2017-2018学年高中数学苏教版选修2-3:课下能力提升(十六)离散型随机变量的方差和标准差 Word版含答案
2017-2018学年高中数学苏教版选修2-3教学案:2.4 二项分布含解析
1.定义一般地,由n次试验构成,且每次试验相互独立完成,每次试验的结果仅有两种对立的状态,即A与A,每次试验中P(A)=p〉0.我们将这样的试验称为n次独立重复试验,也称为伯努利试验.2.概率公式在n次独立重复试验中,每次试验事件A发生的概率均为p(0<p 〈1),即P(A)=p,P(A)=1-p=q,则事件A恰好发生k(0≤k≤n)次的概率为P n(k)=C k,n p k q n-k,k=0,1,2,…,n.它恰好是(q+p)n的二项展开式中的第k+1项.连续掷一颗骰子三次,就是做三次独立重复试验.用A i(i=1,2,3)表示第i次出现6点这一事件,用B1表示“仅出现一次6点”这一事件.问题1:试用A i表示B1.提示:B1=(A1错误!2错误!3)+(错误!1A2错误!3)+(错误!1错误!2A3).问题2:试求P(B1).提示:∵P(A1)=P(A2)=P(A3)=16,且A1错误!2错误!3,错误!1A2错误!3和错误!1错误!2A3互斥,∴P(B1)=P(A1错误!1错误!2)+P(错误!1A2错误!3)+P(错误!1错误!2A3)=错误!×错误!错误!+错误!×错误!错误!+错误!×错误!错误!=3×错误!×错误!错误!。
问题3:用B k表示出现k次6点这一事件,试求P(B0),P(B2),P(B3).提示:P(B0)=P(错误!1错误!2错误!3)=错误!错误!,P(B2)=3×错误!错误!×错误!,P(B3)=错误!错误!.问题4:由以上结果你得出何结论?提示:P(B k)=C错误!错误!错误!错误!错误!,k=0,1,2,3.若随机变量X的分布列为P(X=k)=C错误!p k q n-k,其中0<p<1,p +q=1,k=0,1,2,…,n,则称X服从参数为n,p的二项分布,记作X~B(n,p).1.满足以下条件的试验称为独立重复试验:(1)每次试验是在同样条件下进行的;(2)各次试验中的事件是相互独立的;(3)每次试验都只有两种结果,即事件要么发生,要么不发生;(4)每次试验中,某事件发生的概率是相同的.2.独立重复试验的实际原型是有放回地抽样检验问题.但在实际应用中,从大批产品中抽取少量样品的不放回检验,可以近似地看作此类型,因此独立重复试验在实际问题中应用广泛.3.判断一个随机变量是否服从二项分布,关键有二:其一是对立性,即一次试验中,事件发生与否二者必居其一;其二是重复性,即试验是独立重复地进行了n次.[例1] 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后面第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率.[思路点拨] 由于5次预报是相互独立的,且结果只有两种(或准确或不准确),符合独立重复试验模型.[精解详析](1)记预报一次准确为事件A,则P(A)=0。
2017-2018学年高三数学苏教版选修2-3:课下能力提升(六)组合的应用 Word版
课下能力提升(六)组合的应用一、填空题1.某施工小组有男工7人,女工3人,现要选1名女工和2名男工去支援另一施工队,不同的选法有________种.2.上海某区政府召集5家企业的负责人开年终总结经验交流会,其中甲企业有2人到会,其余4家企业各有1人到会,会上推选3人发言,则这3人来自3家不同企业的可能情况的种数为________.3.圆周上有20个点,过任意两点连结一条弦,这些弦在圆内的交点最多有________个.4. 如图所示的几何体是由一个正三棱锥P-ABC与正三棱柱ABC-A1B1C1组合而成,现用3种不同颜色对这个几何体的表面染色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的染色方案共有________种.5.20个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数为________.二、解答题6.一个口袋里装有7个白球和2个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)恰有1个为红球,共有多少种取法?7.某医科大学的学生中,有男生12名,女生8名,在某市人民医院实习,现从中选派5名参加青年志愿者医疗队.(1)某男生甲与某女生乙必须参加,共有多少种不同的选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?8.甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁公司各承包2项,问共有多少种承包方式?答案1.解析:每个被选的人都无角色差异,是组合问题,分2步完成:第1步,选女工,有C13种选法;第2步,选男工,有C27种选法.故有C13·C27=3×21=63种不同选法.答案:632.解析:若3人中有一人来自甲企业,则共有C12C24种情况,若3人中没有甲企业的,则共有C34种情况,由分类计数原理可得,这3人来自3家不同企业的可能情况共有C12C24+C34=16(种).答案:163.解析:在圆内的交点最多,相当于从圆周上的20个点,任意选4个点得到的,故最=4 845个.多有C420=20×19×18×174×3×2×1答案:4 8454.解析:先涂三棱锥P-ABC的三个侧面,然后涂三棱柱的三个侧面,共有C13×C12×C11×C12=3×2×1×2=12种不同的涂法.答案:125.解析:先在编号为2,3的盒内放入1,2个球,还剩17个小球,三个盒内每个至少再放入1个球,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中即可,共C216=120种方法.答案:1206.解:(1)从口袋里的9个球中任取5个球,不同的取法为C59=126(种).(2)可分两步完成,首先从7个白球中任取4个白球,有C47种取法,然后从2个红球中任取1个红球共有C12种取法.所以,共有C12·C47=70种取法.7.解:(1)只需从其他18人中选3人即可,共有C318=816种.(2)只需从其他18人中选5 人即可,共有C518=8 568(种).(3)分两类:甲、乙两人中只有一人参加,则有C12·C418种选法;甲、乙两人都参加,则有C318种选法.故共有C12·C418+C318=6 936种选法.8.解:甲公司从8项工程中选出3项工程,有C38种选法;乙公司从甲公司挑选后余下的5项工程中选出1项工程有C15种选法;丙公司从甲、乙两公司挑选后余下的4项工程中选出2项工程有C24种选法;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程有C22种选法.根据分步计数原理可得不同的承包方式有C38×C15×C24×C22=1 680(种)。
高中数学选修2-3 离散型随机变量导学案加课后作业及答案
§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。
2017-2018学年高中数学苏教版选修2-3教学案:2.5 随机变量的均值和方差含解析
第1课时离散型随机变量的均值设有12个西瓜,其中4个重5 kg,3个重6 kg,5个重7 kg.问题1:任取一个西瓜,用X表示这个西瓜的重量,试想X的取值是多少?提示:x=5,6,7。
问题2:x取上述值时,对应的概率分别是多少?提示:错误!,错误!,错误!。
问题3:试想西瓜的平均质量该如何表示?提示:5×错误!+6×错误!+7×错误!.1.离散型随机变量的均值(或数学期望)(1)定义:若离散型随机变量X的概率分布为X x1x2…x nP p1p2…p n则称x1p1+x2p2+…+x n p n为离散型随机变量X的均值或数学期望,也称为X的概率分布的均值,记为E(X)或μ,即E(X)=μ=x1p1+x2p2+…+x n p n.其中,x i是随机变量X的可能取值,p i是概率,p i≥0,i=1,2,…,n,p1+p2+…+p n=1.(2)意义:刻画离散型随机变量取值的平均水平和稳定程度.2.两种常见概率分布的均值(1)超几何分布:若X~H(n,M,N),则E(X)=错误!.(2)二项分布:若X~B(n,p),则E(X)=np.1.随机变量的均值表示随机变量在随机试验中取值的平均水平,又常称随机变量的平均数,它是概率意义下的平均值,不同于相应数值的算术平均数.2.离散型随机变量的均值反映了离散型随机变量取值的平均水平,它是一个常数,是随机变量的多次独立观测值的算术平均值的稳定性,即由独立观测组成的随机样本的均值的稳定值.而样本的平均值是一个随机变量,它随着观测次数的增加而趋于随机变量的均值.[例1]已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设X为取出的4个球中红球的个数,求X的概率分布和均值.[思路点拨]首先确定X的取值及其对应的概率,然后确定随机变量的概率分布及均值.[精解详析](1)设“从甲盒内取出的2个球均为黑球”为事件A,“从乙盒内取出的2个球均为黑球”为事件B.由于事件A,B相互独立,且P(A)=错误!=错误!,P(B)=错误!=错误!.故取出的4个球均为黑球的概率为P(AB)=P(A)P(B)=错误!×错误!=错误!。
2017-2018学年高中数学苏教版选修2-3:课下能力提升(十六)离散型随机变量的方差和标准差
