人教版高中数学【选修2-1】[重点题型巩固练习]_《空间向量与立体几何》全章复习与巩固_基础

合集下载

【推荐下载】高三数学选修2-1第3章空间向量与立体几何专项练习(带答案)

【推荐下载】高三数学选修2-1第3章空间向量与立体几何专项练习(带答案)

[键入文字]
高三数学选修2-1第3章空间向量与立体几何专项练习(带答案)
空间向量与立体几何知识点是高中必考知识点之一,以下是第3章空间向量与立体几何专项练习,希望对大家有帮助。

 一、填空题
 1.判断下列各命题的真假:
 ①向量AB的长度与向量BA的长度相等;
 ②向量a与b平行,则a与b的方向相同或相反;
 ③两个有共同起点而且相等的向量,其终点必相同;
 ④两个有公共终点的向量,一定是共线向量;
 ⑤有向线段就是向量,向量就是有向线段.
 其中假命题的个数为________.
 2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)
1。

人教版高中数学【必修二】[知识点整理及重点题型梳理]_《空间几何体》全章复习与巩固(提高)

人教版高中数学【必修二】[知识点整理及重点题型梳理]_《空间几何体》全章复习与巩固(提高)

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习空间几何体结构及其三视图【学习目标】(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,会用材料(如纸板)制作模型,并会用斜二测法画出它们的直观图.(3)通过观察用平行投影与中心投影这两种方法画出的视图与直观图,了解空间图形的不同表示形式.(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式.【知识网络】【要点梳理】要点一.空间几何体的结构及其三视图和直观图1.多面体的结构特征(1)棱柱(以三棱柱为例)如图:平面ABC与平面A1B1C1间的关系是平行,ΔABC与ΔA1B1C1的关系是全等.各侧棱之间的关系是:A1A∥B1B∥C1C,且A1A=B1B=C1C.(2)棱锥(以四棱锥为例)如图:一个面是四边形,四个侧面是有一个公共顶点的三角形.(3)棱台棱台可以由棱锥截得,其方法是用平行于棱锥底面的平面截棱锥,截面和底面之间的部分为棱台.2.旋转体的结构特征旋转体都可以由平面图形旋转得到,画出旋转出下列几何体的平面图形及旋转轴.要点二.空间几何体的三视图和直观图1.空间几何体的三视图空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小是完全相同的,三视图包括正视图、侧视图、俯视图.2.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴.y轴.z轴两两垂直,直观图中,x’轴.y’轴的夹角为45o(或135o),z’轴与x’轴和y’轴所在平面垂直;(2)原图形中平行于坐标轴的线段,直观图中仍平行、平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半.3.平行投影与中心投影平行投影的投影线互相平行,而中心投影的投影线相交于一点.要点诠释:空间几何体的三视图和直观图在观察角度和投影效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形.要点三.空间几何体的表面积和体积1.旋转体的表面积2.几何体的体积公式(1)设棱(圆)柱的底面积为S ,高为h ,则体积V =Sh ;(2)设棱(圆)锥的底面积为S ,高为h ,则体积V =13Sh ; (3)设棱(圆)台的上.下底面积分别为S ',S ,高为h ,则体积V =13('S S )h ;(4)设球半径为R ,则球的体积V =43π3R . 要点诠释:1.对于求一些不规则几何体的体积常用割补的方法,转化成已知体积公式的几何体进行解决.2.重点掌握以三视图为命题背景,研究空间几何体的结构特征的题型.3.要熟悉一些典型的几何体模型,如三棱柱、长(正)方体、三棱锥等几何体的三视图.【典型例题】类型一.空间几何体的结构特征例1.若沿△ABC三条边的中位线折起能拼成一个三棱锥,则△ABC()A.一定是等边三角形B.一定是锐角三角形C.可以是直角三角形D.可以是钝角三角形【思路点拨】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,进而逐一分析△ABC为不同形状时沿△ABC三条边的中位线能否拼成一个三棱锥,最后结合讨论结果,可得答案.【答案】B【解析】在三棱锥的展开图中:过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,当△ABC为锐角三角形时,三个顶点处均满足此条件,故能拼成一个三棱锥,当△ABC为为直角三角形时,在斜边中点E处不满足条件,故不能拼成一个三棱锥,同理当△ABC为钝角三角形时,在钝角所对边中点处不满足条件,故不能拼成一个三棱锥,综上可得:△ABC一定是锐角三角形,故选B.【总结升华】本题考查的知识点是棱锥的结构特征,三角形形状的判断,其中正确理解:三棱锥的展开图中,过底面任意一个顶点的三个角,应满足∠1+∠2>∠3,其中∠3为底面三角形的内角,是解答的关键.举一反三:【变式】如图是长方体被一平面所截得到的几何体,四边形EFGH为截面,长方形ABCD 为底面,则四边形EFGH的形状为()A.梯形B.平行四边形C.可能是梯形也可能是平行四边形D.不确定【思路点拨】根据平面ABFE∥平面DCGH和面面平行的限制定理得EF∥GH,再由FG∥EH得四边形EFGH为平行四边形【答案】B【解析】∵平面ABFE∥平面DCGH,且平面EFGH分别截平面ABFE与平面DCGH得直线EF与GH,∴EF∥GH.同理,FG∥EH,∴四边形EFGH为平行四边形.故答案为B例2.如图所示的几何体,关于其结构特征,下列说法不正确的是()A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形【思路点拨】根据几何体的直观图,得出该几何体的结构特征,由此判断选项A、B、C正确,选项D错误.【答案】D【解析】根据几何体的直观图,得该几何体是由两个同底的四棱锥组成的几何体,且有棱MA、MB、MC、MD、AB、BC、CD、DA、NA、NB、NC和ND,共12条;顶点是M、A、B、C、D和N共6个;且有面MAB、面MBC、面MCD、面MDA、面NAB、面NBC、面NCD和面NDA共8个,且每个面都是三角形.所以选项A、B、C正确,选项D错误.故选D.【总结升华】本题考查了利用空间几何体的直观图判断几何体结构特征的应用问题.举一反三:【变式】用一个平面去截正面体,使它成为形状,大小都相同的两个几何体,则这样的平面的个数有()A.6个B.7个C.10个D.无数个【思路点拨】根据几何体的性质判断正四面体是中心对称几何体,利用中心对称几何体的性质判断即可.【答案】D【解析】∵正四面体是中心对称图形,∴平面过正四面体的中心,则分成为形状,大小都相同的两个几何体,可判断这样的平面有无数个,故选D.类型二.空间几何体的三视图例3.在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().【思路点拨】由正视图和俯视图想到三棱锥和圆锥.【解析】由几何体的正视图和俯视图可知,该几何体应为一个半圆锥和一个有一侧面(与半圆锥的轴截面为同一三角形)垂直于底面的三棱锥的组合体,故其侧视图应为D.【总结升华】(1)空间几何体的三视图是该几何体在三个两两垂直的平面上的正投影,并不是从三个方向看到的该几何体的侧面表示的图形.(2)在画三视图时,重叠的线只画一条,能看见的轮廓线和棱用实线表示,挡住的线要画成虚线.举一反三:【变式】若某几何体的三视图如图所示,则此几何体的直观图是()【答案】A【解析】A中,的三视图:,满足条件;B 中,的侧视图为:,与已知中三视图不符,不满足条件;C 中,的侧视图和俯图为:,与已知中三视图不符,不满足条件;D 中,的三视图为:,与已知中三视图不符,不满足条件;故选A例4.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【思路点拨】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解析】由主视图和俯视图可知切去的棱锥为1D AD C ,棱1CD 在左侧面的投影为1BA ,故选B .举一反三:【变式1】某几何体的三视图如图所示,其中俯视图是半圆,则该几何体的表面积为( )A .32πB .π+C .32πD .52π+【思路点拨】三视图复原可知几何体是圆锥的一半,根据三视图数据,求出几何体的表面积.【答案】A【解析】由题目所给三视图可得,该几何体为圆锥的一半,那么该几何体的表面积为该圆锥表面积的一半与轴截面面积的和. 又该半圆锥的侧面展开图为扇形,所以侧面积为1122ππ⨯⨯⨯=,底面积为12π, 观察三视图可知,轴截面为边长为2的正三角形,所以轴截面面积为12222⨯⨯⨯=则该几何体的表面积为32π.故选A .【变式2】一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )A.1 B.2 C.3 D.4【思路点拨】由三视图及题设条件知,此几何体为一个四棱锥,其较长的侧棱长已知,底面是一个正方形,对角线长度已知,故先求出底面积,再求出此四棱锥的高,由体积公式求解其体积即可.【答案】B【解析】由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为14112 2⨯⨯⨯=由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形23=此棱锥的体积为1232 3⨯⨯=故选B【总结升华】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是四棱锥的体积,其公式为13×底面积×高.三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能.类型三.几何体的直观图例5.如图所示,正方形OABC的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8C.2+3 2 D.2+2 3【思路点拨】由斜二测画法的规则知在已知图形平行于x轴的线段,在直观图中画成平行于x'轴,长度保持不变,已知图形平行于y轴的线段,在直观图中画成平行于y'轴,且长度为原来一半.【答案】B【解析】根据水平放置平面图形的直观图的画法,可得原图形是一个平行四边形,如图,对角线OB =22,OA =1,∴AB =3,所以周长为8.故选B【总结升华】本题考查的知识点是平面图形的直观图,其中斜二测画法的规则,能够帮助我们快速的在直观图面积和原图面积之间进行转化.举一反三:【变式】对于一个底边在x 轴上的正三角形ABC ,边长AB =2,采用斜二测画法做出其直观图,则其直观图的面积是________.【思路点拨】如图所示,A 'B '=AB =2,1''22O C OC ==,作C 'D '⊥x ',可得''''24C D C ==.因此其直观图的面积1''''2C D A B =⋅⋅.【解析】如图所示,A 'B '=AB =2,1''22OC OC ==, 作C 'D '⊥x ',则''''24C D C ==.∴其直观图的面积11''''22244C D A B =⋅⋅=⨯=.类型四.空间几何体的表面积与体积例6.有一根长为3πcm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为多少?【思路点拨】把圆柱沿这条母线展开,将问题转化为平面上两点间的最短距离.【解析】把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图),由题意知BC=3πcm,AB=4πcm,点A与点C分别是铁丝的起.止位置,故线段AC的长度即为铁丝的最短长度.AC5πcm,故铁丝的最短长度为5πcm.【总结升华】把一个平面图形折叠成一个几何体,再研究其性质,是考查空间想象能力的常用方法,所以几何体的展开与折叠是高考的一个热点.举一反三:【变式】如图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为__________,圆锥母线长为______.【答案】圆半径r=10,面积S=100π,圆锥母线l==例7.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是________cm2,体积是________cm3.【思路点拨】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,代入体积公式和面积公式计算即可.【答案】72,32【解析】由三视图可得,原几何体为由四个棱长为2 cm 的小正方体所构成的,则其表面积为22×(24-6)=72 cm 2,其体积为4×23=32,故答案为:72,32【总结升华】本题考查了由三视图求几何体的体积和表面积,解题的关键是判断几何体的形状及相关数据所对应的几何量,考查空间想象力.举一反三:【变式】如图是某简单组合体的三视图,则该组合体的体积为( )A .πB .2)π+C .D .2)+ 【思路点拨】几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,后面是一个三棱锥,三棱锥的底边长是12、高为6的等腰三角形,三棱锥的高是12,求出两个几何体的体积,求和得到结果.【答案】B【解析】由三视图知,几何体是一个简单的空间组合体,前面是半个圆锥,圆锥的底面是半径为6的圆,母线长是12,∴根据勾股定理知圆锥的高是∴半个圆锥的体积是211623π⨯⨯⨯⨯=, 后面是一个三棱锥,三棱锥的底是边长12、高为6的等腰三角形,三棱锥的高是∴三棱锥的体积是1112632⨯⨯⨯⨯=∴几何体的体积是2)π+=+,故选B .。

