 试题解析:由于11a -中,分母含有字母, 故选B.7.B解析:B 【解析】试题解析:12111R R R =+, 21111R R R =- 1211R R R RR -= 得R 2═11RR R R-. 故选B .8.B解析:B 【解析】 ∵分式的值为0, ∴ ,解得:,故选B.点睛:求使分式值为0的字母的取值时,要注意需同时满足两点:(1)分子的值为0;(2)分母的值不为0.9.A解析:A 【解析】2x y 2x y y 2x +--=2x y 2x y 2x y ---=2x y2x y--=1, 故选:A.10.B解析:B 【解析】分式有意义的条件是:“分母的值不为0”,在A 中,当0a =时,分式无意义;在C 中当1a =±时,分式无意义;在D 中当1a =-时分式无意义;只有B 中,无论a 为何值,分式都有意义;故选B.11.B解析:B 【解析】试题解析:分式212x x m-+不论x 取何值总有意义,则其分母必不等于0,即把分母整理成(a+b )2+k (k >0)的形式为 (x 2-2x+1)+m-1=(x-1)2+(m-1),因为论x 取何值(x 2-2x+1)+m-1=(x-1)2+(m-1)都不等于0, 所以m-1>0,即m >1. 故选B .12.A解析:A 【解析】试题分析:根据分式的定义进行解答即可. 试题解析:这一组数数中,与是分式,共2个.故选A.考点:分式的定义.13.C解析:C 【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b ++==--,故选:C .考点:分式的化简求值.解析:C 【解析】原式=()()()2111mm m+++=21m+,当m=-3时,原式=-1;当m =-2时,原式=-2;当m=0时,原式=2;当m=1时,原式=1.m的值有4个.故选C.15.D解析:D【解析】试题解析:由已知得:1115a b+=,1117b c+=,1116c a+=,∴11124 a b c++=,∴原式=11 11124a b c=++,故选D.考点:分式的运算.16.B解析:B【解析】试题分析:依据分式的定义进行判断即可.解:分母中不含字母,故不是分式;分母中含有字母是分式;+分母不含字母,故不是分式;分母中含有字母是分式;中π是数字,不是字母,故不是分式.故选B17.D解析:D【解析】试题分析:根据分母不为零分式有意义,可得答案.解:由分式有意义,得解得x ≠﹣2, 故选:D .18.C解析:C【解析】解:的分母中不含有字母,因此它们是整式,而不是分式.,的中分母中含有字母,因此是分式. 故选:C .19.B解析:B【解析】根据科学记数法的书写规则,易得B.20.B解析:B【解析】试题解析:,即分式的值不变. 故选B .21.C解析:C 【解析】∵()()02x 12x 2----无意义, ∴x −1=0或x −2=0, ∴x=1或x=2. 故选C.22.B解析:B 【解析】试题分析:根据分式的意义,可知x-4≠0,解得x≠4,根据二次根式有意义的条件可知x-3≥0,解得x≥3,因此x 的取值范围为x≥3,且x≠4. 故选:B.点睛:此题主要考查了复合算式有意义的条件,解题关键是根据复合算式的特点,逐步确定条件即可.主要有:分式有意义的条件是分母不等于0,二次根式有意义的条件是被开方数为非负数.23.B解析:B【解析】试题分析:根据科学记数法表示较小的数,可知a=6.01,n=-6,所以用科学记数法表示为6.01×10-6.点睛:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.24.D解析:D【解析】A选项错误,x yx y-+=-y xy x-+;B选项错误,x yy x+-=x y y xy x y x+---()()()()=()222y xx y--;C选项错误,2a aab+=1a aab+()=1ab+;D选项正确.故选D.点睛:分式的性质:分式的分子分母乘以或者除以同一个不为零的整式,分式的值不变. 25.B解析:B【详解】解:根据题意得:x﹣2≥0且x﹣2≠0,解得:x>2.故选B.【点睛】本题考查函数自变量的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍2.下列各式中,正确的是( )A .a m ab m b+=+ B .a b0a b +=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+3.分式x 5x 6-+ 的值不存在,则x 的取值是 A .x ?6=-B .x 6=C .x 5≠D .x 5=4.下列式子中,错误的是 A .1a a 1a a --=- B .1a a 1a a ---=- C .1a 1aa a---=- D .1a 1aa a+---= 5.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠6.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 7.下列各式中,正确的是( ). A .1122b a b a +=++B .22142a a a -=-- C .22111(1)a a a a +-=-- D .11b ba a---=- 8.使分式293x x -+的值为0,那么x ( ).A .3x ≠-B .3x =C .3x =±D .3x ≠9.计算正确的是( )A .(﹣5)0=0B .x 3+x 4=x 7C .(﹣a 2b 3)2=﹣a 4b 6D .2a 2•a ﹣1=2a10.若 a =20170,b =2015×2017﹣20162,c =(﹣23)2016×(32)2017,则下列 a ,b ,c 的大小关系正确的是( ) A .a <b <c B .a <c <bC .b <a <cD .c <b <a11.