课下能力提升(十六) 离散型随机变量的方差和标准差一、填空题1.已知X 的概率分布为则V (X )=________.2.一批产品中,次品率为14,现有放回地连续抽取4次,若抽的次品件数记为X ,则V (X )的值为________.3.已知X ~B (n ,p ),且E (X )=7,V (X )=6,则p =________. 4.已知随机变量X X 0 1 x P15p310且E (X )=1.1,则V (X )的值为________. 5.篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他一次罚球得分的方差为________.二、解答题6.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为X ,求E (X )和V (X ).7.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护区内每个季度发现违反保护条例的事件次数的概率分布分别为:试评定这两个保护区的管理水平.8.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X ,求V (X ).答案1.解析:∵a +0.1+0.6=1,∴a =0.3. ∴E (X )=1×0.3+2×0.1+3×0.6=2.3.∴V (X )=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81. 答案:0.812.解析:由题意,次品件数X 服从二项分布,即X ~B ⎝⎛⎭⎫4,14, 故V (X )=np ·(1-p )=4×14×34=34.答案:343.解析:∵E (X )=np =7,V (X )=np (1-p )=6, ∴1-p =67,即p =17.答案:174.解析:由随机变量分布列的性质可得p =1-15-310=12.又E (X )=0×15+1×12+x ×310=1.1,解得x =2,可得V (X )=(0-1.1)2×15+(1-1.1)2×12+(2-1.1)2×310=0.49.答案:0.495.解析:设一次罚球得分为所以V (X )=p (1-p )=0.7×0.3=0.21. 答案:0.216.解:这3张卡片上的数字和X 的可能取值为6,9,12. X =6表示取出的3张卡片上都标有2, 则P (X =6)=C 38C 310=715.X =9表示取出的3张卡片上两张标有2,一张标有5,则P (X =9)=C 28C 12C 310=715.X =12表示取出的3张卡片中两张标有5,一张标有2,则P (X =12)=C 18C 22C 310=115.所以X 的分布列如下表:所以E (X )=6×715+9×715+12×115=7.8.V (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.7. 解:甲保护区违规次数X 的均值和方差为 E (X )=0×0.3+1×0.3+2×0.2+3×0.2=1.3,V (X )=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21. 乙保护区的违规次数Y 的均值和方差为 E (Y )=0×0.1+1×0.5+2×0.4=1.3,V (Y )=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.因为E (X )=E (Y ),V (X )>V (Y ),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定.相对而言,乙保护区的管理较好一些.8.解:先求X 的分布列. X =0,1,2,3.X =0表示三位学生全坐错了,情况有2种,所以P (X =0)=23!=13;X =1表示只有一位同学坐对了,情况有3种, 所以P (X =1)=33!=12;X =2表示有两位学生坐对,一位学生坐错,这种情况不存在,所以P (X =2)=0; X =3表示三位学生全坐对了,情况有1种, 所以P (X =3)=13!=16.所以X所以E (X )=0×13+1×12+2×0+3×16=12+12=1, V (X )=(0-1)2×13+(1-1)2×12+(2-1)2×0+(3-1)2×16=1.。
2017-2018学年高中数学苏教版选修2-3教学案:2.3.1条件概率缺答案
2.3独__立__性2.3。
1 条件概率错误!三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取.问题1:三名同学抽到中奖奖券的概率相等吗?提示:相等.问题2:求第一名同学没有抽到中奖奖券的概率.提示:用A表示事件“第一名同学没有抽到中奖奖券",则P(A)=错误!。
问题3:求最后一名同学抽到中奖奖券的概率.提示:用B表示事件“最后一名同学抽到中奖奖券”则P(B)=错误!。
问题4:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?提示:用C表示事件“在第一名同学没有中奖的前提下,最后一名同学抽到中奖奖券”.事件C可以理解为还有两张奖券,其中一张能中奖,则P(C)=错误!.1.条件概率的概念一般地,对于两个事件A和B,在已知事件B发生的条件下事件A发生的概率,称为事件B发生的条件下事件A的条件概率,记为P (A|B).2.条件概率的计算公式(1)一般地,若P(B)>0,则事件B已发生的条件下A发生的条件概率是P(A|B)=错误!.(2)利用条件概率,我们有P(AB)=P(A|B)P(B).1.由条件概率的定义可知,P(A|B)与P(B|A)是不同的;另外,在事件B发生的前提下,事件A发生的可能性大小不一定是P(A),即P(A|B)与P(A)不一定相等.2.在条件概率的定义中,要强调P(B)>0。
3.P(A|B)=错误!可变形为P(AB)=P(A|B)P(B),即只要知道其中两个值就可以求得第三个值.错误!利用定义求P(A|B)[例1]抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.(1)求P(A),P(B),P(AB);(2)当蓝色骰子的点数为3或6时,两颗骰子的点数之和大于8的概率为多少?[思路点拨]根据古典概型的概率公式及条件概率公式求解.[精解详析](1)设x表示抛掷红色骰子所得到的点数,用y表示抛掷蓝色骰子所得到的点数,则试验的基本事件总数的全集Ω={(x,y)|x∈N,y∈N,1≤x≤6,1≤y≤6},如图所示,由古典概型计算公式可知:P(A)=错误!=错误!,P(B)=错误!=错误!,P(AB)=5 36 .(2)P(B|A)=错误!=错误!=错误!。
苏教版高中数学(选修2-3)2.5.2《离散型随机变量的方差与标准差》word学案3篇
2.5.2离散型随机变量的方差与标准差 教学案班级 学号 姓名学习目标1. 会求离散型随机变量的方差和标准差;2. 理解离散型随机变量的方差与标准差的意义;3. 掌握0-1分布、超几何分布、二项分布的方差和标准差的计算方法.重点难点重点:0-1分布、超几何分布、二项分布的方差和标准差的计算 难点:理解离散型随机变量的方差与标准差的意义课堂学习 问题情境(一):甲、乙两名工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用1X ,2X 表示,1X ,X 的概率分布如表所示.思考学生活动(一):计算:()1E X = ;()2E X = .意义建构(一):当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢?数学理论(一):一般地,若离散型随机变量X 的概率分布如表所示,则()2i x μ-()()E X μ=描述了()1,2,,ix i n =相对于均值μ的偏离程度,故()()()2221122n n x p x p x p μμμ-+-++-(其中0i p ≥,1,2,,i n =,121n p p p +++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差.记为()VX 或2σ.即()()()()22221122n n V X x p x p x p σμμμ==-+-++-其中0i p ≥,1,2,,i n =,121n p p p +++=方差也可用公式()221nii i V X xp μ==-∑计算.随机变量X 的方差也称为X 的概率分布的方差.X 的方差()V X 的算术平方根称为X 的标准差.即σ=思考:随机变量的方差和样本方差有何区别和联系?随机变量的方差和标准差都反映了随机变垦的取值偏离于均值的平均程度.方差或标准差越小.随机变量偏离于均值的平均程度就越小.数学运用(一): 例1.例2. 高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望、方差和标准差.例3. 从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望、方差和标准差.随堂反馈1. 设随机变量,X Y 的关系为32Y X =+,则()E X 与()E Y 的关系是 ,()V X 与()V Y 的关系是 ;2. 设X 是一个离散型随机变量,其分布列如右表,则()E X = ;()V X = ;课后复习1. 已知随机变量X 的分布列如右图,则()V X = ;2. 如果随机变量()~100,0.2X B ,那么()43V X += ;3. 已知随机变量X 的分布列如右图,且() 1.1E X =,则()V X = ;4. 已知()~,X B n p ,且()7E X =,()6V X =,则p = ;5. 已知随机变量X 的分布列如右图,则m = ;()E X = ;()V X = ;()127V X += ;6. 一只口袋中装有20只白球,10只黑球,从中一次摸出5只球,其中黑球的个数X 的方差是 ;7. 甲、乙两种水稻在相同条件下各种100亩,结果如下:甲8.X 的标准差.9. 假定1500件产品中有100件不合格品,从中抽取15件进行检查,求15件中不合格品件数X 的标准差.10. 袋中装有1个白球和4个黑球,每次从中任取1个求,每次取出的黑球不再放回去,直到取出白球为止.求:(1)取球次数ξ的概率分布;(取球次数ξ的数学期望及方差).乙11. 某人有10把不同的钥匙,其中只有一把能打开某一扇门,今任取一把试开,钥匙的每次取法是相互独立的,如果每次试开后的钥匙不再放回,求把门打开的试开次数的数学期望和方差.12. 某运动员投篮命中率0.6p =.(1) 求投篮一次时命中次数ξ的均值与方差; (2) 求重复5次投篮时,命中次数ξ的均值与方差.第二章 概率 2.5.2 离散型随机变量的方差和标准差(1)编写人: 编号:009学习目标(1)理解随机变量的方差和标准差的含义;(2)会求随机变量的方差和标准差,并能解决一些实际问题. 学习过程: 一、预习:(一)问题:甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.如何比较甲、乙两个工人的技术? 我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢? (二)总结归纳:1.则2()(())i x E X μμ-=描述了(1,2,...,)i x i n =相对于均值μ的偏离程度,故 2221122()()...()n n x p x p x p μμμ-+-++-,(其中 120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()V X 或2σ. 2.方差公式也可用公式221()nii i V X xp μ==-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()V X 的算术平方根称为X的标准差,即σ=思考:随机变量的方差和样本方差有何区别和联系?练习:解答(一)中的问题。
2017-2018学年高中数学苏教版选修2-3教学案:2.5.2离散型随机变量的方差和标准差缺答案
2.5。
