北师大版八年级(上)数学《平面直角坐标系》同步练习1(含答案)

合集下载

北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)

北师大版数学八年级上册第三章位置与坐标知识点归纳及例题(含答案)

北师大版八年级上册第三章位置与坐标知识点归纳及例题1 平面直角坐标系【要点梳理】知识点一、确定位置的方法有序数对:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).要点诠释:有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.可以用有序数对确定物体的位置,也可以用方向和距离来确定物体的位置(或称方位).知识点二、平面直角坐标系与点的坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).知识点诠释:平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的. 2.点的坐标平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.知识点诠释:(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.知识点三、坐标平面1. 象限建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.知识点诠释:(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.2.各个象限内和坐标轴上点的坐标的符号特征知识点诠释:(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.【典型例题】类型一、确定物体的位置1.如果将一张“13排10号”的电影票简记为(13,10),那么(10,13)表示的电影票是排号.【思路点拨】在平面上,一个数据不能确定平面上点的位置.须用有序数对来表示平面内点的位置.【答案】10,13.【解析】由条件可知:前面的数表示排数,后面的数表示号数.【总结升华】在表示时,先要“约定”顺序,一旦顺序“约定”,两个数的位置就不能随意交换,(a,b)与(b,a)顺序不同,含义就不同.2.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【思路点拨】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【答案】D.【解析】由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.【总结升华】本题考查了学生的阅读理解能力,由已知条件正确确定点的位置是解决本题的关键.类型二、平面直角坐标系与点的坐标的概念3.如图,写出点A、B、C、D各点的坐标.【思路点拨】要确定点的坐标,要先确定点所在的象限,再看点到坐标轴的距离.【答案与解析】解:由点A向x轴作垂线,得A点的横坐标是2,再由点A向y轴作垂线,得A 点的纵坐标是3,则点A的坐标是(2,3),同理可得点B、C、D的坐标.所以,各点的坐标:A(2,3),B(3,2),C(-2,1),D(-1,-2).【总结升华】平面直角坐标系内任意一点到x轴的距离是这点纵坐标的绝对值,到y轴的距离是这点横坐标的绝对值.举一反三:【变式】多多和爸爸、妈妈周末到动物园游玩,回到家后,她利用平面直角坐标系画出了动物园的景区地图,如图所示.可是她忘记了在图中标出原点和x轴、y轴.只知道马场的坐标为(﹣3,﹣3),你能帮她建立平面直角坐标系并求出其他各景点的坐标?【答案】解:建立坐标系如图:∴南门(0,0),狮子(﹣4,5),飞禽(3,4)两栖动物(4,1).4.如图,四边形OABC 各个顶点的坐标分别是O (0,0),A (3,0),B (5,2),C (2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E(5,3),所以S四边形ABCO =S矩形OHEF﹣S△ABH﹣S△CBE﹣S△OCF=5×3﹣×2×2﹣×1×3﹣×3×2=.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.举一反三:【变式】在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为.【答案】5.类型三、坐标平面及点的特征5. 已知点P(2m+4,m﹣1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,﹣3)点,且与x轴平行的直线上.【思路点拨】(1)根据横纵坐标的大小关系得出m﹣1﹣(2m+4)=3,即可得出m 的值,进而得出P点坐标;(2)根据平行于x轴点的坐标性质得出m﹣1=﹣3,进而得出m的值,进而得出P点坐标.【答案与解析】解:(1)∵点P(2m+4,m﹣1),点P的纵坐标比横坐标大3,∴m﹣1﹣(2m+4)=3,解得:m=﹣8,∴2m+4=﹣12,m﹣1=﹣9,∴点P的坐标为:(﹣12,﹣9);(2)∵点P在过A(2,﹣3)点,且与x轴平行的直线上,∴m﹣1=﹣3,解得:m=﹣2,∴2m+4=0,∴P点坐标为:(0,﹣3).【总结升华】此题主要考查了坐标与图形的性质,根据已知得出关于m的等式是解题关键.举一反三:【变式】在直角坐标系中,点P(x,y)在第二象限且P到x轴,y轴的距离分别为2,5,则P的坐标是_________;若去掉点P在第二象限这个条件,那么P的坐标是________.【答案】(-5,2);(5,2),(-5,2),(5,-2),(-5,-2).2 坐标平面内图形的轴对称和平移【知识点梳理】知识点一、关于坐标轴对称点的坐标特征1.关于坐标轴对称的点的坐标特征P(a,b)关于x轴对称的点的坐标为 (a,-b);P(a,b)关于y轴对称的点的坐标为 (-a,b);P(a,b)关于原点对称的点的坐标为 (-a,-b).2.象限的角平分线上点坐标的特征第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).3.平行于坐标轴的直线上的点平行于x轴的直线上的点的纵坐标相同;平行于y轴的直线上的点的横坐标相同.知识点二、用坐标表示平移1.点的平移:在平面直角坐标系中,将点(x,y)向右或向左平移a个单位长度,可以得到对应点(x+a,y)或(x-a,y);将点(x,y)向上或向下平移b个单位长度,可以得到对应点(x,y+b)或(x,y-b).知识点诠释:(1)在坐标系内,左右平移的点的坐标规律:右加左减;(2)在坐标系内,上下平移的点的坐标规律:上加下减;(3)在坐标系内,平移的点的坐标规律:沿x轴平移纵坐标不变,沿y轴平移横坐标不变.2.图形的平移:在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.知识点诠释:(1)平移是图形的整体位置的移动,图形上各点都发生相同性质的变化,因此图形的平移问题可以转化为点的平移问题来解决.(2)平移只改变图形的位置,图形的大小和形状不发生变化.【典型例题】类型一、用坐标表示轴对称1.已知点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),则的值为_______.【思路点拨】根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a +b =-3,1-b =-1,再解方程可得a 、b 的值,进而算出的值.【答案】25【解析】解:∵点P (3,-1)关于y 轴的对称点Q 的坐标是(a +b ,1-b ),∴a +b =-3,1-b =-1,解得:b =2,a =-5,=25,【总结升华】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律.举一反三:【变式】点(3,2)关于x 轴的对称点为( )A .(3,-2)B .(-3,2)C .(-3,-2)D .(2,-3)【答案】A .2.已知点A(-3,2)与点B(x ,y)在同一条平行于y 轴的直线上,且点B 到x 轴的距离等于3,求点B 的坐标.b a b a b a【思路点拨】由“点A(-3,2)与点B(x,y)在同一条平行于y轴的直线上”可得点B的横坐标;由“点B到x轴的距离等于3”可得B的纵坐标为3或﹣3,即可确定B的坐标.【答案与解析】解:如图,∵点B与点A在同一条平行于y轴的直线上,∴点B与点A的横坐标相同,∴ x=-3.∵点B到x轴的距离为3,∴ y=3或y=-3.∴点B的坐标是(-3,3)或(-3,-3).【总结升华】在点B的横坐标为-3的条件下,点B到x轴的距离等于3,则点B可能在第二象限,也可能在第三象限,所以要分类讨论,防止漏解.举一反三:【变式1】若x轴上的点P到y轴的距离为3,则点P的坐标为().A.(3,0) B.(3,0)或(–3,0)C.(0,3) D.(0,3)或(0,–3)【答案】B.【变式2】若点P (a ,b)在第二象限,则:(1)点P1(a ,-b)在第象限;(2)点P2(-a ,b)在第象限;(3)点P3(-a ,-b)在第象限;(4)点P4( b ,a )在第象限.【答案】(1)三;(2)一;(3)四;(4)四.类型二、用坐标表示平移3.在平面直角坐标系中,将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,则点B的坐标是.【思路点拨】根据向右平移横坐标加,向下平移纵坐标减列式计算即可得解.【答案】(0,﹣3).【解析】解:∵将点A(﹣2,3)向右平移2个单位长度,再向下平移6个单位长度得点B,∴点B的坐标是(﹣2+2,3﹣6),即(0,﹣3).故答案为:(0,﹣3).【总结升华】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.举一反三:【变式1】已知:两点A(-4,2)、B(-2,-6),(1)线段AB的中点C坐标是;(2)若将线段AB沿x轴向右平移5个单位,得到线段A1B1,则A1点的坐标是 ,B1点的坐标是.(3)若将线段AB沿y轴向下平移3个单位,得到线段A2B2,则A2点的坐标是 ,B2点的坐标是.【答案】(1)(-3, -2); (2)(1,2),(3,-6); (3)(-4,-1),(-2,-9).度,变为P′(0,1).【答案】2、4.4. 如图中,A、B两点的坐标分别为(2,3)、(4,1),(1)求△ABO的面积.(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【思路点拨】(1)把△ABO放在一个矩形里面,用矩形COED的面积﹣△ACO的面积﹣△ABD的面积﹣△BEO的面积即可算出△ABO的面积;(2)根据点的坐标平移的规律,用A、B、O的坐标的纵坐标分别减去3即可.【答案与解析】解:(1)如图所示:S=3×4﹣×3×2﹣×4×1﹣×2×2=5;△ABO(2)A′(2,0),B′(4,﹣2),O′(0,﹣3).【总结升华】此题主要考查了点的平移,以及求三角形的面积,当计算一个三角形的面积时,可以把它放在一个矩形里,然后用矩形的面积减去周围三角形的面积.举一反三:【变式】如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).把△A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标.【答案】解:A1(﹣3,5),B1(0,6),C1(﹣1,4).3《平面直角坐标系》全章复习与巩固【知识网络】【知识点梳理】要点一、有序数对把一对数按某种特定意义,规定了顺序并放在一起就形成了有序数对,人们在生产生活中经常以有序数对为工具表达一个确定的意思,如某人记录某个月不确定周期的零散收入,可用(13,2000), (17,190), (21,330)…,表示,其中前一数表示日期,后一数表示收入,但更多的人们还是用它来进行空间定位,如:(4,5),(20,12),(13,2),…,用来表示电影院的座位,其中前一数表示排数,后一数表示座位号.知识点二、平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系,如下图:知识点诠释:(1)坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限,这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.(2)在平面上建立平面直角坐标系后,坐标平面上的点与有序数对(x,y)之间建立了一一对应关系,这样就将‘形’与‘数’联系起来,从而实现了代数问题与几何问题的转化.(3)要熟记坐标系中一些特殊点的坐标及特征:① x轴上的点纵坐标为零;y轴上的点横坐标为零.②平行于x轴直线上的点横坐标不相等,纵坐标相等;平行于y轴直线上的点横坐标相等,纵坐标不相等.③关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点纵坐标相等,横坐标互为相反数;关于原点对称的点横、纵坐标分别互为相反数.④象限角平分线上的点的坐标特征:一、三象限角平分线上的点横、纵坐标相等;二、四象限角平分线上的点横、纵坐标互为相反数.注:反之亦成立.(4)理解坐标系中用坐标表示距离的方法和结论:①坐标平面内点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.② x轴上两点A(x1,0)、B(x2,0)的距离为AB=|x1- x2|;y轴上两点C(0,y1)、D(0,y2)的距离为CD=|y1- y2|.③平行于x轴的直线上两点A(x1,y)、B(x2,y)的距离为AB=|x1- x2|;平行于y轴的直线上两点C(x,y1)、D(x,y2)的距离为CD=|y1- y2|.(5)利用坐标系求一些知道关键点坐标的几何图形的面积:切割、拼补.知识点三、坐标方法的简单应用1.用坐标表示地理位置(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.知识点诠释:(1)我们习惯选取向东、向北分别为x轴、y轴的正方向,建立坐标系的关键是确定原点的位置.(2)确定比例尺是画平面示意图的重要环节,要结合比例尺来确定坐标轴上的单位长度.2.用坐标表示平移(1)点的平移点的平移引起坐标的变化规律:在平面直角坐标中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).知识点诠释:上述结论反之亦成立,即点的坐标的上述变化引起的点的平移变换.(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度. 要点诠释:平移是图形的整体运动,某一个点的坐标发生变化,其他点的坐标也进行了相应的变化,反过来点的坐标发生了相应的变化,也就意味着点的位置也发生了变化,其变化规律遵循:“右加左减,纵不变;上加下减,横不变”. 【典型例题】 类型一、有序数对1.数学家发明了一个魔术盒,当任意数对(a ,b)进入其中时,会得到一个新的数:.例如把(3,-2)放入其中,就会有32 +(-2)+1=8,现将数对(-2,3)放入其中得到数m ,再将数对(m ,1)放入其中,得到的数是________. 【思路点拨】解答本题的关键是正确理解如何由数对得到新的数,只要按照新定义的数的运算,把数对代入求值即可. 【答案】66 .【解析】解:将(-2,3)代入,,得(-2)2+3+1=8, 再将(8,1)代入,得82 +1+1=66, 故填:66.【总结升华】解答此题的关键是把实数对(-2,3)放入其中得到实数m ,解出m 的值,即可求出把(m ,1)放入其中得到的数. 举一反三:【变式】我们规定向东和向北方向为正,如向东走4米,再向北走6米,记作(4,6),则向西走5米,再向北走3米,记作________;数对(-2,-6)表示________. 【答案】 (-5,3);向西走2米,向南走6米. 类型二、平面直角坐标系2. 第三象限内的点P(x ,y),满足|x|=5,y 2=9,则点P 的坐标为________. 【思路点拨】点在第三象限,横坐标<0,纵坐标<0.再根据所给条件即可得到x ,y 的具体值.21a b ++21a b ++21a b ++【答案】(-5,-3).【解析】因为|x|=5,y2=9.所以x=±5,y=±3,又点P(x,y)在第三象限,所以x<0,y<0,故点P的坐标为(-5,-3).【总结升华】解决本题的关键是记住各象限内点的坐标的符号,第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).举一反三:【变式1】 (乐山)在平面直角坐标系中,点P(-3,4)到x轴的距离为( ) . A.3 B.-3 C.4 D.-4【答案】C.【变式2】 (长春)如图所示,小手盖住的点的坐标可能为( ) .A.(5,2) B.(-6,3) C.(-4,-6) D.(3,-4)【答案】D.类型三、坐标方法的简单应用3.如图,是某校的平面示意图,已知图书馆、行政楼的坐标分别为(﹣3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他地点的坐标(3)在图中用点P表示体育馆(﹣1,﹣3)的位置.【思路点拨】(1)根据图书馆、行政楼的坐标分别为(﹣3,2),(2,3),可以建立合适的平面直角坐标系,从而可以解答本题;(2)根据(1)中的平面直角坐标系可以写出其它地点的坐标;(3)根据点P(﹣1,﹣3)可以在直角坐标系中表示出来.【答案与解析】解:(1)由题意可得,(2)由(1)中的平面直角坐标系可得,校门口的坐标是(1,0),信息楼的坐标是(1,﹣2),综合楼的坐标是(﹣5,﹣3),实验楼的坐标是(﹣4,0);(3)在图中用点P表示体育馆(﹣1,﹣3)的位置,如下图所示,【总结升华】本题考查利用坐标确定位置,解题的关键是明确题意,建立相应的平面直角坐标系.4.如图,四边形OABC各个顶点的坐标分别是O(0,0),A(3,0),B(5,2),C(2,3).求这个四边形的面积.【思路点拨】分别过C 点和B 点作x 轴和y 轴的平行线,如图,然后利用S 四边形ABCO=S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF 进行计算.【答案与解析】解:分别过C 点和B 点作x 轴和y 轴的平行线,如图,则E (5,3),所以S 四边形ABCO =S 矩形OHEF ﹣S △ABH ﹣S △CBE ﹣S △OCF=5×3﹣×2×2﹣×1×3﹣×3×2 =.【总结升华】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系;会运用面积的和差计算不规则图形的面积.5.△ABC 三个顶点坐标分别是A(4,3),B(3,1),C(1,2).(1)将△ABC 向右平移1个单位,再向下平移2个单位,所得△A 1B 1C 1的三个顶点坐标分别是什么?(2)将△ABC 三个顶点的横坐标都减去5,纵坐标不变,分别得到A 2、B 2、C 2,依次连接A 2、B 2、C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系? (3)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到A 3、B 3、C 3,依次连接A 3、B 3、C 3各点,所得△A 3B 3C 3与△ABC 的大小、形状和位置上有什么关系? 【答案与解析】解:(1)A1(5,1),B1(4,-1),C1(2,0).(2)△A2B2C2与△ABC的大小、形状完全相同,在位置上是把△ABC向左平移5个单位得到.(3)△A3B3C3与△ABC的大小、形状完全相同,在位置上是把△ABC向下移5个单位得到.【总结升华】此题揭示了平移的整体性,以及平移前后的坐标关系是一一对应的,在平移中,横坐标减小等价于向左平移;横坐标增大等价于向右平移;纵坐标减小等价于向下平移;纵坐标增大等价于向上平移.举一反三:【变式】在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)【答案】D.解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.类型四、综合应用6. 三角形ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C (4,-3.5).(1)在直角坐标系中画出三角形ABC;(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;(3)求出三角形A1B1C1的面积.【思路点拨】(1)建立平面直角坐标系,从中描出A、B、C三点,顺次连接即可.(2)把三角形A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到三角形ABC,即三角形ABC向上平移3个单位,向左平移4个单位,得到三角形A1B1C1,按照平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.写出三角形A1B1C1三个顶点的坐标,从坐标系中画出图形.(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积.【答案与解析】解:(1)如图1,(2)如图2,A1(-2,2),B1(-3,0),C1(0,-0.5);(3)把△A1B1C1补成矩形再把周边的三角形面积减去,即可求得△A1B1C1的面积=3×2.5-1-2.5-0.75=3.25.∴△A1B1C1的面积=3.25.【总结升华】本题综合考查了平面直角坐标系,及平移变换.注意平移时,要找到三角形各顶点的对应点是关键,然后割补法求出三角形ABC的面积。

