数阵图三讲解
数阵图(三)(含详细解析)
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.【考点】数阵图与数论 【难度】3星 【题型】填空 【关键词】迎春杯,三年级,初赛,第8题【解析】 设顶点分别为A 、B 、C 、D 、E ,有45+A +B +C +D +E =55,所以A +B +C +D +E =10,所以A 、B 、C 、D 、E 分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数列的首项为a 1,公差为d .利用求和公式5(a 1+a 1+4d )2=55, 得a 1+2d =11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d 分别为2、1和0.经试验都能填出来所以共有3中情况,例题精讲知识点拨教学目标5-1-3-3.数阵图公差分别为2、1、0.【答案】2种可能【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【考点】数阵图与数论【难度】4星【题型】填空【解析】根据题意可知1的两边只能是3与7;2的两边只能是6与9;3的两边只能是1、5或8;4的两边只能是7与9.可以先将3—1—7--写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3—1—7—4—9—2—6--,还剩下5和8两个数.由于6814+=是7的倍数,所以接下来应该是5,这样可得:3—1—7—4—9—2—6—5—8—3.检验可知这样的填法符合题意.【答案】3—1—7—4—9—2—6—5—8—3【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
四年级奥数:数阵图
四年级奥数:数阵图(一)我们在三年级已经学习过辐射型和封闭型数阵,其解题的关键在于“重叠数”。
本讲和下一讲,我们学习三阶方阵,就是将九个数按照某种要求排列成三行三列的数阵图,解题的关键仍然是“重叠数”。
我们先从一道典型的例题开始。
例1把1~9这九个数字填写在右图正方形的九个方格中,使得每一横行、每一竖列和每条对角线上的三个数之和都相等。
分析与解:我们首先要弄清每行、每列以及每条对角线上三个数字之和是几。
我们可以这样去想:因为1~9这九个数字之和是45,正好是三个横行数字之和,所以每一横行的数字之和等于45÷3=15。
也就是说,每一横行、每一竖列以及每条对角线上三个数字之和都等于15。
在1~9这九个数字中,三个不同的数相加等于15的有:9+5+1,9+4+2,8+6+1,8+5+2,8+4+3,7+6+2,7+5+3,6+5+4。
因此每行、每列以及每条对角线上的三个数字可以是其中任一个算式中的三个数字。
因为中心方格中的数既在一个横行中,又在一个竖列中,还在两对角线上,所以它应同时出现在上述的四个算式中,只有5符合条件,因此应将5填在中心方格中。
同理,四个角上的数既在一个横行中,又在一个竖列中,还在一条对角线上,所以它应同时出现在上述的三个算式中,符合条件的有2,4,6,8,因此应将2,4,6,8填在四个角的方格中,同时应保证对角线两数的和相等。
经试验,有下面八种不同填法:上面的八个图,都可以通过一个图的旋转和翻转得到。
例如,第一行的后三个图,依次由第一个图顺时针旋转90°,180°,270°得到。
又如,第二行的各图,都是由它上面的图沿竖轴翻转得到。
所以,这八个图本质上是相同的,可以看作是一种填法。
例1中的数阵图,我国古代称为“纵横图”、“九宫算”。
一般地,将九个不同的数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列和每条对角线上的三个数之和都相等,那么这样的图称为三阶幻方。
数阵图知识点总结
数阵图知识点总结数阵图在计算机科学中有很多应用,例如在图像处理中用来表示图像的像素信息,在数据库中用来存储和管理数据,还可以用来表示图形和网络的关系。
数阵图还可以用来做矩阵运算,包括加法、减法、乘法以及求逆等。
在算法和数据结构中,数阵图也是一个常见的数据结构,例如用来表示图形的邻接矩阵,解决网络流的最大流问题等。
数阵图可以用不同的方式表示和存储,例如用数组、链表、向量等数据结构来实现。
在不同的应用场景中,选择不同的表示和存储方式可以提高数据的访问效率和计算性能。
本文将从数阵图的基本定义、表示和存储、运算以及应用等方面进行介绍和总结。
1. 数阵图的基本定义数阵图可以定义为一个m行n列的二维数组,用来存储各种不同类型的数据。
在数学中,数阵图可以表示为一个m×n的矩阵,每个元素用Aij表示,其中i表示行号,j表示列号,Aij表示矩阵中第i行第j列的元素。
例如,一个3行4列的数阵图可以表示为:A11 A12 A13 A14A21 A22 A23 A24A31 A32 A33 A34在计算机科学中,数阵图也可以用数组、链表、向量等数据结构来表示和存储。