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。

高二数学人教版选修2-1(第03章 空间向量与立体几何) Word版含解析

高二数学人教版选修2-1(第03章 空间向量与立体几何)  Word版含解析

绝密★启用前人教版选修2-1 第3章 空间向量与立体几何一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】向量a =(2x,1,3),b =(1,-2y ,9),若a 与b 共线,则( )A .x =1,y =1B .x =12,y =12-C .x =16,y =32-D .x =16-,y =232.【题文】已知a =(-3,2,5),b =(1,x ,-1),且a ·b =2,则x 的值是( ) A .6 B .5 C .4 D .33.【题文】设l 1的方向向量为a =(1,2,-2),l 2的方向向量为b =(-2,3,m ),若l 1⊥l 2,则实数m 的值为( )A .3B .2C .1D .124.【题文】若a ,b 均为非零向量,则a ·b =|a ||b |是a 与b 共线的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件5.【题文】在△ABC 中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( )A.2133+b cB.5233-c bC.2133-b cD.1233+b c6.【题文】已知a ,b ,c 是空间的一个基底,设p =a +b ,q =a -b ,则下列向量中可以与p ,q 一起构成空间的另一个基底的是( )A .aB .bC .cD .以上都不对7.【题文】已知△ABC 的三个顶点A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的中线长为( )A .2B .3C .647D .6578.【题文】与向量a =(2,3,6)共线的单位向量是( )A .236,,777⎛⎫⎪⎝⎭B .236,,777⎛⎫--- ⎪⎝⎭C .236,,777⎛⎫-- ⎪⎝⎭和236,,777⎛⎫- ⎪⎝⎭D .236,,777⎛⎫ ⎪⎝⎭和236,,777⎛⎫--- ⎪⎝⎭9.【题文】已知向量a =(2,4,x ),b =(2,y,2),若|a |=6且a ⊥b ,则x +y 为( ) A .-3或1 B .3或-1 C .-3 D .110.【题文】已知a =(x,2,0),b =(3,2-x ,x 2),且a 与b 的夹角为钝角,则实数x 的取值范围是( )A .x >4B .x <-4C .0<x <4D .-4<x <0.11.【题文】已知空间四个点A (1,1,1),B (-4,0,2),C (-3,-1,0),D (-1,0,4),则直线AD 与平面ABC 所成的角为( )A .30° B.45° C.60° D.90°12.【题文】已知二面角α-l -β的大小为50°,P 为空间中任意一点,则过点P 且与平面α和平面β所成的角都是25°的直线的条数为( ) A .2 B .3 C .4 D .5二、填空题:本大题共4小题,每小题5分.13.【题文】已知{i ,j ,k }为单位正交基底,且a =-i +j +3k ,b =2i -3j -2k ,则向量a +b 与向量a -2b 的坐标分别是________,________.14.【题文】在△ABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =________.15.【题文】正方体ABCD -A 1B 1C 1D 1中,面ABD 1与面B 1BD 1所成角的大小为 .16.【题文】在下列命题中:①若a ,b 共线,则a ,b 所在的直线平行;②若a ,b 所在的直线是异面直线,则a ,b 一定不共面;③若a ,b ,c 三向量两两共面,则a ,b ,c 三向量一定也共面;④已知三向量a ,b ,c ,则空间任意一个向量p 总可以唯一表示为p =xa +yb +zc ,其中不正确的命题为________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)【题文】如图,空间四边形OABC 中,E ,F 分别为OA ,BC 的中点,设=OA a ,OB =b ,OC =c ,试用a ,b ,c 表示EF .18.(本题满分12分)【题文】已知{},,i j k 是单位正交基底,设a 1=2i -j +k ,a 2=i +3j -2k ,a 3= -2i +j -3k ,a 4=3i +2j +5k ,试问是否存在实数a ,b ,c 使a 4=aa 1+ba 2+ca 3 成立?如果存在,求出a ,b ,c 的值;如果不存在,请说明理由.19.(本题满分12分)【题文】四棱柱ABCD -A ′B ′C ′D ′中,AB =5,AD =3,AA ′=7,∠BAD =60°,∠BAA ′=∠DAA ′=45°,求AC ′的长.20.(本题满分12分)【题文】如图所示,PD 垂直于正方形ABCD 所在的平面,AB =2,PC 与平面ABCD 所成角是45°,F 是AD 的中点,M 是PC 的中点. 求证:DM ∥平面PFB .21.(本题满分12分)【题文】如图,正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =4,点E 在C 1C 上,且C 1E =3EC . (1)证明:A 1C ⊥平面BED ; (2)求二面角A 1-DE -B 的余弦值.22.(本题满分12分)【题文】正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:平面AED⊥平面A1FD1;(2)在AE上求一点M,使得A1M⊥平面DAE.人教版选修2-1 第3章空间向量与立体几何答题卡注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己姓名和班级填写在答题卡上。

选修2-1学霸必刷题 空间向量与立体几何(选择题、填空题)

选修2-1学霸必刷题 空间向量与立体几何(选择题、填空题)