北师大版八年级数学上册平面直角坐标系(讲义及作业)

北师大版八年级数学上册平面直角坐标系(讲义及作业)

平面直角坐标系(讲义)一、 知识点睛1. 在平面内,确定一个物体的位置一般需要____个数据.2. 在平面内,两条__________且有_________的_________组成平面直角坐标系.水平的数轴叫_______或_______,铅直的数轴叫________或_______,________和______统称坐标轴. 3. 如图,对于平面内任意一点P ,过点P 分别向x 轴、y 轴________,垂足在x 轴、y 轴上对应的数a ,b 分别叫做点P 的_______、_______,__________(a ,b )叫做点P 的坐标.4. 坐标系把平面分成了_____个象限,第一象限的坐标符号是(+,+),第二象限的坐标符号是__________,第三象限的坐标符号是__________,第四象限的坐标符号是_________;坐标轴上的点不属于任何象限.5. 在直角坐标系中,对于平面上的任意一点,都有唯一的一对有序实数对(即点的坐标)与它对应;反过来,对于任意一对有序实数对,都有平面上唯一的一点和它对应. 6. 坐标特点(1)x 轴上的点____坐标等于零;y 轴上的点____坐标等于零.(2)平行于x 轴的直线上的点____坐标相同;平行于y 轴的直线上的点____坐标相同.(3) 关于x 轴对称的两个点,横坐标_____,纵坐标_________;关于y 轴对称的两个点,横坐标________,纵坐标_____. (4)横坐标加减管______平移,纵坐标加减管______平移.二、 精讲精练1. 写出图中的多边形ABCDEF解:A (___,___),第___象限;B (___,___),第___象限;C (___,___),第___象限;D (___,___),第___象限;E ( ),______象限;F ( ),______象限.2. 在平面直角坐标系中,)点(-2,-3)在第____象限;点在第____象限; 点1,1在第___象限;点(-2,a 2+1)在第___象限. 3. 若a <b <0,则点A (a -b ,b )在第________象限. 4. 在平面直角坐标系中,若点P (a ,b )在第二象限,则点Q (1-a ,-b )在第____象限.5. 在平面直角坐标系中描出下列各点,并将各组内这些点依次用线段连接起来.(1)A (-3,5),B (-7,3),C (1,3),A (-3,5); (2)D (-6,3),E (-6,0),F (0,0),G (0,3). 观察所描出的图形,解答下列问题:①坐标轴上的点有_______________,且x 轴上的点___坐标等于零,y 轴上的点___坐标等于零.②线段BC 与x 轴_______,点B 和点C ____坐标相同,线段BC 上其他点的____坐标都相同.③线段DE 与y 轴________,点D 和点E ____坐标相同,线段 DE 上其他点的____坐标都相同.6. 若点M (a +3,4-a )在x 轴上,则点M 的坐标为__________.7. 若过A (4,m ),B (n ,-3)两点的直线与x 轴平行,且AB =5,则m =_____,n =_______________. 8. 如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(-2,-2),(-2,3),(3,-2),则第四个顶点的坐标为________.第9题图 9. 如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点(____,____).10. 已知点P (-3,2),它到x 轴的距离为_____,到y 轴的距离为_____,到原点的距离为_____. 11. 在平面直角坐标系中,第二象限内有一点P ,P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为__________.12. 点M 在x 轴的上侧,距离x 轴4个单位长度,距离y 轴3个单位长度,则点M 的坐标为( )A .(4,3)B .(-4,3)或(4,3)C .(3,4)D .(-3,4)或(3,4) 13. 若点A (x ,4)到原点的距离为5,则x =____________. 14. 如图,△ABC 在平面直角坐标系中,则S △ABC =________.马帅炮兵15. 已知点A (0,4),B 点在x 轴上,AB 与坐标轴围成的三角形面积为2,则B 点坐标为______________.16. (1)作图,将△ABC 各顶点的横坐标保持不变,纵坐标乘以-1,顺次连接这些点,所得三角形与△ABC 关于_____轴对称; (2)如图,△DEF 与△ABC 关于____轴对称,它们相应顶点的横坐标___________、纵坐标____________.17. 如果点A (a ,b )与点B 关于x 轴对称,点B 与点C (2,3)关于y轴对称,那么a =_______,b =_______,点A 和点C 的位置关系是__________.18. 若点A (a ,4)、点B (3,b )关于x 轴对称,则(a +b )2 013的值为______.19. 若点P (b -3,-2b )在y 轴上,则点P 关于x 轴对称的点的坐标_______.20. 如图,将三角形向右平移3个单位长度,再向上平移2个单位长度,则平移后三个顶点的坐标分别为( ) A .(-1,-1),(2,3),(5,1) B .(-1,1),(3,2),(5,1) C .(-1,1),(2,3),(5,1) D .(1,-1),(2,2),(5,1)21. 如图,把图1中的△ABC 经过一定的变换得到图2中的△A ′B ′C ′,如果图1中△ABC 上点P 的坐标为(a ,b ),那么这个点在图2中的对应点P ′的坐标为______________.平面直角坐标系(作业)1. 如图,小明用手盖住的点的坐标可能为( )A .(2,3)B .(2,-3)C .(-2,3)D .(-2,-3)2. 平面直角坐标系中有一点P (a ,b ),如果ab =0,那么点P 的位置在( )A .原点B .x 轴上C .y 轴上D .坐标轴上 3. 若点A (a ,b )在第三象限,则点C (-a +1,3b -5)在第____象限.4. 在平面直角坐标系中,如果a <0,b >0,那么点(0,a )在_________________;点(b ,0)在_________________.图1图25. 点A (-3,2m -1)在x 轴上,点B (n +1,4)在y 轴上,则点C (m ,n )在第________象限.6. 若过A (4,m ),B (n ,-3)两点的直线与y 轴平行,且AB =2,则m =__________,n =__________.7. 已知点P (4,-3),它到x 轴的距离为_____,到y 轴的距离为_____,到原点的距离为_____.8. 点M 在y 轴的左侧,距离x 轴4个单位长度,距离y 轴6个单位长度,则点M 的坐标______.9. 点P (3,-2)关于x 轴的对称点的坐标是________,关于y坐标是________,关于原点的对称点的坐标是________. 10. 点P (-2a -1,a -1)在y 轴上,则点P 关于x __________.11. 将点P 向左平移2个单位,再向上平移1个单位得到P ′(-1,3)的坐标是________.12. 如图,△ABC 中任意一点P (a ,b )平移后的对应点为P ′(a +4b +1),将△ABC 作同样的平移得到△A ′B ′C ′,则A ′,B ′,C ′的坐标分别为_________、_________、_________. 13. 作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(30),(2,0)的点用线段依次连接起来形成一个图案. 回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连 接这些点,所得图案与原图案的位置关系是____________; (2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连 接这些点,所得图案与原图案的位置关系是_____________.14. 如图是小刚画的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成_______.。

北师大版八年级数学上册:3.2《平面直角坐标系》教案1

北师大版八年级数学上册:3.2《平面直角坐标系》教案1

北师大版八年级数学上册:3.2《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。

本节内容是在学生已经掌握了坐标系的基本概念的基础上进行讲解的,通过本节内容的学习,使学生能够熟练地建立平面直角坐标系,能够准确地确定点在坐标系中的位置,并能够利用坐标系解决一些实际问题。

二. 学情分析学生在学习本节内容之前,已经掌握了坐标系的基本概念,对于如何建立坐标系,如何确定点在坐标系中的位置有一定的了解。

但是,对于如何利用坐标系解决实际问题,部分学生可能会感到困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.让学生掌握平面直角坐标系的建立方法。

2.让学生能够准确地确定点在坐标系中的位置。

3.培养学生利用坐标系解决实际问题的能力。

四. 教学重难点1.重点:平面直角坐标系的建立方法,点在坐标系中的表示方法。

2.难点:如何利用坐标系解决实际问题。

五. 教学方法采用问题驱动法,引导学生通过观察、思考、探究,发现平面直角坐标系的建立方法,以及如何确定点在坐标系中的位置。

同时,通过实例讲解,让学生学会如何利用坐标系解决实际问题。

六. 教学准备1.准备平面直角坐标系的图片,用于讲解。

2.准备一些实际问题,用于练习。

七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如地图上的路线、飞机的飞行轨迹等,引导学生思考这些实例与坐标系之间的关系。

2.呈现(10分钟)讲解平面直角坐标系的定义,以及如何建立坐标系。

通过展示图片,让学生直观地理解坐标系的建立过程。

同时,讲解如何用坐标表示点在坐标系中的位置。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试利用坐标系解决实际问题。

教师巡回指导,解答学生的问题。

4.巩固(5分钟)挑选几组学生的实例,让学生上台演示如何利用坐标系解决问题。

其他学生观看并给予评价。

5.拓展(5分钟)讲解坐标系在实际生活中的应用,如航天、地理信息系统等。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。

北师大版八年级上册数学同步练习:阶段测试一

北师大版八年级上册数学同步练习:阶段测试一

阶段测试(一)(4.1~4.3)(时间:120分钟满分:120分) 一、选择题(每小题3分,共30分)1.函数y=xx-3的自变量x的取值范围是( C )A.x≥0 B.x≠3C.x≥0或x≠3 D.x>0或x≠32.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过( C )A.第一象限B.第二象限C.第三象限D.第四象限3.若正比例函数y=3x的图象经过A(-2,y1),B(-1,y2)两点,则y1与y2的大小关系为( A )A.y1<y2B.y1>y2C.y1≤y2D.y1≥y24.若点A(2,4)在函数y=kx-2的图象上,则下列各点在此函数图象上的是( A )A.(0,-2) B.(1.5,0) C.(8,20) D.(0.5,0.5)5.直线y=-2x-4与两坐标轴的交点分别为A,B,则三角形AOB的面积为( A ) A.4 B.8 C.16 D.66.已知一次函数y=-2x+3,当0≤x≤5时,函数y的最大值是( B )A.0 B.3 C.-3 D.-77.如图,将一个高度为12 cm的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10 cm,则水槽中的水面高度y(cm)随注水时间x(s)的变化图象大致是( D ) 8.一次函数y=kx+b的图象经过(-1,m)和(m,1),其中m>1,则k,b的取值范围是( B )A.k>0且b>0 B.k<0且b>0C.k>0且b<0 D.k<0且b<09.如图,在平面直角坐标系中,直线y=-43x+4与x轴,y轴分别交于A,B两点,点C在第二象限,若BC=OC=OA,则点C的坐标为( A )A.(-5,2) B.(-3,5) C.(-2,2) D.(-3,2),第9题图),第10题图)10.已知直线y=-43x+8与x轴,y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数表达式是( C )A.y=-12x+8 B.y=-13x+8C.y=-12x+3 D.y=-13x+3二、填空题(每小题3分,共18分)11.已知正比例函数的图象经过点(-1,3),那么这个函数的表达式为__y=-3x__. 12.将一次函数y=-5x+10向右平移1个单位后所得函数图象的表达式为__y=-5x+15__. 13.小明骑共享单车从A 地到距A 地10 km 的B 地,每小时骑行20 km ,设他距B 地的路程为y km ,骑行的时间为x 小时,则y 与x 的函数表达式为__y =10-20x__,自变量x 的取值范围是__0≤x ≤0.5__.14.如图,点P 在函数y =-x 的图象上运动,点A 的坐标为(1,0),当线段AP 最短时,点P 的坐标为__(12,-12)__. ,第14题图) ,第16题图)15.在一次函数的图象上到坐标轴的距离相等的点称之为“好点”,则在一次函数y =-3x +1的图象上的好点坐标是__(14,14)或(12,-12)__. 16.在平面直角坐标系中,直线l 经过点A(-1,0),点A 1,A 2,A 3,A 4,A 5,…按如图所示的规律排列在直线l 上.若直线l 上任意相邻两个点的横坐标都相差1,纵坐标也都相差1,则A 8的坐标为__(-5,4)__;若点A n (n 为正整数)的横坐标为2020,则n =__4041__.三、解答题(本大题9小题,共72分)17.(6分)某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离王老师家多远?从出发到学校用了多少时间?王老师吃早餐用了多少时间?(2)王老师是吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少? 解: (1)学校离王老师家有10千米,从出发到学校王老师用了25分钟,王老师吃早餐用了10分钟(2)吃早餐以前的速度为:5÷10=0.5(km /分钟),吃完早餐以后的速度为: (10-5)÷(25-20)=1(km /分钟)=60 km /小时,∴王老师吃完早餐以后速度快,最快时速达到60 km /小时18.(6分)已知y -2与x +1成正比例函数关系,且x =-2时,y =6.(1)写出y 与x 之间的函数关系式;(2)求当y =4时,x 的值.解:(1)依题意设y -2=k(x +1).将x =-2,y =6代入得k =-4,所以y =-4x -2(2)由(1)知y =-4x -2,∴当y =4时,4=(-4)×x -2,解得x =-3219.(7分)已知一次函数y =2x -1的图象如图所示,请根据图象解决下列问题:(1)写出一次函数的图象与x 轴,y 轴的交点坐标;(2)写出方程2x -1=3的解.解:(1)由图象可知,一次函数的图象与x 轴,y 轴的交点坐标分别为(12,0),(0,-1) (2)由图象知,当y =3时,x =2,即方程2x -1=3的解是x =220.(8分)在平面直角坐标系中,一次函数的图象经过点A(2,3)与点B(0,5).(1)求此一次函数的表达式;(2)若点P 为此一次函数图象上一点,且△POB 的面积为10,求点P 的坐标.解:(1)设此一次函数的表达式为y =kx +5(k ≠0).∵一次函数的图象经过点A(2,3)与点B(0,5),∴2k +5=3,解得k =-1,此一次函数的表达式为y =-x +5(2)设点P 的坐标为(a ,-a +5).∵B(0,5),∴OB =5.∵S △POB =10,∴12×5×|a|=10,∴|a|=4,∴a =±4,∴点P 的坐标为(4,1)或(-4,9)21.(8分)如图所示,在平面直角坐标系中,一个正比例函数与一个一次函数的图象交于点A(3,4),其中一次函数与y 轴交于B 点,且OA =OB.(1)求这两个函数的表达式;(2)求△AOB 的面积S.解:(1)y =43x ,y =3x -5 (2)S =12×5×3=15222.(8分)已知关于x 的一次函数y =mx +4m -2.(1)若这个函数的图象经过原点,求m 的值;(2)不论m 取何实数,这个函数的图象过定点,试求这个定点的坐标.解:(1)这个函数的图象经过原点,所以当x =0时,y =0,即4m -2=0,解得m =12(2)一次函数y =mx +4m -2变形为:m(x +4)=y +2,因为不论m 取何实数这个函数的图象都过定点,所以x +4=0, y +2=0,解得x =-4,y =-2,则不论m 取何实数这个函数的图象都过定点(-4,-2)23.(9分)学习完一次函数后,小荣遇到过这样的一个新颖的函数:y =|x -1|,小荣根据学习函数的经验,对函数y =|x -1|的图象与性质进行了探究,下面是小荣的探究过程,请补充完成:(1)列表:下表是y 与x 的几组对应值,请补充完整.x… -3 -2 -1 0 1 2 3 … y … 4 3 2 1 0 1 2 …(2)描点连线:在平面直角坐标系中,请描出以上表中各对对应值为坐标的点,画出该函数的图象;(3)进一步探究发现,该函数图象的最低点的坐标是(1,0),结合函数的图象,写出该函数的其他性质(一条即可):__当x<1时,y 随x 的增大而减小__.解:(2)函数图象如下:24.(10分)已知长方形ABCD 中,AB =60 cm ,BC =40 cm ,动点P 从A 点出发,沿着长方形的边自A →B →C →D 运动到点D ,速度为1 cm /s ,设运动时间为t(s ),△APD 的面积为y(cm 2).(1)当点P 在AB 上运动时,求y 与t 的表达式;(2)当点P 在BC 上运动时,求y 与t 的表达式;(3)当点P 在CD 上运动时,求y 与t 的表达式.解:(1)因为四边形ABCD 为长方形,所以∠A =∠D =90°,当点P 在AB 上运动时(如图①),0<t ≤60,AP =t cm ,所以S △ADP =12AP ·AD =12×40×t =20t(cm 2),即y =20t(0<t ≤60) (2)当点P 在BC 上运动时(如图②),AB +BC =60+40=100(cm ),所以60<t ≤100,过点P 作PE ⊥AD.因为四边形ABCD 为长方形,所以∠EDC =∠C =90°,所以四边形PEDC为长方形,PE =DC =60 cm ,所以S △ADP =12AD·PE =12×40×60=1200(cm 2),即y =1200(60<t ≤100)(3)当点P 在CD 上运动时(如图③),AB +BC +DC =60+40+60=160(cm ),所以100<t ≤160,PD =DC -PC =DC -(t -AB -BC)=(160-t)cm ,AD =40 cm ,S △ADP =12AD·DP =12×40×(160-t)=(-20t +3200)(cm 2),即y =-20t +3200(100<t ≤160) 25.(10分)已知点P(x 0,y 0)和直线y =kx +b ,则点P 到直线y =kx +b 的距离证明可用公式d =|kx 0-y 0+b|1+k 2计算. 例如:求点P(-1,2)到直线y =3x +7的距离.解:因为直线y =3x +7,其中k =3,b =7,所以点P(-1,2)到直线y =3x +7的距离为:d =|kx 0-y 0+b|1+k 2=|3×(-1)-2+7|1+32=210=105. 根据以上材料,解答下列问题:(1)求点P(-1,3)到直线y =x -3的距离;(2)已知直线y =3x +3与y =3x -6平行,求这两条直线之间的距离.解:(1)因为直线y =x -3,其中k =1,b =-3,所以点P(-1,3)到直线y =x -3的距离为d =|kx 0-y 0+b|1+k 2=|1×(-1)-3+(-3)|1+12=722 (2)当x =0时,y =3x +3=3,所以点(0,3)在直线y =3x +3上,因为点(0,3)到直线y=3x -6的距离为d =|kx 0-y 0+b|1+k 2=|3×0-3-6|1+32=91010,因为直线y =3x +3与直线y =3x -6平行,所以这两条直线之间的距离为91010。