生物学家发现一种病毒的长度约为0.00 004mm ,0.00 004用科学记数法表示是( ) A .40.410-⨯B .5410-⨯C .54010-⨯D .5410⨯12.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b-有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义13.下面是一位同学所做的5道练习题: ①()325a a = ,②236a a a ⋅=,③22144m m -=, ④()()253aa a -÷-=-,⑤()3339a a -=-,他做对题的个数是 ( )A .1道B .2道C .3道D .4道14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍B .扩大3倍C .扩大6倍D .不变15.将分式2x x y+中的x 、y 的值同时扩大3倍,则 扩大后分式的值( )A .扩大3倍B .缩小3倍C .保持不变D .无法确定16.函数y =x 的取值范围是( ) A .x ≥﹣2 B .x ≥﹣2且x ≠1 C .x ≠1 D .x ≥﹣2或x ≠1 17.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 18.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .51.0510⨯B .51.0510-⨯C .50.10510-⨯D .410.510-⨯19.下列说法:①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事12a =--,则12a ≥-; 22a ba b -+是最简分式;其中正确的有()个.A .1个B .2个C .3个D .4个20.若a =-0.32,b =-3-2,c =(-13)-2,d =(-13)0,则它们的大小关系是( ) A .a<c<b<dB .b<a<d<cC .a<b<d<cD .b<a<c<d21.下列计算正确的有①()011-=;②21333-⨯=;③()()33m m x x -=-;④2211224x x x ⎛⎫-=-+ ⎪⎝⎭;⑤()()22339a b b a a b ---=-.A .4个B .3个C .2个D .1个22.下列运算错误的是( )A 4=B .12100-=C 3=- D 2=23.若()3231tt --=,则t 可以取的值有( )A .1个B .2个C .3个D .4个24.下列分式是最简分式的是( ) A .2426a a -+B .1b ab a++C .22a ba b +-D .22a ba b ++25.若 ()1311xx --=,则 x 的取值有 ()A .0 个B .1 个C .2 个D .3 个【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222xx y ⋅⋅-()=原式.故选A .点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .2.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误; D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.3.A解析:A 【解析】 ∵分式56x x -+的值不存在, ∴分式56x x -+无意义, ∴60x +=,解得:6x =-. 故选A.4.B解析:B 【解析】 A 选项中,1(1)1a a a a a a ----==--,所以A 正确; B 选项中,1(1)1a a a a a a -----=-=---,所以B 错误; C 选项中,11a aa a ---=-,所以C 正确; D 选项中,11a aa a+---=,所以D 正确. 故选B.5.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C. 6.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.7.C解析:C 【解析】解;A .分式的分子分母都乘或除以同一个不为零的整式,故A 错误; B .分子除以(a ﹣2),分母除以(a +2),故B 错误;C .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故C 正确;D .分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,故D 错误; 故选C .8.B解析:B 【解析】∵由题意可得:2903x x -=+,∴29030x x ⎧-=⎨+≠⎩,∴3x =±且3x ≠-, ∴3x =. 故选B .点睛:分式中字母的取值使分式的值为0,需同时满足两个条件:(1)字母的取值使分子的值为0;(2)字母的取值使分母的值不为0.9.D解析:D【解析】解:A .原式=1,故A 错误;B .x 3与x 4不是同类项,不能进行合并,故B 错误;C .原式=a 4b 6,故C 错误;D .正确. 故选D .10.C解析:C【详解】解:a =20170=1,b =2015×2017﹣20162=(2016﹣1)(2016+1)﹣20162=20162﹣1-20162=﹣1,c =(﹣23)2016×(32)2017=(﹣23×32)2016×32=32,则b <a <c .故选C . 点睛:本题考查了平方差公式,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则及公式是解答本题的关键.11.B解析:B 【解析】解:0.00 004=5410-⨯.故选B .12.