2离散型随机变量的方差和标准差错误!A,B两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表:A机床次品数X10123P0.70。
20.060.04 B机床次品数X20123P 0。
80.060。
040.1问题1:试求E(X1),E(X2).提示:E(X1)=0×0。
7+1×0.2+2×0。
06+3×0.04=0.44。
E(X2)=0×0.8+1×0。
06+2×0。
04+3×0。
10=0。
44.问题2:由E(X1)和E(X2)的值说明了什么?提示:E(X1)=E(X2).问题3:试想利用什么指标可以比较加工质量?提示:样本方差.1.离散型随机变量的方差和标准差(1)离散型随机变量的方差①定义:设离散型随机变量X的均值为μ, 其概率分布为X x1x2…x nP p1p2…p n则(x1-μ)2p1+(x2-μ)2p2+…+(x n-μ)2p n(其中p i≥0,i=1,2,…,n,p1+p2+…+p n=1)称为离散型随机变量X的方差,也称为X 的概率分布的方差,记为V(X)或σ2。
②变形公式:V(X)=错误!错误!p i-μ2.③意义:方差刻画了随机变量X与其均值μ的平均偏离程度.(2)离散型随机变量的标准差X的方差V(X)的算术平方根称为X的标准差,即σ=错误!.2.两点分布、超几何分布、二项分布的方差(1)若X~0-1分布,则V(X)=p(1-p);(2)若X ~H (n ,M ,N ),则V (X )=错误!;(3)若X ~B (n ,p ),则V (X )=np (1-p ).1.随机变量的方差是常数,它和标准差都反映了随机变量X 取值的稳定性和波动、集中与离散程度.V (X )越小,稳定性越高,波动越小.2.随机变量的方差与样本方差的关系:随机变量的方差即为总体的方差,它是一个常数,是不随抽样样本变化而客观存在的;样本方差则是随机变量,它是随样本不同而变化的.对于简单随机样本,随着样本容量的增加,样本方差越来越接近于总体方差.错误!方差和标准差的计算[例1] X 01 x P错误! 错误! p若E (X )=23,求V (X ). [思路点拨] 解答本题可先根据错误!i =1求出p 值,然后借助E(X)=错误!,求出x的取值,最后代入公式求方差.[精解详析] 由错误!+错误!+p=1,得p=错误!.又E(X)=0×错误!+1×错误!+错误!x=错误!,∴x=2。
2018版高二数学苏教版选修2-3学案:2.5 离散型随机变量的均值与方差3
§2.5.1离散型随机变量的均值学习目标1.了解离散型随机变量的期望的意义,2.会根据离散型随机变量的分布列求出期望.3.能计算简单离散型随机变量均值,并能解决一些实际问题.学习过程一、自学导航1.情景:前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.如何刻画离散型随机变量取值的平均水平和稳定程度呢?甲、乙两个工人生产同一种产品,在相同的条件下,他们生产件产品所出的不合格品数100分别用表示,的概率分布如下.12,X X 12,X X 1X kp 0.70.10.10.12X kp 0.50.30.22.问题:如何比较甲、乙两个工人的技术?二、探究新知1.数学期望定义2.性质三、例题精讲例1 高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为,求的X X 数学期望.例2 从批量较大的成品中随机取出件产品进行质量检查,若这批产品的不合格品率为10,随机变量表示这件产品中不合格品数,求随机变量的数学期望.0.05X 10X ()E X例3 设篮球队与进行比赛,每场比赛均有一队胜,若有一队胜场则比赛宣告结束,假A B 定在每场比赛中获胜的概率都是,试求需要比赛场数的期望.,A B 12四、课堂精练1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,他连续罚球3次;(1)求他得到的分数X 的分布列;(2)求X 的期望.2.据气象预报,某地区下个月有小洪水的概率为,有大洪水的概率为.现工地上0.250.01有一台大型设备,为保护设备有以下三种方案:方案1 运走设备,此时需花费元;3800方案2 建一保护围墙,需花费元.但围墙无法防止大洪灾,若大洪灾来临,设备受损,2000损失费为元;60000方案3 不采取措施,希望不发生洪水,此时大洪水来临损失元,小洪水来临损失60000元.1000试选择适当的标准,对种方案进行比较.五、回顾小结六、课后作业课本, 第1题671,2,3,4P 71P。
2017-2018学年高中数学苏教版选修2-3教学案:第2章章末小结与测评含答案
一、事件概率的求法1.条件概率的求法(1)利用定义,分别求出P(B)和P(AB),解得P(A|B)=错误!。
(2)借助古典概型公式,先求事件B包含的基本事件数n,再在事件B发生的条件下求事件A包含的基本事件数m,得P(A|B)=错误!。
2.相互独立事件的概率若事件A,B相互独立,则P(AB)=P(A)·P(B).3.n次独立重复试验在n次独立重复试验中,事件A发生k次的概率为P n(k)=C k,np k q n-k,k=0,1,2,…,n,q=1-p.二、随机变量的概率分布1.求离散型随机变量的概率分布的步骤(1)明确随机变量X取哪些值;(2)计算随机变量X取每一个值时的概率;(3)将结果用二维表格形式给出.计算概率时注意结合排列与组合知识.2.两种常见的概率分布(1)超几何分布若一个随机变量X的分布列为P(X=r)=错误!,其中r=0,1,2,3,…,l,l=min(n,M),则称X服从超几何分布.(2)二项分布若随机变量X的分布列为P(X=k)=C错误!p k q n-k,其中0<p〈1,p+q=1,k=0,1,2,…,n,则称X服从参数为n,p的二项分布,记作X~B(n,p).三、离散型随机变量的均值与方差1.若离散型随机变量X的概率分布为:则E(X)=x1p1+x2p2+…+x n p n,V(X)=(x1-μ)2p1+(x2-μ)2p2+…+(x n-μ)2p n。
2.当X~H(n,M,N)时,E(X)=错误!,V(X)=错误!。
3.当X~B(n,p)时,E(X)=np,V(X)=np(1-p).(考试时间:120分钟试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.已知离散型随机变量X的概率分布如下:X123P k2k3k则E(X)=________.解析:∵k+2k+3k=1,∴k=错误!,∴E(X)=1×错误!+2×错误!+3×错误!=错误!=错误!。
高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)
高中数学选修2-3离散型随机变量的均值与方差精选题目(附答案)(1)离散型随机变量的均值的概念及性质 ①一般地,若离散型随机变量X 的分布列为则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平.②若Y =aX +b ,其中a ,b 为常数,则E (Y )=E (aX +b )=aE (X )+b . (2)两点分布与二项分布的均值①若随机变量X 服从两点分布,则E (X )=p . ②若X ~B (n ,p ),则E (X )=np . (2)离散型随机变量的方差、标准差 随机变量X 的分布列为则把D (X )=∑i =1n(x i -E (X ))2p i 叫做随机变量X 的方差,D (X )的算术平方根D (X )叫做随机变量X 的标准差,随机变量的方差和标准差都反映了随机变量取值偏离于均值的平均程度.(2)服从两点分布与二项分布的随机变量的方差 ①若X 服从两点分布,则D (X )=p (1-p );②若X 服从二项分布,即X ~B (n ,p ),则D (X )=np (1-p ). (3)离散型随机变量方差的性质 ①D (aX +b )=a 2D (X ); ②D (C )=0(C 是常数).一、离散型随机变量的均值1.袋中有4只红球,3只黑球,今从袋中随机取出4只球,设取到一只红球记2分,取到一只黑球记1分,试求得分X 的均值.解:取出4只球,颜色分布情况是:4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,相应的概率为P(X=5)=C14C33C47=435.P(X=6)=C24C23C47=1835.P(X=7)=C34C13C47=1235.P(X=8)=C44C03C47=135.随机变量X的分布列为所以E(X)=5×435+6×1835+7×1235+8×135=447.注:求离散型随机变量的均值的一般步骤:(1)理解随机变量的意义,写出随机变量的所有可能的取值;(2)求随机变量取每一个值的概率;(3)列出随机变量的分布列;(4)根据均值的计算公式求出E(X).2.在10件产品中,有3件一等品、4件二等品、3件三等品.从这10件产品中任取3件,求取出的3件产品中一等品件数X的分布列和均值.解:由题意知X的所有可能取值为0,1,2,3.P(X=0)=C03C37C310=35120=724,P(X=1)=C13C27C310=63120=2140,P(X=2)=C23C17C310=21120=740,P(X=3)=C33C07C310=1120.∴X的分布列为∴E(X)=0×724+1×2140+2×740+3×1120=910.3.篮球运动员在比赛中每次罚球命中得1分,没命中得0分,已知某篮球运动员命中的概率为0.8,则罚球一次得分ξ的均值是()A.0.2 B.0.8 C.1 D.0解析:选B因为P(ξ=1)=0.8,P(ξ=0)=0.2,所以E(ξ)=1×0.8+0×0.2=0.8.故选B.4.一个口袋中有5个球,编号为1,2,3,4,5,从中任取2个球,用X表示取出球的较大号码,则E(X)等于()A.4 B.5 C.3 D.4.5解析:选A P(X=2)=1C25=110,P(X=3)=C12C25=210=15,P(X=4)=C13C25=310,P(X=5)=C14C25=410=25,故E(X)=2×110+3×15+4×310+5×25=4.5.某中学选派40名学生参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如下表所示:(1)从这402名学生参加培训次数恰好相等的概率;(2)从这40名学生中任选2名,用X表示这2人参加培训次数之差的绝对值,求随机变量X的分布列及均值E(X).解:(1)这3名学生中至少有2名学生参加培训次数恰好相等的概率P=1-C15C115C120C340=419 494.(2)由题意知X=0,1,2,P(X=0)=C25+C215+C220C240=61156,P(X=1)=C15C115+C115C120C240=2552,P (X =2)=C 15C 120C 240=539,则随机变量X 的分布列为所以X 的均值E (X )=0×61156+1×2552+2×539=115156.