北师大版初中数学八年级上册 第3章位置与坐标 确定位置同步练习含解析

北师大版初中数学八年级上册 第3章位置与坐标 确定位置同步练习含解析

3.1 确定位置一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D79.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列二、填空题10.如图,学校在小明家偏度的方向上,距离约是米.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示排号.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.三、解答题14.(1)电影院在学校偏的方向上,距离是米.(2)书店在学校偏的方向上,距离是米.(3)图书馆在学校偏的方向上,距离是米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校偏方向米处.汽车站在学校偏方向米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要分钟.北师大新版八年级数学上册同步练习:3.1 确定位置参考答案与试题解析一、选择题1.电影院的第3排第6座表示为(3,6).若某同学的座位号为(4,2),那么该同学的位置是()A.第2排第4座B.第4排第2座C.第4座第4排D.无法确定【考点】坐标确定位置.【分析】根据坐标确定位置,从有序数对的两个数的实际意义考虑解答.【解答】解:∵电影院的第3排第6座表示为(3,6),∴某同学的座位号为(4,2),该同学的位置是:第4排第2座.故选:B.【点评】本题考查了确定位置,理解有序数对的两个数的实际意义是解题的关键.2.2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米.能够准确表示芦山县这个地点位置的是()A.北纬30.3°B.东经103.0°C.四川省雅安市D.北纬31°,东经103°【考点】坐标确定位置.【分析】根据题意结合四川省雅安市芦山县发生7.0级地震即可得出芦山县这个地点位置.【解答】解:∵2013年04月20日08时02分在四川省雅安市芦山县发生7.0级地震,震源深度13千米,∴能够准确表示芦山县这个地点位置的是四川省雅安市.故选:C.【点评】此题主要考查了确定地理位置,正确理解题意是解题关键.3.如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【分析】由“左眼”位置点的坐标为(0,2),“右眼”点的坐标为(2,2)可以确定平面直角坐标系中x轴与y 轴的位置,从而可以确定“嘴”的坐标.【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.【点评】由已知条件正确确定坐标轴的位置是解决本题的关键.4.如图,学校在李老师家的南偏东30°方向,距离是500m,则李老师家在学校的()A.北偏东30°方向,相距500m处B.北偏西30°方向,相距500m处C.北偏东60°方向,相距500m处D.北偏西60°方向,相距500m处【考点】坐标确定位置;方向角.【分析】以学校为原点建立坐标系,确定李老师家的位置.【解答】解:学校在李老师家的南偏东30°方向,距离是500m,以正北方向为y轴正方向,正东方向为x轴的正方向,以李老师家为原点,则学校在第四象限;以学校为原点建立坐标系,则李老师家在第二象限,即北偏西30°方向,相距500m处.故选B.【点评】本题利用了平面直角坐标系来理解生活中的相对位置问题.5.根据下列表述,能确定位置的是()A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°【考点】坐标确定位置.【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.6.如图,雷达探测器测得六个目标A、B、C、D、E、F出现.按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°).按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)【考点】坐标确定位置.【分析】按已知可得,表示一个点,横坐标是自内向外的环数,纵坐标是所在列的度数,分别判断各选项即可得解.【解答】解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A正确;B(2,90°),故B正确;D(4,240°),故C正确;E(3,300°),故D错误.故选D.【点评】本题考查了学生的阅读理解能力,由已知条件正确确定坐标轴的位置是解决本题的关键.7.如图是中国象棋的一盘残局,如果用(2,﹣3)表示“帅”的位置,用(1,6)表示的“将”位置,那么“炮”的位置应表示为()A.(6,4)B.(4,6)C.(8,7)D.(7,8)【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:由“用(2,﹣3)表示“帅”的位置,向左移2个单位,向上移3个单位,那个点就是原点(0,0),建立坐标系.可得“炮”的位置为(6,4).故选A.【点评】本题解题的关键就是确定坐标原点和x,y轴的位置及方向.8.如图是沈阳市地区简图的一部分,图中“故宫”、“鼓楼”所在的区域分别是()A.D7,E6 B.D6,E7 C.E7,D6 D.E6,D7【考点】坐标确定位置.【分析】读图可知:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行;故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.【解答】解:故宫所在位置是E竖排,7横行;鼓楼所在的位置是D竖排,6横行.故图中“故宫”、“鼓楼”所在的区域分别是E7,D6.故选C.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力.9.如图所示,某班教室有9排5列座位.1号同学说:“小明在我的右后方.”2号同学说:“小明在我的左后方.”3号同学说:“小明在我的左前方.”4号同学说:“小明离1号同学和3号同学的距离一样远.”根据上面4位同学的描述,可知“5号”小明的位置在()A.4排3列B.4排5列C.5排4列D.5排5列【考点】坐标确定位置.【分析】在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.【解答】解:根据1号同学,2号同学,3号同学的说法,可知小明在第4列,再根据4号同学说:“小明离1号同学和3号同学的距离一样远”可得小明在第5排第4列.故选C.【点评】本题是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系,通过此题可以做到在生活中理解数学的意义.二、填空题10.如图,学校在小明家北偏西45 度的方向上,距离约是500 米.【考点】方向角.【分析】根据方向角的定义结合图例即可做出判断.【解答】解:学校在小明家北偏西45度的方向上,距离≈200×2.5=500米.故答案为:北;偏西45;500.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.11.小明的座位是第5列第3个,表示为M(5,3),他前面一个同学的座位可表示(5,2).【考点】坐标确定位置.【专题】数形结合.【分析】由于他前面一个同学的座位为第5列第2个,然后可根据题中的表示方法用有序实数对表示他前面一个同学的座位.【解答】解:他前面一个同学的座位为第5列第2个,表示为(5,2).故答案为(5,2).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.如果电影院9排16号的座位用(9,16)表示,那么(10,2)表示10 排 2 号.【考点】坐标确定位置.【专题】应用题.【分析】由“9排16号”记作(9,16)可知,有序数对与排号对应,(10,2)的意义为第10排2号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数,∴(10,2)的意义为第10排2号.故答案为10排2号.【点评】本题主要考查了类比点的坐标解决实际问题的能力和阅读理解能力,比较简单.13.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用(6,1)表示C点的位置.【考点】坐标确定位置.【专题】网格型.【分析】可根据平移规律解答;也可根据已知两点的坐标建立坐标系后解答.【解答】解:以原点(0,0)为基准点,则C点为(0+6,0+1),即(6,1).故答案填:(6,1).【点评】本题考查类比点的坐标解决实际问题的能力和阅读理解能力.解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.三、解答题14.(1)电影院在学校南偏东70°的方向上,距离是400 米.(2)书店在学校北偏西60°的方向上,距离是800 米.(3)图书馆在学校南偏西15°的方向上,距离是400 米.(4)李老师骑自行车从学校到邮局发邮件,每分钟走250米,需要多少分钟到达?【考点】方向角.【分析】(1)、(2)、(3)根据方向角的定义和图例即可做出判断;(4)根据时间=路程÷速度计算即可.【解答】解:(1)电影院在学校南偏东70°的方向上,距离是400米.(2)书店在学校北偏西60°的方向上,距离是800米.(3)图书馆在学校南偏西15°的方向上,距离是400米.故答案为:(1)南;偏东70°;400;(2)北;偏西60°;800(3)南;偏西15°400.(4)5×200÷250=4.答:需要4分钟到达.【点评】本题主要考查的是方向角的定义,掌握方向角的定义是解题的关键.15.如图,小王家在2街与2大道的十字路口,如果用(2,2)→(2,3)→(2,4)→(3,4)→(4,4)→(5,4)表示小王从家到工厂上班的一条路径,那么你能用同样的方式写出由家到工厂小王走的另一条路径吗?【考点】坐标确定位置.【专题】数形结合.【分析】每个十字路口用有序实数对表示,然后表示出第2大道与第2、3、4、5街的路口,再表示第5街与第3、4大道的路口,从而得到由家到工厂小王走的另一条路径.【解答】解:小王从家到工厂上班的另一条路径可为:(2,2)→(3,2)→(4,2)→(5,2)→(5,3)→(5,4).【点评】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.16.如图是小丽以学校为观测点,画出的一张平面图.(1)生源大酒店在学校北偏西30°方向400 米处.汽车站在学校南偏西50°方向600 米处;(2)中医院在邮电局东偏北60°方向400米处,请在上图中标出它的位置;(3)小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24 分钟.【考点】方向角.【分析】(1)由图意可知:生源大酒店在学校北偏西30°处,汽车站在学校南偏西50°方向,再据“实际距离=图上距离÷比例尺”即可求得学校到生源大酒店的距离,以及学校到汽车站的距离;(2)依据“图上距离=实际距离×比例尺”即可求得中医院到邮电局的图上距离,再据方向和角度,即可标出中医院的位置;(3)先求出从汽车站经过学校、邮局再到中医院的实际距离,再据“路程÷速度=时间”即可求得小丽需要的时间.【解答】解:(1)生源大酒店在学校在学校北偏西30°处,汽车站在学校南偏西50°方向,量得学校到生源大酒店的距离是2厘米,则学校到生源大酒店的实际距离是:2÷=40000(厘米)=400(米);量得学校到汽车站的距离是3厘米,则学校到汽车站的实际距离是:3÷=60000(厘米)=600(米);故答案为:北、西30°、400、南、西50°、600;(2)因为400米=40000厘米,则中医院到邮电局的图上距离是:40000×=2(厘米);如图所示,即为中医院的位置:(3)量得学校到邮电局的图上距离为1厘米,则学校到邮电局的实际距离为:1÷=20000(厘米)=200(米);所以小丽需要的时间为:(600+200+400)÷50,=1200÷50,=24(分钟);答:小丽以每分钟50米的速度步行,从汽车站经过学校、邮局再到中医院大约需要24分钟.故答案为:24.【点评】此题考查了方向角,用到的知识点是比例尺的意义、方向角、“路程÷速度=时间”,关键是根据所给出的图形量准图上的距离.。

