【全国市级联考】湖北省黄冈市2017-2018学年高二上学期期末考数学(理)试题(解析版)
湖北省黄冈市高二数学上学期期末考试试题理(扫描版)

2015年秋季高二期末考试数学参考答案(理科)一、选择题 DADBB DCBAC AD二、 13.16 14.13a -≤≤. 15.3 16.① ④ 17.(1)检测数据的频率分布直方图如图:...........................................5分(2)检测数据中醉酒驾驶的频率是210.1520+=...............................6分 估计检测数据中酒精含量的众数是35与55................................8分 估计检测数据中酒精含量的平均数是0.01510250.020⨯⨯+⨯⨯+⨯⨯+⨯⨯0.01010650.01510750.01010850.005109555+⨯⨯+⨯⨯+⨯⨯+⨯⨯=.....................10分18.(1)由22430x ax a -+<,得(3)()0x a x a --<,又0a >,所以3a x <<. ...............................2分当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<................................3分由2260280x x x x ⎧--≤⎨+->⎩得2324x x x -≤≤⎧⎨><-⎩或得23x <≤,即q为真时实数x 的取值范围是23x <≤. ...............................4分 若p q ∧为真,则p 真且q 真,.. .............................5分 所以实数x 的取值范围是23x <<. ...............................6分 (2)p ⌝是q ⌝的充分不必要条件,即p q ⌝⇒⌝,且q ⌝推不出p ⌝. 即q是p的充分不必要条件,2,3]⊂即((a,3a) ...............................8分则332a a >⎧⎨≤⎩,解得12a <≤,所以实数a 的取值范围是12a <≤..............................12分19.(Ⅰ)前三次射击成绩依次记为123x x x 、、,后三次成绩依次记为123y y y 、、,从这6次射击成绩中随机抽取两个,基本事件是:121323{,},{,},{,},x x x x x x 121323{,},{,},{,},y y y y y y 111213{,},{,},{,},x y x y x y 212223{,},{,},{,},x y x y x y 313233{,},{,},{,}x y x y x y ,共1个,...............................3分其中可使||1a b ->发生的是后9个基本事件.故93(||1)155P a b ->==.……………6分 (Ⅱ)因为着弹点若与A B C 、、的距离都超过1cm ,则着弹点就不能落在分别以A B C、、为中心,半径为1cm 的三个扇形区域内,只能落在扇形外的部分................................7分 因为43cos sin 55C C =∴=则1=2ABC S C ∆⨯⨯⨯=...............................9分满足题意部分的面积为211922ABC S S ππ∆'=-⨯⨯=-,...............................11分故所求概率为118ABCS p S π∆'==-. ……………12分20(1)∵()0,2F ,4p =, ∴ 抛物线方程为y x 82=,...............................1分与直线22y x =+联立消去y 得: 016162=--x x ,设),(),,(2211y x B y x A (2)分 则16,162121-==+x x x x ,...............................3分 ∴=++=++=)42)(42()2)(2(||||2121x x y y BF AF 80;...............................5分(2)假设存在,由抛物线py x 22=与直线22y x =+联立消去y 得:0442=--p px x 设),(),,(2211y x B y x A ,0,∆>则p x x p x x 4,42121-==+,...............................7分)24,2(+p p P),2,2(p p Q (8)分方法一,22+=∴p PQ ...................................................9分p p p p AB +⋅=+⋅=225416)4(5 又...............................10分∴=AB PQ 21且01342=-+p p )(141舍或-==p p ...............................11分 故存在14p =0.∆>且满足 ......................12分 方法二:由=⋅QB QA 得:0)2)(2()2)(2(2121=--+--p y p y p x p x ................9分即1212(2)(2)(222)(222)0x p x p x p x p --++-+-=,...............................10分 ∴0488))(64(522121=+-++-+p p x x p x x , ...............................11分代入得01342=-+p p ,)(141舍或-==p p .故存在0.∆>且满足 14p =.........12分 21.试题分析:(1)证明:在图中,由题意可知,,BA PD ABCD ⊥为正方形,所以在图中,,2SA AB SA ⊥=,四边形ABCD 是边长为2的正方形, ........................................2分 因为S B⊥,AB⊥BC ,所以BC⊥平面SAB , . .............................4分又SA ⊂平面SAB ,所以BC ⊥SA ,又SA ⊥AB ,所以SA ⊥平面ABCD , ........6分 (2)方法一:建立空间直角坐标系,以AB x AD y AS 为轴,为轴,为Z 轴,.....7分(000),(220),(020),(002)A C D S ,,,,,,,, 124,(0)333SE SD E =∴ ,, (8)分24(220),(0),(002)(,,)33AC AE AS AEC n x y z ==== 则,,,,,,设平面的法向量为0,0(2,2,1)n AC n AE n ⋅=⋅==-得.....................10分,ACD AS θ又平面的法向量为设二面角为,则1cos ,tan 2 2.3n AS n ASθθ⋅==∴=⋅ 即二面角E —AC —D 的正切值为22..............12分方法二:在AD 上取一点O ,使13AO AD =,连接EO因为13SE SD =,所以EO//SA 所以EO ⊥平面ABCD ,过O 作OH ⊥AC 交AC 于H ,连接EH , ...7分则AC ⊥平面EOH ,所以AC ⊥EH 。
【湖北省黄冈市】2017届高三上学期期末考试数学(理)试卷-答案

f x=(0,)+∞'()0+∞f x(0,)()如有图.=0a klny x<<右图,ln x1湖北省黄冈市2017届高三上学期期末考试数学(理)试卷解析1.【解析】试题分析:因为,所以;故选D.1考点:复数的概念。
2.考点:1.四种命题;2.充分条件和必要条件。
3.考点:程序框图。
4.【解析】试题分析:显然,当时,,即,故排除选项A.B,当时,,即,故排除选项D;故选C.1考点:函数的图象和性质。
5.考点:1.不等式组与平面区域;2.非线性规划问题。
6.【解析】试题分析:由三视图可知,该几何体是由一个半球和一个圆台(上底面与球的大圆面重合)组成,其中半球的半径为2,其曲面面积为,圆台的底面半径分别为2,3,高为4,母线长为,则侧面积为,下底面的面积为,则该几何体的表面积为;故选D.1考点:1.三视图;2.几何体的表面积。
7.试题分析:不妨设,则,即直线与所成的角为;故选D..考点:1.配角公式;2.三角函数的图象与性质。
试题分析:因为函数是定义在上的偶函数,为奇函数,所以函数既关于直线对称,也关于直线对称,则函数是以为周期的周期函数,由题意,将化为R()1f x+()122f x f⎛⎫+= ⎪⎝⎭,即,解得;故选B.1考点:1.函数的性质;2.对数式的运算。
11.【解析】试题分析:由题意得,边长为1的正三角形共有个,边长为2的正三角形共有3个,边长为3的正三角形共有1个,边长为的正三角形共有2个,综上,共有个正三角形;故选C.考点:归纳推理。
112.,所以在左侧,所以,所以,所以,所以,即④正确;故选A.考点:导数在研究函数中的应用。
第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
13.考点:1.分段函数;2.一元二次不等式。
14.【解析】试题分析:由二项式定理得,多项式的展开式中的系数为;故填-6480.1考点:二项式定理。
15.【解析】试题分析:由题意得,四个角空的面积为,滚动矩形区域的面积为,则滚动区域面积为,由几何概型的概率公式,得某人向该长方形盘投掷一枚飞镖,则能射中小圆盘运行区域内的概率为;故填。
湖北省黄冈市2018届高三上学期期末考试(元月调研)数学(理)试题(图片版)

数学参考答案(理科)
一、选择题 ACBBB CDBDD AB
9.D 【解析】本题考查指数函数和对数函数的性质.由-1<c<0 得 0<|c|<1,又 a>b>1, ∴<<0, ->->0, a>b>1>0,∴-a>-b, 即 b>a.故选 D. 11.A 【解析】本题考查抛物线的定义及抛物线的几何性质.由题设知抛物线 y =2px 的准线 p y2 2 3p23p2 为 x=- 2,代入双曲线方程 3 -x =1 解得 y=± 4 ,由双曲线的对称性知△MNF 为等腰直角 π 三角形,∴∠FMN=4, ∴tan∠FMN= 3p23p23p2 3p2 2 4 =1,∴p =3+ 4 ,即 p=2,故选 A.