二、离散型随机变量均值的性质 1.已知随机变量X 的分布列如下:(1)求m 的值; (2)求E (X );(3)若Y =2X -3,求E (Y ).解: (1)由随机变量分布列的性质,得14+13+15+m +120=1,解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:由于Y =2X -3, 所以Y 的分布列如下:所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215. 注:若给出的随机变量Y 与X 的关系为Y =aX +b (其中a ,b 为常数),一般思路是先求出E (X ),再利用公式E (aX +b )=aE (X )+b 求E (Y ).2.掷骰子游戏:规定掷出1点,甲盒中放一球,掷出2点或3点,乙盒中放一球,掷出4点、5点或6点,丙盒中放一球,共掷6次,用x ,y ,z 分别表示掷完6次后甲、乙、丙盒中球的个数.令X =x +y ,则E (X )=( )A .2B .3C .4D .5解析:选B 将每一次掷骰子看作一次实验,实验的结果分丙盒中投入球(成功)或丙盒中不投入球(失败)两种,且丙盒中投入球(成功)的概率为12,z 表示6次实验中成功的次数,则z ~B ⎝ ⎛⎭⎪⎫6,12,∴E (z )=3,又x +y +z =6,∴X =x +y =6-z , ∴E (X )=E (6-z )=6-E (z )=6-3=3.3.随机变量X 的分布列如下表,则E (5X +4)等于( )A.16 B .11 C .2.2 解析:选A 由已知得E (X )=0×0.3+2×0.2+4×0.5=2.4,故E (5X +4)=5E (X )+4=5×2.4+4=16.故选A.5.已知η=2ξ+3,且E (ξ)=35,则E (η)=( ) A.35 B.65 C.215 D.125解析:选C E (η)=E (2ξ+3)=2E (ξ)+3=2×35+3=215.三、两点分布、二项分布的均值1.甲、乙两队参加奥运知识竞赛,每队三人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中三人答对的概率分别为23,23,12,且各人回答得正确与否相互之间没有影响.(1)若用ξ表示甲队的总得分,求随机变量ξ的分布列和均值;(2)用A 表示事件“甲、乙两队总得分之和为3”,用B 表示事件“甲队总得分大于乙队总得分”,求P (AB ).解: (1)由题意知,ξ的所有可能取值为0,1,2,3,且ξ~B ⎝ ⎛⎭⎪⎫3,23,则有 P (ξ=0)=C 03×⎝ ⎛⎭⎪⎫1-233=127,P (ξ=1)=C 13×23×⎝ ⎛⎭⎪⎫1-232=29,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23=49,P (ξ=3)=C 33×⎝ ⎛⎭⎪⎫233=827,所以ξ的分布列为由于随机变量ξ~B ⎝⎛⎭⎪⎫3,23,则有E (ξ)=3×23=2. (2)用C 表示“甲得2分乙得1分”这一事件,用D 表示“甲得3分乙得0分”这一事件,AB =C ∪D ,C ,D 互斥.P (C )=C 23×⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23×13×12+13×23×12+13×13×12=1034, P (D )=C 33×⎝⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12=435, P (AB )=P (C )+P (D )=1034+435=3435=34243. 注:此类题的解法一般分两步:一是先判断随机变量服从两点分布还是二项分布;二是代入两点分布或二项分布的均值公式计算均值.2.一次单元测验由20个选择题组成,每个选择题有4个选项,其中仅有1个选项正确,每题选对得5分,不选或选错不得分.一学生选对任意一题的概率为0.9,则该学生在这次测验中成绩的均值为________.解析:设该学生在这次测验中选对的题数为X ,该学生在这次测试中成绩为Y ,则X ~B (20,0.9),Y =5X .由二项分布的均值公式得E (X )=20×0.9=18.由随机变量均值的线性性质得E (Y )=E (5X )=5×18=90. 答案:903.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是( )A .np (1-p )B .npC .nD .p (1-p )解析:选B 供电网络中一天用电的单位个数服从二项分布,故所求为np .故选B.4.某班有50名学生,其中男生30名,女生20名,现随机选取1名学生背诵课文,若抽到女生的人数记为X ,则E (X )=________.解析:易知X 服从两点分布,且P (X =0)=35,P (X =1)=25,故E (X )=25. 答案:255.某广场上有4盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现红灯的概率都是23,出现绿灯的概率都是13.记这4盏灯中出现红灯的数量为X ,当这4盏装饰灯闪烁一次时:(1)求X =2时的概率; (2)求X 的均值.解:(1)依题意知{X =2}表示“4盏装饰灯闪烁一次时,恰好有2盏灯出现红灯”,而每盏灯出现红灯的概率都是23,故X =2时的概率为C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=827. (2)∵X 服从二项分布,即X ~B ⎝ ⎛⎭⎪⎫4,23,∴E (X )=4×23=83.四、均值的实际应用1.随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%.如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?解:(1)利润X可以取6,2,1,-2;(2)利用均值的定义求值;(3)根据平均利润不小于4.73万元建立不等式求解.(1)X的所有可能取值有6,2,1,-2,P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为(2)E(X)=6×0.63万元).(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29),依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.2.某公司拟资助三位大学生自主创业,现聘请两位专家独立地对每位学生的创业方案进行评审.假设评审结果为“支持”和“不支持”的概率都是12,若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.令ξ表示该公司的资助总额,求E(ξ).解:法一:ξ的所有取值为0,5,10,15,20,25,30.P (ξ=0)=164,P (ξ=5)=332,P (ξ=10)=1564,P (ξ=15)=516,P (ξ=20)=1564,P (ξ=25)=332,P (ξ=30)=164.故ξ的分布列为因此E (ξ)=0×164+5×332+10×1564+15×516+20×1564+25×332+30×164=15.法二:设X i 为第i 名学生获得的“支持”数(i =1,2,3),ξi 为第i 名学生获得的“资助”额(i =1,2,3),则X i ~B ⎝ ⎛⎭⎪⎫2,12,且ξi =5X i (i =1,2,3),ξ=ξ1+ξ2+ξ3.因此E (ξ)=E (ξ1)+E (ξ2)+E (ξ3)=5E (X 1)+5E (X 2)+5E (X 3)=3×5×2×12=15. 3.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.解:(1)∵每张奖券是否中奖是相互独立的,∴ξ~B (4,12). ∴P (ξ=0)=C 04(12)4=116,P (ξ=1)=C 14(12)4=14, P (ξ=2)=C 24(12)4=38,P (ξ=3)=C 34(12)4=14, P (ξ=4)=C 44(12)4=116. ∴ξ的分布列为(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100.即实际支出的数学期望为2 100元.4.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.解:(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.五、求离散型随机变量的方差1.袋中有20个大小相同的球,其中标记0的有10个,标记n的有n个(n =1,2,3,4).现从袋中任取一球,X表示所取球的标号.(1)求X的分布列、均值和方差;(2)若Y=aX+b,E(Y)=1,D(Y)=11,试求a,b的值.解:(1)X的分布列为则E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X ),得a 2×2.75=11,得a =±2. 又E (Y )=aE (X )+b ,所以,当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4. 所以⎩⎨⎧ a =2,b =-2或⎩⎨⎧a =-2,b =4.注求离散型随机变量ξ的方差的步骤: (1)理解ξ的意义,明确其可能取值;(2)判定ξ是否服从特殊分布(如两点分布、二项分布等),若服从特殊分布,则可利用公式直接求解;若不服从特殊分布则继续下面步骤;(3)求ξ取每个值的概率;(4)写出ξ的分布列,并利用分布列性质检验;(5)根据方差定义求D (ξ).2.了激发学生了解数学史的热情,在班内进行数学家和其国籍的连线游戏,参加连线的同学每连对一个得1分.假定一个学生对这些数学家没有了解,只是随机地连线,试求该学生得分X 的分布列及其数学期望、方差.解:该学生连线的情况:连对0个,连对1个,连对2个,连对4个,故其得分可能为0分,1分,2分,4分.P (X =0)=3×3A 44=38,P (X =1)=C 14×2A 44=13,P (X =2)=C 24×1A 44=14,P (X =4)=1A 44=124.故X 的分布列为∴E (X )=0×38+1×13+2×14+4×124=1,D (X )=(0-1)2×38+(1-1)2×13+(2-1)2×14+(4-1)2×124=1. 3.已知随机变量X 的分布列如下:若E (X )=13,则D (X )的值是( ) A.13 B.23 C.59 D.79解析:选C 由分布列的性质可知a +b +12=1,∴a +b =12.