北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案

北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案

北师大版八年级数学上册《第三章位置与坐标》同步训练题-附答案学校:___________班级:___________姓名:___________考号:___________时间:60分钟满分:100分一、选择题(共10小题,每小题3分,共30分.每小题有四个选项,其中只有一个选项符合题意)1.(2022·广东深圳龙华区期末)家长会前,四个孩子分别向家长描述自己在班里的座位,家长能准确找到自己孩子座位的是()A.小明说他坐在第1排B.小白说他坐在第3列C.小清说她坐在第2排第5列D.小楚说他的座位靠窗2.(2021·四川成都郫都区期末)如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-3,-2)D.(3,-3)3.(2022·广西百色期中)在图中,所画的平面直角坐标系正确的是()A BC D4.(2022·黑龙江哈尔滨道里区期末)在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,则点A的坐标为() A.(2,0) B.(-2,0)C.(0,2)D.(0,-2)5.(2022·山西晋中期中)如图,在四边形ABCD中,AD∥BC∥x轴,下列说法正确的是()A.B与C的纵坐标相同B.C与D的横坐标相同C.A与D的横坐标相同D.B与D的纵坐标相同(第5题)(第6题)6.如图,雷达探测器测得六个目标A,B,C,D,E,F.按照规定的目标表示方法,目标C,F的位置分别表示为C(6,120°),F(5,210°).按照此方法表示目标A,B,D,E的位置,不正确的是()A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)7.小莹和小博士下棋,小莹执圆子,小博士执方子,如图,棋盘中心方子的位置用(-1,0)表示,左下角方子的位置用(-2,-1)表示,小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形,她放的位置是()A.(-2,0)B.(-1,1)C.(1,-2)D.(-1,-2)(第7题)(第8题)8.(2022·山东济宁任城区期末)如图,在平面直角坐标系中,点O为坐标原点,点A的坐标为(-5,12),它关于y轴的对称点为B,则△ABO的周长为()A.24B.34C.35D.369.(2021·辽宁锦州期中)下列说法不正确的是()A.若x+y=0,则点P(x,y)一定在第二、四象限的角平分线上B.点P(-2,3)到y轴的距离是2C.若P(x,y)中xy=0,则点P在x轴上D.点A(-a2,|b|)可能在第二象限10.对于平面直角坐标系xOy中的点P(a,b),若点P'的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P'为点P的“k属派生点”,例如:P(1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P'(9,6).若点P在x轴的正半轴上,点P的“k 属派生点”为P'点,且线段PP'的长度为线段OP长度的3倍,则k的值为()A.3B.±3C.6D.±6二、填空题(共5小题,每小题3分,共15分)11.如图,已知字母W对应的有序数对为(2,4),有一个英文单词的字母依次对应的有序数对分别为(1,2),(1,3),(2,3),(5,1),请你把这个英文单词写出来.12.(2021·重庆北碚区期末)已知点P(a,b)在第三象限,且点P到x轴的距离为4,到y轴的距离为3,则点P的坐标为.13.(2022·重庆綦江区期末)在平面直角坐标系中,若点A(m-1,3)与点B(2,n-1)关于x轴对称,则(m+n)2 021的值为.14.(2021·江苏南京期末)如图,在平面直角坐标系中,点P为x轴上一点,且到A(0,2)和点B(5,5)的距离相等,则线段OP的长度为.(第14题)(第15题)15.(2022·河南郑州三中期末)如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,是斜边在x轴上,斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2 021的横坐标为.三、解答题(共6小题,共55分)16.(7分)如图,我们把杜甫的《绝句》整齐排列放在平面直角坐标系中.(1)“东”“窗”和“柳”的坐标依次是:,和;(2)将第2行与第4行对调,再将第4列与第6列对调,(注:最上边一行为第一行,最左边一列为第一列)“里”由开始的坐标依次变换到和.17.(8分)下图中标明了李明家附近的一些地方,已知李明家位于(-2,-1).(1)建立平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李明从家里出发,沿着(-1,-2),(1,-2),(2,-1),(1,-1),(1,3),(-1,0),(0,-1)的路线转了一下后回到家里,用线段顺次连接李明家和他在路上经过的地点,你能得到什么图形?18.(8分)(2022·浙江宁波期末改编)已知点P(-3a-4,2+a),解答下列问题:(1)若点P在x轴上,试求出点P的坐标;(2)若Q(5,8),且PQ∥y轴,试求出点P的坐标.19.(9分)(2022·河南郑州八中期末)如图,在平面直角坐标内,点A的坐标为(-4,0),点C与点A关于y轴对称.(1)请在图中标出点A和点C;(2)求△ABC的面积;(3)在y轴上有一点D,且S△ACD=S△ABC,写出点D的坐标.20.(11分)(2021·山东济南期中)如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足√a-4+|b-6|=0,点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O—C—B—A—O的线路移动一圈停止.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.21.(12分)(2022·甘肃白银期末)阅读下列文字,然后回答问题.已知在平面内有两点P1(x1,y1),P2(x2,y2),它们之间的距离P1P2=√(x1-x2)2+(y1-y2)2.(1)已知A(2,4),B(-3,-8),试求A,B两点间的距离.(2)已知△DEF各顶点为D(1,6),E(-2,2),F(4,2),请判断此三角形的形状,并说明理由.(3)在(2)的条件下,在平面直角坐标系中的x轴上找一点P,使PD+PF的长度最短,求出PD+PF的最短长度.参考答案12345678910C D A C A D B D C B11.HOPE12.(-3,4)13.114.4.615.1 0121.【答案】C(排除法)小明说他坐在第1排,无法确定座位位置;小白说他坐在第3列,无法确定座位位置;小楚说他的座位靠窗,无法确定座位位置.故选C.2.【答案】D3.【答案】A4.【答案】C∵在平面直角坐标系中,点A在y轴上,位于原点上方,距离原点2个单位长度,∴A点的坐标是(0,2).5.【答案】A∵在四边形ABCD中,AD∥BC∥x轴,∴点A与D的纵坐标相同,点B与C的纵坐标相同.6.【答案】D7.【答案】B棋盘中心方子的位置用(-1,0)表示,则这点所在的横线是x轴,这点向右1个单位所在的纵线是y轴,所以建立平面直角坐标系如图,故小莹将第4枚圆子放的位置是(-1,1)时所有棋子构成轴对称图形.8.【答案】D∵点A与点B关于y轴对称,A(-5,12),∴B(5,12),∴AB=10,OA=13,OB=13,∴△AOB的周长=OA+OB+AB=13+13+10=36.9.【答案】C∵x+y=0,∴x=-y,即点在第二、四象限的角平分线上;∵点P的横坐标是-2,∴点P到y轴的距离是2;若P(x,y)中xy=0,则点P可能在x轴上,也可能在y轴上;∵-a2≤0,|b|≥0,∴点A可能在第二象限,也可能在坐标轴上.故选C.10.【答案】B∵点P在x轴的正半轴上,∴P点的纵坐标为0,设P(a,0),a>0,则点P的“k属派生点”P'点为(a,ka),∴PP'=|ka|,OP=|a|,∵线段PP'的长度为线段OP长度的3倍,∴|ka|=3|a|,∴k=±3.11.【答案】HOPE由题意知(1,2)表示H,(1,3)表示O,(2,3)表示P,(5,1)表示E,所以这个英文单词为HOPE.12.【答案】(-3,4)13.【答案】1∵点A(m-1,3)与点B(2,n-1)关于x轴对称,∴m-1=2,n-1=-3,∴m=3,n=-2,∴(m+n)2 021=(3-2)2 021=1.14.【答案】4.6设点P(x,0),根据题意得x2+22=(5-x)2+52,解得x=4.6,∴OP=4.6.15.【答案】1 012∵A3是第一与第二个等腰直角三角形的公共点,A5是第二与第三个等腰直角三角形的公共点,A7是第三与第四个等腰直角三角形的公共点,A9是第四与第五个等腰直角三角形的公共点,…,∵2 021=1 010×2+1,∴A2 021是第1 010个与第1 011个等腰直角三角形的公共点,∴A2 021在x轴正半轴上,∵OA5=4,OA9=6,OA13=8,…,∴OA2 021=(2 021+3)÷2=1 012,∴点A2 021的坐标为(1 012,0),即A2 021的横坐标为1 012.16.【答案】(1)(3,1)(1,2)(7,4)(3分) (2)(6,1)(6,3)(4,3)(7分) 17.【答案】(1)建立平面直角坐标系如图所示,学校和邮局的坐标分别为(1,3),(0,-1).(2分)(5分)(2)如图,用线段顺次连接李明家和他在路上经过的地点,得到的图形是帆船.(8分)18.【答案】(1)∵点P在x轴上∴2+a=0,解得a=-2∴-3a-4=2∴点P的坐标为(2,0).(4分) (2)∵Q(5,8),且PQ∥y轴∴-3a-4=5,解得a=-3∴2+a=-1∴点P的坐标为(5,-1).(8分) 19.【答案】(1)如图,点A,C即为所求.(4分)×8×4=16.(7分) (2)易知B(-3,4),AC=8,所以S△ABC=12(3)点D的坐标为(0,4)或(0,-4).(9分) 20.【答案】(1)46(4,6)(3分) 解法提示:∵a,b满足√a-4+|b-6|=0∴a-4=0,b-6=0解得a=4,b=6.∵四边形OABC为长方形∴点B的坐标是(4,6).(2)当点P移动4秒时,共移动了8个单位长度.∵OA=4,OC=6∴此时点P在线段CB上,离点C的距离是8-6=2(个)单位长度∴点P的坐标是(2,6).(6分) (3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:①当点P在OC上时点P移动的时间是5÷2=2.5(秒);(8分) ②当点P在BA上时点P移动的时间是(6+4+1)÷2=5.5(秒).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.(11分) 21.【答案】(1)AB=√(2+3)2+(4+8)2=13.(2分) (2)等腰三角形.(3分) 理由:DE=√(1+2)2+(6-2)2=5EF=√(-2-4)2+(2-2)2=6DF=√(1-4)2+(6-2)2=5∴DE=DF<EF,DE2+DF2>EF2∴△DEF为等腰三角形.(6分) (3)如图,作点F关于x轴的对称点F',连接DF'交x轴于点P,则点P即为所求.∵F(4,2),∴F'(4,-2).∵D(1,6)∴DF'=√(1-4)2+(6+2)2=√73∴PD+PF的最短长度为√73.(12分)。

2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案

2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案

2021年八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题专训及答案2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-专训1、(2020苍南.八上期末) 如图,直角坐标系中,点C 是直线y= x 上第一象限内的点点A(1,0),以AC 为边作等腰Rt△AC B ,AC=BC 点B 在x 轴上,且位于点A 的右边,直线BC 交y 轴于点D 。

(1) 求点B ,C 的坐标;(2) 点A 向上平移m 个单位落在△OCD 的内部(不包括边界),求m 的取值范围。

2、(2019嘉荫.八上期末) 如图,在平面直角坐标系中,四边形ABCD 是边长为5的正方形,顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA , OB 的长满足|OA ﹣4|+(OB ﹣3)=0.(1) 求OA ,OB 的长;(2) 求点D 的坐标;(3) 在y 轴上是否存在点P ,使△PAB 是以AB为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3、(2019道里.八上期末) 如图,在平面直角坐标系中,O 是坐标原点,点分别在轴的正半轴和x 轴的正半轴上,的面积为,过点 作直线轴.(1) 求点的坐标;(2) 点是第一象限直线上一动点,连接 .过点 作,交轴于点D ,设点 的纵坐标为,点 的横坐标为,求与 的关系式;(3)在(2)的条件下,过点 作直线,交轴于点,交直线 于点 ,当时,求点 的坐标.4、(2019昆山.八上期末) 已知:如图,一次函数y= x+3的图象分别与x 轴、y 轴相交于点A 、B ,且与经过点C(2,0)的一次函数y=kx+b 的图象相交于点D ,点D 的横坐标为4,直线CD 与y 轴相交于点E.2(1) 直线CD 的函数表达式为;(直接写出结果)(2) 在x 轴上求一点P 使△PAD 为等腰三角形,直接写出所有满足条件的点P 的坐标.(3) 若点Q 为线段DE 上的一个动点,连接BQ.点Q 是否存在某个位置,将△BQD 沿着直线BQ 翻折,使得点D 恰好落在直线AB 下方的y 轴上?若存在,求点Q 的坐标;若不存在,请说明理由.5、(2017东台.八上期末) 如图,在平面直角坐标系xOy 中,已知点A (﹣1,0),点B (0,2),点C (3,0),直线a 为过点D (0,﹣1)且平行于x 轴的直线.(1) 直接写出点B 关于直线a 对称的点E 的坐标;(2) 若P 为直线a 上一动点,请求出△PBA 周长的最小值和此时P 点坐标;(3) 若M 为直线a 上一动点,且S =S ,请求出M 点坐标.6、(2017萍乡.八上期末) 如图1,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OA B .(1) 求证:∠OAC=∠OCA ;(2) 如图2,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P,即满足∠POC= ∠AOC ,∠PCE= ∠ACE ,求∠P 的大小;(3) 如图3,在(2)中,若射线OP 、OC 满足∠POC= ∠AOC ,∠PCE= ∠ACE ,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示)7、(2019深圳.八上期中) 如图,在平面直角坐标系中,已知A (0,a ),B (b ,0),其中a ,b 满足|a ﹣2|+(b ﹣3)=0.(1) a=,b=;(2) 如果在第二象限内有一点M (m ,1),请用含m 的式子表示四边形ABOM 的面积;△A BC △M A B 2(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上求点N(的坐标),使得△ABN的面积与四边形ABOM的面积相等.(直接写出答案)8、(2019下陆.八上期末) 在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(﹣4,5),(﹣1,3).(1)在如图所示的网格平面内作出平面直角坐标系;(2)作出△ABC关于y轴对称的△A′B′C′,并写出点B′的坐标;(3) P是x轴上的动点,在图中找出使△A′BP周长最短时的点P,直接写出点P的坐标.9、(2019福田.八上期末) 如图1,在平面直角坐标系中将向下平移3个单位长度得到直线,直线与x轴交于点C;直线:与x轴、y轴交于A、B两点,且与直线交于点D.(1)填空:点A的坐标为,点B的坐标为;(2)直线的表达式为;(3)在直线上是否存在点E,使?若存在,则求出点E的坐标;若不存在,请说明理由.(4)如图2,点P为线段AD上一点不含端点,连接CP,一动点H从C出发,沿线段CP以每秒1个单位的速度运动到点P,再沿线段PD以每秒个单位的速度运动到点D后停止,求点H在整个运动过程中所用时间最少时点P的坐标.10、(2019兰州.八上期末) 如图,,,点在轴上,且 .(1)求点的坐标,并画出 ;(2)求的面积;(3)在轴上是否存在点,使以三点为顶点的三角形的面积为10?若存在,请直接写出点的坐标;若不存在,请说明理由.11、(2019江岸.八上期中) 在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.12、(2019滨海.八上期末) 如图,在平面直角坐标系中,直线:与直线:交于点,与y轴交于点,与x轴交于点C.(1)求直线的函数表达式;(2)求的面积;(3)在平面直角坐标系中有一点,使得,请求出点P的坐标;(4)点M为直线上的动点,过点M作y轴的平行线,交于点N,点Q为y轴上一动点,且为等腰直角三角形,请直接写出满足条件的点M的坐标.13、(2019句容.八上期末) 如图(1)【模型建立】如图1,等腰直角三角形中,,,直线经过点,过作于点,过作于点 .求证:;(2)【模型应用】已知直线:与坐标轴交于点、,将直线绕点逆时针旋转至直线,如图2,求直线的函数表达式;(3)如图3,长方形,为坐标原点,点的坐标为,点、分别在坐标轴上,点是线段上的动点,点是直线上的动点且在第四象限.若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标.14、(2020徐州.八上期末) 如图,在平面直角坐标系中,已知A(10,0),B(10,6),BC⊥y轴,垂足为C,点D在线段BC上,且AD=AO.(1)试说明:DO平分∠CDA;(2)求点D的坐标.15、(2020岑溪.八上期末) 如图,一次函数图象经过点,与轴交于点,且与正比例函数的图象交于点,点的横坐标是 .(1)请直接写出点的坐标(,);(2)求该一次函数的解析式;(3)求的面积.2021八上数学同步练习-函数_平面直角坐标系_坐标与图形性质-综合题-答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