2
5 1 12.B【解析】本题考查三角函数变换及导数的应用.由 f(x)= - 6x- 12cos2x+m(sinx-cosx) 5 1 在(-∞,+∞)上单调递减知,f′(x)= - 6+ 6sin2x+m(cosx+sinx)≤0 在(-∞,+∞)上恒成立, 令 t=sinx+cosx, 1 2 1 2 2 t∈[-,].则 sin2x=t -1,即6t +mt-1≤0 对 t∈[-,]恒成立,构造函数 g(t)= 6t +mt-1,则 g(t) 11 m-1≤011 的图象开口向上,从而函数 g(t)在区间[-,]上的最大值只能为端点值,故只需32 2 32 1 m-1≤0. 2 2 ∴- 3 ≤m≤ 3 ,故选 B. 二、填空题 13.32 14.2 15.-10 16. 1.53 2018 2 2018 14.2 【解析】 本题考查二项式定理的应用及导数的计算.将(1-ax) =a0+a1x+a2x +„+a2018x 2017 2 2017 两边同时对 x 求导得 2018(1-ax) (-a)=a1+2a2x+3a3x +„+2018a2018x ,令 x=1 得 2017 2017 -2018a(1-a) =a1+2a2+3a3+„+2018a2018=2018a,又 a≠0,所以(1-a) =-1,1-a=-1,故 a=2.答 案:2. 15.-10【解析】本题考查等比数列的性质及等差数列求和公式 .由于{an}是正项等比数列, 设 an=a1q ,其中 a1 是首项,q 是公比. 5 55 则168 5 55 1 n-5 168 ,解得 16q=2.故 an=2 ,∴=
2017-2018学年湖北省黄冈市高二(上)期末数学试卷(理科)(解析版)

2017-2018学年湖北省黄冈市高二(上)期末数学试卷(理科)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.(5分)已知命题p:∀x>0,总有(x+1)e x>1,则¬p为()A.∃x0≤0,使得(x0+1)≤1B.∃x0>0,使得(x0+1)≤1C.∀x>0,总有(x+1)e x≤1D.∀x≤0,总有(x+1)e x≤12.(5分)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球B.至少有一个白球;红、黑球各一个C.恰有一个白球;一个白球一个黑球D.至少有一个白球;都是白球3.(5分)中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A.2B.4C.5D.64.(5分)“3<m<7”是“方程+=1的曲线是椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分条件又不必要条件5.(5分)某同学同时抛掷两颗骰子,得到的点数分别记为a、b,则双曲线﹣=1的离心率e的概率是()A.B.C.D.6.(5分)宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.图是源于其思想的一个程序框图,若输入的a,b分别为4,2,则输出的n等于()A.2B.3C.4D.57.(5分)已知,则的最小值是()A.B.C.D.8.(5分)如图,已知棱长为1的正方体ABCD﹣A1B1C1D1中,E是A1B1的中点,则直线AE与平面ABC1D1所成的角的正弦值是()A.B.C.D.9.(5分)在去年的足球甲A联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1,;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有()①平均来说一队比二队防守技术好;②二队比一队技术水平更稳定;③一队有时表现很差,有时表现又非常好;④二队很少不失球.A.1个B.2个C.3个D.4个10.(5分)直线4kx﹣4y﹣k=0与抛物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于()A.B.2C.D.411.(5分)给出以下命题,其中真命题的个数是()①若“¬p或q”是假命题,则“p且¬q”是真命题②命题“若a+b≠5,则a≠2或b≠3”为真命题③已知空间任意一点O和不共线的三点A,B,C,若,则P,A,B,C四点共面;④直线y=k(x﹣3)与双曲线交于A,B两点,若|AB|=5,则这样的直线有3条;A.1B.2C.3D.412.(5分)已知抛物线x2=2py和﹣y2=1的公切线PQ(P是PQ与抛物线的切点,未必是PQ与双曲线的切点)与抛物线的准线交于Q,F(0,),若|PQ|=|PF|,则抛物线的方程是()A.x2=4y B.x2=2y C.x2=6y D.x2=2y二、填空题(共4小题,每小题5分,满分20分)13.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为.14.(5分)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中m的值为.15.(5分)已知a∈R,直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1分别与圆E:(x﹣a)2+(y﹣1)2=4相交于A、C和B、D,则四边形ABCD的面积为.16.(5分)过原点作一条倾斜角为θ的直线与椭圆交于A、B两点,F为椭圆的左焦点,若AF⊥BF,且该椭圆的离心率,则θ的取值范围为.三、解答题(共6小题,满分70分)17.(10分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组[13,14),第二组[14,15),第五组[17,18],如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的中位数、平均数.18.(12分)已知命题p:方程x2+y2﹣2mx+2m2﹣2m=0表示圆;命题q:双曲线﹣=1的离心率e∈(1,2),若命题“p∧q”为假命题,“p∨q”为真命题,求实数m的取值范围.19.(12分)已知直线l:x﹣y+3=0被圆C:(x﹣a)2+(y﹣2)2=4(a>0)截得的弦长为,求:(1)a的值;(2)求过点(3,5)并与圆C相切的切线方程.20.(12分)某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n的值;(2)把在前排就坐的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,P A⊥平面ABCD,点M,N分别为BC,P A的中点,且AB=AC=1,AD=.(Ⅰ)证明:MN∥平面PCD;(Ⅱ)设直线AC与平面PBC所成角为α,当α在内变化时,求二面角P﹣BC ﹣A的取值范围.22.(12分)在圆x2+y2=4上任取一点M,过点M作x的垂线段MD,D为垂足.,当点M在圆上运动时(1)求N点的轨迹方程Γ;(2)若A(2,0),直线l交曲线Γ于E、F两点(点E、F与点A不重合),且满足AE ⊥AF.O为坐标原点,点P满足,求直线AP的斜率的取值范围.2017-2018学年湖北省黄冈市高二(上)期末数学试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1.【解答】解:根据全称命题的否定为特称命题可知,¬p为∃x0>0,使得(x0+1)≤1,故选:B.2.【解答】解:袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A 不成立;在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C 不成立;在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.故选:B.3.【解答】解:由茎叶图可得,诗词能手”的称号有16人,据该次比赛的成就按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为10×=4人,故选:B.4.