又E (X )=-a +12=13,解得a =16,b =13,∴D (X )=⎝ ⎛⎭⎪⎫-1-132×16+⎝ ⎛⎭⎪⎫0-132×13+⎝ ⎛⎭⎪⎫1-132×12=59. 4.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片上的数字之和为X ,求D (X ).解:由题知X =6,9,12.P (X =6)=C 38C 310=715,P (X =9)=C 28C 12C 310=715,P (X =12)=C 18C 22C 310=115.∴X 的分布列为∴E (X )=6×715+9×715+12×115=7.8.D (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.六、常见分布的方差1.(1)抛掷一枚硬币1次,正面向上得1分,反面向上得0分.用ξ表示抛掷一枚硬币的得分数,求E (ξ),D (ξ);(2)某人每次投篮时投中的概率都是12.若投篮10次,求他投中的次数ξ的均值和方差;(3)5件产品中含有2件次品,从产品中选出3件,所含的次品数设为X ,求X 的分布列及其均值、方差.解: (1)ξ服从两点分布,抛掷一枚硬币1次,正面向上的概率为12,所以E (ξ)=12,D (ξ)=14.(2)ξ~B ⎝ ⎛⎭⎪⎫10,12,所以E (ξ)=10×12=5.D (ξ)=10×12×12=52. (3)X 可能取的值是0,1,2.P (X =0)=C 02C 33C 35=110,P (X =1)=C 12C 23C 35=35,P (X =2)=C 22C 13C 35=310,所以X 的分布列为E (X )=0×110+1×35+2×310=1.2.D (X )=(0-1.2)2×110+(1-1.2)2×35+(2-1.2)2×310=0.36.2.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,均值E (ξ)为3,标准差D (ξ)为62.(1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.解:由题意知,ξ~B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0.1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32, 得1-p =12,从而n =6,p =12. ξ的分布列为(2)记“得P (A )=164+332+1564+516=2132, 所以需要补种沙柳的概率为2132.3.从装有3个白球和7个红球的口袋中任取1个球,用X 表示是否取到白球,即X =⎩⎨⎧1(当取到白球时),0(当取到红球时),则X 的方差D (X )=( )A.21100B.750C.110D.310解析:选A 显然X 服从两点分布,P (X =0)=710,P (X =1)=310.故X 的分布列为所以E (X )=310,故D (X )=710×310=21100.4.已知一批产品中有12件正品,4件次品,有放回地任取4件,若X 表示取到次品的件数,则D (X )=( )A.34B.89C.38D.25解析:选B 由题意,可知每次取得次品的概率都为13,X ~B ⎝ ⎛⎭⎪⎫4,13,则D (X )=4×13×23=89.5.设随机变量X 的分布列为P (X =k )=C k n ⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫13n -k,k =0,1,2,…,n ,且E (X )=24,则D (X )的值为( )A .8B .12 C.29 D .16解析:选A 由题意可知X ~B ⎝ ⎛⎭⎪⎫n ,23,∴E (X )=23n =24. ∴n =36.∴D (X )=36×23×⎝ ⎛⎭⎪⎫1-23=8.6.某出租车司机从某饭店到火车站途中需经过六个交通岗,假设他在各个交通岗遇到红灯这一事件是相互独立的,并且概率是13.(1)求这位司机遇到红灯次数X 的均值与方差;(2)若遇上红灯,则需等待30秒,求司机总共等待时间Y 的均值与方差. 解:(1)易知司机遇上红灯次数X 服从二项分布,且X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝ ⎛⎭⎪⎫1-13=43.(2)由已知得Y=30X,∴E(Y)=30E(X)=60,D(Y)=900D(X)=1 200.七、离散型随机变量的均值与方差的应用1.A,B两台机床同时加工零件,每生产一批数量较大的产品时,出现次品的概率如下表所示.A机床B机床问哪一台机床加工的质量较好?解:由表中数据可知,E(X1)=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E(X2)=0×0.8+1×0.06+2×0.04+3×0.10=0.44.所以它们的期望相同,再比较它们的方差.D(X1)=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.606 4,D(X2)=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2×0.04+(3-0.44)2×0.10=0.926 4.因为0.606 4<0.926 4,所以A机床加工的质量较好.2.已知海关大楼顶端镶有A,B两面大钟,它们的日走时误差分别为X1,X2(单位:s),其分布列如下:解:∵由题意得E(X1)=0,E(X2)=0,∴E(X1)=E(X2).∵D(X1)=(-2-0)2×0.05+(-1-0)2×0.05+(0-0)2×0.8+(1-0)2×0.05+(2-0)2×0.05=0.5,D(X2)=(-2-0)2×0.1+(-1-0)2×0.2+(0-0)2×0.4+(1-0)2×0.2+(2-0)2×0.1=1.2,∴D(X1)<D(X2).综上可知,A大钟的质量较好.3.由以往的统计资料表明,甲、乙两名运动员在比赛中的得分情况为:A.甲B.乙C.甲、乙均可D.无法确定解析:选A E(X1)=E(X2)=1.1,D(X1)=1.12×0.2+0.12×0.5+0.92×0.3=0.49,D(X2)=1.12×0.3+0.12×0.3+0.92×0.4=0.69,∴D(X1)<D(X2),即甲比乙得分稳定,甲运动员参加较好.4.根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:为0.3,0.7,0.9,求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件和概率的加法公式有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为于是,E (Y )=0×D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.巩固练习:1.已知随机变量X 和Y ,其中Y =12X +7,且E (Y )=34,若X 的分布列如表,则m 的值为( )A.13B.14C.16D.18解析:选A 由Y =12X +7得E (Y )=12E (X )+7=34,从而E (X )=94,所以E (X )=1×14+2×m +3×n +4×112=94,又m +n +112+14=1,联立解得m =13.故选A.2.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c (a ,b ,c ∈(0,1)),已知他投篮一次得分的均值为2,则2a +13b 的最小值为()A.323 B.283 C.143 D.163解析:选D由已知得3a+2b+0×c=2,即3a+2b=2,其中0<a<23,0<b<1.2 a+13b=3a+2b2⎝⎛⎭⎪⎫2a+13b=3+13+2ba+a2b≥103+22ba·a2b=16 3,当且仅当2ba=a2b,即a=2b时取“等号”,故2a+13b的最小值为163.故选D.3.设l为平面上过点(0,1)的直线,l的斜率k等可能地取-22,-3,-52,0,52,3,22,用ξ表示坐标原点到l的距离d,则随机变量ξ的数学期望E(ξ)为()A.37 B.47 C.27 D.17解析:选B当k=±22时,直线l的方程为±22x-y+1=0,此时d=1 3;当k=±3时,d=12;当k=±52时,d=23;当k为0时,d=1.由等可能事件的概率公式可得ξ的分布列为所以E(ξ)=13×27+12×27+23×27+1×17=47.4.某学校要从5名男生和2名女生中选出2人作为社区志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则随机变量ξ的数学期望E(ξ)=________(结果用分数表示).解析:随机变量ξ的所有可能取值为0,1,2,因为P (ξ=0)=C 25C 27=1021,P (ξ=1)=C 15C 12C 27=1021,P (ξ=2)=C 22C 27=121,所以E (ξ)=0×1021+1×1021+2×121=47.答案:475.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的均值E (X )=________.解析:由P (X =0)=⎝ ⎛⎭⎪⎫1-23(1-p )(1-p )=112可得p =12⎝ ⎛⎭⎪⎫p =32舍去, 从而P (X =1)=23·⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·C 12·⎝ ⎛⎭⎪⎫122=13, P (X =2)=23·C 12⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫1-23·⎝ ⎛⎭⎪⎫122=512, P (X =3)=23·⎝ ⎛⎭⎪⎫122=16. 所以E (X )=0×112+1×13+2×512+3×16=53. 答案:536.“键盘侠”是指部分在现实生活中不爱说话,却在网上习惯性地、集中性地发表各种言论的人群,人们对这种现象有着不同的看法.某调查组织在某广场上邀请了10名男士和10名女士请他们分别谈一下对“键盘侠”这种社会现象的认识,其中有4名男士和5名女士认为它的出现是“社会进步的表现”,其他人认为它的出现是“社会冷漠的表现”.(1)从这些男士和女士中各抽取1人,求至少有1人认为“键盘侠”这种社会现象是“社会进步的表现”的概率;(2)从男士中抽取2人,女士中抽取1人,3人中认为“键盘侠”这种社会现象是“社会进步的表现”的人数记为X ,求X 的分布列和数学期望.解:(1)由题意可知10名男士中有4人认为“键盘侠”的出现是“社会进步的表现”,10名女士中有5人也这样认为.