新北师大版八年级上册第三章同步练习题

新北师大版八年级上册第三章同步练习题

新北师大版八年级数学上册第三章坐标与位置同步练习题一、单选题1、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A .小强家在小红家的正东 B .小强家在小红家的正西 C .小强家在小红家的正南D .小强家在小红家的正北2、如图,小明从点O 出发,先向西走40米,再向南走30米到达点M ,如果点M 的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是( )A .点A B.点B C. 点C D .点D3、为确定一个平面上点的位置,可用的数据个数为( ) A .1个 B .2个 C .3个 D .4个4、已知点A (3,4),B (3,1),C (4,1),则AB 与AC 的大小关系是( )A .AB >AC B .AB =AC C .AB <AC D .无法判断5、如图,正方形OABC 的边长为2,则该正方形绕点O 逆时针旋转45°后,B 点的坐标为( )A .(2,2)B .(0,22)C .(22,0)D .(0,2)6、如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA ′B ′C ′的位置,若OB=,∠C=120°,则点B ′的坐标为( ) A .(3,3) B .(3,3-)C .(6,6)D .(6,6-)7、体育馆在教学楼东偏南30°的方向上,那么,教学楼在体育馆( )的方向上.A .东偏南30° B .南偏东30° C.西偏北30° D .北偏西30°8、某人从A 点出发向北偏东60°方向走10米,到达B 点,再向南偏西15°方向走10米,到达C 点.则∠ABC 等于( ) A .45° B .75° C .105° D .135°9、如图,若在象棋盘上建立直角坐标系,使“帅”位于点(﹣1,﹣2).“馬”位于点(2,﹣2),则“兵”位于点( )A .(﹣1,1) B .(﹣2,﹣1) C .(﹣3,1) D .(1,﹣2)10、如图,在方格纸上△DEF 是由△ABC 绕定点P 顺时针旋转得到的.如果用(2,1)表示方格纸上A 点的位置,(1,2)表示B 点的位置,那么点P 的位置为( )A .(5,2) B.(2,5)C .(2,1)D .(1,2)11、在平面直角坐标系中,将线段OA 向左平移2个单位,平移后,点O 、A 的对应点分别为点O 1、A 1.若点O (0,0),A (1,4),则点O 1、A 1的坐标分别是( ) A .(0,0),(1,4) B .(0,0),(3,4) C.(﹣2,0),(1,4) D.(﹣2,0),(﹣1,4)12、如图,已知点A (1,2)和点B (3,﹣1),把线段AB 向右平移2个单位,则点B 的坐标变为( ) A .(﹣1,5) B .(5,﹣1) C .(1,﹣1) D.(﹣1,1) 二、填空题13、先将一矩形ABCD 置于直角坐标系中,使点A 与坐标系的原点重合,边AB 、AD 分别落在x 轴、y 轴上(如左图),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图),若AB=8,BC=6,则右图中点C 的坐标为____.14、已知点M (3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N ,则点N 的坐标是____.15、如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点为点A ′,则平移后点B 的对应点B ′的坐标为____.16、将点A (0,6)绕着原点顺时针方向旋转60°得到点B ,则点B 的坐标为____(结果用根号表示).17、如图,A 、B 的坐标分别为(1,0)、(0,2),若将线段AB 平移到至A 1B 1,A 1、B 1的坐标分别为(2,a )、(b ,3),则a+b=____.18、如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(﹣1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是____.19、如图,平面直角坐标系中,已知正方形OABC ,其中A ,C 分别在x 轴、y 轴上,B (2,2)将它绕O 点旋转到正方形OA ′B ′C ′的位置,已知两正方形的重叠部分的面积为334,则点C ′的坐标为____. 20、如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(﹣1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C ′的坐标是____.21、某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为________.22、某军事行动中,对军队部署的方位,采用钟代码的方式来表示、例如,北偏东30°方向45千米的位置,与钟面相结合,以钟面圆心为基准,时针指向北偏东30°的时刻是1:00,那么这个地点就用代码010045来表示、按这种表示方式,南偏东40°方向78千米的位置,可用代码表示为____. 三、解答题23、今后你将大量遇到用坐标的方法研究图形的运动变换.如图1,在已建立直角坐标系的方格纸中,图形P 的顶点为A ,B ,C ,要将它平移旋转到III 图(变换过程中图形的顶点必须在格点上,且不能超出方格纸的边界). 例如:将图形P 做如下变换(见图2).第一步:平移,使顶点C(6,6)移至点(4,3),得I图;第二步:绕着点(4,3)旋转180°,得II图;第三步:平移,使点(4,3)移至点O(0,0),得III图.(1)写出A,B两点的坐标;(2)从A,B,C三点中选取你要的点,仿照例题格式描述出另一种与上例不同的路线的图形变换.24、如果|x-3|+|2y+4|=0,那么点P(x,y)在第几象限?点Q(x-4,y+5)在坐标平面内的什么位置?25、我们规定:沿正北方向顺时针旋转θ角再前进a个单位,记作(θ,a),则分别作出下列有序数对表示的图形:(1)(45°,6);(2)(120°,8).26.小明和小新星期日到观山公园里游玩,他们在公园入口处买了张公园平面示意图,发现狮虎园在入口处的北偏西30°方向上,且距离入口处800米,大象馆在入口处的北偏东45°方向上,且距离入口处500米;两人走到狮虎园,发现猴山在狮虎园的北偏东60°,且距离狮虎园600米,游乐场在狮虎园的正东方向,距离1000米.两人在游乐场玩了﹣会儿后不知不觉走散了,后来通过手机取得了联系,小明仍在游乐场,小新则跑到了猴山.(1)用1:20000画出观山公园的平面示意图;(2)如果两人约定到狮虎园会合,那么小明和小新应分别沿什么方向行走才能最快到达狮虎园(3)如果两人约定到植物园会合,小明告诉小新说植物园在游乐场的南偏西60°,小新告诉小明说植物园在猴山的南偏西30°,那么他们到达植物园最少各需要走多少米(精确到10米).27、如图为某公园的示意图.(1)以虎山为原点,水平向右为x轴、铅直向上为y轴在图中建立直角坐标系,并写出各景点的坐标;(2)若以猴园为原点,水平向右为x轴、铅直向上为y轴建立直角坐标系,写出各景点坐标;(3)比较上述各景点的坐标,你发现了什么规律?28、观察下图,填一填,量一量,画一画.(1)学生宿舍在教学楼_____偏______°的方向上.(2)科技楼距离教学楼约米.(3)学校图书馆在教学楼正南方向约60米的位置,请在图中标出图书馆的位置.29、如图.在4×4个边长为1的正方形组成的方格中,标有A、B两点.请你表述点B相对点A的位置.30、在平面直角坐标系中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.31、如图,平面直角坐标系中,△AOB为等腰直角三角形,且OA=AB.(1)如图,在图中画出△AOB关于BO的轴对称图形△A1OB,若A(﹣3,1),请求出A1点的坐标:(2)当△AOB绕着原点O旋转到如图所示的位置时,AB与y轴交于点E,且AE=BE.AF⊥y轴交BO 于F,连接EF,作AG∥EF交y轴于G.试判断△AGE的形状,并说明理由;(3)当△AOB 绕着原点O旋转到如图所示的位置时,若A(3,3),C为x轴上一点,且OC=OA,∠BOC=15°,P为y轴上一点,过P作PN⊥AC于N,PM⊥AO于M,当P在y轴正半轴上运动时,试探索下列结论:①PO+PN﹣PM不变,②PO+PM+PN不变.其中哪一个结论是正确的?请说明理由并求出其值.32、如图,奥运福娃在5×5的方格(每小格边长为1m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其它福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4).请根据图中所给信息解决下列问题:(1)A→C(_______,______);B→C(_______,_______);C→_______(﹣3,﹣4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出妮妮的位置E点.试卷答案23,解:(1)根据C的坐标变化可得到点的坐标变化规律为:(x,y)⇒(x﹣2,y﹣3)⇒关于点(4,3)中心对称⇒平移后的坐标.根据此规律或结合坐标系可求得:A(4,6),B (6,4);(2)平移,使顶点C(6,6)移至点(2,2)⇒绕着点(1,1)旋转180°得到点O(0,0).24,解:根据题意可得x-3=0,2y+4=0,解得x=3,y=-2,∴点P的坐标为(3,-2),∴点P(3,-2)在第四象限;X-4=3-4=-1,y+5=-2+5=3,∴点Q的坐标为(-1,3),∴点Q在第二象限.25,(1)(45°,6)表示沿北偏东45°方向前进6个单位;(2)(120°,8).表示沿东偏南30°方向前进8个单位.26,解:(1)用1cm代表200米,如图A为狮虎园,D为大象馆,B为猴山,C为游乐场;(2)小明应沿正西方向走,小新沿南偏西60°方向走;(3)注意画图准确,先确定植物园的位置,然后量出植物园分别到游乐园和猴山的距离(精确到1mm),再转化为实际距离.27,解:(1)由图可得虎山(0,0)、熊猫馆(3,2)、鸟岛(﹣1,3)、狮子馆(﹣2,﹣2)、猴园(3,﹣1)(2)由图可得虎山(﹣3,1)、熊猫馆(0,3)、鸟岛(﹣4,4)、狮子馆(﹣5,﹣1)、猴园(0,0)(3)横坐标减小3,纵坐标增加1.(2分)28, 解:(1)学生宿舍在教学楼西偏南43°的方向上;(2)量得科技楼到教学楼的图上距离是3厘米,它们的实际距离是:3÷=9000(厘米)=90米. (3)图书馆到教学楼的图上距离是:60米=6000厘米,6000×=2(厘米).画图如下:29, 解:方法1:用有序实数对(a,b)表示.比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3).方法2:用方向和距离表示.比如:B点位于A点的东北方向(北偏东45°等均可),距离A点3处.30, 解:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,∴OA旋转了45°.∴OA在旋转过程中所扫过的面积为.(2)∵MN∥AC,∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.∴∠BMN=∠BNM.∴BM=BN.又∵BA=BC,∴AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON=(∠AOC﹣∠MON)=(90°﹣45°)=22.5°.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°﹣22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.证明:延长BA交y轴于E点,则∠AOE=45°﹣∠AOM,∠CON=90°﹣45°﹣∠AOM=45°﹣∠AOE,∴∠AOE=∠CON.又∵OA=OC,∠OAE=180°﹣90°=90°=∠OCN.∴△OAE≌△OCN.∴OE=ON,AE=CN.又∵∠MOE=∠MON=45°,OM=OM,∴△OME≌△OMN.∴MN=ME=AM+AE.∴MN=AM+CN,∴p=MN+BN+BM=AM+CN+BN+BM=AB+BC=4.∴在旋转正方形OABC的过程中,p值无变化.31,(1)解:如图所示:△A1OB为所画的轴对称图形过A作AC⊥x轴于C,A1D⊥x轴于D,∵A(﹣3,1),∴AC=1,OC=3,∵OA=AB,∠BAO=90°,∴∠BOA=45°,∴∠BOA1=45°,∴∠AOA1=90°,∴∠AOC+∠A1OD=90°,又∵∠AOC+∠OAC=180°﹣∠ACO=90°,∴∠CAO=∠A1OD,又∵∠ACO=∠ODA1=90°,AO=A1O,∴△ACO≌△ODA1∴AC=OD=1,OC=A1D=3,∴A1,(1,3)(2)△AEG为等腰三角形证明:过B作BH⊥AB于B交AF的延长线于H,∵∠OAE=∠ABH=90°,∠AOE=∠BAH=90°﹣∠OAH,OA=AB,∴△AEO≌△BHA∴AE=BH=BE,∠AEO=∠BHA,又∵∠EBF=∠HBF=45°,BF=BF,∴△BEF≌△BHF(SAS)∴∠BHF=∠B EF∵AG∥EF∴∠EAG=∠BEF∴∠EAG=∠AEG∴AG=EG即△AEG为等腰三角形(3)PO+PN﹣PM=3不变,解:过A作AL⊥x轴于L,连接AP、PC∵A(,3)∴AL=3∵∠AOC=45°+15°=60°,OC=OA,∴△AOC为等边三角形,∵S△POC=PO•OC,S△PAC=PN•AC,S△POA=PM•OA,S△AOC=AL•OC,且S△AOC =S△POC+S△PAC﹣S△POA,∴S△AOC=AL•OC=PO•OC+PN•AC﹣PM•OA,∴PO+PN﹣PM=AL=3.32,解:(1)A→C(+3,+4);B→C(+2,0);C→A (﹣3,﹣4);故答案为:+3,+4;+2,0;A;(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;根据题意得:|+1|+|+4|+|+2|+|0|+|+1|+|﹣2|=10m.(3)妮妮的位置E点如图所示.。

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)

八年级数学上册3.2平面直角坐标系第1课时平面直角坐标系说课稿(新版北师大版)一. 教材分析平面直角坐标系是八年级数学上册第三章第二节的内容,本节课的主要内容有:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法以及坐标轴上的点的坐标特征。

这部分内容是学生学习函数、几何等数学知识的基础,对于学生来说具有重要的意义。

二. 学情分析学生在七年级时已经学习了坐标轴和坐标的初步知识,对本节课的内容有一定的了解。

但是,对于平面直角坐标系的定义,坐标轴和坐标点的概念,以及坐标轴上的点的坐标特征等知识,还需要进一步的讲解和巩固。

此外,学生对于实际问题中的坐标系应用还不够熟悉,需要通过实例来加强理解和运用。

三. 说教学目标1.知识与技能:理解平面直角坐标系的定义,掌握坐标轴和坐标点的概念,学会表示坐标,并能判断坐标轴上的点的坐标特征。

2.过程与方法:通过实例和练习,培养学生的空间想象能力,提高学生解决实际问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识和探究精神。

四. 说教学重难点1.重点:平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法。

2.难点:坐标轴上的点的坐标特征的判断,以及坐标系在实际问题中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法和合作学习法,引导学生主动探究,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件和教具,直观展示平面直角坐标系,帮助学生理解和记忆。

六. 说教学过程1.导入:通过问题驱动,引导学生回顾七年级学过的坐标轴和坐标点的知识,为新课的学习做好铺垫。

2.新课讲解:讲解平面直角坐标系的定义,坐标轴和坐标点的概念,坐标的表示方法,以及坐标轴上的点的坐标特征。

通过实例和练习,让学生加深对知识的理解。

3.课堂互动:学生进行小组讨论,分享学习心得,解答疑难问题。

4.练习巩固:布置一些具有代表性的题目,让学生独立完成,检验学习效果。

3.2.3平面直角坐标系(三) 同步练习题 2021-2022学年北师大版八年级数学上册(含答案)

3.2.3平面直角坐标系(三) 同步练习题 2021-2022学年北师大版八年级数学上册(含答案)

3.2.3平面直角坐标系(三)同步练习题2021-2022学年北师大版八年级数学上册A组(基础题)一、填空题1.如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为______.2.如图,象棋盘上,若“将”位于点(0,-2),“车”位于点(-4,-2),则“马”位于点______3.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是______.4.(1)A(1,-2),B(-2,2)两点间的距离为______.(2)在平面直角坐标系中,若点M(1,0)与点N(a,0)之间的距离是5,则a的值是______.二、选择题5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(-2,1)和B(-2,-3),那么第一架轰炸机C的坐标是()A.(-2,3) B.(2,-1) C.(-2,-1) D.(-3,2)6.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(-1,-1),(-1,2),(3,-1),那么第四个顶点的坐标为()A.(3,2) B.(2,3) C.(3,3) D.(2,2)7.若以B点为原点,建立平面直角坐标系,A点坐标为(3,4),则以A点为原点,建立平面直角坐标系,B点坐标为()A.(-3,-4) B.(-3,4) C.(3,-4) D.(3,4)8.已知等腰△ABC,建立适当的平面直角坐标系后,其三个顶点的坐标分别为A(m,0),B(m +4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是()A.AC=BC≠AB B.AB=AC≠BCC.AB=BC≠AC D.AB=AC=BC三、解答题9.建立两个适当的平面直角坐标系,分别写出边长为4的正方形的顶点的坐标.B组(中档题)四、填空题10.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3),B(4,1),这两个标志点到“宝藏点”的距离都是2,则“宝藏点”的坐标是______.11.如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC△x轴.若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为______.12.已知点M在y轴上,点P(3,-2).若线段MP的长为5,则点M的坐标为______.13.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行,在正方形棋盘中,双方交替下子,每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图,观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为(5,1);此时轮到黑方下子,记其此步所下黑子为C,为了保证不让白方在两步之内(含两步)获胜,黑子C的坐标应该为______.五、解答题14.阅读下面一段文字,回答问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x2-x1)2+(y2-y1)2.同时,当两点在同一坐标轴上或所在直线平行于x轴或垂直于x 轴时,两点间的距离公式可简化成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离.(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离.(3)已知一个三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.C组(综合题)15.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km),笔直铁路经过A,B两地.(1)求A,B间的距离.(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,求C,D之间的距离.参考答案3.2.3平面直角坐标系(三)同步练习题2021-2022学年北师大版八年级数学上册A组(基础题)一、填空题1.如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).2.如图,象棋盘上,若“将”位于点(0,-2),“车”位于点(-4,-2),则“马”位于点(3,1).3.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2),黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是(2,1).4.(1)A(1,-2),B(-2,2)两点间的距离为5.(2)在平面直角坐标系中,若点M(1,0)与点N(a,0)之间的距离是5,则a的值是6或-4.二、选择题5.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为A(-2,1)和B(-2,-3),那么第一架轰炸机C的坐标是( B )A.(-2,3) B.(2,-1) C.(-2,-1) D.(-3,2)6.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(-1,-1),(-1,2),(3,-1),那么第四个顶点的坐标为( A )A.(3,2) B.(2,3) C.(3,3) D.(2,2)7.若以B点为原点,建立平面直角坐标系,A点坐标为(3,4),则以A点为原点,建立平面直角坐标系,B点坐标为( A )A.(-3,-4) B.(-3,4) C.(3,-4) D.(3,4)8.已知等腰△ABC,建立适当的平面直角坐标系后,其三个顶点的坐标分别为A(m,0),B(m +4,2),C(m+4,-3),则下列关于该三角形三边关系正确的是( A )A.AC=BC≠AB B.AB=AC≠BCC.AB=BC≠AC D.AB=AC=BC三、解答题9.建立两个适当的平面直角坐标系,分别写出边长为4的正方形的顶点的坐标.解:答案不唯一,如图1,以正方形两邻边所在的直线为坐标轴,建立平面直角坐标系,则A(4,0),B(4,4),C(0,4),D(0,0);如图2,以正方形的两条对称轴为坐标轴,建立平面直角坐标系,则A(2,-2),B(2,2),C(-2,2),D(-2,-2).B组(中档题)四、填空题10.在一次寻宝游戏中,寻宝人找到了如图所示的两个标志,点A(2,3),B(4,1),这两个标志点到“宝藏点”的距离都是2,则“宝藏点”的坐标是(2,1)或(4,3).11.如图,正方形网格ABCD是由25个边长相等的小正方形组成,将此网格放到一个平面直角坐标系中,使BC△x轴.若点E的坐标为(-4,2),点F的横坐标为5,则点H的坐标为(8,-1).12.已知点M在y轴上,点P(3,-2).若线段MP的长为5,则点M的坐标为(0,2)或(0,-6).13.五子棋是一种两人对弈的棋类游戏,规则是:一方执黑子,一方执白子,由黑方先行,白方后行,在正方形棋盘中,双方交替下子,每次只能下一子,下在棋盘横线与竖线的交叉点上,最先在棋盘横向、竖向或斜向形成连续的相同颜色五个棋子的一方为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图,观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为(5,1);此时轮到黑方下子,记其此步所下黑子为C,为了保证不让白方在两步之内(含两步)获胜,黑子C的坐标应该为(3,7)或(7,3).五、解答题14.阅读下面一段文字,回答问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x2-x1)2+(y2-y1)2.同时,当两点在同一坐标轴上或所在直线平行于x轴或垂直于x 轴时,两点间的距离公式可简化成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离.(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离.(3)已知一个三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.解:(1)因为点A(3,3),B(-2,-1),所以AB=(-2-3)2+(-1-3)2=41,即A,B两点间的距离是41.(2)因为点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,所以MN=|-2-7|=9,即M,N两点间的距离是9.(3)该三角形为等腰直角三角形.理由:因为三角形各顶点的坐标为A(0,5),B(-3,2),C(3,2),所以AB=(-3-0)2+(2-5)2=18=32,BC=|3-(-3)|=6,AC=(3-0)2+(2-5)2=18=32.因为AB2+AC2=(32)2+(32)2=36,BC2=62=36,所以AB2+AC2=BC2,且AB=AC,即该三角形为等腰直角三角形.C组(综合题)15.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km),笔直铁路经过A,B两地.(1)求A,B间的距离.(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,求C,D之间的距离.解:(1)由A,B两点的纵坐标相同可知,AB△x轴,所以AB=12-(-8)=20,即A,B间的距离为20 km.(2)过点C作l△AB于点E,连接AC,作AC的垂直平分线交直线l于点D,故AD=CD.因为CE△AB,AB△x轴,所以CE△x轴.又因为点C(0,-17)在y轴上,所以CE在y轴上.所以E(0,1).所以CE=1-(-17)=18,AE=12,设AD=CD=x,则DE=18-x.由勾股定理,得x2=(18-x)2+122,解得x=13,所以CD=13,即C,D之间的距离为13 km.。