例如,可以用一维数组来表示一个m行n列的数阵图,数组的长度为m×n,其中每个元素对应矩阵中的一个元素。
也可以用链表来表示一个数阵图,每一行用一个链表节点来表示,节点中包含该行中的所有元素。
向量也是一种常见的数阵图表示方式,它可以用来表示稀疏矩阵,在稀疏矩阵中大部分元素为0,向量可以节省存储空间和提高计算性能。
2. 数阵图的表示和存储在计算机中,数阵图可以用不同的数据结构来表示和存储,选择不同的表示和存储方式可以根据实际应用场景来提高数据访问效率和计算性能。
常见的数阵图表示和存储方式包括数组、链表、向量等。
下面分别介绍各种方式的表示和存储方法:2.1 数组表示数组是一种连续存储的数据结构,可以用来表示和存储数阵图。
数组的优点是数据访问速度快,可以通过下标直接访问元素,缺点是数组的大小固定,不方便动态扩展。
乘法数阵图的方法和技巧
乘法数阵图的方法和技巧一、机械族的机械记忆法机械族的精灵口才很好,擅长读背。
因此,他们很喜欢反复读诵乘法口诀。
不过他们的方法很特别哦!1.竖着腰比如,一一得一,一二得二,一直背到一九得九,接着背二二得四,二三得六,一直到二九十八,然后是三三得九,三四十二,一直到三九二十七,如此类推,接下来,依次是四四十六的竖列、五五二十五的竖列、六六三十六的、七七四十九的、八八六十四的、最后九九八十一的。
这种方法有个规律,几的竖列,就逐渐增加几,可以按此规律帮助记忆。
2.横着腰比如第一横行,就一句一一得一;第二横行两句,一二得二,二二得四;往下类推,第几行就几句,最后九句,从一九得九到九九八十一。
这种方法也有个规律,第几行,后一句就比前一句增加几。
3.拐弯腰比如,首先背一二得二,此时接着背二二得四,这时拐弯向下背二三得六、二四得八、一直到二九十八;然后回到一三得三、二三得六、三三得九,再拐弯往下三四一十二,一直到三九二十七;如此类推,回到一四得四接着拐弯。
这样背的一个特点是,从一到九的口诀都有九句,几的口诀就逐渐增加几。
二、认知族的认知记忆法理解族的精灵擅长逻辑推理。
当他们能按顺序熟读口诀后,必然会有若干自己比较熟悉的口诀,例如: 二五一十、九九八十一等,将这些口诀作为参照物,可运用推算的方法很快找到与之相邻的乘法口诀,比如:8×9的结果想不出,则可思考“9个9减去一个9”,也就是“81-9=72”,当然得出结论后不能写上72就算了,还应把“8×9”的口诀在心里默念一遍,那么多经历几次这样的思考后,“八九七十二”这句也将成为铭记于心的口诀了。
这样以点带面,从若干口诀辐射到所以口诀,效果应该会比较明显。
三、对照族的对照记忆法对比族的精灵们擅长观察和比较。
于是他们发现了下面的规律。
得数相同的(乘数不重复)一四得四、二二得四一六得六、二三得六一八得八、二四得八二六十二、三四十二一九得九、三三得九三六十八、二九十八二八十六、四四十六三八二十四、六四二十四六六三十六、四九三十六两个乘数相同的一一得一、二二得四、三三得九、四四十六、五五二十五、六六三十六、七七四十九、八八六十四、九九八十一。
趣味数学—数阵图与幻方
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
小学奥数之数阵图解题方法(完整版)
小学奥数之数阵图解题方法1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。
【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】5-1-3-1.数阵图教学目标知识点拨例题精讲【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:a+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7. 说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数8765432187654321()(2)h gf ed c ba阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。
数阵图
数阵图
一、数阵图定义及分类:
定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.
数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.
二、解题方法:
解决数阵类问题可以采取从局部到整体再到局部的方法入手:
第一步:区分数阵图中的普通点(或方格)和关键点(或方格);
第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;
第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.