【解答】解:若方程+=1的曲线是椭圆,则,即,即3<m<7且m≠5,即“3<m<7”是“方程+=1的曲线是椭圆”的必要不充分条件,故选:B.5.【解答】解:由题意知本题是一个古典概型,∵试验发生包含的事件是同时掷两颗骰子,得到点数分别为a,b,共有6×6=36种结果满足条件的事件是e=>∴b>a,符合b>a的情况有:当a=1时,有b=3,4,5,6四种情况;当b=2时,有a=5,6两种情况,总共有6种情况.∴概率为=.故选:A.6.【解答】解:模拟程序的运行,可得a=4,b=2,n=1,a=6,b=4,不满足循环的条件a≤b,执行循环体,n=2,a=9,b=8不满足循环的条件a≤b,执行循环体,n=3,a=13.5,b=16满足循环的条件a≤b,退出循环,输出n的值为3.故选:B.7.【解答】解:∵=(2,t,t)﹣(1﹣t,2t﹣1,0)=(1+t,1﹣t,t),∴==.故当t=0时,有最小值等于,故选:C.8.【解答】解:以D为原心,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系D﹣xyz,∵正方体ABCD﹣A1B1C1D1的棱长为1,E是A1B1的中点,∴A(1,0,0),E(1,,1),B(1,1,0)D1(0,0,1),∴=(0,,1),=(0,1,0),=(﹣1,0,1),设平面ABC1D1的法向量,则=0,=0,∴,∴,设直线AE与平面与平面ABC1D1所成的角为θ,则sinθ=|cos<>|=||=.故选:D.9.【解答】解:在①中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,∴平均说来一队比二队防守技术好,故①正确;在②中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故②正确;在③中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故③正确;在④中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,∴二队很少不失球就是二队经常失球,故④正确.故选:D.10.【解答】解:直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离==2∴弦AB的中点到直线x+=0的距离等于2+=故选:C.11.【解答】解:对于①,若“¬p或q”是假命题,则它的否定是“p且¬q”,它是真命题,①正确;对于②,命题“若a+b≠5,则a≠2或b≠3”,它的逆否命题是“若a=2且b=3,则a+b=5”,且为真命题,∴原命题也是真命题,②正确;对于③,由++=1,且,∴P,A,B,C四点共面,③正确;对于④,由双曲线方程知a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点;又双曲线的两个顶点之间的距离是2a=4,且a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,即k=0时2a=4,∴满足|AB|=5的直线有2条,当直线与实轴垂直时,即x=c=3时,得﹣=1,即y2=,则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,不满足条件;综上可知有2条直线满足|AB|=5,④错误.综上所述,正确的命题序号是①②③,有3个.故选:C.12.【解答】解:如图过P作PE⊥抛物线的准线于E,根据抛物线的定义可知,PE=PF∵|PQ|=|PF|,在Rt△PQE中,sin,∴,即直线PQ的斜率为,故设PQ的方程为:y=x+m(m<0)由消去y得.则△1=8m2﹣24=0,解得m=﹣,即PQ:y=由得,△2=8p2﹣8p=0,得p=.则抛物线的方程是x2=2y.故选:B.二、填空题(共4小题,每小题5分,满分20分)13.【解答】解:由于每位同学参加各个小组的可能性相同,故这两位同学同时参加一个兴趣小组的概率为3×(×)=,故答案为.14.【解答】解:∵根据所给的表格可以求出,∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=3,故答案为:315.【解答】解:由题意,直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1,交于圆心(a,1),且互相垂直,∴四边形ABCD是正方形,∴四边形ABCD的面积为4××2×2=8,故答案为:8.16.【解答】解:设右焦点F′,连结AF′,BF′,得四边形AFBF′是矩形,∵AF+AF′=2a,AF+BF=2a,OF=c,∴AB=2c,∵∠BAF=θ,∴AF=2c•cos,BF=2c•sin,∴2c sin+2c cos=2a,∴==,∵该椭圆的离心率,∴,∵θ∈[0,π),∴.∴θ的取值范围是[,].故答案为:[,].三、解答题(共6小题,满分70分)17.【解答】解:(1)学校1800名学生中,成绩属于第四组的人数1×0.32×1800=576人.(2)样本在这次百米测试中成绩良好的人数是:1×0.06×50+1×0.16×50=3+9=11人.(3)因为数据落在第一、二组的频率=1×0.06+1×0.16=0.22<0.5;数据落在第一、二、三组的频率=1×0.06+1×0.16+1×0.38=0.6>0.5;所以中位数一定落在第三组[15,16)中.假设中位数是x,所以1×0.06+1×0.16+(x﹣15)×0.38=0.5;解得中位数x=29919≈15.7368≈15.74;平均数为:13.5×0.06+14.5×0.16+15.5×0.38+16.5×0.32+17.5×0.08=15.7.18.【解答】解:若命题p:方程x2+y2﹣2mx+2m2﹣2m=0表示圆为真命题,则(x﹣m)2+y2=2m﹣m2>0,解得0<m<2.若命题q:双曲线﹣=1的离心率e∈(1,2),为真命题,则∈(1,2),解得0<m<15.∵命题“p∧q”为假命题,“p∨q”为真命题,∴p与q必然一真一假.∴,或,解得2≤m<15或∅.综上可得:实数m的取值范围是[2,15).19.【解答】解:(1)依题意可得圆心C(a,2),半径r=2,则圆心到直线l:x﹣y+3=0的距离,由勾股定理可知,代入化简得|a+1|=2,解得a=1或a=﹣3,又a>0,所以a=1;(2)由(1)知圆C:(x﹣1)2+(y﹣2)2=4,又(3,5)在圆外,①当切线方程的斜率存在时,设方程为y﹣5=k(x﹣3),由圆心到切线的距离d=r=2,可解得,切线方程为5x﹣12y+45=0;②当过(3,5)斜率不存在,易知直线x=3与圆相切,综合①②可知切线方程为5x﹣12y+45=0或x=3.20.【解答】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.21.【解答】(Ⅰ)证明:取PD中点Q,连接NQ、CQ,因为点M,N分别为BC,P A的中点,所以NQ∥AD∥CM,,∴四边形CQNM为平行四边形,∴MN∥CQ,又MN⊄平面PCD,CQ⊆平面PCD,所以MN∥平面PCD;(Ⅱ)解:连接PM,∵AB=AC=1,点M分别为BC的中点,∴AM⊥BC,又∵P A⊥平面ABCD,∴PM⊥BC,∴∠PMA即为二面角P﹣BC﹣A的平面角,记为φ,又AM∩PM=M,所以BC⊥平面P AM,则平面PBC⊥平面P AM,过点A在平面P AM内作AH⊥PM于H,则AH⊥平面PBC.连接CH,于是∠ACH就是直线AC与平面PBC所成的角α.在Rt△AHM中,;又∵在Rt△AHC中,AH=sinα,∴.∵,∴,.又,∴.即二面角P﹣BC﹣A取值范围为.22.【解答】解:(1)设N(x,y),则D(x,0).∵.,∴M.由点M在圆x2+y2=4,可得:x2+=4,化为:.(2)①当直线l垂直于x轴时,由消去y整理得7x2﹣16x+4=0,解得或2,此时,直线AP的斜率为0;………………(5分).②当直线l不垂直于x轴时,设E(x1,y1),F(x2,y2),直线l:y=kx+t(t≠﹣2k),由,消去y整理得(3+4k2)x2+8ktx+4t2﹣12=0,………………(6分)依题意△=64k2t2﹣4(3+4k2)(4t2﹣12)>0,即4k2﹣t2+3>0(*),且,,…………………(7分)又AE⊥AF,所以=,所以7t2+4k2+16kt=0,即(7t+2k)(t+2k)=0,解得满足(*),………………(8分)所以=(x1+x2,y1+y2)=,故,…(9分)故直线AP的斜率=,………………(10分)当k<0时,,此时;当k>0时,,此时;综上,直线AP的斜率的取值范围为.…………………………………(12分)。