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿

北师大版八年级数学上册:3.2《平面直角坐标系》说课稿一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。

本节课的主要内容是让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法以及坐标轴上的点的坐标特点。

教材通过生动的实例和丰富的练习,使学生能够理解并熟练运用平面直角坐标系解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了实数、一次函数和二次函数等基础知识。

他们对数学图形有一定的认识,但平面直角坐标系的概念和应用可能较为抽象。

因此,在教学过程中,需要注重引导学生通过观察、操作和思考,理解和掌握平面直角坐标系的相关知识。

三. 说教学目标1.知识与技能目标:让学生掌握平面直角坐标系的建立、坐标轴的特点、坐标的表示方法,以及坐标轴上的点的坐标特点。

2.过程与方法目标:通过观察、操作和思考,培养学生运用平面直角坐标系解决实际问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 说教学重难点1.教学重点:平面直角坐标系的建立,坐标轴的特点,坐标的表示方法。

2.教学难点:坐标轴上的点的坐标特点,以及运用平面直角坐标系解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究式教学法。

2.教学手段:利用多媒体课件、实物模型和几何画板等辅助教学。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何用数学方法表示物体的位置。

2.探究平面直角坐标系:让学生观察和分析实际问题,引导学生发现平面直角坐标系的建立和特点。

3.学习坐标表示方法:讲解坐标的表示方法,让学生通过实际操作,掌握坐标轴上的点的坐标特点。

4.应用与拓展:让学生运用平面直角坐标系解决实际问题,培养学生的应用能力。

5.总结与反思:对本节课的内容进行总结,引导学生思考如何更好地运用平面直角坐标系。

七. 说板书设计板书设计要简洁明了,突出重点。

北师大版八年级数学上册:3.2 《平面直角坐标系》教案1

北师大版八年级数学上册:3.2 《平面直角坐标系》教案1

北师大版八年级数学上册:3.2 《平面直角坐标系》教案1一. 教材分析《平面直角坐标系》是北师大版八年级数学上册第三章第二节的内容。

本节课的主要内容是让学生掌握平面直角坐标系的定义、特点以及坐标轴上的点的坐标特征。

通过本节课的学习,学生能够理解坐标系在数学和物理中的重要性,为后续函数、几何等知识的学习打下基础。

二. 学情分析学生在七年级已经学习了点的坐标,对坐标有一定的认识。

但他们对平面直角坐标系的理解还不够深入,需要通过本节课的学习进一步巩固和提高。

此外,学生需要掌握如何在平面直角坐标系中表示点、直线和图形,以及如何利用坐标系解决实际问题。

三. 教学目标1.知识与技能:理解平面直角坐标系的定义和特点,掌握坐标轴上的点的坐标特征,学会在平面直角坐标系中表示点、直线和图形。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:感受数学与现实生活的联系,体会数学学习的乐趣,提高学生对数学的兴趣。

四. 教学重难点1.重点:平面直角坐标系的定义、特点和坐标轴上的点的坐标特征。

2.难点:如何在平面直角坐标系中表示点、直线和图形,以及利用坐标系解决实际问题。

五. 教学方法采用讲授法、问答法、自主探究法、合作交流法等教学方法,引导学生观察、操作、思考、交流,从而达到理解平面直角坐标系的目的。

六. 教学准备1.教师准备:教材、PPT、黑板、粉笔、坐标轴模型等。

2.学生准备:笔记本、彩笔、剪刀、胶水等。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾七年级学过的点的坐标知识,为新课的学习做好铺垫。

例如:“同学们,你们还记得点的坐标吗?在坐标系中,如何表示一个点的位置?”呈现(10分钟)1.教师通过PPT展示平面直角坐标系的定义和特点,引导学生理解新知识。

2.教师讲解坐标轴上的点的坐标特征,如x轴上的点的纵坐标为0,y轴上的点的横坐标为0。

操练(10分钟)1.学生自主探究:在平面直角坐标系中表示点、直线和图形。

新版北师大版八年级上册数学全册同步练习(绝对全面)

新版北师大版八年级上册数学全册同步练习(绝对全面)

目录第一章勾股定理 ................................. A3-A9 1.1 探索勾股定理....................................... A3-A4 1.2 一定是直角三角形吗................................. A5-A6 1.3 勾股定理的应用..................................... A7-A9 第二章实数 ................................... A10-A20 2.1 认识无理数....................................... A10-A11 2.2 平方根........................................... A12-A13 2.3 立方根........................................... A14-A15 2.4 估算2.5 用计算器开方......................................... A16 2.6 实数................................................. A17 2.7 二次根式......................................... A18-A20 第三章位置与坐标............................. A21-A243.1 确定位置............................................. A21 3.2 平面直角坐标系3.3 轴对称与坐标变化................................. A22-A24 第四章一次函数 ............................... A25-A334.1 函数................................................. A25 4.2 一次函数与正比例函数............................. A26-A27 4.3 一次函数的图象................................... A28-A29 4.4 确定一次函数的表达式............................. A30-A31 4.5 一次函数的应用................................... A32-A33第五章二元一次方程组.......................... A34-A395.1 认识二元一次方程组................................... A345.2 解二元一次方程组..................................... A35 5.3 应用二元一次方程组--鸡兔同笼............................................. A36 5.4 应用二元一次方程组--增收节支............................................. A37 5.5 应用二元一次方程组--里程碑上的数......................................... A38 5.6 二元一次方程组与一次函数 ............................. A39第六章数据的分析............................. A40-A45 6.1 平均数............................................... A40 6.2 中位数与众数..................................... A41-A42 6.3 从统计图分析数据的集中趋势 ........................... A43 6.4 数据的离散程度................................... A44-A45第七章平行线的证明........................... A46-A51 7.1 为什么要证明......................................... A46 7.2 定义与命题........................................... A47 7.3 平行线的判定7.4 平行线的性质..................................... A48-A49 7.5 三角形内角和定理................................. A50-A51第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为__________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为 3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是__________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.4.△ABC中,三边长分别为a=6 cm,b=33cm, c=3 cm,则△ABC中最小的角为______度.5.如图,AB⊥BC,且AB=3,BC=2,CD=5, AD=42,则∠ACD=__________,图形ABCD 的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2, DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另 一直角边长为6 cm ,则它的斜边长( ). A.4 cm B.8 cm C.10 cm D.12 cm 11.如图,△ABC 中,∠C=90°,AB 垂直平分 线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D , CD=2,则BC 等于( ).A.210B.6C.8D.5 13.ABC 中,∠C=90°,∠A=30°,斜边长为2, 斜边上的高为( ). A.1 B.3 C.23 D.4314.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ).A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b=3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的 三角形都是直角三角形,其中最大的正方 形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

北师大版八年级上册数学课本课后练习题答案(整理版)

北师大版八年级上册数学课本课后练习题答案(整理版)

[标签:标题]篇一:北师大版八年级上册数学课本课后练习题答案八年级上册数学课后练习题答案(北师大版)第一章勾股定理课后练习题答案说明:因录入格式限制,“√”代表“根号”,根号下内用放在“()”里面;“⊙”,表示“森哥马”,,¤,♀,∮,≒,均表示本章节内的类似符号。

1.l探索勾股定理随堂练习1.A所代表的正方形的面积是625;B所代表的正方形的面积是144。

2.我们通常所说的29英寸或74cm的电视机,是指其荧屏对角线的长度,而不是其长或宽,同时,因为荧屏被边框遮盖了一部分,所以实际测量存在误差.1.1知识技能1.(1)x=l0;(2)x=12.2.面积为60cm:,(由勾股定理可知另一条直角边长为8cm).问题解决12cm。

21.2知识技能1.8m(已知直角三角形斜边长为10m,一条直角边为6m,求另一边长).数学理解2.提示:三个三角形的面积和等于一个梯形的面积:联系拓广3.可以将四个全等的直角三角形拼成一个正方形.随堂练习12cm、16cm.习题1.3问题解决1.能通过。

.2.要能理解多边形ABCDEF’与多边形A’B’C’D’E’F’的面积是相等的.然后剪下△OBC和△OFE,并将它们分别放在图③中的△A’B’F’和△D’F’C’的位置上.学生通过量或其他方法说明B’E’F’C’是正方形,且它的面积等于图①中正方形ABOF和正方形CDEO的面积和。

即(B’C’)=AB+CD:也就是BC=a+b。

,222222 这样就验证了勾股定理l.2 能得到直角三角形吗随堂练习l.(1) (2)可以作为直角三角形的三边长.2.有4个直角三角影.(根据勾股定理判断)数学理解2.(1)仍然是直角三角形;(2)略;(3)略问题解决4.能.1.3 蚂蚁怎样走最近13km提示:结合勾股定理,用代数办法设未知数列方程是解本题的技巧所在习题1.5知识技能1.5lcm.问题解决2.能.3.最短行程是20cm。

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)

北师大版八年级数学上册《3.2平面直角坐标系》同步练习题(带答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.在平面直角坐标系中,点P(-2,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.在下列所给出坐标的点中,在第三象限的是()A.B.C.D.3.如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0) B.(﹣2,3) C.(﹣3,2) D.(﹣3,﹣2)4.若点B(m+1,3m﹣5)到x轴的距离与到y轴的距离相等,则点B的坐标是()A.(4,4)或(2,2) B.(4,4)或(2,﹣2) C.(2,﹣2) D.(4,4)5.如图,是某学校的示意图,若综合楼的位置在点,食堂的位置在点,则教学楼的位置在点()A.B.C.D.6.已知点M向左平移3个单位长度后的坐标为,则点M原来的坐标是A.B.C.D.7.如图,四边形是矩形,A,B两点的坐标分别是(8,0),(0,6),点C在第一象限,则点C的坐标为()A.B.C.D.8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2020次运动后,动点P的坐标是()A.(2020,0) B.(2020,1) C.(2020,2) D.(2020,505)二、填空题:(本题共5小题,每小题3分,共15分.)9.若点在y轴上,则点M的坐标为.10.已知点和,且直线轴,则m的值是.11.平面直角坐标系中,点在第二象限,到轴的距离是2,到轴的距离是4,则点的坐标为;12.如图,在网格中建立平面直角坐标系,使点的坐标为,点的坐标为,则点的坐标为.13.如图,在平面直角坐标系中,OA=OB=,AB=.若点A坐标为(1,2),则点B的坐标为.三、解答题:(本题共5题,共45分)14.如图所示的是某市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),若海洋极地公园的坐标为(4,0),大唐芙蓉园的坐标为(2,-1),请建立平面直角坐标系,并用坐标表示其他景点的位置.15.在一次夏令营活动中,主办方告诉营员们A、B两点的位置及坐标分别为(-3,1)、(-2,-3),同时只告诉营员们活动中心C的坐标为(3,2)(单位:km)(1)请在图中建立直角坐标系并确定点C的位置;(2)以点B为参照点,请用方位角和实际距离表示点C的位置.16.在平面直角坐标系中,已知点,解答下列各题:(1)若点P在x轴上,求点P的坐标;(2)若,且轴,求点P的坐标;(3)若点P在第二象限,且它到x轴、y轴的距离相等,求的值.17.图中标明了李明同学家附近的一些地方,已知李明同学家位于(-2,-1).(1)建立平面直角坐标系,写出学校,邮局的坐标;(2)某星期日早晨,李明同学从家里出发,沿着(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过的地方;(3)连接他在(2)中经过的地点,你能得到什么图形?18.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点都在格点上,建立平面直角坐标系.(1)点A的坐标为,点C的坐标为;(2)将△ABC先向左平移3个单位长度,再向下平移6个单位长度,请画出平移后的△A1B1C1;(3)连接AB1,B1C,△AB1C的面积= .参考答案:1.B 2.C 3.C 4.B 5.A 6.B 7.D 8.A9.(0,3)10.-111.(-4,2)12.(-3,1)13.(﹣2,1)14.解:如图所示:大圆塔景区(0,0),大明宫国家遗址公园(1,5),陕西西安博物馆(-1,2)15.(1)解:根据A(-3,1),B(-2,-3)画出直角坐标系描出点C(3,2),如图所示:(2)解:由勾股定理可知,BC=5∴点C在点B北偏东45°方向上,距离点B的5km处.16.(1)解:已知点,点P在x轴上,则点P的纵坐标为0 ∴,解得,a=-2∴.(2)解:,且轴,则点的横坐标相等∴,解得,a=-3∴(3)解:∵点P在第二象限,且它到x轴、y轴的距离相等∴点P的横坐标与纵坐标的和为零∴,解得,a=-1把代入17.(1)解:根据题意建立的平面直角坐标系如图所示学校(1,3),邮局(0,-1);(2)解:他经过:商店,公园,汽车站,水果店,学校,游乐场,邮局;(3)解:得到的图形像一艘帆船18.(1)(2,7);(6,5)(2)解:△A1B1C1如图所示;(3)21。