空间向量与立体几何(选择题、填空题)一、单项选择题1.(江西省赣州市赣县第三中学2020-2021学年高二8月入学考试)已知点(,1,2)A x 和点(2,3,4)B ,且AB =x 的值是( )A .6或2-B .6或2C .3或4-D .3-或4【答案】A【解析】AB ==()2216x -=,解得:2x =-或6x =.故选A2.(2020江西省新余期末质量检测)在空间直角坐标系中,已知P(-1,0,3),Q(2,4,3),则线段PQ 的长度为( )A B .5C D 【答案】B【解析】由题得2(3,4,0),35PQ PQ =∴=+=,所以线段PQ 的长度为5. 故答案为B3.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间向量()3,1,3m =,()1,,1n λ=--,且//m n ,则实数λ=( )A .13- B .-3 C .13D .6【答案】A【解析】因为//m n ,所以,m n R μμ=∈,即:()3,1,3m ==(),,n μλμμμ--=, 所以3,1μλμ=-=,解得13λ=-.故选A .4.(江西省新余一中、宜春一中2021届高二联考)如图所示,在正方体1111ABCD A B C D -中,O 是底面正方形ABCD 的中心,M 是1D D 的中点,N 是11A B 的中点,则直线NO ,AM 的位置关系是( )A .平行B .相交C .异面垂直D .异面不垂直【答案】C【分析】建立空间直角坐标系,写出NO 与AM 的坐标,即可判断位置关系.【解析】建立空间直角坐标系,如图所示.设正方体的棱长为2,则(2,0,0)A ,(0,0,1)M ,(1,1,0)O ,(2,1,2)N ,∴(1,0,2)NO =--,(2,0,1)AM =-.∵0NO AM ⋅=,∴直线NO ,AM 的位置关系是异面垂直. 故选: C5.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212aC .214a D 2 【答案】C【分析】由题意可得11()22AB AC AE AF AD ⋅=+⋅,再利用两个向量的数量积的定义求得结果.【解析】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ ()22211cos60cos6044a a a ︒︒=+=,故选C. 6.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知M ,N 分别是四面体OABC 的棱OA ,BC 的中点,点P 在线段MN 上,且2MP PN =,设向量OA a =,OBb =,OC c =则OP =( )A .111666a b c ++B .111333a b c ++C .111633a b c ++D .111366a b c ++【答案】C【解析】如图所示,连接ON ,∵OP ON NP =+,1()2ON OB OC =+,所以13NP NM =,NM OM ON =-,12OM OA =,∴13OP ON NP ON NM =+=+121()333ON OM ON ON OM =+-=+21()32OB OC =⨯+1132OA +⨯111633OA OB OC =++111633a b c =++.故选C . 7.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-,则1l 和2l 的位置关系是( ) A .平行 B .相交 C .垂直D .不确定【答案】A【解析】因为两条不重合直线1l 和2l 的方向向量分别为()11,0,1ν=-,()22,0,2ν=-, 所以212v ν=-,即2ν与1v 共线,所以两条不重合直线1l 和2l 的位置关系是平行,故选A8.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)设,x y R ∈,向量()()(),1,1,1,,1,2,4,2,a x b y c ===-且,//a c b c ⊥,则a b +=( )A .BC .3D .4【答案】C【分析】根据向量垂直和平行的坐标表示求得参数,x y ,再求向量模长即可. 【解析】()//,241,2,1,21b c y y b ∴=-⨯∴=-∴=-,,(),1210,1a b a b x x ⊥∴⋅=+⋅-+=∴=,()()1,112,1,2a a b ∴=∴+=-,,(2213a b ∴+=+-=,故选C .9.(江西省宜春市2016-2017学年高二上学期期末统考理)如图所示,在空间四边形OABC 中,OA a OB b OC c ===,,,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( )A .121232a b c -+B .211322a b c -++ C .111222a b c +-D .221b 332a c -+-【答案】B【解析】由向量的加法和减法运算:12211()23322MN ON OM OB OC OA a b c =-=+-=-++.故选B10.(陕西省商洛市商丹高新学校2019-2020学年高二下学期4月学情质量检测数学(理))如图,已知正方体ABCD A B C D ''''-,点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =,则AF =( )A .1122AA AB AD '++ B .111222AA AB AD '++ C .111266AA AB AD '++D .111366AA AB AD '++【答案】D【解析】∵点E 是A C ''的中点,点F 是AE 的三等分点,且12AF EF =, ∴111111()333236AF AE AA A E AA A C AA A C ⎛⎫''''''''==+=+=+ ⎪⎝⎭ 11()36AA A B A D '''''=++111366AA AB AD '=++,故选D . 11.(安徽省六安市舒城中学2020-2021学年高二上学期开学考试数学(文)试题)如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,()1,2,,8i P i =是上底面上其余的八个点,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为( )A .8B .4C .2D .1【答案】D【解析】()2i i i AB AP AB AB BP AB AB BP ⋅=⋅+=+⋅,AB ⊥平面286BP P P ,i AB BP ∴⊥,i AB BP ∴⋅=,21i AB AP AB ∴⋅==,则()1,2,,8i AB AP i ⋅=⋅⋅⋅的不同值的个数为1个,故选D .12.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)点P (1,2,3)关于xOy 平面的对称点的坐标为( ) A .(-1,2,3) B .(1,-2,-3) C .(-1,-2,-3) D .(1,2,-3)【答案】D【分析】关于xOy 平面对称的点的,x y 坐标不变,只有z 坐标相反. 【解析】点P (1,2,3)关于xOy 平面的对称点的坐标为(1,2,)3-.故选D .13.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)若向量(2,0,1)a =-,向量(0,1,2)b =-,则2a b -=( )A .(4,1,0)-B .(4,1,4)--C .(4,1,0)-D .(4,1,4)--【答案】C【分析】根据题意求出2(4,0,2)a=-,再根据向量的减法坐标运算,由此即可求出结果.【解析】因为向量(2,0,1)a =-,向量(0,1,2)b =-,则2(4,0,2)a =-,则2(4,0,2)(0,1,2)(4,1,0)a b -=---=-,故选C .14.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知正方体1111ABCD A B C D -,点E 是上底面11A C 的中心,若1AE AA xAB yAD =++,则x y +等于( ) A .13B .12C .1D .2【答案】C【解析】如图,()111111112AE AA A E AA A B A D =+=++ ()11111222AA AB AD AA AB AD =++=++,所以12x y ==,所以1x y +=.故选C15.(江苏省南京市秦淮区2019-2020学年高一下学期期末)空间直角坐标系O xyz -中,已知两点()11,2,1P -,()22,1,3P -,则这两点间的距离为( )A BC .D .18【答案】B【解析】根据题意,两点()11,2,1P -,()22,1,3P -,则12||PP =B .16.(湖北省恩施高中2020届高三下学期四月决战新高考名校交流卷(B ))已知向量()1,2a =,()3,b x =,()1,1c y =--,且//a b ,b c ⊥,则x y ⋅的值为( )A .6B .32 C .9D .132-【答案】C【解析】∵//a b ,∴60x -=,6x =,∴向量()3,6b =, ∵b c ⊥,∴()3610y -+-=,∴32y =,∴9x y ⋅=.故选C . 17.(四川省绵阳市2019-2020学年高二下学期期末教学质量测试数学(理)试题)在空间直角坐标系中,若()1,1,0A ,()13,0,12AB =,则点B 的坐标为( ) A .()5,1,2-- B .()7,1,2- C .()3,0,1 D .()7,1,2【答案】D【分析】首先设出点(,,)B x y z ,利用向量坐标公式以及向量相等的条件得到等量关系式,求得结果. 【解析】设(,,)B x y z ,所以(1,1,)2(3,0,1)(6,0,2)AB x y z =--==,所以16102x y z -=⎧⎪-=⎨⎪=⎩,所以712x y z =⎧⎪=⎨⎪=⎩,所以点B 的坐标为(7,1,2),故选D .18.(广东省云浮市2019-2020学年高二上学期期末)如图,在三棱锥P ABC -中,点D ,E ,F 分别是AB ,PA ,CD 的中点,设PA a =,PB b =,PC c =,则EF =( )A .111442a b c --B .111442a b c -+ C .111442a b c +-D .111442a b c -++【答案】D 【解析】点D ,E ,F 分别是AB ,PA ,CD 的中点,且PA a =,PB b =,PC c =,∴()11112224EF EP PC CF PA PC CD PA PC CA CB =++=-++=-+++()1111124442PA PC PA PC PB PC PA PB PC =-++-+-=-++111442a b c =-++.故选D .19.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)一个向量p 在基底{},,a b c 下的坐标为()1,2,3,则p 在基底{},,a b a b c +-下的坐标为( )A .31322⎛⎫- ⎪⎝⎭,,B .31322⎛⎫- ⎪⎝⎭,, C .13322⎛⎫- ⎪⎝⎭,,D .13322⎛⎫- ⎪⎝⎭,,【答案】B【解析】因为向量p 在基底{},,a b c 下的坐标为()1,2,3,所以23p a b c =++, 设p 在基底{},,a b a b c +-下的坐标为(),,x y z ,所以()()()()p x a b y a b zc x y a x y b zc =++-+⇒++-+,有13223x y x y x z +=⎧⎪-=⇒=⎨⎪=⎩,12y,3z =,p 在基底{},,a b a b c +-下的坐标为31,,322⎛⎫- ⎪⎝⎭.故选B .20.(湖北省武汉襄阳荆门宜昌四地六校考试联盟2020-2021学年高三上学期起点联考)如图,直四棱柱1111ABCD A B C D -的底面是菱形,12AA AB ==,60BAD ∠=︒,M 是1BB 的中点,则异面直线1A M 与1B C所成角的余弦值为( )A. B .15- C .15D.5【答案】D【分析】用向量1,,AB BC BB 分别表示11,AM BC ,利用向量的夹角公式即可求解. 【解析】由题意可得221111111111,5,2A M AB B M AB BB A M A B B M=+=-=+=221111,2BC BC BB B C BC BB =-=+=,()211111111111cos ,AB BB BC BB AB BC BB A M B C A M B C A M B C⎛⎫-⋅-⋅+ ⎪⋅⎝〈〉===0122cos604⨯⨯+⨯==故选D21.