湖北省黄冈市2017-2018学年高二期末考试数学试题

【市级联考】湖北省黄冈市2020-2021学年高二期末考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.对两位同学的10次数学测试成绩进行统计,作出的茎叶图如图所示,由图可知,成绩更稳定的同学是( )A .甲B .乙C .甲乙同学D .无法确定2.任意抛两枚一元硬币,记事件p :恰好一枚正面朝上;q :恰好两枚正面朝上;l :恰好两枚正面朝下;m :至少一枚正面朝上;n :至多一枚正面朝上,则下列事件为对立事件的是( ) A .p 与qB .l 与mC .q 与lD .l 与n3.已知双曲线方程为22194x y -=,则其焦点到渐近线的距离为( )A .2B .3C .4D .64.点A ,B 的坐标分别是()1,0-,()1,0,直线AM 与BM 相交于点M ,且直线AM 与BM 的斜率的商是()λλ1≠,则点M 的轨迹是( ) A .直线B .圆C .椭圆D .抛物线5.下列命题中的假命题是( )A .对于命题,2000:,0p x R x x ∃∈+≤,则2:,0p R x x ⌝∀∈+>B .“3x =”是“230x x -=”的充分不必要条件C .若命题p q ∨为真命题,则,p q 都是真命题D .命题“若2320x x -+>,则2x >”的逆否命题为:“若2x ≤,则2320x x -+≤” 6.若曲线2y x mx n =++在点(0,n )处的切线方程x-y+1=0,则( ) A .m 1=,n 1= B .1m =-,n 1= C .m 1=,n 1=-D .m 1=-,n 1=-7.某调查机构对本市小学生课业负担情况进行了调查,设平均每人每天做作业的时间为x 分钟,有1200名小学生参加了此项调查,调查所得到的数据用程序框图处理(如图),若输出的结果是840,若用样本频率估计概率,则平均每天做作业的时间在0~60分钟内的学生的概率是( )A .0.32B .0.36C .0.7D .0.848.南北朝时期的数学家祖冲之,利用“割圆术”得出圆周率π的值在3.1415926与301415927之间,成为世界上第一把圆周率的值精确到7位小数的人,他的这项伟大成就比外国数学家得出这样精确数值的时间,至少要早一千年,创造了当时世界上的最高水平.我们用概率模型方法估算圆周率,向正方形及其内切圆随机投掷豆子(豆子大小忽略不计),在正方形中的1000颗豆子中,落在圆内的有782颗,则估算圆周率的值为( ) A .3.118B .3.148C .3.128D .3.1419.函数()y f x =导函数()´y fx =的图像如图,则函数()y f x =( )A .有一个极大值与一个极小值B .只有一个极小值C .只有一个极大值D .有两个极小值和一个极大值10.已知双曲线22221(,0)x y a b a b-=>>,过其左焦点F 作x 轴的垂线,交双曲线于A ,B 两点,若双曲线的右顶点在以AB 为直径的圆内,则此双曲线离心率的取值范围是( ) A .31,2⎛⎫⎪⎝⎭B .()1,2C .()2,+∞D .3,2⎛⎫+∞⎪⎝⎭11.2021年秋季,我省高一年级全面实行新高考政策,为了调查学生对新政策的了解情况,准备从某校高一,,A B C 三个班级抽取10名学生参加调查.已知,,A B C 三个班级学生人数分别为40人,30人,30人.考虑使用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按,,A B C 三个班级依次统一编号为1,2,…,100;使用系统抽样,将学生统一编号为1,2,…,100,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,17,27,37,47,57,67,77,87,97;②3,9,15,33,43,53,65,75,85,95; ③9,19,29,39,49,59,69,79,89,99,;④2,12,22,32,42,52,62,73,83,96. 关于上述样本的下列结论中,正确的是( ) A .①③都可能为分层抽样 B .②④都不能为分层抽样 C .①④都可能为系统抽样D .②③都不能为系统抽样12.设函数()f x 是定义在R 上的奇函数,()f x '为其导函数,已知(1)0f =,当0x >时()?()0f x x f x '+<,则不等式•()0x f x >的解集为( ) A .()()1,00,1- B .()()1,01,-⋃+∞C .()(),11,-∞-⋃+∞D .()(),10,1-∞-⋃二、填空题 13.曲线sinxyx=在点(),0π处切线的斜率为____. 14.一个车间为了规定工作原理,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:由表中数据,求得线性回归方程0.6ˆ5ˆyx a =+,根据回归方程,预测加工70个零件所花费的时间为___分钟.15.有三张卡片编号,,A B C ,卡片上分别写有数字1和2,1和3,2和3,甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是1”,乙看了丙的卡片后说:“我与丙的卡片上上相同的数字是1”,丙说:“我的卡片上的数字之和大于3”,则甲取走的卡片编号为_(填,,A B C ). 16.给出下列三个命题,其中所有错误命题的序号是______.①抛物线2y 8x =的准线方程为y 2=;②过点()M 2,4作与抛物线2y 8x =只有一个公共点的直线t 仅有1条;P ③是抛物线2y 8x =上一动点,以P 为圆心作与抛物线准线相切的圆,则这个圆一定经过一个定点()Q 2,0.三、解答题17.已知直线:20l x y -=与圆22:50C x y +=相交于,A B (点A 在点B 的右侧)两点.(1)求交点,A B 的坐标;(2)若点()1,0D ,求ABD ∆的面积.18.已知命题p :方程22167x y m m-=+-表示椭圆,命题2:,2210q x R mx mx m ∃∈++-≤.(1)若命题q 为真,求实数m 的取值范围; (2)若p q ∨为真,p ⌝为真,求实数m 的取值范围.19.为了了解我市参加2021年全国高中数学联赛的学生考试结果情况,从中选取60名同学将其成绩(百分制,均为正数)分成[)[)[)[)[)[)40,50,50,60,60,70,70,80,80,90,90,100六组后,得到部分频率分布直方图(如图),观察图形,回答下列问题:(1)求分数在[)70,80内的频率,并补全这个频率分布直方图; (2)根据频率分布直方图,估计本次考试成绩的众数、中位数、均值.20.(1)已知函数2()4f x ax x b =+-,其中{},2,1,1,2a b ∈--,求函数()f x 的图象恰好经过第一、二、三象限的概率;(2)某校早上8:10开始上课,假设该校学生小张与小王在早上7:30~8:00之间到校,且每人到该时间段内到校时刻是等可能的,求两人到校时刻相差10分钟以上的概率.21.已知椭圆C :22x y 142+=,直线l :y kx 1=+,若椭圆C 上存在两个不同的点P ,Q 关于l 对称,设PQ 的中点为M .()1证明:点M 在某定直线上; ()2求实数k 的取值范围.22.设函数()2ln ,f x ax x x a R =+∈.(1)若函数()f x 在(20,e ⎤⎦上单调递减,求实数a 的取值范围;(2)当2a =时,若不等式()()2t x f x -≤在()2,x ∈+∞上恒成立,求满足条件的t 的最大整数值.(参考值:ln 20.7≈,ln3 1.1≈,ln5 1.6≈).参考答案1.B 【解析】 【分析】由茎叶图的特征可直接判断出结果。