记事件A={从这些男士和女士中各抽取1人,至少有1人认为“键盘侠”的出现是“社会进步的表现”},则P(A)=1-C16C15C110C110=1-30100=710.(2)X的所有可能取值为0,1,2,3.P(X=0)=C26C210×C15C110=16,P(X=1)=C14C16C210×C15C110+C26C210×C15C110=1330,P(X=2)=C24C210×C15C110+C14C16C210×C15C110=13,P(X=3)=C24C210×C15C110=115,所以X的分布列为数学期望E(X)=0×16+1×1330+2×13+3×115=1310.7.设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区作一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为从而E (T )=25×0.2+30×0.3+35×0.4+40×0.1=32.(2)设T 1,T 2分别表示往、返所需时间,T 1,T 2的取值相互独立,且与T 的分布列相同.设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.法一:P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P (A )=1-P (A )=0.91.8.若ξ~B (n ,p ),且E (ξ)=6,D (ξ)=3,则P (ξ=1)=( ) A .3×2-2 B .3×2-10 C .2-4 D .2-8解析:选B 由E (ξ)=np =6,D (ξ)=np (1-p )=3,得p =12,n =12,所以p (ξ=1)=C 112⎝ ⎛⎭⎪⎫1212=3210=3×2-10.故选B. 9.设X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,现已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113解析:选C 由题意得P (X =x 1)+P (X =x 2)=1,所以随机变量X 只有x 1,x 2两个取值,所以⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29.解得x 1=1,x 2=2x 1=53,x 2=23舍去,所以x 1+x 2=3,故选C.10.若p 为非负实数,随机变量X 的分布列为则E (X )的最大值是.解析:由分布列的性质可知p ∈⎣⎢⎡⎦⎥⎤0,12,则E (X )=p +1∈⎣⎢⎡⎦⎥⎤1,32,故E (X )的最大值为32.∵D (X )=⎝ ⎛⎭⎪⎫12-p (p +1)2+p (p +1-1)2+12(p +1-2)2=-p 2-p +1=-⎝ ⎛⎭⎪⎫p +122+54,又p ∈⎣⎢⎡⎦⎥⎤0,12,∴当p =0时,D (X )取得最大值1. 答案:32 111.已知随机变量X 的分布列为①E (X )=-13;②E (X +4)=-13;③D (X )=2327; ④D (3X +1)=5;⑤P (X >0)=13.解析:E (X )=(-1)×12+0×13+1×16=-13,E (X +4)=113,故①正确,②错误.D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59,D (3X +1)=9D (X )=5,故③错误,④正确.P (X >0)=P (X =1)=16,故⑤错误.答案:212.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为(1)在A ,B 两个项目上各投资100万元,Y 1(万元)和Y 2(万元)分别表示投资项目A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.解:(1)由题设可知Y 1和Y 2的分布列分别为E (Y 1)=5×0.8+10×0.2=6,D (Y 1)=(5-6)2×0.8+(10-6)2×0.2=4;E (Y 2)=2×0.2+8×0.5+12×0.3=8,D (Y 2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3=12. (2)f (x )=D ⎝ ⎛⎭⎪⎫x 100·Y 1+D ⎝ ⎛⎭⎪⎫100-x 100·Y 2 =⎝ ⎛⎭⎪⎫x 1002D (Y 1)+⎝⎛⎭⎪⎫100-x 1002D (Y 2) =41002[x 2+3(100-x )2] =41002(4x 2-600x +3×1002). 所以当x =6002×4=75时,f (x )取最小值3.。
高中数学选修2-3-离散型随机变量的期望与方差
离散型随机变量的期望与方差知识集结知识元离散型随机变量的期望与方差知识讲解1.离散型随机变量的期望与方差【知识点的知识】1、离散型随机变量的期望数学期望:一般地,若离散型随机变量ξ的概率分布为x1x2…x n…P p1p2…p n…则称Eξ=x1p1+x2p2+…+x n p n+…为ξ的数学期望,简称期望.数学期望的意义:数学期望离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.平均数与均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令p1=p2=…=p n,则有p1=p2=…=p n=,Eξ=(x1+x2+…+x n)×,所以ξ的数学期望又称为平均数、均值.期望的一个性质:若η=aξ+b,则E(aξ+b)=aEξ+b.2、离散型随机变量的方差;方差:对于离散型随机变量ξ,如果它所有可能取的值是x1,x2,…,x n,…,且取这些值的概率分别是p1,p2,…,p n…,那么,称为随机变量ξ的均方差,简称为方差,式中的Eξ是随机变量ξ的期望.标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作.方差的性质:.方差的意义:(1)随机变量的方差的定义与一组数据的方差的定义式是相同的;(2)随机变量的方差、标准差也是随机变量的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;(3)标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛.例题精讲离散型随机变量的期望与方差例1.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5例2.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15例3.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9当堂练习单选题练习1.随机变量ξ的分布列如表,且E(ξ)=1.1,则D(ξ)=()A.0.36B.0.52C.0.49D.0.68练习2.在某公司的一次投标工作中,中标可以获利12万元,没有中标损失成本费0.5万元、若中标的概率为0.6,设公司盈利为X万元,则D(X)=()A.7B.31.9C.37.5D.42.5练习3.设随机变量ξ服从分布B(n,p),且E(ξ)=1.2,D(ξ)=0.96,则()A.n=6,p=0.2B.n=4,p=0.3C.n=5,p=0.24D.n=8,p=0.15练习4.已知A,B两个不透明盒中各有形状、大小都相同的红球、白球若干个.A盒中有m个红球与10-m个白球,B盒中有10-m个红球与m个白球(0<m<10),若从A,B盒中各取一个球,ξ表示所取的2个球中红球的个数,则当Dξ取到最大值时,m的值为()A.3B.5C.7D.9解答题练习1.'为了积极支持雄安新区建设,某投资公司计划明年投资1000万元给雄安新区甲、乙两家科技企业,以支持其创新研发计划,经有关部门测算,若不受中美贸易战影响的话,每投入100万元资金,在甲企业可获利150万元,若遭受贸易战影响的话,则将损失50万元;同样的情况,在乙企业可获利100万元,否则将损失20万元,假设甲、乙两企业遭受贸易战影响的概率分别为0.6和0.5.(1)若在甲、乙两企业分别投资500万元,求获利1250万元的概率;(2)若在两企业的投资额相差不超过300万元,求该投资公司明年获利约在什么范围内?'练习2.'某蛇养殖基地因国家实施精准扶贫,大力扶持农业产业发展,拟扩大养殖规模.现对该养殖基地已经售出的王锦蛇的体长(单位:厘米)进行了统计,得到体长的频数分布表如下:若王锦蛇、乌梢蛇成年母蛇的购买成本分别为650元/条、600元/条,每条母蛇平均可为养殖场获得1200元/年的销售额,且每条蛇的繁殖年限均为整数,将每条蛇的繁殖年限的频率看作概率,以每条蛇所获得的毛利润(毛利润=总销售额-购买成本)的期望值作为购买蛇类的依据,试问:应购买哪类蛇?'练习3.'中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为x,求随机变量x的分布列及数学期望.'练习4.'已知甲、乙两名工人在同样条件下每天各生产100件产品,且每生产1件正品可获利20元,生产1件次品损失30元,甲、乙两名工人100天中出现次品件数的情况如表所示.(1)将甲每天生产的次品数记为x(单位:件),日利润记为y(单位:元),写出y与x的函数关系式;(2)如果将统计的100天中产生次品量的频率作为概率,记X表示甲、乙两名工人1天中各自日利润不少于1950元的人数之和,求随机变量X的分布列和数学期望.'练习5.'“回文数”是指从左到右与从右到左读都一样的正整数,如22,121,3553等.显然2位“回文数”共9个:11,22,33,…,99.现从9个不同2位“回文数”中任取1个乘以4,其结果记为X;从9个不同2位“回文数”中任取2个相加,其结果记为Y.(1)求X为“回文数”的概率;(2)设随机变量ξ表示X,Y两数中“回文数”的个数,求ξ的概率分布和数学期望E(ξ).'。
2017-2018学年高中数学苏教版选修2-3教学案:第1章章末小结与测评含答案
1一、两个计数原理的应用1.分类计数原理首先要根据问题的特点确定一个合适的分类标准,然后在这个标准下分类;其次,完成这件事的任何一种方法必须属于某一类.分别属于不同类的两种方法是不同的方法.2.分步计数原理首先根据问题的特点确定一个分步的标准.其次分步时要注意,完成一件事必须并且只有连续完成这n个步骤后,这件事才算完成.二、排列与组合概念及公式1.定义从n个不同元素中取出m(m≤n)个元素,若按照一定的顺序排成一列,则叫做从n个不同元素中取出m个元素的一个排列;若合成一组,则叫做从n个不同元素中取出m个元素的一个组合.即排列和顺序有关,组合与顺序无关.2.排列数公式(1)A错误!=n(n-1)(n-2)…(n-m+1),规定A错误!=1.当m=n时,A错误!=n(n-1)(n-2)·…·3·2·1.(2)A错误!=错误!,其中A错误!=n!,0!=1。