(河北省石家庄市第二中学2020-2021学年高二上学期8月线上考试(二))长方体1111ABCD A B C D -中,11,2,AB AD AA E ===为棱1AA 的中点,则直线1C E 与平面11CB D 所成角的余弦值为( ) A.9 B.9CD .23【答案】A【解析】根据题意,建立如图所示直角坐标系:则1C E (1,1,1)=--,设平面11B D C 的法向量为n (,,)x y z =,则100n B D n BC ⎧⋅=⎪⎨⋅=⎪⎩可得:020x y x z --=⎧⎨--=⎩,取n (2,2,1)=--,则1,cos n C E =11n C E nC E⋅9==,设直线1C E 与平面11B D C 的夹角为θ,则9sin θ=,9cos θ==.故选A . 22.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)已知点()1,1,A t t t --,()2,,B tt ,则A ,B 两点的距离的最小值为A.10 B.5C.5D .35【答案】C【分析】由两点之间的距离公式求得AB 之间的距离用t 表示出来,建立关于t 的函数,转化为求函数的最小值.【解析】因为点()1,1,A t t t --,()2,,B t t ,所以22222(1)(21)()522AB t t t t t t =++-+-=-+,有二次函数易知,当15t =时,取得最小值为95,AB ∴,故选C .23.(湖南省邵阳市邵东县第十中学2020届高三下学期模拟考试数学(文)试题)如图,在正方体1111ABCD A B C D -中,M ,N 分别是棱AB ,1BB 的中点,点P 在对角线1CA 上运动.当△PMN 的面积取得最小值时,点P 的位置是( )A .线段1CA 的三等分点,且靠近点1AB .线段1CA 的中点C .线段1CA 的三等分点,且靠近点CD .线段1CA 的四等分点,且靠近点C【答案】B【解析】设正方体的棱长为1,以A 为原点,1,,AB AD AA 分别为,,x y z 轴,建立空间直角坐标系,如图所示:则1(,0,0)2M ,1(1,0,)2N ,MN 的中点31(,0,)44Q ,1(0,0,1)A ,(1,1,0)C ,则1(1,1,1)AC =-,设(,,)P t t z ,(1,1,)PC t t z =---, 由1AC 与PC 共线,可得11111t t z---==-,所以1t z =-,所以(1,1,)P z z z --,其中01z ≤≤,因为||(1PM ==||(11)(1PN z =--+=所以||||PM PN =,所以PQ MN ⊥,即||PQ 是动点P 到直线MN 的距离,由空间两点间的距离公式可得||PQ ===12c =时,||PQ 取得最小值4,此时P 为线段1CA 的中点,由于||4MN =为定值,所以当△PMN 的面积取得最小值时,P 为线段1CA 的中点.故选B24.(云南省梁河县第一中学2019-2020学年高二7月月考数学(理)试题)长方体1111ABCD A B C D -中,12AB AA ==,1AD =,E 为1CC 的中点,则异面直线1BC 与AE 所成角的余弦值为( )A BCD .【答案】B【分析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得异面直线1BC 与AE 所成角的余弦值.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系A xyz -,则()0,0,0A 、()2,0,0B 、()12,1,2C 、()2,1,1E ,()2,1,1AE =,()10,1,2BC =,111cos ,6AE BC AE BC AEBC ⋅<>===⋅. 因此,异面直线1BC 与AE .故选B . 25.(广西桂林市2019-2020学年高二下学期期末质量检测数学(理))在正方体ABCD --A 1B 1C1D 1中,E 是C 1C 的中点,则直线BE 与平面B 1BD 所成角的正弦值为( ) A.5-B.5C .D 【答案】B【分析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立空间直角坐标系,利用向量法能求出直线BE 与平面1B BD 所成角的正弦值.【解析】以D 为坐标原点,以DA 为x 轴,以DC 为y 轴,以1DD 为z 轴,建立如图空间直角坐标系,设正方体的棱长为2,则()000D ,,,()220B ,,,()1222B ,,,()021E ,,, ∴() 220BD =--,,,()1 002BB =,,,() 201BE =-,,, 设平面1B BD 的法向量为() ,,x n y z =,∵ n BD ⊥,1n BB ⊥, ∴22020x y z --=⎧⎨=⎩,令y 1=,则() 110n =-,,,∴10cos ,n BE n BE n BE ⋅==⋅,设直线BE 与平面1B BD 所成角为θ,则10sin cos ,5n BE θ==,故选B .26.(陕西省商洛市商丹高新学校2020届高三下学期考前适应性训练理科)如图在平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则1AC =( )A . BC .D 【答案】B【解析】因为底面ABCD 是边长为1的正方形,侧棱12AA =且1160A AD A AB ∠=∠=︒,则2=1AB ,2=1AD ,21=4AA ,0AB AD ⋅=,111cos 1AB AA AB AA A AB ⋅=⋅⋅∠=,111cos 1AD AA AD AA A AD ⋅=⋅⋅∠=,则1AC 1AB AD AA =++()1222111222AB AD AA AB AA AB AD AD AA =+++⋅+⋅+⋅==,故选B .27.(2020届上海市七宝中学高三高考押题卷)已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM PN →→⋅的取值范围为( ) A .[]0,4 B .[]0,2 C .[]1,4D .[]1,2【答案】B【分析】利用向量的线性运算和数量积运算律可将所求数量积化为21PO →-,根据正方体的特点可确定PO →的最大值和最小值,代入即可得到所求范围.【解析】设正方体内切球的球心为O ,则1OM ON ==,2PM PN PO OM PO ON PO PO OM ON OM ON →→→→→→→→→→→→⎛⎫⎛⎫⎛⎫⋅=+⋅+=+⋅++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,MN 为球O 的直径,0OM ON →→∴+=,1OM ON →→⋅=-,21PM PN PO →→→∴⋅=-,又P 在正方体表面上移动,∴当P 为正方体顶点时,PO →P 为内切球与正方体的切点时,PO →最小,最小值为1,[]210,2PO →∴-∈,即PM PN →→⋅的取值范围为[]0,2.故选B .【点睛】本题考查向量数量积的取值范围的求解问题,关键是能够通过向量的线性运算将问题转化为向量模长的取值范围的求解问题.28.(湖北省荆门市2019-2020学年高二下学期期末)在平行六面体ABCD A B C D ''''-中,若2AC x AB y BC z CC →→→→''=++,则x y z ++=( )A .52B .2C .32D .116【答案】A【解析】由空间向量的线性运算,得AB BC AC AC CC CC →→→→→→⎛⎫=+=++ ⎪⎭'''⎝, 由题可知,2AC x AB y BC z CC →→→→''=++,则1,1,21x y z ===,所以11,2y z ==, 151122x y z ∴++=++=.故选A .29.(安徽省六校教育研究会2020-2021学年高三上学期第一次素质测试理科)如图,在直三棱柱111ABC A B C -中,已知90ABC ∠=︒,P 为侧棱1CC 上任意一点,Q 为棱AB 上任意一点,PQ 与AB 所成角为α,PQ 与平面ABC 所成的角为β,则α与β的大小关系为( )A .αβ=B .αβ<C .αβ>D .不能确定【答案】C【分析】建立空间直角坐标系设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,利用空间向量法分别求得cos ,cos αβ,然后根据(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,利用余弦函数的单调性求解.【解析】建立如图所示空间直角坐标系:设()()(),0,,0,,00,0,0P x z Q y x y z >≥≥,则()(),,,0,,0QP x y z QB y =-=-, 所以2222,,QP QB y QP x y z QB y ⋅==++=,所以2cos QP QB QP QBx zα⋅==⋅+又(0,],0,22ππαβ⎡⎤∈∈⎢⎥⎣⎦,sin QP CP QPβ⋅==所以cos β=cos cos βα>,因为cos y x = 在0,2π⎛⎫⎪⎝⎭上递减,所以αβ>,故选C 30.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,侧棱1AA ⊥底面ABCD ,3AB =,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为( )A .43B .53 C .2D .259【答案】B【分析】建立空间直角坐标系,利用向量法能求出线面角的正切值的最大值. 【解析】以1,,DA DC DD 所在直线分别为,,x y z 轴,建立空间直角坐标系, 设(,3,)P x z ,则1(3,3,),(3,3,4)AP x z BD =-=--,11,0AP BD AP BD ⊥∴⋅=,33(3)3340,4x z z x ∴---⨯+=∴=,||BP ∴==9255=, ||5tan ||3AB BP θ∴=,tan θ∴的最大值为53.故选B .31.(江西省赣州市赣县第三中学2019-2020学年高二6月份考试数学(理)试题)如图,在棱长都相等的正三棱柱111ABC A B C -中,D 是棱1CC 的中点,E 是棱1AA 上的动点.设AE x =,随着x 增大,平面BDE 与底面ABC 所成锐二面角的平面角是( )A .增大B .先增大再减小C .减小D .先减小再增大【答案】D【解析】设正三棱柱111ABC A B C -棱长为2,,02AE x x =≤≤, 设平面BDE 与底面ABC 所成锐二面角为α,以A 为坐标原点,过点A 在底面ABC 内与AC 垂直的直线为x 轴,1,AC AA 所在的直线分别为,y z 轴建立空间直角坐标系,则(0,2,1),(0,0,),(3,1,1),(0,2,1)B D E x BD ED x =-=-,设平面BDE 的法向量(,,)m s t k =,则m BD m ED⎧⊥⎨⊥⎩,即02(1)0t k t x k ⎧++=⎪⎨+-=⎪⎩,令k =33,1t x s x =-=+,所以平面BDE的一个法向量(m x=+-,底面ABC的一个法向量为(0,0,1)n =,cos|cos,|m nα=<>==当1(0,)2x∈,cosα随着x增大而增大,则α随着x的增大而减小,当1(,2)2x∈,cosα随着x增大而减小,则α随着x的增大而增大.故选D.32.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)已知空间直角坐标系O xyz-中,()1,2,3OA =,()2,1,2OB =,()1,1,2OP =,点Q在直线OP上运动,则当QA QB⋅取得最小值时,点Q 的坐标为()A.131,,243⎛⎫⎪⎝⎭B.133,,224⎛⎫⎪⎝⎭C.448,,333⎛⎫⎪⎝⎭D.447,,333⎛⎫⎪⎝⎭【答案】C【分析】设(,,)Q x y z,根据点Q在直线OP上,求得(,,2)Qλλλ,再结合向量的数量积和二次函数的性质,求得43λ=时,QA QB⋅取得最小值,即可求解.【解析】设(,,)Q x y z,由点Q在直线OP上,可得存在实数λ使得OQ OPλ=,即(,,)(1,1,2)x y zλ=,可得(,,2)Qλλλ,所以(1,2,32),(2,1,22)QA QB λλλλλλ=---=---,则2(1)(2)(2)(1)(32)(22)2(385)QA QB λλλλλλλλ⋅=--+--+--=-+, 根据二次函数的性质,可得当43λ=时,取得最小值23-,此时448(,,)333Q . 故选C .【点睛】本题主要考查了空间向量的共线定理,空间向量的数量积的运算,其中解答中根据向量的数量积的运算公式,得关于λ的二次函数是解答的关键,着重考查运算与求解能力.33.