最新-湖北省黄冈中学2018学年高二数学上学期期末考试

湖北省黄冈中学2018年秋季高二期末考试数 学 试 题(理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.)1.已知命题p :N n ∈∃,10002>n ,则p ⌝为( )A .N n ∈∀,10002≤nB .N n ∈∀,10002>nC .N n ∈∃,10002≤nD .N n ∈∃,10002<n2.已知2~(0,)(20)0.4,(2)N P P ξσξξ-≤≤=>且则的值为( )A .1.0B .2.0C .3.0D .4.03.ABCD 为长方形,2=AB ,1=BC ,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A .4π B.14π- C.8π D.18π-4.已知n x x)1(- 的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于( )A. 20-B.20C.15-D.155.在如图所示的流程图中,若输入值分别为0.820.82,(0.8),log 1.3a b c ==-=,则输出的数为( )A .aB .bC .cD .不确定6.大熊猫活到十岁的概率是8.0,活到十五岁的概率是6.0,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是( )A .48.0B .6.0C .75.0D .347.过椭圆15622=+y x 内的一点)1,2(-P 的弦,恰好被P 点平分,则这条弦所在的直线方程是( )A .01335=--y xB .01335=-+y xC .01335=+-y xD .01335=++y x8.右图实线是函数()(02)y f x x a =≤≤的图象,它关于点),(a a A 对称. 如果它是一条总体密度曲线,则正数a 的值为( )A B .1 C .2 D 9.现有1角、2角、5角、1元、2元、5元、10元、20元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( )A .1184种B .1183种C .1536种D .1535种10. 如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A. 直线B. 圆C. 双曲线D. 抛物线二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.)11.为了检验某种产品的质量,决定利用随机数表法从300件产品中抽取5件检查,300件产品编号为000,001,018,…,299,下图为随机数表的第7行和第8行,若选择随机数表第7行第5列作为起始数字,并向右读数,得到的样本号码为 .第7行 84 42 17 53 31 57 24 55 18 88 77 18 74 47 67 21 76 33 50 25 83 92 12 18 76 第8行63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 18 44 39 52 38 7912.抛物线22x y =的焦点坐标为 .13. 设一次试验成功的概率为p ,进行100次独立重复试验,则成功次数的标准差的最大值为 .14.从10名女生和5名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,则组成此课外学习小组的概率是 .15.已知抛物线22(0)y px p =>与双曲线22221(0,0)x y a b a b -=>>有相同的焦点F ,点A 是两曲线的交点,且AF ⊥x 轴,则双曲线的离心率是 .三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分12分)某市5000名学生参加高中数学毕业会考,得分均在60分以上,现从中随机抽取一个容量为500的样本,制成如图1所示的频率分布直方图. (Ⅰ)由频率分布直方图可知本次会考的数学平均分为81分,请估计该市得分在区间]70,60[的人数;(Ⅱ)如图2所示茎叶图是某班男女各4名学生的得分情况,现用简单随机抽样的方法,从这8名学生中,抽取男、女生各一人,求女生得分不低于男生得分的概率.17.(本小题满分12分)已知(1,0)B -、(1,0)C ,ABC ∆的顶点A 在x 轴的上方,且BC 边上的高是1,求ABC ∆的垂心H 的轨迹方程(垂心为三角形三条高线的交点).18.(本小题满分12分)设p :实数x 满足22430x ax a -+<,其中0a >,:q 实数x 满足2260280x x x x ⎧--≤⎪⎨+->⎪⎩. (Ⅰ)若1,a =且q p ∨为真,求实数x 的取值范围;(Ⅱ)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围.(第16题图1)19.(本小题满分12分)若双曲线过点,其渐近线方程为y =.(I )求双曲线的方程;(II )已知双曲线的焦点为1F 、2F ,点M 在双曲线上,021=⋅MF MF ,求点M 到x 轴的距离.20.(本小题满分13分)某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从2种服装商品,2种家电商品,3种日用商品中,选出3种商品进行促销活动.(I )试求选出的3种商品中至少有一种是日用商品的概率;(II )商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买该商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m 元的奖金.假设顾客每次抽奖时获奖与否的概率都是21,请问,商场应将每次中奖奖金m 最高定为多少元,才能使促销方案对商场有利?21.(本小题满分14分)给定椭圆2222:1(0)y x C a b a b+=>>,称圆心在坐标原点O ,半径为C 的“伴随圆”. 若椭圆C 的一个焦点为20)F ,其短轴的一个端点到2F(Ⅰ)求椭圆C 及其“伴随圆”的方程;(Ⅱ)若过点(0,)(0)P m m <的直线l 与椭圆C 只有一个公共点,且l 截椭圆C 的“伴随圆”所得的弦长为m 的值;(Ⅲ)过椭圆C “伴随圆”上一动点Q 作直线12,l l ,使得12,l l 与椭圆C 都只有一个公共点,试判断直线12,l l 的斜率之积是否为定值,并说明理由.。
最新-湖北省黄冈市2018学年高二数学上学期期末考试 理