三、排列与组合的应用1.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取"时重复和遗漏;(4)列出式子计算并作答.2.处理排列组合的综合性问题,一般思想方法是先选元素(组合),后排列.按元素的性质“分类”和按事件发生的连续过程“分步”,始终是处理排列组合问题的基本方法和原理,通过解题训练注意积累分类和分步的基本技能.3.解排列组合应用题时,常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类和准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.四、二项式定理及二项式系数的性质1.二项式定理公式(a+b)n=C错误!a n+C错误!a n-1b+…+C错误!a n-r b r+…+C错误!b n,其中各项的系数C错误!(r=0,1,2,…,n)称为二项式系数,第r +1项C r n a n-r b r称为通项.[说明](1)二项式系数与项的系数是不同的概念,前者只与项数有关,而后者还与a,b的取值有关.(2)运用通项求展开式的特定值(或特定项的系数),通常先由题意列方程求出r,再求所需的项(或项的系数).2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,体现了组合数性质C错误!=C错误!.(2)增减性与最大值:当r<错误!时,二项式系数C错误!逐渐增大;当r>错误!时,二项式系数C错误!逐渐减小.当n是偶数时,展开式中间一项T错误!+1的二项式系数C错误!n最大;当n是奇数时,展开式中间两项T错误!与T错误!+1的二项式系数C错误!n,C错误!n相等且最大.(3)各项的二项式系数之和等于2n,即C错误!+C错误!+C错误!+…+C错误!=2n;奇数项的二项式系数的和等于偶数项的二项式系数的和,即C错误!+C错误!+C错误!+…=C错误!+C错误!+C错误!+…。
苏教版高中数学选修2-3《离散型随机变量的方差和标准差》参考教案2
备课 时间教学 课题教时 计划1教学 课时1教学 目标 (1)理解随机变量的方差和标准差的含义;(2)会求随机变量的方差和标准差,并能解决一些实际问题.重点难点 理解方差和标准差公式所表示的意义,并能解决一些实际问题.教学过程一.问题情境甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不合格品数分别用12,X X 表示,12,X X 的概率分布如下.1X 0 1 2 3k p0.7 0.10.10.1 2X 0 1 2 3k p0.50.30.2二.学生活动如何比较甲、乙两个工人的技术?我们知道,当样本平均值相差不大时,可以利用样本方差考察样本数据与样本平均值的偏离程度.能否用一个类似于样本方差的量来刻画随机变量的波动程度呢? 三.建构数学1.一般地,若离散型随机变量X 的概率分布如表所示:X 1x2x…n xP1p2p…n p则2()(())i x E X μμ-=描述了(1,2,...,)i x i n =相对于均值μ的偏离程度,故2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()V X 或2σ. 2.方差公式也可用公式221()ni i i V X x p μ==-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()V X 的算术平方根称为X 的标准差,即()V X σ=.思考:随机变量的方差和样本方差有何区别和联系? 四.数学运用 1.例题:例1.若随机变量X 的分布如表所示:求方差()V X 和标准差()V X .X 0 1P1p -p解:因为0(1)1p p p μ=⨯-+⨯=,所以22()(0)(1)(1)(1)V X p p p p p p =--+-=-,()(1)V X p p =-例2.求第2.5.1节例1中超几何分布(5,10,30)H 的方差和标准差. 解:第2.5.1节例1中超几何分布如表所示:X 012345P258423751807523751855023751380023751700237514223751数学期望53μ=,由公式221()ni i i V X x p μ==-∑有22584807585503800700425()01491625()2375123751237512375123751237513V X =⨯+⨯+⨯+⨯+⨯+⨯- 2047500.9579213759=≈故标准差 0.9787σ≈.例3.求第2.5.1节例2中的二项分布(10,0.05)B 的方差和标准差. 解::0.05p =,则该分布如表所示:X 0 1 2345k p 001010(1)C p p - 11910(1)C p p -22810(1)C p p -33710(1)C p p -44610(1)C p p -55510(1)C p p -X 6 7 8910k p 66410(1)C p p - 77310(1)C p p -88210(1)C p p -99110(1)C p p -1010010(1)C p p -由第2.5.1节例2知()0.5E X μ==,由221()ni i i V X x p μ==-∑得2200102119210100210101000.050.9510.050.95...100.050.950.5C C C σ=⨯⨯+⨯⨯++⨯⨯-0.7250.250.475≈-= 故标准差0.6892σ≈.说明:一般地,由定义可求出超几何分布和二项分布的方差的计算公式:当~(,,)X H n M N 时,2()()()(1)nM N M N n V X N N --=-,当~(,)X B n p 时,()(1)V X np p =-. 例4.有甲、乙两名学生,经统计,他们字解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示:甲分数X 甲80 90 100概率0.2 0.6 0.2试分析两名学生的答题成绩水平.解:由题设所给分布列数据,求得两人的均值如下:X E ⨯⨯⨯甲()=800.2+900.6+1000.2=90,X E ⨯⨯⨯乙()=800.4+900.2+1000.4=90方差如下:222()(8090)0.2(9090)0.6(10090)0.240V X =-⨯+-⨯+-⨯=甲乙分数X 乙80 90 100概率 0.4 0.20.4222V X=-⨯+-⨯+-⨯=()(8090)0.4(9090)0.2(10090)0.480乙由上面数据可知()(),()(),这表明,甲、乙两人所得分数的平=<E X E X V X V X乙乙甲甲均分相等,但两人得分的稳定程度不同,甲同学成绩较稳定,乙同学成绩波动大.2.练习:五.回顾小结:1.离散型随机变量的方差和标准差的概念和意义;2.离散型随机变量的方差和标准差的计算方法;3.超几何分布和二项分布的方差和标准差的计算方法课外作业教学反思。
高中数学(苏教版 选修2-3)文档第2章 2.5.2 离散型随机变量的方差与标准差 学业分层测评 Word版含答案
学业分层测评(建议用时:分钟)[学业达标]一、填空题.已知随机变量ξ满足(ξ)=,则ξ的标准差为.【解析】==.【答案】.设随机变量ξ可能取值为,且满足(ξ=)=,(ξ=)=,则(ξ)=.【解析】由题意可知,随机变量ξ服从两点分布,故(ξ)=×=.【答案】.随机变量ξ的取值为.若(ξ=)=,(ξ)=,则(ξ)=. 【导学号:】【解析】设(ξ=)=,(ξ=)=,则(\\(+=(),+=,))⇒(\\(=(),, =(),))所以(ξ)=(-)×+(-)×+(-)×=.【答案】.若ξ~,且η=ξ+,则(ξ)=,(η)=.【解析】∵ξ~,∴(ξ)=××=.(η)=(ξ+)=(ξ)=.【答案】.同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在次试验中成功次数的均值是.【解析】法一:由题意可知每次试验不成功的概率为,成功的概率为,在次试验中成功次数的可能取值为,则(=)=,(=)=××=,(=)==.所以在次试验中成功次数的分布列为()=×+×+×=.法二:此试验满足二项分布,其中=,所以在次试验中成功次数的均值为()==×=.【答案】.随机变量ξ的分布列如下:】【解析】由题意得=+①,++=②,-=③,以上三式联立解得=,=,=,故(ξ)=.【答案】.设一次试验成功的概率为,进行次独立重复试验,当=时,成功次数的标准差的值最大,其最大值为.【解析】成功次数ξ~(,),∴(ξ)=(-)≤×=.当且仅当=-,即=时,取得最大值=.【答案】.一次数学测验由道选择题构成,每个选择题有个选项,其中有且仅有一个选项是正确的,每个答案选择正确得分,不作出选择或选错不得分,满分分,某学生选对任一题的概率为,则此学生在这一次测验中的成绩的均值与方差分别为.【解析】设该学生在这次数学测验中选对答案的题目的个数为,所得的分数(成绩)为,则=.由题知~(),所以()=×=,()=××=,()=()=()=,()=()=×()=×=,所以该学生在这次测验中的成绩的均值与方差分别是与.【答案】二、解答题.设在个同类型的零件中有个是次品,每次任取个,共取次,设ξ表示取出次品的个数.()若取后不放回,求ξ的均值(ξ)和方差(ξ);()若取后再放回,求ξ的均值(ξ)和方差(ξ).。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 2.1 随机变量及其概率分布》09