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)如图该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径BC =4,AB =AC ,∠BAC =90°,D 为半圆弧的中点,若异面直线BD 和AB 1所成角的余弦值为23,则该几何体的体积为( )A .16+8πB .32+16πC .32+8πD .16+16π【答案】A【解析】设D 在底面半圆上的射影为1D ,连接1AD 交BC 于O ,设1111A D B C O ⋂=. 依题意半圆柱体底面直径4,,90BC AB AC BAC ==∠=︒,D 为半圆弧的中点, 所以1111,AD BC A D B C ⊥⊥且1,O O 分别是下底面、上底面半圆的圆心.连接1OO , 则1OO 与上下底面垂直,所以11,,OO OB OO OA OA OB ⊥⊥⊥,以1,,OB OA OO 为,,x y z 轴建立空间直角坐标系,设几何体的高为()0h h >,则()()()()12,0,0,0,2,,0,2,0,2,0,B D h A B h -,所以()()12,2,,2,2,BD h AB h =--=-,由于异面直线BD 和1AB 所成的角的余弦值为23,所以11238BD AB BD AB ⋅==⋅,即2222,16,483h h h h ===+.所以几何体的体积为2112442416822ππ⨯⨯⨯+⨯⨯⨯=+.故选A.34.(安徽省阜阳市太和第一中学2020-2021学年高二(平行班)上学期开学考试)在正方体1111ABCD A B C D -中,直线1BC 与平面1A BD 所成角的余弦值为( )A .24B .23 C .3 D .3 【答案】C【分析】分别以1,,DA DC DD 为,,x y z 轴建立如图所示空间直角坐标系,求出直线的方向向量和平面的法向量后可得所求线面角的余弦值. 【解析】分别以1,,DA DC DD 为,,x y z轴建立如图所示空间直角坐标系,设正方体的棱长为1,可得()()()()110,0,0,1,1,0,0,1,1,1,0,1D B C A ∴()()()111,0,1,1,0,1,1,1,0BC A D BD =-=--=--, 设(),,n x y z =是平面1A BD 的一个法向量,∴100n A D n BD ⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,取1x =,得1y z ==-,∴平面1A BD 的一个法向量为()1,1,1n =--,设直线1BC 与平面1A BD 所成角为θ, ∴11126sin cos ,323BC nBC n BC nθ⋅-=〈〉===⨯, ∴23cos 1sin θθ=-1BC 与平面1A BD 所成角的余弦值是33, 故选C.【点睛】用向量法求二面角大小的两种方法:(1)分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小即为二面角的大小;(2)分别求出二面角的两个半平面的法向量,然后通过两个法向量的夹角得到二面角大小,解题时要注意结合图形判断出所求的二面角是锐角还是钝角.35.(2020届重庆市第一中学高三下学期6月模拟数学(理)试题)如图所示,在正方体1111ABCD A B C D -中,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则异面直线1A P 与BD 所成角的取值范围为( )A .3,44ππ⎡⎤⎢⎥⎣⎦B .,42ππ⎡⎤⎢⎥⎣⎦C .,32ππ⎡⎤⎢⎥⎣⎦D .2,33ππ⎡⎤⎢⎥⎣⎦【答案】C【解析】过A 作平面α平面1DBC ,点P 是底面1111D C B A 内(含边界)的一点,且//AP 平面1DBC ,则P ∈平面α,即P 在α与平面1111D C B A 的交线上,连接111,,AB AD B D ,11DD BB =,则四边形11BDD B 是平行四边形,11B D BD ∴,11B D ∴平面1DBC ,同理可证1AB ∥平面1DBC ,∴平面11AB D ∥平面1DBC ,则平面11AB D 即为α,点P 在线段11B D 上,以D 为坐标原点,1,,DA DC DD 建立如图坐标系,设正方体棱长为1, 则()0,0,0D ,()1,1,0B ,()1,0,0A ,设(),,1P λλ,[]0,1λ∈, ()1,1,0DB ∴=,()1,,1AP λλ=-,21DB AP λ∴⋅=-,2DB =,2AP λ=,设1A P 与BD 所成角为θ,则cos 2DB APDB APθ⋅===⋅ ==12λ=时,cos θ取得最小值为0, 当0λ=或1时,cos θ取得最大值为12,10cos 2θ∴≤≤,则32ππθ≤≤.故选C . 36.(重庆市第八中学2020届高三下学期第五次月考数学(理)试题)如图,矩形ABCD 中,2AB AD ==E 为边AB 的中点,将ADE 沿直线DE 翻折成1A DE △.在翻折过程中,直线1A C 与平面ABCD 所成角的正弦值最大为()A.4B .6C.14D【答案】A【解析】分别取DE ,DC 的中点O ,F ,则点A 的轨迹是以AF 为直径的圆, 以,OA OE 为,x y 轴,过O 与平面AOE 垂直的直线为z 轴建立坐标系,则()2,1,0C -,平面ABCD 的其中一个法向量为n = (0,0.1), 由11A O =,设()1cos ,0,sin A αα,则()1cos 2,1,sin CA αα=+-,记直线1A C 与平面ABCD 所成角为θ,则11sin 4cos ||CA nCAn θ⋅===⋅设315cos ,,sin 222t αθ⎡⎤=+∈=≤=⎢⎥⎣⎦ 所以直线1A C 与平面ABCD ,故选A . 二、多项选择题37.(江苏省南京市秦淮中学2019-2020学年高二(美术班)上学期期末)对于任意非零向量()111,,a x y z =,()222,,b x y z =,以下说法错误的有( )A .若a b ⊥,则1212120x x y y z z ++=B .若//a b ,则111222x y z x y z == C .cos ,a b =><D .若1111===x y z ,则a为单位向量 【答案】BD【解析】对于A 选项,因为a b ⊥,则1212120a b x x y y z z ⋅=++=,A 选项正确;对于B 选项,若20x =,且20y ≠,20z ≠,若//a b ,但分式12x x 无意义,B 选项错误; 对于C 选项,由空间向量数量积的坐标运算可知cos ,a b =><,C 选项正确;对于D 选项,若1111===x y z,则211a =+=,此时,a 不是单位向量,D 选项错误.故选BD .38.(2020届百师联盟高三开学摸底大联考山东卷)下面四个结论正确的是( ) A .向量(),0,0a b a b ≠≠,若a b ⊥,则0a b ⋅=.B .若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线. C .已知向量()1,1,a x =,()3,,9b x =-,若310x <,则,a b 为钝角.D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅. 【答案】AB【解析】由向量垂直的充要条件可得A 正确;1344PC PA PB =+,∴11334444PC PA PB PC -=-即3AC CB =,∴A ,B ,C 三点共线,故B 正确;当3x =-时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.故选AB.39.(广东省中山市2019-2020学年高一下学期期末)在空间直角坐标系中,下列结论正确的是( ) A .点()2,1,4-关于x 轴对称的点的坐标为()2,1,4 B .到()1,0,0的距离小于1的点的集合是()(){}222,,11x y z x y z -++<C .点()1,2,3与点()3,2,1的中点坐标是()2,2,2D .点()1,2,0关于平面yOz 对称的点的坐标为()1,2,0- 【答案】BCD【解析】对于选项A :点()2,1,4-关于x 轴对称的点的坐标为()2,1,4---,所以A 不正确; 对于选项B :点(),,x y z到()1,0,0的距离小于11<,所以B 正确;对于选项C :点()1,2,3与点()3,2,1的中点坐标是()132231,,2222,2,2⎛⎫=⎪⎝⎭+++,所以C 正确;对于选项D :由点(),,x y z 关于平面yOz 对称的点的坐标为(),,x y z -,所以D 正确. 故选B C D .40.(山东省威海市文登区2019-2020学年高二上学期期末)正方体1111ABCD A B C D -的棱长为a ,则下列结论正确的是( )A .211AB AC a ⋅=- B .212BD BD a ⋅= C .21AC BA a⋅=- D .212AB AC a ⋅=【答案】BC【解析】如下图所示:对于A 选项,()2211AB AC AB AC AB AB AD AB a ⋅=⋅=⋅+==,A 选项错误;对于B ,()()()()2221112BD BD AD AB BD DD AD AB AD AB AA AD AB a ⋅=-+=--+=+=,B 选项正确;对于C 选项,()()2211AC BA AB AD AA AB AB a ⋅=+⋅-=-=-,C 选项正确;对于D 选项,()2211AB AC AB AB AD AA AB a ⋅=⋅++==,D 选项错误.故选BC .41.(福建省泉州市普通高中2019-2020学年毕业班第一次质量检查(理))如图,正方体1111ABCD A B C D -的棱长为1,E 是1DD 的中点,则( )A .直线1//BC 平面1A BD B .11B C BD ⊥C .三棱锥11C B CE -的体积为13D .异面直线1B C 与BD 所成的角为60︒【答案】ABD【解析】如图建立空间直角坐标系,()0,0,0A ,()1,0,0B ,()1,1,0C ,()0,1,0D ,()10,0,1A ,()11,0,1B ,()11,1,1C ,()10,1,1D ,10,1,2⎛⎫ ⎪⎝⎭E ,()1B C 0,1,1=-,()11,1,1BD =-,()1,1,0BD =-,()11,0,1BA =-,所以()111011110B C BD =-⨯+⨯+-⨯=,即11BC BD ⊥,所以11B C BD ⊥,故B 正确;()11011101B C BD =-⨯+⨯+-⨯=,12B C =,2BD =,设异面直线1B C 与BD 所成的角为θ,则111cos 2B C BD B C BDθ==,又0,2πθ⎛⎤∈ ⎥⎝⎦,所以3πθ=,故D 正确;设平面1A BD 的法向量为(),,n x y z =,则1·0·0n BA n BD ⎧=⎨=⎩,即0x y x z -+=⎧⎨-+=⎩,取()1,1,1n =,则()10111110n B C =⨯+⨯+⨯-=,即1C n B ⊥,又直线1B C ⊄平面1A BD ,所以直线1//B C 平面1A BD ,故A 正确;111111111111113326C B CE B C CE C CE V B C S V -∆-===⨯⨯⨯⨯=⋅,故C 错误;故选ABD.42.(海南省海南中学2019-2020学年高三第四次月考)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是()A .113P AA D V -=B .点P 必在线段1BC 上C .1AP BC ⊥D .//AP 平面11AC D【答案】BD 【解析】对于A ,P 在平面11BCC B 上,平面11//BCC B 平面1AA D ,P ∴到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长,1111111113326P AA D AA D V S CD -∴=⋅=⨯⨯⨯⨯=△,A 错误;对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则()1,0,0A ,(),1,P x z ,()1,1,0B ,()10,0,1D ,()11,1,1B ,()0,1,0C()1,1,AP x z →∴=-,()11,1,1BD →=--,()11,0,1B C →=--,1AP BD ⊥,1110AP BD x z →→∴⋅=--+=,x z ∴=,即(),1,P x x ,(),0,CP x x →∴=,1CP x B C →→∴=-,即1,,B P C 三点共线,P ∴必在线段1B C 上,B 正确;对于C ,()1,1,AP x x →=-,()11,0,1BC →=-,111AP BC x x →→∴⋅=-+=,AP ∴与1BC 不垂直,C 错误;对于D ,()11,0,1A ,()10,1,1C ,()0,0,0D ,()11,0,1DA →∴=,()10,1,1DC →=,设平面11AC D 的法向量(),,n x y z →=,1100n DA x z n DC y z ⎧⋅=+=⎪∴⎨⋅=+=⎪⎩,令1x =,则1z =-,1y =,()1,1,1n →∴=-, 110AP n x x →→∴⋅=-+-=,即AP n →→⊥,//AP ∴平面11ACD ,D 正确.