湖北省黄冈中学2018年秋季高二数学(理)期末考试试题★祝同学们考试顺利★第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目 要求的.)1. “红豆生南国,春来发几枝.愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》诗,在这4句诗中,哪句可作为命题( )A. 红豆生南国B. 春来发几枝C. 愿君多采撷D. 此物最相思2. 若命题p :∀x ∈R ,2x 2-1>0,则该命题的否定是( )A. ∀x ∈R ,2x 2-1<0B. ∀x ∈R ,2x 2-1≤0C. ∃x ∈R ,2x 2-1≤0D. ∃x ∈R ,2x 2-1>03. 在一个盒子里有10个大小一样的球,其中5个红球,5个白球,则第1个人摸出一个红球,紧接着第2个人摸出一个白球的概率为( ) A. 59 B. 718 C. 518 D. 794. 等轴双曲线22122x y -=的离心率e 的值是( )A. 2C.5. “双曲线的方程为221916x y -=”是“双曲线的渐近线方程为43y x =±”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件6. 若直线2y kx =+与双曲线226x y -=的左、右支交于不同的两点,那么k 的取值范围是( )A. ⎛ ⎝⎭B. ()1,1-C. ⎛⎫ ⎪ ⎪⎝⎭D. 1⎛⎫- ⎪ ⎪⎝⎭7. 抛物线y =2x 2上两点A (x 1,y 1)、B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 等于( ) A. 32B. 2C. 52D. 38. 过双曲线2218y x -=的右焦点作直线与双曲线交A 、B 于两点,若16AB =,这样的直线有( )A. 一条B. 两条C. 三条D. 四条9. 已知P 是正四面体S ABC -的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线10. 定点N (1,0),动点A 、B 分别在图中抛物线y 2=4x 及椭圆22143x y +=的实线部分上运动,且AB ∥x 轴,则△NAB 的周长l 的取值范围是( )A. 2,23⎛⎫ ⎪⎝⎭B. 10,43⎛⎫ ⎪⎝⎭C. 51,416⎛⎫⎪⎝⎭ D. ()2,4第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置上.)11. 设随机变量X 服从正态分布N(0,1),已知P(X <-2)=0.185,则P(X <2)= _.12. 设随机变量~(2,)B P ξ,若5(1)9P ξ≥=,则p = _.13. 与双曲线2244x y -=有共同的渐近线,并且经过点()2,5的双曲线方程是 _.14. 已知椭圆C 1的中心在原点、焦点在x 轴上,抛物线C 2的顶点在原点、焦点在x 轴上.小明从曲线C 1,C 2上各取若干个点(每条曲线上至少取两个点),并记录其坐标(x ,y ) .由于记录失误,使得其中恰有一个点既不在椭圆C 1上,也不在抛物线C 2上.小明的记录如下:据此,可推断椭圆C 1的方程为 _.15. 已知双曲线22221(0,0)x y C a b a b-=>>:的左、右焦点分别F 1、F 2,O 为双曲线的中心,P是双曲线右支上异于顶点的任一点,△PF 1F 2的内切圆的圆心为I ,且⊙I 与x 轴相切于点A ,过F 2作直线PI 的垂线,垂足为B ,若e 为双曲线的离心率,下面八个命题:①12PF F ∆的内切圆的圆心在直线x b =上; ②12PF F ∆的内切圆的圆心在直线x a =上; ③12PF F ∆的内切圆的圆心在直线OP 上; ④12PF F ∆的内切圆必通过点(,0)a ; ⑤|OB |=e |OA |; ⑥|OB |=|OA |; ⑦|OA |=e |OB |; ⑧|OA |与|OB |关系不确定.其中正确的命题的代号是 _.三、解答题(本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.) 16.(本小题满分12分)设p :方程210x mx ++=有两个不等的负根,q :方程244(2)10x m x +-+=无实根,若p 或q 为真,p 且q 为假,求m 的取值范围.17.(本小题满分12分)已知函数22()24,,f x x ax b a b R =-+∈.(Ⅰ)若a 从集合{}0,1,2,3中任取一个元素,b 从集合{}0,1,2中任取一个元素,求方程()0f x =有两个不相等实根的概率;(Ⅱ)若a 从区间[]0,2中任取一个数,b 从区间[]0,3中任取一个数,求方程()0f x =没有实根的概率.18.(本小题满分12分)若一个椭圆与双曲线2213y x -=焦点相同,且过点(.(Ⅰ)求这个椭圆的标准方程;(Ⅱ)求这个椭圆的所有斜率为2的平行弦的中点轨迹方程.19.(本小题满分13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(Ⅰ)求合唱团学生参加活动的人均次数;(Ⅱ)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.(Ⅲ)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.20.(本小题满分12分)如图,已知抛物线24y x =的焦点为F .过点()2,0P 的直线交抛物线于()11,A x y ,()22,B x y 两点,直线AF ,BF 分别与抛物线交于点M N 、. (Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k . 证明:12k k 为定值.21.(本小题满分14分)如图,设抛物线214C y mx =:(0)m >的准线与x 轴交于1F ,焦点为2F ;以12F F 、为焦点,离心率12e =的椭圆2C 与抛物线1C 在x 轴上方的一个交点为P . (Ⅰ)当1m =时,求椭圆的方程及其右准线的方程;(Ⅱ)在(Ⅰ)的条件下,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于12A A 、,如果 123以线段A A为直径作圆,试判断点P与圆的位置关系,并说明理由;12(Ⅲ)是否存在实数m,使得△PF F的边长是连续的自然数,若存在,求出这样的实数m;12若不存在,请说明理由.。
湖北省武汉2017-2018学年高二数学上学期期末考试题理

2017-2018学年高二数学上学期期末考试题 理考试时间120分钟,分值150分。
第Ⅰ卷一、 选择题 (本大题共12小题,每小题5分,共60分)1.当m =7,n =3时,执行如图所示的程序框图,输出的S 值为( )A .7B .42 C.210 D .840 2.椭圆的一个顶点与两焦点组成等边三角形,则它的离心率e 为 ( ) A.12 B .13 C.14 D.223.如图所示,在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 是棱AB 的中点,则点E 到平面ACD 1的距离为 ( )A.12 B .22 C.13 D .164.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为 ( )A.x 23+y 22=1 B .x 23+y 2=1 C.x 212+y 28=1 D .x 212+y 24=15.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成的角的正弦值为 ( )A .-105 B .105 C .- 155 D .1556.下列说法中正确的是 ( ) A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x 0∈R ,x 02+1≤0” C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题 7.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B .14 C.12 D .238.已知一组数据为20,30,40,50,50,60,70,80,其中平均数、中位数和众数的大小关系是( )A .平均数>中位数>众数B .平均数<中位数<众数C .中位数<众数<平均数D .众数=中位数=平均数9.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,3210.集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( )A.23 B .12 C.13 D .1611.抛物线x 2=4y 上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为 ( ) A .2 B .3 C .4 D .512.若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线的斜率为( )A .±2B .± 2C .±12D .