简单数阵图
一、辐射型数阵图
从一个中心出发,向外作若干条射线,在每条射线上安放同样多个数,使其和是一个不变的数。
突破关键:确定中心数,多算的次数,公共的和
数和+中心数×重复次数=公共的和×线数
数和:指所有要填的数字加起来的和
中心数:指中间那数字,即重复计算那数字
重复次数:中心数多算的次数,一般比线数少1
公共的和:指每条直线上几个数的和
线数:指算公共和的线条数
二、封闭型数阵图
多边形的每条边放同样多的数,使它们的和都等于一个不变的数。
突破关键:确定顶点上的数字,公共的和
数和+重叠数的和=公共的和×边数
数和、公共的和跟辐射型数阵图一样的意思
重叠数的和:指数阵图顶角重复算的数全加起来的和
边数:指封闭图形的边数。
第三讲 数阵图(一)doc
第三讲 数阵图(一)教室 姓名 学号【知识要点】数阵图是将一些数按照一定的要求排列而成的某种图形。
数阵图根据图形的形状特点,可以分为辐射型数阵图和封闭型数阵图。
辐射型:(1)仔细观察图形,找出关键位置。
关键位置通常是重叠数,也可叫做中间数;(2)把题目中提供的数字和所要填的空格和图形关系联系起来看,注意倍数关系;(3)计算方法:已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。
封闭型:(1)仔细观察图形,找出关键数(即重叠数)。
在封闭型数阵图中,关键数往往有几个;(2)把题目提供的数字和所要填的空格和图形联系起来看,注意总和的倍数关系;(3)计算方法:已知各数之和+重叠数之和=每边各数之和×边数;【经典例题】★例1:将1——5这五个数分别填入图中的空格内,使两条直线上的三个数之和相等,若中间数为5,该怎么填?★例2:将1——5这五个数分别填入图中的空格内,使横行、竖列三个数之和都等于9.★例3:将1——6分别填在图中,使每条边上三个圆圈内的数的和等于9.★★例4:把1——7填入下图中,使每条线段上的三个○内的数的和相等。
★★例5:将1~8个数分别填入图中,使每个圆圈上五个数和分别为20,21,22.★★★例6:在下图中填入合适的数,使三行、三列和两条对角线上的三个数的和都相等。
【池中戏水】★1、将1~9这九个数分别填入图中○内,使每条线段五个数的和等于23.★2、将1——5这五个数分别填入图中的圆圈内,使三角形每条边上的数之和都相等。
★3、把1~8个数分别填入○中,使每条边上三个数的和相等.★4、把1~11填入图中,使每条线上三个数的和相等.★5、把1~10填入图中,【江中畅游】★★1、将1——11这11个数分别填入图中的空格内,使横行、竖行、斜排上的几个数之和都等于14.★★2、在下图的空格内填上适当的数,使任意四个相邻格中的数的和等于22.【海中冲浪】★★★1、把0~9填入10个小三角形中,使每4个小三角形组成的大三角形的和相等.【温馨提示】下节课我们将学习鸡兔同笼(一),请作好预习。
四年级奥数详解答案-第3讲-数阵图
四年级奥数详解答案 第3讲第三讲 数阵图一、知识概要1. 数阵图就是把一些数字填入图形的某种位置上,并使数字满足一定的条件。
2. 数阵图的种类,大致分为三种:①封闭型数阵图;②开放型数阵图;③复合型数阵图3. 解数阵图的一般方法:(1) 分析隐含的数量关系和数字的位置关系,以特殊的位置为突破口,一般选用使用次数多的数作为关健数。
(2) 依据图中条件,建立所求的和与关健数的关系式,并通过讨论最大值与最小值,以及试验的方法确定关键数的数值及相等的和。
(3) 对其他部位上的数字一般都是作尝试选填,直至符合题为止二、典型例题精讲 1. 把1~6这6个数分别填在图中的○内,使每多边上三个○内的数字和相等。
分析指导: 21654321=+++++∴21+(a+b+c)=(a+d+b)+(b+f+c)+(a+e+c)a+d+b=b+f+c=a+e+c,且设a+d+b=k∴有:21+(a+b+c)=3k当a+b+c 为最小值,即1+2+3=6时,k=9当a+b+c 为最大值,即6+5+4=15时,k=12这样就可以确定,三角形每边上的三个○内的数字和在9~12之间解:(1)当k=9时,a+b+c=6,令a=1,b=2,c=3则:d=9-(2+1)=6 e=9-1-3=5 f=9-2-3=4其结果如以下图所示:(2)当k=10时,a+b+c=9, 则:a.b.c 的取值有三种可能:①a=1,b=2,c=6 ②a=1,b=3,c=5 ③a=2,b=3,c=4-----①种情况,a=1,b=2,c=6,则d=10-1-2=7 (不合题意,舍去)-----②种情况,a=1,b=3,c=5,则d=10-1-3=6,e=10-1-5=4;f=10-3-5=2,所以结果如下图。