故选BD . 43.(福建省宁德市2019-2020学年高二上学期期末考试)如图所示,棱长为1的正方体1111ABCD A B C D-中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .平面11D A P ⊥平面1A APB .1AP DC ⋅不是定值 C .三棱锥11BD PC -的体积为定值 D .11DC D P ⊥【答案】ACD【解析】A .因为是正方体,所以11D A ⊥平面1A AP ,11D A ⊂平面11D A P ,所以平面11D A P ⊥平面1A AP ,所以A 正确;B .11111111()AP DC AA A P DC AA DC A P DC ⋅=+⋅=⋅+⋅ 11112cos 45cos901212AA DC A P DC =+=⨯⨯=,故11AP DC ⋅=,故B 不正确; C .1111B D PC P B D C V V --=,11B D C 的面积是定值,1//A B 平面11B D C ,点P 在线段1A B 上的动点,所以点P 到平面11B D C 的距离是定值,所以1111B D PC P B D C V V --=是定值,故C 正确; D .111DC A D ⊥,11DC A B ⊥,1111A D A B A =,所以1DC ⊥平面11A D P ,1D P ⊂平面11A D P ,所以11DC D P ⊥,故D 正确.故选ACD44.(山东省济南莱芜市第一中学2019-2020学年高二下学期第一次质量检测)关于空间向量,以下说法正确的是( )A .空间中的三个向量,若有两个向量共线,则这三个向量一定共面B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面 C .设{},,a b c 是空间中的一组基底,则{},,a b b c c a +++也是空间的一组基底 D .若0a b ⋅<,则,a b 是钝角 【答案】ABC【解析】对于A 中,根据共线向量的概念,可知空间中的三个向量,若有两个向量共线,则这三个向量一定共面,所以是正确的;对于B 中,若对空间中任意一点O ,有111632OP OA OB OC =++,根据空间向量的基本定理,可得,,,P A B C 四点一定共面,所以是正确的;对于C 中,由{},,a b c 是空间中的一组基底,则向量,,a b c 不共面,可得向量,a b b c ++,c a +也不共面,所以{},,a b b c c a +++也是空间的一组基底,所以是正确的; 对于D 中,若0a b ⋅<,又由,[0,]a b π∈,所以,(,]2a b ππ∈,所以不正确.故选ABC .45.(河北省沧州市盐山中学2019-2020学年高一下学期期末)若长方体1111ABCD A B C D -的底面是边长为2的正方形,高为4,E 是1DD 的中点,则( )A .11B E A B ⊥B .平面1//B CE 平面1A BDC .三棱锥11C B CE -的体积为83D .三棱锥111C B CD -的外接球的表面积为24π【答案】CD【解析】以1{,,}AB AD AA 为正交基底建立如图所示的空间直角坐标系,则 (0,0,0)A ,(2,0,0)B ,(2,2,0)C ,(0,2,0)D ,1(0,0,4)A ,1(2,0,4)B ,(0,2,2)E ,所以1(2,2,2)B E =--,1(2,0,4)A B =-, 因为1140840B E A B ⋅=-++=≠,所以1B E 与1A B 不垂直,故A 错误; 1(0,2,4)CB =-,(2,0,2)CE =-,设平面1B CE 的一个法向量为111(,,)n x y z =,则由100n CB n CE ⎧⋅=⎨⋅=⎩,得1111240220y z x z -+=⎧⎨-+=⎩,所以11112y z x z =⎧⎨=⎩,不妨取11z =,则11x =,12y =,所以(1,2,1)n =, 同理可得设平面1A BD 的一个法向量为(2,2,1)m =,故不存在实数λ使得n λm =,故平面1B CE 与平面1A BD 不平行,故B 错误; 在长方体1111ABCD A B C D -中,11B C ⊥平面11CDD C ,故11B C 是三棱锥11B CEC -的高,所以111111111184223323三棱锥三棱锥CEC C B CE CEC B V V S B C --==⋅=⨯⨯⨯⨯=△,故C 正确; 三棱锥111C B CD -的外接球即为长方体1111ABCD A B C D -的外接球,故外接球的半径2R ==所以三棱锥111C B CD -的外接球的表面积2424S R ππ==,故D 正确.故选CD .46.(山东省济南市2019-2020学年高二下学期末考试)如图,棱长为的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),则下列结论正确的是( )A .直线1D P 与AC 所成的角可能是6π B .平面11D A P ⊥平面1A AP C .三棱锥1D CDP -的体积为定值D .平面1APD 截正方体所得的截面可能是直角三角形 【答案】BC【解析】对于A ,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,()()()10,0,1,1,0,0,0,1,0D A C ,设()()1,,01,01P a b a b <<<< ()()11,,1,1,1,0D P a b AC =-=-,(111cos ,01D P AC D P AC D P ACa b ⋅==<++-1301,01,,24a b D P AC ππ<<<<∴<<∴直线D 1P 与AC 所成的角为,42ππ⎛⎫⎪⎝⎭,故A 错误; 对于B ,正方体ABCD ﹣A 1B 1C 1D 1中,A 1D 1⊥AA 1,A 1D 1⊥AB , ∵AA 1AB =A ,∴A 1D 1⊥平面A 1AP ,∵A 1D 1⊥平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,故B 正确;对于C ,1111122CDD S=⨯⨯=,P 到平面CDD 1的距离BC =1, ∴三棱锥D 1﹣CDP 的体积:111111326D CDP P CDD V V --==⨯⨯=为定值,故C 正确;对于D ,平面APD 1截正方体所得的截面不可能是直角三角形,故D 错误;故选BC .47.(江苏省苏州中学园区校2020-2021学年高三上学期8月期初调研)如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且12EF =,则下列结论中正确的是( )A .线段11B D 上存在点F ,使得AC AF ⊥ B .//EF 平面ABCD C .AEF 的面积与BEF 的面积相等 D .三棱锥A BEF -的体积为定值【答案】BD【解析】如图,以C 为坐标原点建系CD ,CB ,1CC 为x ,y ,z 轴,()1,1,0A ,()0,0,0C ,()1,1,0AC =--,1B F B λ=11D ,即()()0,1,11,1,0x y z λ---=-,∴x λ=,1y λ=-,1z =,∴(),1,1F λλ-,()1,,1AF λλ=--,()()11010AC AF λλ⋅=--++=≠, ∴AC 与AF 不垂直,A 错误.E ,F 都在B ,D 上,又11//BD B D ,∴//EF BD ,BD ⊂平面ABCD ,EF ⊄平面ABCD ,∴//EF 平面ABCD ,B 正确AB 与EF 不平行,则1A B 与EF 的距离相等,∴AEF BEF S S ≠△△,∴C 错误A 到BEF 的距离就是A 到平面11BDDB 的距离,A 到11BDD B 的距离为22AC =1111224BEF S =⨯⨯=△,∴1134224A BEF V -=⨯⨯=是定值,D 正确.故选BD .48.(江苏省扬州市宝应中学2020-2021学年高三上学期开学测试)在正三棱柱ABC A B C '''-中,所有棱长为1,又BC '与B C '交于点O ,则( )A .AO =111222AB AC AA '++ B .AO B C '⊥C .三棱锥A BB O '-D .AO 与平面BB ′C ′C 所成的角为π6【答案】AC【解析】由题意,画出正三棱柱ABC A B C '''-如图所示,向量()()111222AO AB BO AB BC BB AB AC AB AA ''=+=++=+-+ 111222AB AC AA '=++,故选项A 正确;在AOC △中,1AC =,22OC,1OA ==, 222OA OC AC +≠,所以AO 和B C '不垂直,故选项B 错误;在三棱锥A BB O '-中,14BB O S '=,点A 到平面BB O '的距离即ABC 中BC 边上的高,所以h =以111334A BB O BB O V S h ''-==⨯=C 正确; 设BC 中点为D ,所以AD BC ⊥,又三棱柱是正三棱柱,所以AD ⊥平面BB C C '',所以AOD ∠即AO 与平面BB ′C ′C 所成的角,112cos 12OD AOD OA ∠===,所以3AOD π∠=,故选项D 错误.故选AC49.(山东省泰安肥城市2020届高三适应性训练(一))如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为ABCD 为矩形,CD =Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC所成角的余弦值为3C .三棱锥B ACQ -的体积为D .四棱锥Q ABCD -外接球的内接正四面体的表面积为【答案】BD【解析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,因为三角形PAD 为等边三角形,所以OP AD ⊥,因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD ,因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,则(0,0,0),(O D A ,(P C B ,因为点Q 是PD 的中点,所以Q ,平面PAD 的一个法向量为(0,1,0)m =,6(QC =,显然 m 与QC 不共线,所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,PC AQ AC =-==, 设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅==⎪⎨⎪⋅=+=⎩, 令=1x ,则y z ==(1,2,3)n =--,设PC 与平面AQC 所成角为θ,则21sin 36n PC n PCθ⋅===,所以22cos 3θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABCV V S OP --==⋅ 1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以22222222a a ⎛⎫⎛++-=++ ⎪ ⎪ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x ,所以2236⎫=⎪⎪⎝⎭,得224x =,所以正四面体的表面积为244x ⨯=,所以D 正确.故选BD.50.(山东省滕州市第一中学2020-2021学年高二9月开学收心考试)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【解析】对于A ,1233AD AC AB =+,32AD AC AB ∴=+, 22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=,即111333PQ PA PB PC ∴=++,故B 正确;对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+==2MN ∴=D 错误.故选ABC.三、填空题51.(辽宁省辽阳市辽阳县集美中学2020-2021学年高二上学期第一次月考)O 为空间中任意一点,A ,B ,C 三点不共线,且3148OP OA OB tOC =++,若P ,A ,B ,C 四点共面,则实数t =_________.。