±22第II 卷二、 填空题(本大题共4小题,每小题5分 ,共20分)13.抛物线y =ax 2的准线方程是y =2,则a 的值为________.14.已知(2,0)是双曲线x 2-y 2b2=1(b >0)的一个焦点,则b =________.15.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆;②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在y 轴上的椭圆,则1<t <52.其中真命题的序号是________(写出所有正确命题的序号).16.过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a >b >0)相交于A ,B 两点,若M是线段AB 的中点,则椭圆C 的离心率等于________.三、 解答题(本大题共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄冈市2017年秋季高二年级期末考试数学试题(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,选出符合题目要求的一项.1. 已知命题:,总有,则为()A. ,使得B. ,总有C. ,使得D. ,总有【答案】C【解析】全称命题的否定为特称命题,所以命题:,总有,有,总有.故选B.2. 袋中装有红球3个、白球 2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A. 至少有一个白球;至少有一个红球B. 至少有一个白球;红、黑球各一个C. 恰有一个白球;一个白球一个黑球D. 至少有一个白球;都是白球【答案】B【解析】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.故选B.点睛:事件A和B的交集为空,A与B就是互斥事件,也可以描述为:不可能同时发生的事件,则事件A与事件B互斥,从集合的角度即;若A交B为不可能事件,A并B为必然事件,那么事件A与事件B互为对立事件,即事件A与事件B在一次试验中有且仅有一个发生,其定义为:其中必有一个发生的两个互斥事件为对立事件.3. 中国诗词大会的播出引发了全民的读书热,某中学语文老师在班里开展了一次诗歌默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词能手”称号的人数为()A. 2B. 4C. 5D. 6【答案】B【解析】由题得:诗词达人有8人,诗词能手有16人,诗词爱好者有16人,分层抽样抽选10名学生,所以诗词能手有人4. “”是“方程的曲线是椭圆”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】B【解析】方程的曲线是椭圆,故应该满足条件:故”是“方程的曲线是椭圆”的必要不充分条件.故答案为:B.5. 某同学同时抛掷两颗骰子,得到的点数分别记为、,则双曲线的离心率的概率是()A. B. C. D.【答案】A【解析】由题意知本题是一个古典概型,∵试验发生包含的事件是同时掷两颗骰子,得到点数分别为a,b,共有6×6=36种结果满足条件的事件是e=∴b>a,符合b>a的情况有:当a=1时,有b=3,4,5,6四种情况;当b=2时,有a=5,6两种情况,总共有6种情况.∴概率为.故选A6. 宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的,分别为4,2,则输出的等于()A. 2B. 3C. 4D. 5【答案】B【解析】由程序框图可得,时,,继续循环;时,,继续循环;时,,继续循环;结束输出.点睛:循环结构的考查是高考热点,有时会问输出结果,或是判断框的条件是什么,这类问题容易错在审题不清,计数变量加错了,没有理解计数变量是在计算结果之前还是计算结果之后,最后循环进来的数是什么等问题,防止出错的最好的办法是按顺序结构写出每一个循环,这样就会很好的防止出错.7. 已知,,则的最小值()A. B. C. D.【答案】C【解析】∵向量,,当t=0时,取得最小值.故答案为:.8. 如图,已知棱长为1的正方体中,是的中点,则直线与平面所成角的正弦值是()A. B. C. D.【答案】D【解析】以D为原心,以DA为x轴,以DC为y轴,以DD1为z轴,建立空间直角坐标系D﹣xyz,∵正方体ABCD﹣A1B1C1D1的棱长为1,E是A1B1的中点,∴A(1,0,0),E(1,,1),B(1,1,0)D1(0,0,1),∴=(0,,1),=(0,1,0),=(﹣1,0,1),设平面ABC1D1的法向量,则∴∴,设直线AE与平面与平面ABC1D1所成的角为θ,则sinθ=.故答案为:D.9. 在去年的足球甲联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有()①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.A. 1个B. 2个C. 3个D. 4个【答案】D【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,∴平均说来一队比二队防守技术好,故(1)正确;在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故(2)正确;在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故(3)正确;在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,∴二队很少不失球,故(4)正确.故选:D.10. 直线与抛物线交于,两点,若,则弦的中点到直线的距离等于()A. B. C. 4 D. 2【答案】B【解析】直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离∴弦AB的中点到直线x+=0的距离等于2+=.故选B.点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。
一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。
尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。
11. 给出以下命题,其中真命题的个数是()①若“或”是假命题,则“且”是真命题;②命题“若,则或”为真命题;③已知空间任意一点和不共线的三点,,,若,则,,,四点共面;④直线与双曲线交于,两点,若,则这样的直线有3条;A. 1B. 2C. 3D. 4【答案】C【解析】(1)若“或”是假命题,则是假命题p是真命题,是假命题是真命题,故且真命题,选项正确.(2)命题“若,则或”的逆否命题是若a=2,且b=3,则a+b=5.这个命题是真命题,故原命题也是真命题.(3)∵++=1,∴P,A,B,C四点共面,故(3)正确,(4)由双曲线方程得a=2,c=3,即直线l:y=k(x﹣3)过双曲线的右焦点,∵双曲线的两个顶点之间的距离是2a=4,a+c=2+3=5,∴当直线与双曲线左右两支各有一个交点时,当k=0时2a=4,则满足|AB|=5的直线有2条,当直线与实轴垂直时,当x=c=3时,得,即=,即则y=±,此时通径长为5,若|AB|=5,则此时直线AB的斜率不存在,故不满足条件.综上可知有2条直线满足|AB|=5,故(4)错误,故答案为:C.12. 是双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于,若,则双曲线的离心率为()A. B. 2 C. D.【答案】C【解析】由已知渐近线方程为l1:,l2:,由条件得F到渐近线的距离,则,在Rt△AOF中,,则.设l1的倾斜角为θ,即∠AOF=θ,则∠AOB=2θ.在Rt△AOF中,,在Rt△AOB中,.∵,即,即a2=3b2,∴a2=3(c2-a2),∴,即.故选C.