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .13.A解析:A 【解析】分析:原式各项利用幂的乘方,同底数幂的乘法,负整数指数幂法则,单项式除以单项式以及积的乘方计算得到结果,判断即可.详解:①236a a =() ,故①错误;②235a a a ⋅=,故②错误; ③2244mm-=,故③错误; ④523a a a -÷-=-()(),故④正确; ⑤33327a a -=-().故⑤错误.故选A .点睛:本题考查了整式的除法,幂的乘方与积的乘方,零指数幂、负整数指数幂,熟练掌握运算法则是解答本题的关键.14.B【解析】【分析】根据分式的基本性质即可求出答案.【详解】原式=1862333mn mn mn m n m n m n==⨯---故选B.【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.A解析:A【解析】试题分析:==;故选A.考点:分式的基本性质.16.B解析:B【分析】根据二次根式、分式有意义的条件可得关于x的不等式组,解不等式组即可得.【详解】解:由题意得:2010xx+≥⎧⎨-≠⎩,解得:x≥﹣2且x≠1,故选B.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.17.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.18.B解析:B 【解析】 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】0.0000105=1.05×10-5, 故选B . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.C解析:C 【解析】 【分析】根据必然事件的定义,二次根式的性质,最简分式的定义以及同类二次根式的定义进行判断. 【详解】①在一个装有2白球和3个红球的袋中摸3个球,摸到红球是必然事件,正确.②12a =--,则12a ≤-,错误;4== ④分式22a ba b -+是最简分式,正确;故选:C . 【点睛】本题主要考查了随机事件、二次根式以及命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.20.B解析:B 【解析】 【分析】首先根据一个数的平方的计算方法,负整数指数幂的运算方法,以及零指数幂的运算方法,分别求出a 、b 、c 、d 的大小;然后根据实数大小比较的方法,判断出它们的大小关系即可. 【详解】∵2221110.30.09,3,9,1933a b c d --⎛⎫⎛⎫=-=-=-=-=-==-= ⎪ ⎪⎝⎭⎝⎭, ∴10.09199-<-<<, ∴b <a <d <c . 故选:B . 【点睛】考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a -p =1pa (a≠0,p 为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a 0=1(a≠0);②00≠1.21.C解析:C 【解析】 【分析】根据零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式计算后判断各个选项即可. 【详解】①()011-=,正确; ②2113333--⨯==,正确;③当m 为偶数时,()()33mm x x -≠-,错误;④221124x x x ⎛⎫-=-+ ⎪⎝⎭,错误; ⑤(a -3b )(-3b -a )=2222(3)9b a b a --=-,错误. 故选C . 【点睛】本题考查了零指数幂、同底数幂的乘法、负整数指数幂的意义、积的乘方、完全平方公式、平方差公式.熟练掌握运算法则是解题的关键.22.B解析:B 【解析】 【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可. 【详解】A 、∵42=16=4,故本选项正确;B 、12100-110,故本选项错误;C 、∵(-3)3=-273=-,故本选项正确;D =2,故本选项正确.故选B . 【点睛】本题考查的是立方根及算术平方根,熟知立方根及算术平方根的定义是解答此题的关键.23.B解析:B 【解析】 【分析】根据任何非0数的零次幂等于1,1的任何次幂等于1,-1的偶数次幂等于1解答. 【详解】 当3-2t=0时,t=32,此时t-3=32-3=-32,(-32)0=1, 当t-3=1时,t=4,此时3-2t=2-3×4=-6,1-6=1, 当t-3=-1时,t=2,此时3-2t=3-2×2=-1,(-1)-1=-1,不符合题意, 综上所述,t 可以取的值有32、4共2个. 故选:B . 【点睛】本题考查了零指数幂,有理数的乘方,要穷举所有乘方等于1的数的情况.24.D解析:D 【解析】 【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】A、该分式的分子、分母中含有公因数2,则它不是最简分式.故本选项错误;B、分母为a(b+1),所以该分式的分子、分母中含有公因式(b+1),则它不是最简分式.故本选项错误;C、分母为(a+b)(a-b),所以该分式的分子、分母中含有公因式(a+b),则它不是最简分式.故本选项错误;D、该分式符合最简分式的定义.故本选项正确.故选D.【点睛】本题考查了对最简分式,约分的应用,关键是理解最简分式的定义.25.C解析:C【分析】直接利用零指数幂的性质以及有理数的乘方运算法则得出答案.【详解】解:∵(1-x)1-3x=1,∴当1-3x=0时,原式=1,当x=0时,原式=1,故x的取值有2个.故选C.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确掌握运算法则是解题关键.。

相关文档
最新文档