人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_《空间向量与立体几何》全章复习与巩固_提高

人教版高中数学【选修2-1】[知识点整理及重点题型梳理]_《空间向量与立体几何》全章复习与巩固_提高

人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习《空间向量与立体几何》全章复习与巩固【学习目标】1.了解空间向量的概念,空间向量的基本定理及其意义,掌握空间向量的正交分解、线性运算、数量积及其坐标表示;2.运用向量的数量积判断向量的共线与垂直,理解直线的方向向量与平面的法向量;3.能用向量方法证明有关线、面位置关系的一些定理及问题;4.能用向量方法解决线线、线面、面面的夹角的计算问题及一些简单的距离问题.【知识网络】要点梳理】要点一:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段AB表示,A叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用 a (而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作a,b ,规定 0 a, b .如图:| AB |或|a |.向量的夹角:过空间任意一点 O 作向量a,b 的相等向量OA 和 OB ,则 AOB 叫作向量a, b的夹角,记作零向量:长度为0 或者说起点和终点重合的向量,记为0.规定:0 与任意向量平行.单位向量:长度为1 的空间向量,即| a | 1.相等向量:方向相同且模相等的向量.相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.a 平行于b 记作a // b ,此时.a,b =0 或a ,b = .共面向量:平行于同一个平面的向量,叫做共面向量.要点诠释:( 1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关.只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量a、b共线(或a // b )时,表示a、b 的有向线段所在的直线可能是同一直线,也可能是平行直线.a(3)对于任意一个非零向量a,我们把a叫作向量a的单位向量,记作 a0. a0与a同向.a(4)当 a,b =0 或时,向量a平行于b ,记作a//b ;当 a,b = 时,向量 a,b垂直,记作a b.2要点二:空间向量的基本运算空间向量的基本运算:要点三:空间向量基本定理共线定理: 两个空间向量 a 、b (b ≠0), a // b 的充要条件是存在唯一的实数 ,使 ab . 共面向量定理: 如果两个向量 a,b 不共线,则向量 p 与向量 a,b 共面的充要条件是存在唯一的一对实数 x, y ,使 p xa yb .要点诠释:(1)可以用共线定理来判定两条直线平行(进而证线面平行)或证明三点共线. (2)可以用共面向量定理证明线面平行(进而证面面平行)或证明四点共面. 空间向量分解定理:如果三个向量a,b,c 不共面,那么对空间任一向量 p ,存在一个唯一的有序实数组 x,y,z ,使 pxa yb z .c向 量 的 减 法 三角形法则: OA OBabBA OB OA AB向 量 的 乘 法>0 时,a 与 a 同向;<0 时,a 与 a 异向; =0a =0( a) ( )a(a b) a b1.a b 是一个数: a b | a || b | cos(a ,b) ; 数2.a 0, b=0或 a b量a b =0.(a b) c ac bca 2|a|2|ab| |a||b|a 是一个向量,满要点诠释:②a b a b 0 x 1x 2 y 1y 2 z 1z 2 0 .要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就 隐含着它们都不是零向量 0.(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点四:空间向量的直角坐标运算 空间两点的距离公式若A(x 1,y 1,z 1), B(x 2,y 2,z 2),则AB OB OA (x 2, y 2,z 2) (x 1, y 1,z 1) (x 2 x 1, y 2 y 1,z 2 z 1)②| AB | AB(x 2 x 1)2 ( y 2 y 1)2 (z 2 z 1)2;③ AB 的中点坐标为 x 1+x2 ,y 1+y2 ,z 1+z2 .222 空间向量运算的的坐标运算设a (x 1,y 1,z 1),b (x 2,y 2,z 2) ,则①a b (x 1 x 2, y 1 y 2,z 1 z 2) ; ②a b ( x 1 x 2 , y 1 y 2 , z 1 z 2 ) ; ③a ( x 1 , y 1 , z 1)( R) ;x 1x 2 y 1y 2 z 1z 2 ;空间向量平行和垂直的条件若a (x 1,y 1,z 1),b (x 2,y 2,z 2) ,则a a a x 12y 12z 12,b b b x 22y 22z 22;z 1z 22 z2①a/ /by 1 y 2, z 1 z 2 ( R)x1 y1 z1( x 2 y 2 z 2 0) ; x 2 y 2 z 2x 1x 2 y 1 y 22 y2a(1)空间任一点P 的坐标的确定:过P作面xOy的垂线,垂足为P',在面 xOy中,过P'分别作x轴、y轴的垂线,垂足分别为A、C,则 x | P'C |,y | AP'|, z | PP'| .如图:(2)夹角公式可以根据数量积的定义推出:a b | a ||b| cos a b cos a b a b,其中θ的范围是[0, ] .|a | |b|(3)0 与任意空间向量平行或垂直.要点五:用向量方法讨论垂直与平行任意非零向量也是直线 l 的方向向量.(2)平面的法向量:已知平面 ,直线 l ,取 l 的方向向量 a ,有 a ,则称为 a 为平面 的法向 量. 一个平面的法向量不是唯一的.图示向量证明方法异面直线所成的角cos|AC BD || AC | | BD |( A , C 是直线 a 上不同的两点,B ,D 是直线 b 上不同的两点)面面平行// )u //vu ,v 分别是平面 , 的法向量)面面垂直)u v ,即 u v = 0u , v 分别是平面 , 的法向量)要点诠释:1)直线的方向向量:若 A 、B 是直线 l 上的任意两点,则 AB 为直线 l 的一个方向向量;与AB 平行的要点诠释:①当法向量 n 1与n 2 的方向分别指向二面角的内侧与外侧时, 二面角 的大小等于 n 1,n 2 的夹角n 1,n 2 的大小。

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.1知识点总结含同步练习题及答案



∣→∣ ∣ ∣ →
∣→∣ ∣ ∣


④若 a = b , b = c ,则 a = c ; ⑤空间中任意两个单位向量必相等. 其中正确命题的个数是( )

→ →


中,必有 AC = A 1 C1 ;
−→ −
− − −→
A.4 B.3 C.2 D.1 解:C. 当两个空间向量的起点相同,终点也相同时,这两个向量必相等,由于向量可以平移,故两个向量相 等,不一定有起点相同、终点相同,故命题①错误;两个向量的模长相等,两个向量不一定相等,还要 考虑方向因素,故命题②错误;命题③④正确;对于命题⑤,空间中任意两个单位向量的模均为 1 , 但是方向不一定相同,故不一定相等,故⑤错. 在长方体 ABCD − A 1 B 1 C1 D 1 中,下列各式运算结果为 BD 1 的是(
− − − → − − − → −→ − −→ − A 1 N = A 1 A + AB + BN − → → 1 −→ = − a + b + BC 2 − → → 1 −→ = − a + b + AD 2 → → 1→ = −a + b + c. 2
(3)因为 M 是 AA 1 的中点,所以
− → −→ − − − → − MP = MA + AP − − → −→ − 1− = A 1 A + AP 2 1→ → → 1→ = − a + (a + c + b) 2 2 1→ 1→ → = a + b + c; 2 2 − − − → −→ − − − − → 1 −→ − − − − → 1 −→ − − − − → 1→ → NC1 = NC + CC1 = BC + AA 1 = AD + AA 1 = c +a 2 2 2