离散型随机变量及其分布列第一课时2.1.1离散型随机变量教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量.2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识.3、开展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识数学的科学价值和应用价值.教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.教学方法:启发讲授式与问题探究式.教学手段:多媒体教学过程:一、创设情境,引出随机变量提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示?启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系.在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比方可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果.再提出思考问题2:一位篮球运发动3次罚球的得分结果可以用数字表示吗?让学生思考得出结论:投进零个球——— 0分投进一个球——— 1分投进两个球——— 2分投进三个球——— 3分得分结果可以用数字0、1、2、3表示.二、探究发现1、随机变量问题:任何随机试验的所有结果都可以用数字表示吗?引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量.问题:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念?引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量.随机变量常用字母、、、来表示.问题1.3:随机变量与函数有类似的地方吗?引导学生回忆函数的理解:函数实数实数在引导学生类比函数的概念,提出对随机变量的理解:随机变量随机试验的结果实数师生讨论交流归纳出结论:随机变量和函数都是一种映射,函数把实数映为实数,随机变量把随机试验的结果映为实数,在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.因此掷一枚硬币的试验中,随机变量的值域可以为{0,1}或{1,2}2、离散型随机变量问题:用随机变量表示以下试验,写出它们的值域:(1)据统计资料显示,某城市的最大日降雨量是150毫升/平方米,该城市的日降雨量是随机变量.(2)在100张体育彩票中,有5张三等奖,现从中任取10张,抽得三等奖的张数是随机变量.解答:〔1〕;〔2〕问题:从连续性的角度看上述两个问题中的值域有什么不同?让学生思考得出结论:有的随机变量的取值可以一一列出,但有的却不能.教师引导学生归纳出离散型随机变量的概念:所有取值可以一一列出的随机变量,称为离散型随机变量.问题:区分以下随机试验中的随机变量哪些是离散型随机变量?哪些不是?(1)用户在某一段时间内对站的呼唤次数;(2)射击时击中点与目标中心的偏差;(3)某网页在24小时内被浏览的次数;(4)电灯泡的寿命.再让学生自己举出一些离散型随机变量的例子,加深对概念的理解.三、随机变量在实际问题中的应用1、用随机变量表示随机事件问题:写出以下随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)在含有10件次品的100件产品中,任意抽取4件,可能含有的次品的件数X是随机变量.(2)一袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数是一个随机变量.解答:〔1〕随机变量X可能的取值为:0,1,2,3,4.,表示抽出0件次品;,表示抽出1件次品;,表示抽出2件次品;,表示抽出3件次品;〔2〕随机变量可能的取值为:0,1,2,3.,表示取出0个白球3个黑球;,表示取出1个白球2个黑球;,表示取出2个白球1个黑球;,表示取出3个白球0个黑球;问题:抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“〞表示第一枚为6点,第二枚为1点.让学生进一步了解随机变量的作用,以及用随机变量表示随机试验的方法.2、定义随机变量的原那么问题:如果规定寿命在1500小时以上的灯泡为一等品;寿命在1000小时到1500小时之间的为二等品;寿命为1000小时以下的为不合格.〔1〕如果我们关心灯泡是否为合格品,应该如何定义随机变量?〔2〕如果我们关心灯泡是否为一等品或二等品,应该如何定义随机量?〔3〕如果我们关心灯泡的使用寿命,应该如何定义随机变量?让学生思考,教师引导得出答案:〔1〕随机变量;〔2〕随机变量;〔3〕定义随机变量Z为灯泡的使用寿命.问题:定义随机变量的规律是什么引导学生体会根据实际问题定义随机变量的一般原那么,让学生讨论并归纳出:所定义的随机变量值应该有实际意义,所定义的随机变量取值应该和所感兴趣的结果个数形成一对一的关系.四、课堂小结〔1〕随机变过量的定义,离散型随机变过量的定义;〔2〕定义随机变量的原那么:所定义的随机变量值应该有实际意义,所定义的随机变量取值应该和所感兴趣的结果个数形成一对一的关系.五、布置作业课本:习题2.1 A组1、2、3思考题:某城市出租汽车的起步价为10元,行驶路程不超出4km,那么按10元的标准收租车费.假设行驶路程超出4km,那么按每超出m加收2元计费超出缺乏1km的局部按m计.从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程这个城市规定,每停车5分钟按m路程计费,这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量.1求租车费η关于行车路程ξ的关系式;2某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟参考答案:1依题意得η=2ξ-410,即η=2ξ22由38=2ξ2,得ξ=18,5×〔18-15〕=15.所以,出租车在途中因故停车累计最多15分钟.教学设计:随机变量在概率统计研究中起着极其重要的作用,它通过实数空间来刻画随机现象,从而使更多的数学工具有了用武之地.随机变量是连接随机现象和实数空间的一座桥梁,它使我们得以在实数空间上研究随机现象.离散型随机变量是最简单的随机变量,本节课通过离散型随机变量展示了用实数空间刻画随机现象的方法.本节课首先从学生熟悉的掷骰子、掷硬币、篮球运发动罚球为例,引入随机变量的概念,引导学生分析问题的特点,通过几个问题的讨论,了解随机变量的概念实际上也可以看作是函数概念的推广,从而进一步归纳出随机变量的概念,使学生体会概念形成的过程.随机变量的概念得出后,通过三组问题让学生理解、辨析离散型随机变量.最后通过简单的练习,让学生体会随机变量在实际问题中的应用,培养应用的意识.在教学方法方面,为了充分调动学生学习的积极性,在教学中主要采用启发式教学法;采用“以学生为主体,以问题为中心,以活动为根底,以培养学生提出问题和解决问题为目标〞进行教学,把启发、诱导贯穿教学始终,通过真实、熟悉的情景,激发学生的学习兴趣,尽力唤起学生的求知欲望,促使他们积极参与学习活动全过程,在老师的指导下主动地开展学习活动.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课下能力提升(十六) 离散型随机变量的方差和标准差
一、填空题
1.已知X 的概率分布为
则V (X )=________.
2.一批产品中,次品率为1
4,现有放回地连续抽取4次,若抽的次品件数记为X ,则
V (X )的值为________.
3.已知X ~B (n ,p ),且E (X )=7,V (X )=6,则p =________. 4.已知随机变量X
且E (X )=1.1,则V (X )的值为________. 5.篮球比赛中每次罚球命中得1分,不中得0分.已知某运动员罚球命中的概率为0.7,则他一次罚球得分的方差为________.
二、解答题
6.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为X ,求E (X )和V (X ).
7.甲、乙两个野生动物保护区有相同的自然环境,且野生动物的种类和数量也大致相等,而两个保护区内每个季度发现违反保护条例的事件次数的概率分布分别为:
试评定这两个保护区的管理水平.
8.编号为1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X ,求V (X ).
答案
1.解析:∵a +0.1+0.6=1,∴a =0.3. ∴E (X )=1×0.3+2×0.1+3×0.6=2.3.
∴V (X )=(1-2.3)2×0.3+(2-2.3)2×0.1+(3-2.3)2×0.6=0.81. 答案:0.81
2.解析:由题意,次品件数X 服从二项分布,即X ~B ⎝⎛⎭⎫4,14, 故V (X )=np ·(1-p )=4×14×34=3
4.
答案:34
3.解析:∵E (X )=np =7,V (X )=np (1-p )=6, ∴1-p =67,即p =1
7.
答案:1
7
4.解析:由随机变量分布列的性质可得p =1-15-310=1
2
.
又E (X )=0×15+1×12+x ×310=1.1,解得x =2,可得V (X )=(0-1.1)2×15+(1-1.1)2×
1
2+(2-1.1)2×3
10
=0.49.
答案:0.49
5.解析:设一次罚球得分为X ,X 服从两点分布,即
所以V (X )=p (1-p )=0.7×0.3=0.21. 答案:0.21
6.解:这3张卡片上的数字和X 的可能取值为6,9,12.
X =6表示取出的3张卡片上都标有2, 则P (X =6)=C 38
C 310=715
.
X =9表示取出的3张卡片上两张标有2,一张标有5,
则P (X =9)=C 28C 12
C 310=715
.
X =12表示取出的3张卡片中两张标有5,一张标有2,
则P (X =12)=C 18C 22
C 310=115
.
所以X 的分布列如下表:
所以E (X )=6×715+9×715+12×1
15
=7.8.
V (X )=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×1
15
=3.36.
7. 解:甲保护区违规次数X 的均值和方差为 E (X )=0×0.3+1×0.3+2×0.2+3×0.2=1.3,
V (X )=(0-1.3)2×0.3+(1-1.3)2×0.3+(2-1.3)2×0.2+(3-1.3)2×0.2=1.21. 乙保护区的违规次数Y 的均值和方差为 E (Y )=0×0.1+1×0.5+2×0.4=1.3,
V (Y )=(0-1.3)2×0.1+(1-1.3)2×0.5+(2-1.3)2×0.4=0.41.
因为E (X )=E (Y ),V (X )>V (Y ),所以两个保护区内每个季度发生的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,乙保护区内的违规事件次数更加集中和稳定.相对而言,乙保护区的管理较好一些.
8.解:先求X 的分布列.
X =0,1,2,3.
X =0表示三位学生全坐错了,情况有2种, 所以P (X =0)=23!=1
3
;
X =1表示只有一位同学坐对了,情况有3种, 所以P (X =1)=33!=1
2
;
X =2表示有两位学生坐对,一位学生坐错,这种情况不存在,所以P (X =2)=0; X =3表示三位学生全坐对了,情况有1种, 所以P (X =3)=13!=1
6.
所以X 的概率分布如下:
所以E (X )=0×13+1×12+2×0+3×1
6
=12+1
2
=1, V (X )=(0-1)2×13+(1-1)2×12+(2-1)2×0+(3-1)2×1
6=1.。