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等............................二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡上)13. 有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学在同一个兴趣小组的概率为__________.【答案】【解析】甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P==.14. 为了解某地区某种农产品的年产量(单位:吨)对价格(单位:千元/吨)的影响,对近五年该农产品的年产量和价格统计如下表:已知和具有线性相关关系,且回归方程为,那么表中的值为__________.【答案】5.5【解析】将样本中心代入回归方程得到m=5.5.故答案为:5.5.15. 已知,直线:和直线:分别与圆:相交于、和、,则四边形的面积为__________.【答案】8【解析】由题意,直线l1:x+2y=a+2和直线l2:2x﹣y=2a﹣1,交于圆心(a,1),且互相垂直,∴四边形ABCD是正方形,∴四边形ABCD的面积为4×8,故答案为:8.16. 过原点作一条倾斜角为的直线与椭圆交于、两点,为椭圆的左焦点,若,且该椭圆的离心率,则的取值范围为__________.【答案】【解析】设右焦点F′,连结AF′,BF′,得四边形AFBF′是正方形,∵AF+AF′=2a,AF+BF=2a,OF=c,∴AB=2c,∵∠BAF=θ,∴AF=2c•cos,BF=2c•sin,∴2csin+2ccos=2a,∵该椭圆的离心率,∴∵θ∈[0,π),∴的取值范围为.点睛:本题主要考查椭圆的标准方程与几何性质.有关椭圆的离心率问题的关键是利用图形中的几何条件构造的关系,解决椭圆离心率的相关问题的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.【答案】人;(2)人; 15.70.【解析】试题分析:(1)利用频率分布直方图能估计学校1800名学生中,成绩属于第四组的人数.(2)利用频率分布直方图能求出该样本在这次百米测试中成绩良好的人数.(3)根据频率分布直方图,能求出样本数据的众数、中位数.解析:学校1800名学生中,成绩属于第四组的人数人;(2)样本在这次百米测试中成绩良好的人数是:人;由图可知众数落在第三组,是,.18. 已知命题:方程表示圆;命题:双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围.【答案】.【解析】试题分析:先化简命题,得到相应的数集;再根据真值表得到的真假性,再分类进行求解.试题解析:若命题为真命题,则,即整理得,解得4分若命题为真命题,则,解得8分因为命题为假命题,为真命题,所以中一真一假,10分若真假,则; 若假真,则,所以实数的取值范围为.12分考点:1.圆的一般方程;2.双曲线的结合性质;3.复合命题的真值表.19. 已知:,是轴上的动点,、分别切于、两点.(1)如果,求及直线的方程;(2)求证:直线恒过定点.【答案】或.见解析.【解析】(Ⅰ)设直线则,又,∴,∴设,而点由得,则或,从而直线的方程为:或.(Ⅱ)证明:设点,由几何性质可以知道,在以为直径的圆上,此圆的方程为,为两圆的公共弦,两圆方程相减得即过定点.考点:直线与圆;直线方程20. 某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120分、人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求的值;(2)把在前排就坐的高二代表队6人分别记为,,,,,,现随机从中抽取2人上台抽奖.求和至少有一人上台抽奖的概率;(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个之间的均匀随机数,,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.【答案】; (2); (3).【解析】试题分析:(Ⅰ)根据分层抽样可得,故可求n的值;(Ⅱ)求出高二代表队6人,从中抽取2人上台抽奖的基本事件,确定a和b至少有一人上台抽奖的基本事件,根据古典概型的概率公式,可得a和b至少有一人上台抽奖的概率;(Ⅲ)确定满足0≤x≤1,0≤y≤1点的区域,由条件得到的区域为图中的阴影部分,计算面积,可求该代表中奖的概率.试题解析:解:(Ⅰ)由题意可得,∴n=160;(Ⅱ)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(Ⅲ)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分,(指出点形成的正方形一分,不等式组一分,画出图形一分,算出阴影部分面积2分)由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1,∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为,设“该运动员获得奖品”为事件N,则该运动员获得奖品的概率P(N)==考点:程序框图;古典概型及其概率计算公式;几何概型.21. 如图,在四棱锥中,底面是平行四边形,平面,点,分别为,的中点,且,.(1)证明:平面;(2)设直线与平面所成角为,当在内变化时,求二面角的取值范围.【答案】(1) 见解析;(2).【解析】试题分析:(Ⅰ)根据直线与平面平行的判定定理,需在平面内找一条与平行的直线.结合题设可取取中点,连接,易得四边形为平行四边形,从而得,问题得证.(Ⅱ)思路一、首先作出二面角的平面角,即过棱BC上一点分别在两个平面内作棱BC的垂线.因为,点分别为的中点,则.连接,因为平面,所以AM是PM在面ABC 内的射影,所以,所以即为二面角的平面角.再作出直线与平面所成的角,即作出AC在平面PBC内的射影.由,且得平面,从而平面平面.过点在平面内作于,根据面面垂直的性质知平面.连接,于是就是直线与平面所成的角.在及中,找出与的关系,即可根据的范围求出的范围. 思路二、以所在的直线分别为轴、轴、轴,建立空间直角坐标系,利用空间向量亦可求解.试题解析:(Ⅰ)证明:取中点,连接,因为点分别为的中点,所以四边形为平行四边形,则又平面,平面所以平面.(Ⅱ)解法1:连接,因为,点分别为的中点,则又平面,则所以即为二面角的平面角又,所以平面,则平面平面过点在平面内作于,则平面.连接,于是就是直线与平面所成的角,即=.在中,;在中,,.,,.又,.即二面角取值范围为.解法2:连接,因为,点分别为的中点,则又平面,则所以即为二面角的平面角,设为以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则,于是,,,.设平面的一个法向量为,则由.得可取,又,于是,,,.又,.即二面角取值范围为.考点:1、空间直线与平面的位置关系;2、二面角.22. 在圆上任取一点,过点作轴的垂线段,为垂足.,当点在圆上运动时,(1)求点的轨迹的方程;(2)若,直线交曲线于、两点(点、与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.【答案】(1) . (2).【解析】试题分析:(1)由相关点法得到M(x0,y0),N(x,y),则x=x0,y=(2)联立直线和椭圆得到二次方程,根据条件结合韦达定理得到,,,进而求得范围.解析:(1) 设M(x0,y0),N(x,y),则x=x0,y=y0,代入圆方程有.即为N点的轨迹方程.(2)当直线垂直于轴时,由消去整理得,解得或,此时,直线的斜率为;当直线不垂直于轴时,设,直线:(),由,消去整理得,依题意,即(*),且,,又,所以,所以,即,解得满足(*),所以,故,故直线的斜率,当时,,此时;当时,,此时;综上,直线的斜率的取值范围为.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.。