------③种情况,a=2,b=3,c=4,则d=10-2-3=5,e=10-2-4=6, f=10-3-4=3, 与b=3重复,不合题意,舍去。
六年级第三讲 数阵图
六年级第三讲数阵图数阵是由幻方演化出来的另一种数字图。
幻方一般均为正方形。
图中纵、横、对角线数字和相等。
数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。
变幻多姿,奇趣迷人。
一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。
数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。
它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。
解数阵问题的一般思路是:1.求出条件中若干已知数字的和。
2.根据“和相等”,列出关系式,找出关键数——重复使用的数。
3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。
有时,因数字存在不同的组合方法,答案往往不是唯一的。
辐射型数阵图例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。
例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。
例3将从1开始的连续自然数填入各○中,使每条线上的数字和相等。
例4将1~9九个数字,填入下图各○中,使纵、横两条线上的数字和相等。
例5 将1~11十一个数字,填入下图各○中,使每条线段上的数字和相等。
封闭型数阵例1把2、3、4、5、6、7六个数字,分别填入○中,使三角形各边上的数字和都是12。
例2把1~9九个数字,分别填入下图○中,使每边上四个数的和都是21。
例3下图是四个互相联系的三角形。
把1~9九个数字,填入○中,使每个三角形中数字的和都是15。
例4 把2~10九个数字,分别填入下图○中,使每条直线上的三个数和为15。
例5 把1~10十个数字,分别填入下图○中,使每个三角形三个顶角的三个数字和相等。
例6 将1~12分别填入下图○中,使图中每个三角形周边上的六个数的和都相等。
例题7九个数分别填入下图○中,使每条直线上的三个数的和都相等。
例8 将1~8八个数字,分别填入下图○中,使每个小三角形顶点上三数之和为12。
数阵图讲义——精选推荐
54321 776655443322117654321a首先我们观察下图:图中有4个大圆,每个圆周上都有四个数字,神奇的是,每个圆周上的四个数字之和都等于20。
不信,你就算算。
上面这幅图就是数阵图。
把给定的一些数按一定的要求或规律填在特定形状的图形中,这样的图形叫做数阵图。
数阵图绚丽迷人,变化多端,引人入胜。
常见的主要有三种:(1)辐射型(2)封闭型(3)复合型。
一般说来,数阵图主要讨论以下两个问题:(1) 满足某种条件的填法是否存在;(2) 在填法存在的情况下,把待定的数字补充完整。
这一讲我们学习辐射型数阵图。
【例1】 把1~5这五个数分别填在下图中的方格中,使得横行三数之和与竖列三数之和都等于8。
【分析与解】这是辐射型数阵图。
你可能觉得这道题太简单了,七拼八凑就会写出正确答案。
可是,你明白其中的道理吗?下面我们就一起来探索其中的道理,只有弄清其中的道理,才可能解答更复杂巧妙的数阵图问题。
中间方格的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“中心数”。
用字母a 表示。
因为横行的三个数之和与竖列的三个数之和都等于8。
所以横行的三个数之和加上竖列的三个数之和为(8+8=)16,即(1+2+3+4+5)+a =8+8,整理得:15+a =16。
为什么还要加上a 呢?因为 a 是中心数,相加时一共被加了两次,其余各数均被加了一次。
在计算1+2+3+4+5时已计算了一次,所以最后还要加上a 。
解得:a =1求出了中心数。
其余各数就好填了。
如图所示。
【例2】 把1~7这七个数分别填入下图的各个方格内,使每条线段上三个○内数的和相等。
654321cba【分析与解】首先,我们分析一下,这七个○内的数中,哪几个数是关键?由图我们看到,在计算每条线段上三个数的和的过程中,都要用到中心数。
另外,还要知道每条线段上三个数的和是几。
所以,确定中心数和每条线段上三个数的和是解答本题的关键。
为此,我们设图中的中心数为a ,每条线段上三个○内数的和为k ,则 3k=(1+2+3+4+5+6+7)+2a3k=28+2a下面,我们利用上面得到的关系式3k=28+2a 来确定中心数a 的值。