北师大版八年级上《第三章位置与坐标》单元测试卷含答案解析

北师大版八年级上《第三章位置与坐标》单元测试卷含答案解析

八年级上学期(xuéqī) 第三章位置与坐标单元测试卷数学试卷考试(kǎoshì)时间:120分钟;满分:150分学校:___________姓名(xìngmíng):___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题(xiǎo tí),满分40分,每小题4分)1.(4分)在平面(píngmiàn)直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.(4分)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,1﹣b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(4分)已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.2 B.﹣4 C.﹣1 D.34.(4分)如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是()A.B.C.13 D.55.(4分)在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4) C.(﹣4,﹣1) D.(﹣1,﹣4)6.(4分)已知点A(a,2022)与点A′(﹣2021,b)是关于(guānyú)原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.47.(4分)如图,△ABC的顶点都在正方形网格格(gēgē)点上,点A的坐标为(﹣1,4).将△ABC沿y轴翻折到第一(dìyī)象限,则点C的对应点C′的坐标是()A.(3,1) B.(﹣3,﹣1)C.(1,﹣3)D.(3,﹣1)8.(4分)如图,在平面(píngmiàn)直角坐标系中,△ABC位于(wèiyú)第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)9.(4分)在平面直角坐标系中,把点P(﹣5,4)向右平移9个单位得到点P1,再将点P1绕原点顺时针旋转90°得到点P2,则点P2的坐标是()A.(4,﹣4)B.(4,4) C.(﹣4,﹣4)D.(﹣4,4)10.(4分)雷达二维平面定位的主要原理是:测量目标的两个信息﹣距离和角度,目标的表示方法为(m,α),其中,m表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标C的位置表示为C(3,300°).用这种方法表示目标B的位置,正确的是()A.(﹣4,150°)B.(4,150°)C.(﹣2,150°)D.(2,150°)评卷人得分二.填空题(共4小题(xiǎo tí),满分20分,每小题5分)11.(5分)如图,在中国象棋的残局上建立(jiànlì)平面直角坐标系,如果“相”和“兵”的坐标分别是(3,﹣1)和(﹣3,1),那么“卒”的坐标为.12.(5分)在平面直角坐标(zhí jiǎo zuò biāo)系中,O为坐标原点,点A(﹣a,a)(a>0),点B(﹣a﹣4,a+3),C为该直角坐标系内的一点(yī diǎn),连结AB,OC,若AB∥OC且AB=OC,则点C的坐标(zuòbiāo)为.13.(5分)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.14.(5分)如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O逆时针旋转120°后得到△A1B1O,则点B1的坐标为.评卷人得分三.解答题(共9小题(xiǎo tí),满分90分)15.(8分)在一次夏令营活动(huó dòng)中,老师将一份行动计划藏在没有任何标记的点C处,只告诉大家两个标志点A,B的坐标分别为(﹣3,1)、(﹣2,﹣3),以及点C的坐标为(3,2)(单位:km).(1)请在图中建立直角坐标(zhí jiǎo zuò biāo)系并确定点C的位置;(2)若同学们打算从点B处直接(zhíjiē)赶往C处,请用方向角和距离描述点C相对于点B的位置.16.(8分)如图,在平面直角坐标系中,线段AB的两个(liǎnɡ ɡè)端点坐标分别为A(2,3),B(2,﹣1).(1)作出线段AB关于y轴对称的线段CD.(2)怎样表示线段CD上任意一点P的坐标?17.(8分)在平面直角坐标系中,已知A(﹣1,1),B(3,4),C(3,8).(1)建立平面直角坐标(zhí jiǎo zuò biāo)系,描出A、B、C三点,求出三角形ABC 的面积;(2)求出三角形ABO(若O是你所建立(jiànlì)的坐标系的原点)的面积.18.(8分)如图,在平面直角坐标(zhí jiǎo zuò biāo)系中,四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在坐标系中,画出此四边形;(2)求此四边形的面积(miàn jī).19.(10分)在平面(píngmiàn)直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P (1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).(1)已知点A(﹣2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;(2)已知点M(m﹣1,2m)的“﹣3级关联点”M′位于y轴上,求M′的坐标;(3)已知点C(﹣1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.20.(10分)对于平面(píngmiàn)直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中(qízhōng)k为常数,且k≠0),则称点P′为点P的“k属派生(pàishēng)点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4),即P′(9,6).(Ⅰ)点P(﹣2,3)的“3属派生(pàishēng)点”P′的坐标为;(Ⅱ)若点P的“5属派生(pàishēng)点”P′的坐标为(3,﹣9),求点P的坐标;(Ⅲ)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值.21.(12分)在直角坐标系中,△ABO的顶点坐标分别为O(0,0)、A(2a,0)、B(0,﹣a),线段EF两端点坐标为(﹣m,a+1),F(﹣m,1),(2a>m >a);直线l∥y轴交x轴于P(a,0),且线段EF与CD关于y轴对称,线段CD 与NM关于直线l对称.(1)求点N、M的坐标(用含m、a的代数式表示);(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明其理由,若能请你说出一个平移方案(平移的单位数用m、a表示)22.(12分)在平面直角坐标系xOy中,点M的坐标为(3,﹣2),线段AB的位置如图所示,其中点A的坐标为(7,3),点B的坐标为(1,4).(1)将线段AB平移可以得到线段MN,其中点A的对应点为M(3,﹣2),点B 的对应点为N,则点N的坐标为.(2)在(1)的条件下,若点C的坐标为(4,0),请在图中描出点N并顺次连接BC,CM,MN,NB,然后求出四边形BCMN的面积S.23.(14分)如图,在平面直用坐标系中,A(a,0),D(6,4),将线段AD平移(pínɡ yí)得到BC,使B(0.b),且a,b满足|a﹣2|+=0,延长(yáncháng)BC交x轴于点E.(1)填空(tiánkòng):点A(,),点B(,),∠DAE=;(2)求点C和点E的坐标(zuòbiāo);(3)设点P是x轴上的一动(yīdòng)点(不与点A、E重合),且PA>AE,探究∠APC与∠PCB的数量关系?写出你的结论并证明.八年级上学期第三章位置(wèi zhi)与坐标单元测试卷参考答案与试题(shìtí)解析一.选择题(共10小题(xiǎo tí),满分40分,每小题4分)1.【分析(fēnxī)】根据各象限内点的坐标(zuòbiāo)特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】直接利用第二象限横纵坐标的关系得出a,b的符号,进而得出答案.【解答】解:∵点A(a+1,b﹣2)在第二象限,∴a+1<0,b﹣2>0,解得:a<﹣1,b>2,则﹣a>1,1﹣b<﹣1,故点B(﹣a,1﹣b)在第四象限.故选:D.【点评】此题主要考查了点的坐标,正确记忆各象限内点的坐标符号是解题关键.【分析】根据平行于x轴的直线上的点的纵坐标相同,列出方程求解即可.【解答】解:∵点A(m,﹣2),B(3,m﹣1),直线AB∥x轴,∴m﹣1=﹣2,解得m=﹣1.故选:C.【点评(diǎn pínɡ)】本题考查了坐标(zuòbiāo)与图形性质,熟记平行于x轴的直线上的点的纵坐标相同是解题的关键.4.【分析(fēnxī)】先根据(gēnjù)A、B两点的坐标求出OA及OB的长,再根据勾股定理即可得出结论.【解答(jiědá)】解:∵A(2,0)和B(0,3),∴OA=2,OB=3,∴AB=.故选:A.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.【分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.6.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得a、b的值,然后再计算a+b即可.【解答(jiědá)】解:∵点A(a,2022)与点A′(﹣2021,b)是关于(guānyú)原点O 的对称点,∴a=2021,b=﹣2022,∴a+b=1,故选:A.【点评(diǎn pínɡ)】此题主要(zhǔyào)考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.7.【分析(fēnxī)】根据A点坐标,可得C点坐标,根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:由A点坐标,得C(﹣3,1).由翻折,得C′与C关于y轴对称,C′(3,1).故选:A.【点评】本题考查了坐标与图形变化﹣对称,关于y轴对称的点的坐标:横坐标互为相反数,纵坐标相等.8.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.9.【分析】首先利用平移的性质得出P1(4,4),再利用旋转变换的性质可得结论;【解答】解:∵P(﹣5,4),点P(﹣5,4)向右平移9个单位得到点P1∴P1(4,4),∴将点P1绕原点顺时针旋转(xuánzhuǎn)90°得到点P2,则点P2的坐标(zuòbiāo)是(4,﹣4),故选:A.【点评(diǎn pínɡ)】本题考查坐标与图形(túxíng)变化﹣旋转以及平移,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.10.【分析(fēnxī)】根据点A、C的位置结合其表示方法,可得出相邻同心圆的半径差为1,结合点B在第四个圆上且在150°射线上,即可表示出点B.【解答】解:∵A(5,30°),C(3,300°),∴B(4,150°).故选:B.【点评】本题考查了坐标确定位置,根据点A、C的坐标找出点B的坐标是解题的关键.二.填空题(共4小题,满分20分,每小题5分)11.【分析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【解答】解:“卒”的坐标为(﹣2,﹣2),故答案为:(﹣2,﹣2).【点评】此题主要考查了坐标确定位置,关键是正确确定原点位置.12.【分析】设点C的坐标为(x,y),由AB∥OC、AB=OC以及点A、B的坐标,即可求出点C的坐标.【解答】解:依照题意画出图形,如图所示.设点C的坐标(zuòbiāo)为(x,y),∵AB∥OC且AB=OC,∴点C的坐标(zuòbiāo)为(﹣4,3)或(4,﹣3).故答案(dá àn)为:(﹣4,3)或(4,﹣3).【点评(diǎn pínɡ)】本题考查了平行线的性质(xìngzhì)以及两点间的距离公式,依照题意画出图形,利用数形结合解决问题是解题的关键.13.【分析】直接利用平移的性质得出平移后点的坐标即可.【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).【点评】此题主要考查了平移变换,正确掌握平移规律是解题关键.14.【分析】过B 1作B 1C ⊥y 轴于C ,由把△ABO 绕点O 逆时针旋转120°后得到△A 1B 1O ,根据旋转的性质得到∠BOB 1=120°,OB 1=OB=3,解直角三角形即可得到结果.【解答】解:过B 1作B 1C ⊥y 轴于C ,∵把△ABO 绕点O 逆时针旋转(xuánzhuǎn)120°后得到△A 1B 1O ,∴∠BOB 1=120°,OB 1=OB=3,∵∠BOC=90°,∴∠COB 1=30°,∴B 1C=21OB 1=,OC=,∴B 1(﹣23,23). 故答案(dá àn)为:(﹣23,23).【点评(diǎn pínɡ)】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后(zhīhòu)要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标是解题的关键.三.解答(jiědá)题(共9小题,满分90分)15.【分析】(1)利用A,B点坐标得出原点位置,建立坐标系,进而得出C点位置;(2)利用所画图形,进而结合勾股定理得出答案.【解答】解:(1)根据A(﹣3,1),B(﹣2,﹣3)画出直角坐标系,描出点C(3,2),如图所示;(2)BC=5,所以点C在点B北偏东45°方向上,距离点B的52 km处.【点评(diǎn pínɡ)】此题主要考查了坐标确定位置以及勾股定理(ɡōu ɡǔ dìnɡ lǐ)等知识,得出原点的位置是解题关键.16.【分析(fēnxī)】(1)据关于(guānyú)y 轴对称的点的横坐标互为相反数确定出点C 、D 的位置,然后连接CD 即可;(2)线段(xiànduàn)CD 上所有点的横坐标都是﹣2;【解答】解:(1)如图线段CD ;(2)P (﹣2,y )(﹣1≤y ≤3).【点评】考查了关于x 轴、y 轴对称的点的坐标.关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P (x ,y )关于y 轴的对称点P′的坐标是(﹣x ,y ).17.【分析】(1)先描点,如图,然后根据点的坐标特征和三角形面积公式求解;(2)利用面积的和差计算三角形ABO 的面积.【解答】解:(1)如图,S △ABC =21×(3+1)(8﹣4)=8;(2)S △ABO =4×4﹣21×3×4﹣21×4×3﹣21×1×1 =.【点评(diǎn pínɡ)】本题(běntí)考查了坐标与图形性质:利用点的坐标计算出相应的线段的长和判断线段与坐标轴的位置关系.18.【分析(fēnxī)】(1)补充成网格平面直角坐标系,然后确定出点B 、C 、D 的位置(wèi zhi),再与点A 顺次连接即可;(2)利用(lìyòng)四边形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)四边形ABCD 如图所示;(2)四边形的面积=9×7﹣21×2×7﹣21×2×5﹣21×2×7, =63﹣7﹣5﹣7,=63﹣19,=44.【点评(diǎn pínɡ)】本题考查了坐标与图形(túxíng)性质,三角形的面积,补充成网格平面直角坐标系更容易确定点的位置.19.【分析(fēnxī)】(1)根据(gēnjù)关联点的定义,结合点的坐标即可得出结论.(2)根据(gēnjù)关联点的定义和点M (m ﹣1,2m )的“﹣3级关联点”M′位于y 轴上,即可求出M′的坐标.(3)因为点C (﹣1,3),D (4,3),得到y=3,由点N (x ,y )和它的“n 级关联点”N′都位于线段CD 上,可得到方程组,解答即可.【解答】解:(1)∵点A (﹣2,6)的“21级关联点”是点A 1, ∴A 1(﹣2×21+6,﹣2+21×6), 即A 1(5,1).设点B (x ,y ),∵点B 的“2级关联点”是B 1(3,3),∴解得∴B (1,1).(2)∵点M(m﹣1,2m)的“﹣3级关联点”为M′(﹣3(m﹣1)+2m,m﹣1+(﹣3)×2m),M′位于y轴上,∴﹣3(m﹣1)+2m=0,解得:m=3∴m﹣1+(﹣3)×2m=﹣16,∴M′(0,﹣16).(3)∵点N(x,y)和它的“n级关联(guānlián)点”N′都位于线段CD上,∴N′(nx+y,x+ny),【点评(diǎn pínɡ)】本题考查一次函数图象上的坐标的特征,“关联点”的定义等知识,解题的关键(guānjiàn)是理解题意,灵活运用所学知识解决问题.20.【分析(fēnxī)】(Ⅰ)根据(gēnjù)“k属派生点”计算可得;(Ⅱ)设点P的坐标为(x、y),根据“k属派生点”定义及P′的坐标列出关于x、y的方程组,解之可得;(Ⅲ)先得出点P′的坐标为(a,ka),由线段PP′的长度为线段OP长度的2倍列出方程,解之可得.【解答】解:(Ⅰ)点P(﹣2,3)的“3属派生点”P′的坐标为(﹣2+3×3,﹣2×3+3),即(7,﹣3),故答案为:(7,﹣3);(Ⅱ)设P(x,y),依题意,得方程组:,解得,∴点P(﹣2,1).(Ⅲ)∵点P(a,b)在x轴的正半轴上,∴b=0,a>0.∴点P的坐标(zuòbiāo)为(a,0),点P′的坐标为(a,ka),∴线段(xiànduàn)PP′的长为点P′到x轴距离为|ka|,∵P在x轴正半轴,线段(xiànduàn)OP的长为a,根据(gēnjù)题意,有|PP'|=2|OP|,∴|ka|=2a,∵a>0,∴|k|=2.从而(cóng ér)k=±2.【点评】本题主要考查坐标与图形的性质,熟练掌握新定义并列出相关的方程和方程组是解题的关键.21.【分析】(1)先根据EF与CD关于y轴对称,得到EF两端点坐标,再设CD与直线l之间的距离为x,根据CD与MN关于直线l对称,l与y轴之间的距离为a,求得M的横坐标即可;(2)先判定△ABO≌△MFE,得出△ABO与△MFE通过平移能重合,再根据对应点的位置,写出平移方案即可.【解答】解:(1)∵EF与CD关于y轴对称,EF两端点坐标为(﹣m,a+1),F (﹣m,1),∴C(m,a+1),D(m,1),设CD与直线l之间的距离为x,∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a﹣x,∵x=m﹣a,∴M的横坐标为a﹣(m﹣a)=2a﹣m,∴M(2a﹣m,a+1),N(2a﹣m,1);(2)能重合(chónghé).∵EM=2a﹣m﹣(﹣m)=2a=OA,EF=a+1﹣1=a=OB又∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移(pínɡ yí)能重合.平移(pínɡ yí)方案:将△ABO向上(xiàngshàng)平移(a+1)个单位后,再向左平移(pínɡ yí)m个单位,即可重合.【点评】本题主要考查了坐标与图形变化,解题时注意:关于y轴对称的两点,纵坐标相等,横坐标互为相反数;向上平移时,纵坐标增加,向左平移时,横坐标减小.22.【分析】(1)由点M及其对应点A的坐标得出平移方向和距离,据此可得点N的坐标;(2)根据题意画出图形,利用割补法求解可得.【解答】解:(1)由点M(3,﹣2)的对应点A(7,3)知先向右平移4个单位、再向上平移5个单位,∴点B(1,4)的对应点N的坐标为(﹣3,﹣1),故答案为:(﹣3,﹣1).(2)如图,描出点N并画出四边形BCMN,S=21×4×5+21×6×1+21×1×2+2×1+21×3×4 =10+3+1+2+6=22.【点评(diǎn pínɡ)】本题(běntí)主要考查坐标与图形的变化﹣平移,用到的知识点为:点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.23.【分析(fēnxī)】(1)根据非负数(fùshù)的性质求出A 、B 两点的坐标,根据tan ∠DAE=1,得出(dé chū)∠DAE=45°;(2)利用平移的性质求出C 点坐标,根据待定系数法求出直线BC 的解析式,进而得到点E 的坐标;(3)分两种情况讨论求解即可解决问题.【解答】解:(1)∵a ,b 满足|a ﹣2|+5 b =0,∴a ﹣2=0,b +5=0,∴a=2,b=﹣5,∴A (2,0),B (0,﹣5);∵tan∠DAE==1,∴∠DAE=45°,故答案为2,0,0,﹣5,45°;(2)∵AD∥BC,AD=BC,∴点B向右平移(pínɡ yí)4个单位向上平移4个单位得到点C,∵B(0,﹣5),∴C(4,﹣1).∴直线(zhíxiàn)BC的解析式为y=x﹣5,∴E(5,0).(3)①当点P在点A的左侧(zuǒ cè)时,如图1,连接PC.∵OE=OB,∴∠PEC=45°,∵∠PCB=∠APC+∠PEC,∴∠PCB﹣∠APC=45°;②当P在直线BC与x轴交点(jiāodiǎn)的右侧时,如图2,连接PC.∵∠PCB=∠PEC+∠APC,∴∠PCB﹣∠APC=135°.【点评(diǎn pínɡ)】本题考查了坐标与图形变化﹣平移,平移的性质,非负数的性质,三角形的外角的性质等知识,正确的画出图形是解题的关键.内容总结(1)八年级上学期第三章位置与坐标单元测试卷数学试卷考试时间:120分钟(2)(2)△ABO与△MFE通过平移能重合吗。