数学教案 三年级-3 有趣的数阵图
教案
第一课时
第二课时
本讲教材答案
呈现问题
1、答:C的值为7。
2、答:B中应排的剑鱼条数为11条。
3、
答案不唯一,符合题意即可。
4、
答案不唯一,符合题意即可。
大胆闯关
1、答:A中应填9。
2、答:B中应填9。
3、答:A、B、C分别为1
4、9、10。
4、
答案不唯一,符合题意即可。
5、
答案不唯一,符合题意即可。
拓展延伸
1、
答案不唯一,符合题意即可。
2、
答案不唯一,符合题意即可。
补充题目
1、把1~9这9个数字分别填进9个小三角形中,使每4个小三角形组成的三角形内的4个数的和都等于20。
答案:
答案不唯一,符合题意即可。
2、把1~8这8个数填入下图中,使正方形对角线及正方形四个顶点上的数的和相等。
答案:
3、把1~8这8个数填入下图,使每边上的加、减、乘、除成立。
答案:。
小学奥数5-1-3-3 数阵图(三).专项练习
1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.数阵图与数论【例 1】 把0—9这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 种可能的取值.例题精讲知识点拨教学目标5-1-3-3.数阵图【例 2】将1~9填入下图的○中,使得任意两个相邻的数之和都不是3,5,7的倍数.【例 3】在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出).从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n≤8)。
则从这个圆圈开始顺时针走n步进入另一个圆圈.依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8.请给出两种填法.【例 4】在圆的5条直径的两端分别写着1~10(如图)。
现在请你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。
【例 5】图中是一个边长为1的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F位置上(例如:a b g f A+++=).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a g d⨯⨯=___________.【例 6】在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。
第三讲 数阵图要点
第三讲 数阵图一、知识点:一些数按照一定的规则,填在某一特定图形的规定位置上,这种图形,我们称它为“数阵图”,数阵图的种类繁多,绚丽多彩,这里只向大家介绍三种数阵图,即封闭型数阵图、辐射型数阵图和复合型数阵图。
在解答这类问题时,要善于确定所求的和与关键数字间的关系式,用试验的方法,找到相等的和与关键数字:要会对基本解中的数进行适当调整,得到其他的解,从而培养自己的观察能力,思维的灵活性和严密性。
二、典例剖析:例(1) 将1~6分别填在图中,使每条边上的三个○内的数的和都等于9.分析: 因为 1+2+3+4+5+6 = 21 ,而每条边上的三个数的和为9,则三条边上的和为 9×3 = 27 , 27-21 = 6 , 这个 6 就是由于三个顶点都被重复算了一次。
所以三个顶点的和为 6 ,在 1-----6中,只能选1、2、3 填入三个顶点中,再将4、5、6填入另外的三个圈即可。
解:a b . c .d .e .f .练一练:把1~8个数分别填入○中,使每条边上三个数的和相等.答案:例(2 )把1~7填入下图中,使每条线段上三个○内的数的和相等.分析: 中心圆填入的数设为x ,x 参与3条线的连加,设每条线数字和都为S.由题意:1+2+3+…+7+2x=3S 即28+2x=3S 或28+2x ≡0(mod 3) 借用同余工具,是在两个未知数的不定方程中先缩小x 应该取值的范围.在mod3情况下,只要试探x ≡0,1,2三个值,很轻松地解出:x ≡1(mod3),回复到x 取值范围为1,2,…,7.有x 1=1,x 2=4,x 3=7,得到:x 1=1,S 1=10;x 2=4,S 2=12;x 3=7,S3=14;由此看出关键在求S (公共和)及x (参与相加次数最多的圆中值).解: a . b练一练:把1~11填入图中,使每条线上三个数的和相等.答案:例(3)把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等。
数阵图(三)讲解