八年级数学上册第三章位置与坐标知识归纳含练习北师大版

八年级数学上册第三章位置与坐标知识归纳含练习北师大版

第三章位置与坐标知识点1 坐标确定位置知识链接平面内特殊位置的点的坐标特征(1)各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b>0;③第三象限:a<0,b<0;④第四象限:a>0,b<0.(2)坐标轴上点P(a,b)的坐标特征:①x轴上:a为任意实数,b=0;②y轴上:b为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹角平分线上点P(a,b)的坐标特征:①一、三象限:ba=;②二、四象限:b=.a-同步练习1.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M 到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M 的“距离坐标”,根据上述定义,“距离坐标"是(1,2)的点的个数是()A.2 B.3 C.4 D.5考点:点到直线的距离;坐标确定位置;平行线之间的距离.解答:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选C.2.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)考点:利用旋转设计图案;坐标确定位置;利用轴对称设计图案.解答:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形但不是中心对称图形,故此选项错误;B、当摆放黑(3,3),白(3,1)时,此时是轴对称图形也是中心对称图形,故此选项正确;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:B.3.(2014•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.根据图中两人的对话纪录,若下列有一种走法能从邮局出发走到小杰家,则此走法为何?()A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺考点:坐标确定位置.解答:依题意,OA=OC=400=AE,AB=CD=300,DE=400—300=100,所以邮局出发走到小杰家的路径为,向北直走AB+AE=700公尺,再向西直走DE=100公尺.故选:A.4.如图是我市几个旅游景点的大致位置示意图,如果用(0,0)表示新宁莨山的位置,用(1,5)表示隆回花瑶的位置,那么城市南山的位置可以表示为()A.(2,1)B.(0,1)C.(—2,-1)D.(—2,1)考点:坐标确定位置.解答:建立平面直角坐标系如图,城市南山的位置为(—2,-1).故选C.5.(2014•怀化模拟)小军从点O向东走了3千米后,再向西走了8千米,如果要使小军沿东西方向回到点O的位置,那么小明需要()A.向东走5千米B.向西走5千米C.向东走8千米D.向西走8千米考点:坐标确定位置.解答:小军从点O向东走了3千米,再向西走了8千米后在点O的西边5千米,所以,要回到点O的位置,小明需要向东走5千米.故选A.6.(2014•遵义二模)在一次寻宝游戏中,寻宝人找到了如图所示的两个标志点A(2,1)、B(4,-1),这两个标志点到“宝藏"点的距离都是10,则“宝藏"点的坐标是.考点:勾股定理的应用;坐标确定位置;线段垂直平分线的性质.解答:首先确定坐标轴,则“宝藏”点是C和D,坐标是:(5,2)和(1,—2).故答案是:(5,2)和(1,—2).7.(2014•曲靖模拟)在一次“寻宝"游戏中,“寻宝”人找到了如图所标示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都相等,则“宝藏"点的可能坐标是.考点:坐标确定位置.解答:如图,“宝藏”的可能坐标是(0,-1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).故答案为:(0,—1),(1,0),(2,1),(3,2),(4,3),(5,4),(6,5).8.(2014•赤峰)如图所示,在象棋盘上建立平面直角坐标系,使“马"位于点(2,2),“炮”位于点(—1,2),写出“兵”所在位置的坐标.考点:坐标确定位置.解答:建立平面直角坐标系如图,兵的坐标为(—2,3).故答案为:(-2,3).9.如图1,是由方向线一组同心、等距圆组成的点的位置记录图.包括8个方向:东、南、西、北、东南、东北、西南、西北,方向线交点为O,以O为圆心、等距的圆由内向外分别称作1、2、3、…n.将点所处的圆和方向称作点的位置,例如M(2,西北),N(5,南),则P点位置为.如图2,若将(1,东)标记为点A1,在圆1上按逆时针方向旋转交点依次标记为A2、A3、…、A8;到A8后进入圆2,将(2,东)标记为A9,继续在圆2上按逆时针方向旋转交点依次标记为A10、A11、…、A16;到A16后进入圆3,之后重复以上操作过程.则点A25的位置为,点A2013的位置为,点A16n+2(n为正整数)的位置为.考点:规律型:点的坐标;坐标确定位置.解答:由题意得出:P点在第3个圆上,且在东北方向,故P点位置为:(3,东北),由题意可得出每8个数A点向外移动一次,∵25÷8=3…1,故点A25所在位置与A1方向相同,故点A25的位置为(4,东),∵2013÷8=251…5,故点A2013所在位置与A5方向相同,故点A2013的位置为(252,西),∵(16n+2)÷8=2n…2,故点A16n+2所在位置与A2方向相同,故点A16n+2的位置为(2n+1,东北),故答案为:(3,东北),(4,东),(252,西),(2n+1,东北).10.有一张图纸被损坏,但上面有如图所示的两个标志点A(—3,1),B(—3,-3)可认,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中C点的位置.解:C点的位置如图.11.如图是某台阶的一部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的直角坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标比较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?解:以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5);B,C,D,E,F的坐标与点A的坐标相比较,横坐标与纵坐标分别加1,2,3,4,5;现要给台阶铺上地毯,单位长度为1,要11个单位长度的地毯12.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同方法表述点B相对点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,水平方向为x轴,建立直角坐标系,则B(3,3),方法2,用方向和距离表示,比如:B点位于A点的东北方向(北偏东45°等均可),距离A点23处.知识点2 平面直角坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1—x2)2+(y1—y2)2.说明:求直角坐标系内任意两点间的距离可直接套用此公式.同步练习1.(2014•台湾)如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6—b,a-10)落在第几象限?()A.一B.二C.三D.四考点:点的坐标.解答:∵(5,a)、(b,7),∴a<7,b<5,∴6-b>0,a-10<0,∴点(6-b,a—10)在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(—,—);第四象限(+,-).4.(2014•北海)在平面直角坐标系中,点M(—2,1)在() A.第一象限B.第二象限C.第三象限D.第四象限解答:选B.5.(2014•赤峰样卷)如果m是任意实数,则点P(m,1—2m)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限解答:选C.6.(2014•呼和浩特)已知线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(—4,-1)的对应点D 的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(-9,-4)解答:选A7.(2014•杨浦区三模)如果将点(—b,-a)称为点(a,b)的“反称点”,那么点(a,b)也是点(—b,—a)的“反称点",此时,称点(a,b)和点(-b,—a)是互为“反称点”.容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0).请再写出一个这样的点:.P从O点出发时间可得到整数点的坐标可得到整数点的个数1秒(0,1)、(1,0)22秒3秒(2)当P点从点O出发10秒,可得到的整数点的个数是______个.(3)当P点从点O出发______秒时,可得到整数点(10,5)考点:点的坐标.分析:(1)在坐标系中全部标出即可;(2)由(1)可探索出规律,推出结果;(3)可将图向右移10各单位,用10秒;再向上移动5个单位用5秒.解答:(1)以1秒时达到的整数点为基准,向上或向右移动一格得到2秒时的可能的整数点;再以2秒时得到的整数点为基准,向上或向右移动一格,得到3秒时可能得到的整数点.(2)1秒时,达到2个整数点;2秒时,达到3个整数点;3秒时,达到4个整数点,那么10秒时,应达到11个整数点;(3)横坐标为10,需要从原点开始沿x轴向右移动10秒,纵坐标为5,需再向上移动5秒,所以需要的时间为15秒.知识点3 坐标与图形性质知识链接1、点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.2、有图形中一些点的坐标求面积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形,通常用平行于坐标轴的辅助线用“割、补”法去解决问题.同步练习1.如图,在平面直角坐标系中,点A,B的坐标分别为(-6,0)、(0,8).以点A为圆心,以AB长为半径画弧,交x正半轴于点C,则点C的坐标为.考点:勾股定理;坐标与图形性质.分析:首先利用勾股定理求出AB的长,进而得到AC的长,因为OC=AC—AO,所以OC求出,继而求出点C的坐标.解答:∵点A,B的坐标分别为(—6,0)、(0,8),∴AO=6,BO=8,∴AB=22BOAO =10,∵以点A为圆心,以AB长为半径画弧,∴AB=AC=10,∴OC=AC—AO=4,∵交x正半轴于点C,∴点C的坐标为(4,0),故答案为:(4,0).2.如图,正方形ABCD的边长为4,点A的坐标为(—1,1),AB平行于x轴,则点C的坐标为.解答:C(3,5)3.如图,Rt△OAB的斜边AO在x轴的正半轴上,直角顶点B 在第四象限内,S△OAB=20,OB:AB=1:2,求A、B两点的坐标.解答:A(10,0),B(2,—4)4.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,1MN的长为半径画弧,两弧在第二象限交于点P.若点P 大于2的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=-1 C.2a—b=1 D.2a+b=1考点:作图-基本作图;坐标与图形性质;角平分线的性质.分析:根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系.解答:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故2a+b+1=0,整理得:2a+b=—1,故选:B.5.如图,在平面直角坐标系中,有一矩形COAB,其中三个顶点的坐标分别为C(0,3),O(0,0)和A(4,0),点B在⊙O上.(1)求点B的坐标;(2)求⊙O的面积.解答:(1)B(4,3)(2)256.(2014•南平模拟)如图,在平面直角坐标系中,OABC是正方形,点A的坐标是(4,0),点P在AB边上,且∠CPB=60°,将△CPB沿CP折叠,使得点B落在D处,则D的坐标为()A .(2,32)B .(23 , 32-) C .(2,324-)D .(23,324-) 考点:翻折变换(折叠问题);坐标与图形性质.分析:作DE ⊥y 轴于E ,DF ⊥x 轴于F ,根据正方形的性质∴OC=BC=4,∠B=90°,由∠BPC=60°得∠1=30°,再根据折叠的性质得到∠1=∠2=30°,CD=CB=4,所以∠3=30°,在Rt △CDE 中,根据含30度的直角三角形三边的关系得到DE=21CD=2,CE=3DE=32,则OE=324-,所DF=324-,然后可写出D 点坐标.解答:作DE ⊥y 轴于E ,DF ⊥x 轴于F,如图,∵四边形OABC 是正方形,点A 的坐标是(4,0),∴OC=BC=4,∠B=90°,∵∠BPC=60°,∴∠1=30°,∵△CPB 沿CP 折叠,使得点B 落在D 处,∴∠1=∠2=30°,CD=CB=4,∴∠3=30°,在Rt △CDE 中,DE=21CD=2,CE=3DE=23, ∴OE=OC-CE=324-,∴DF=OE=324-,∴D点坐标为(2,324 ).故选C.7.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正1,0),点P 半轴上.顶点B的坐标为(3,3),点C的坐标为(2为斜边OB上的一个动点,则PA+PC的最小值为.考点:轴对称-最短路线问题;坐标与图形性质.分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.解答:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,3),∴AB=3,OA=3,∠B=60°,由勾股定理得:OB=32,解答:根据题意,作出如图所示的图象:过点B 作B 关于y 轴的对称点B′、过点A 关于x 轴的对称点A′,连接A′B′,直线A′B′与坐标轴交点即为所求.设过A′与B′两点的直线的函数解析式为y=kx+b .∵A(—8,3),B(—4,5),∴A′(—8,-3),B′(4,5),依题意得:−3=−8k +b,5=4k +b ,联立解得k =32,b =37, 所以,C (0,n )为(0,37). D (m ,0)为(27-,0) 所以,n m =23-. 故答案为23-. 故选B9.已知点A (0,0),B(0,4),C (3,t+4),D (3,t ).记N (t )为▱ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9考点:平行四边形的性质;坐标与图形性质.分析:分别求出t=1,t=1。

最新版(北师大版)八年级数学上册全册同步练习(含答案)

最新版(北师大版)八年级数学上册全册同步练习(含答案)

第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。

2022-2023学年八年级数学上学期课后分级练(北师大版)3-2 平面直角坐标系(解析版)

2022-2023学年八年级数学上学期课后分级练(北师大版)3-2 平面直角坐标系(解析版)

3.2 平面直角坐标系课堂知识梳理1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y 轴统称坐标轴。

它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

3、点的坐标的概念对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

平面内点的与有序实数对是一一对应的。

4、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征点P(x,y)在第一象限0⇔yx>,0>点P(x,y)在第二象限0x<,0>⇔y点P(x,y)在第三象限0,0<<x⇔y点P(x,y)在第四象限0x,0<⇔y>(2)、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)即原点(3)、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数(4)、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 平面直角坐标系
一、填空题
1.__________________________________________组成平面直角坐标系.2.(1)图1中多边形ABCDEF各顶点坐标为
______________________________________
(2)A与B和E与D的横坐标有什么关系_______________________
(3)B与D、C与F坐标的特点是______________________________
(4)线段AB与ED所在直线的位置关系是_______________________
图1图2
3.图2是画在方格纸上的某行政区简图,
(1)则地点B,E,H,R的坐标分别为:
_______________________________________________
(2)(2,4),(5,3),(7,7),(11,4)所代表的地点分别为___________
4.已知:如图3等腰△ABC的腰长为22,底边BC=4,以BC所在的直线为x轴,BC的垂直平分线为y轴建立如图所示的直角坐标系,则B()、C()、A().
图3图4
5.如图4草房的地基AB长15米,房檐CD的长为20米,门宽为6米,CD到地面的距离为18米,请你建立适当的直角坐标系并写出A、B、C、D、E、F的坐标.
(1)以_________为x轴,以_____________为y轴建立平面直角坐标系,则A________,B,C________,D________,E________,F________.
二、建立一个直角坐标系,并在坐标系中,把以下各组点描出来,并观察图形像什么?
(1)(0,4),(0,2),(3,5),(4,6),(0,-2),(-3,5),(-4,6),(6,0),(-6,0)
(2)(0,-4),(3,-5),(-3,-5),(6,0),(-6,0)
参考答案
一、1.有公共原点标准单位且互相垂直的两条数轴
2.(1)A(-4,3),B(-4,0),C(0,-2),D(5,0),E(5,3),F(0,5) (2)相同(3)均有个坐标为0,B、D纵坐标为0,C、F横坐标为0(4)平行3.(1)B(4,8),E(11,4),H(10,4),R(6,1)(2)M,I,C,E
4.(-2,0),(2,0),A(0,2)
5.注:草房所在的平面图是轴对称图形
二、略。

相关文档
最新文档