数阵图(三)讲解数阵图(三)讲解例1把20数阵图(三)讲解个○数阵图(三)讲解分析与解:由上图看出;三组数都包括左、右两端的数;所以每组数的中间两数之和必然相等。
20以内共有2;3;5;7;11;13;17;19八个质数;两两之和相等的有5+19=7+17=11+13;于是得到下图的填法。
例2在右图的每个方格中填入一个数字;使得每行、每列以及每条对角线上的方格中的四个数字都是1;2;3;4。
分析与解:如左下图所示;受列及对角线的限制;a处只能填1;从而b 处填3;进而推知c处填4;d处填3;e处填4;……右下图为填好后的数阵图。
例3将1~8填入左下图的○内;要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内。
分析与解:因为中间的两个○各自只与一个○不相邻;而2~7中的任何一个数都与两个数相邻;所以这两个○内只能填1和8。
2只能填在与1不相邻的○内;7只能填在与8不相邻的○内。
其余数的填法见右上图。
例4在右图的六个○内各填入一个质数(可取相同的质数);使它们的和等于20;而且每个三角形(共5个)顶点上的数字之和都相等。
分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○;又因为每个三角形顶点上的数字之和相等;所以每个三角形顶点上的数字之和为20÷2=10。
10分为三个质数之和只能是2+3+5;由此得到右图的填法。
例5在右图所示立方体的八个顶点上标出1~9中的八个;使得每个面上四个顶点所标数字之和都等于k;并且k不能被未标出的数整除。
分析与解:设未被标出的数为a;则被标出的八个数之和为1+2+…+9-a =45-a。
由于每个顶点都属于三个面;所以六个面的所有顶点数字之和为6k=3×(45-a);2k=45-a。
2k是偶数;45-a也应是偶数;所以a必为奇数。
若a=1;则k=22;若a=3;则k=21;若a=5;则k=20;若a=7;则k=19;若a=9;则k=18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数阵图三讲解
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
第18讲数阵图(三)
数阵问题是多种多样的,解题方法也是多种多样的,这就需要我们根据题目条件灵活解题。
例1把20以内的质数分别填入下图的一个○中,使得图中用箭头连接起来的四个数之和都相等。
分析与解:由上图看出,三组数都包括左、右两端的数,所以每组数的中间两数之和必然相等。
20以内共有2,3,5,7,11,13,17,19八个质数,两两之和相等的有
5+19=7+17=11+13,
于是得到下图的填法。
例2在右图的每个方格中填入一个数字,使得每行、每列以及每条对角线上的方格中的四个数字都是1,2,3,4。
分析与解:如左下图所示,受列及对角线的限制,a处只能填1,从而b 处填3;进而推知c处填4,d处填3,e处填4,……右下图为填好后的数阵图。
例3将1~8填入左下图的○内,要求按照自然数顺序相邻的两个数不能填入有直线连接的相邻的两个○内。
分析与解:因为中间的两个○各自只与一个○不相邻,而2~7中的任何一个数都与两个数相邻,所以这两个○内只能填1和8。
2只能填在与1不相邻的○内,7只能填在与8不相邻的○内。
其余数的填法见右上图。
例4在右图的六个○内各填入一个质数(可取相同的质数),使它们的和等于20,而且每个三角形(共5个)顶点上的数字之和都相等。
分析与解:因为大三角形的三个顶点与中间倒三角形的三个顶点正好是图中的六个○,又因为每个三角形顶点上的数字之和相等,所以每个三角形顶点上的数字之和为20÷2=10。
10分为三个质数之和只能是2+3+5,由此得到右图的填法。
例5在右图所示立方体的八个顶点上标出1~9中的八个,使得每个面上四个顶点所标数字之和都等于k,并且k不能被未标出的数整除。
分析与解:设未被标出的数为a,则被标出的八个数之和为1+2+…+9-a=45-a。
由于每个顶点都属于三个面,所以六个面的所有顶点数字之和为
6k=3×(45-a),
2k=45-a。
2k是偶数,45-a也应是偶数,所以a必为奇数。
若a=1,则k=22;
若a=3,则k=21;
若a=5,则k=20;
若a=7,则k=19;
若a=9,则k=18。
因为k不能被a整除,所以只有a=7,k=19符合条件。
由于每个面上四个顶点上的数字之和等于19,所以与9在一个面上的另外三个顶点数之和应等于10。
在1,2,3,4,5,6,8中,三个数之和等于10的有三组:
10=1+3+6
=1+4+5
=2+3+5,
将这三组数填入9所在的三个面上,可得右图的填法。