人教新课标版数学高二-数学选修2-1练习第三章《空间向量与立体几何》章末检测

人教新课标版数学高二-数学选修2-1练习第三章《空间向量与立体几何》章末检测

章末检测一、选择题1.对于向量a 、b 、c 和实数λ,下列命题中真命题是( )A .若a·b =0,则a =0或b =0B .若λa =0,则λ=0或a =0C .若a 2=b 2,则a =b 或a =-bD .若a·b =a·c ,则b =c2.已知平面α和平面β的法向量分别为m =(3,1,-5),n =(-6,-2,10),则( ) A .α⊥βB .α∥βC .α与β相交但不垂直D .以上都不对3.已知向量a =(0,2,1),b =(-1,1,-2),则a 与b 的夹角为( )A .0°B .45°C .90°D .180°4.如图,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB →=a ,AD → =b ,AA 1→=c ,则用向量a ,b ,c 可表示向量BD 1→等于( ) A .a +b +c B .a -b +c C .a +b -cD .-a +b +c5.若平面α的法向量为n ,直线l 的方向向量为a ,直线l 与平面α的夹角为θ,则下列关系式成立的是( )A .cos θ=n·a|n||a |B .cos θ=|n·a||n||a |C .sin θ=n·a|n||a |D .sin θ=|n·a||n||a |6.设A 、B 、C 、D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定7.在以下命题中,不.正确的个数为( )①|a |-|b |=|a +b |是a ,b 共线的充要条件; ②对a ∥b ,则存在唯一的实数λ,使a =λb ;③对空间任意一点O 和不共线的三点A ,B ,C ,若OP →=2OA →-2OB →-OC →,则P ,A ,B ,C 四点共面; ④|(a·b )·c |=|a|·|b|·|c |. A .2B .3C .4D .18.已知四边形ABCD 为矩形,PA ⊥平面ABCD ,连接AC ,BD ,PB ,PC , PD ,则下列各组向量中,数量积不一定为零的是( )A.PC →与BD →B.DA →与PB →C.PD →与AB →D.PA →与CD →9.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面A 1ECF 成60°角的对角线的数目是( )A .0B .2C .4D .610.如图,AB =AC =BD =1,AB ⊂面M ,AC ⊥面M ,BD ⊥AB , BD 与面M 成30°角,则C 、D 间的距离为( )A .1B .2 C. 2D. 311.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC 、AD的中点,则AE →·AF →的值为( )A .a 2B.12a 2 C.14a 2 D.34a 2 12.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线 EF 和BC 1的夹角是( )A .45°B .60°C .90°D .120°二、填空题13.已知P 和不共线三点A ,B ,C 四点共面且对于空间任一点O ,都有OP →=2OA →+OB→+λOC →,则λ=________.14.已知A (2,1,0),点B 在平面xOz 内,若直线AB 的方向向量是(3,-1,2),则点B 的坐标是_______________________.15.平面α的法向量为m =(1,0,-1),平面β的法向量为n =(0,-1,1),则平面α与平面β所成二面角的大小为______.16.如图所示,已知二面角α—l —β的平面角为θ (θ∈⎝⎛⎭⎫0,π2), AB ⊥BC ,BC ⊥CD ,AB 在平面N 内,BC 在l 上,CD 在平面M 内,若AB =BC =CD =1,则AD 的长为________. 三、解答题17.已知四棱锥P —ABCD 的底面是平行四边形,如图,M 是PC 的中 点,问向量PA →、MB →、MD →是否可以组成一个基底,并说明理由. 18.如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,M 、N 分别是C 1D 1, AB 的中点,E 在AA 1上且AE =2EA 1,F 在CC 1上且CF =12FC 1,试证明ME ∥NF .19.如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,P 是侧棱CC 1上 一点,CP =m .试确定m 使得直线AP 与平面BDD 1B 1所成角为60°. 20.已知长方体ABCD —A 1B 1C 1D 1,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,F 为A 1B 1的中点.求二面角A —BF —D 的余弦值. 21.如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且PA ⊥平面ABCD ,PA =26,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平 面角的余弦值.22.如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是棱DD 1的中点. (1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的 结论.答案1.B 2.B 3.C 4.D 5.D 6.B 7.C 8.A 9.C 10.C 11.C 12.B 13.-2 14.(5,0,2) 15.60°或120° 16.3-2cos θ17.解 PA →、MB →、MD →不可以组成一个基底,理由如下:连接AC 、BD 相交于点O ,∵ABCD 是平行四边形, ∴O 是AC 、BD 的中点,在△BDM 中,MO →=12(MD →+MB →),在△PAC 中,M 是PC 的中点,O 是AC 的中点,则MO →=12PA →,即PA →=MD →+MB →,即DA →与MD →、MB →共面.∴PA →、MB →、MD →不可以组成一个基底. 18.证明 由平行六面体的性质ME →=MD 1→+D 1A 1→+A 1E → =12C 1D 1→-AD →+13A 1A → =-12AB →-AD →-13AA 1→,NF →=NB →+BC →+CF → =12AB →+AD →+13CC 1→ =12AB →+AD →+13AA 1→, ∴ME →=-NF →,又M ,E ,N ,F 不共线, ∴ME ∥NF .19.解 建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),P (0,1,m ),C (0,1,0),D (0,0,0),B 1(1,1,1), D 1(0,0,1).则BD →=(-1,-1,0),BB 1→=(0,0,1),AP →=(-1,1,m ), AC →=(-1,1,0).又由AC →·BD →=0,AC →·BB 1→=0知, AC →为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ, 则sin θ=|cos 〈AP →,AC →〉|=|AP →·AC →||AP →||AC →|=22+m 2·2 依题意得22+m 2·2=sin 60°=32,解得m =63. 故当m =63时,直线AP 与平面BDD 1B 1所成角为60°. 20.解 以点A 为坐标原点建立如图所示的空间直角坐标系,由已知AB =2,AA 1=1,可得 A (0,0,0),B (2,0,0),F (1,0,1).又AD ⊥平面AA 1B 1B ,从而直线BD 与平面AA 1B 1B 所成的角为∠DBA =30°,又AB =2,∴AD =233,从而易得D ⎝⎛⎭⎫0,233,0.易知平面AA 1B 1B 的一个法向量为m =(0,1,0),设n =(x ,y ,z )是平面BDF 的一个法向量,BF →=(-1,0,1),BD →=⎝⎛⎭⎫-2,233,0,则⎩⎪⎨⎪⎧n ·BF →=0n ·BD →=0,即⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,令z =1,可得n =(1,3,1), ∴cos 〈m ,n 〉=m·n|m||n |=155. 即二面角A —BF —D 的余弦值为155. 21.(1)证明 连接BD ,因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线, 所以MN ∥BD .又因为MN ⊄平面ABCD ,BD ⊂平面ABCD ,所以MN ∥平面ABCD .(2)解 连接AC 交BD 于O ,以O 为原点,OC ,OD 所在直线 为x ,y 轴,建立空间直角坐标系Oxyz ,如图所示. 在菱形ABCD 中,∠BAD =120°, 得AC =AB =23,BD =3AB =6. 又因为PA ⊥平面ABCD , 所以PA ⊥AC .在直角△PAC 中, AC =23,PA =26,AQ ⊥PC , 得QC =2,PQ =4. 由此知各点坐标如下:A (-3,0,0),B (0,-3,0),C (3,0,0),D (0,3,0)P (-3,0,26), M ⎝⎛⎭⎫-32,-32,6,N ⎝⎛⎭⎫-32,32,6,Q ⎝⎛⎭⎫33,0,263.设m =(x ,y ,z )为平面AMN 的法向量, 由AM →=⎝⎛⎭⎫32,-32,6,AN →=⎝⎛⎭⎫32,32,6知⎩⎨⎧32x -32y +6z =0,32x +32y +6z =0.取z =-1,得m =(22,0,-1). 设n =(x ,y ,z )为平面QMN 的法向量,由QM →=⎝⎛⎭⎫-536,-32,63,QN →=⎝⎛⎭⎫-536,32,63知 ⎩⎨⎧-536x -32y +63z =0,-536x +32y +63z =0.取z =5,得n =(22,0,5). 于是cos 〈m ,n 〉=m ·n |m |·|n |=3333.所以二面角A -MN -Q 的平面角的余弦值为3333. 22.解 设正方体的棱长为1.如图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系Oxyz .(1)依题意,得B (1,0,0),E ⎝⎛⎭⎫0,1,12,A (0,0,0),D (0,1,0), 所以BE →=⎝⎛⎭⎫-1,1,12,AD →=(0,1,0). 在正方体ABCD —A 1B 1C 1D 1中, 因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量. 设直线BE 和平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.故直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE . 证明如下:依题意,得A 1(0,0,1),BA 1→=(-1,0,1),BE →=⎝⎛⎭⎫-1,1,12. 设n =(x ,y ,z )是平面A 1BE 的一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0. 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1) (0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0).而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为棱C 1D 1的中点.这说明在棱C 1D 1上存在点F (C 1D 1的中点),使B 1F ∥平面A 1BE .。

人教版高中数学【选修2-1】[重点题型巩固练习] 立体几何中的向量方法(提高)

人教版高中数学【选修2-1】[重点题型巩固练习] 立体几何中的向量方法(提高)

人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习【巩固练习】 一、选择题1.若直线l 的方向向量1(,0,1)2=a ,平面β的法向量为(1,0,2)=--b ,则( )A .//l βB .l β⊥C .l β⊂D .l 与β斜交2.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是( ).A .cos ||||v v μθμ⋅= B .||cos ||||v v μθμ⋅= C .sin ||||v v μθμ⋅= D .||sin ||||v v μθμ⋅=3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n=(3,1,2),则下列点P中,在平面α内的是( ). A .(1,-1,1) B .(1,3,32) C .(1,-3,32) D .(-1,3,32-) 4.P 是二面角AB αβ--棱上的一点,分别在α、β半平面上引射线PM 、PN ,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角的大小为( ).A .60°B .70°C .80°D .90°5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离( )A .a 42 B .a 82 C .a 423 D .a 22 6.(2015春 广安校级月考)若向量(,4,5)a x =,(1,2,2)b =-,且a 与b 的夹角的余弦,则x=( ) A .3 B .-3 C .―11 D .3或―117.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =21PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C .60210D .30210二、填空题8.若平面α的一个法向量为n=(3,3,0),直线l 的一个方向向量为b=(1,1,1),则l 与α所成角的余弦值为________.9.若分别与一个二面角的两个面平行的向量m=(-1,2,0),n=(3,0,-2),且m 、n 都与二面角的棱垂直,则该二面角的余弦值为________.10.正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为AB 、CC 1的中点,则异面直线EF 与A 1C 1所成角的大小是________。

人教版高中数学【选修2-1】[重点题型巩固练习]_《空间向量与立体几何》全章复习与巩固_提高

人教版高中数学【选修2-1】[重点题型巩固练习]_《空间向量与立体几何》全章复习与巩固_提高

人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习【巩固练习】 一、选择题1.平行六面体 1111ABCD A B C D -中,E F G H P Q ,,,,,是111111,,,,,A A AB BC CC C D D A 的中点,则( ) A .0EF GH PQ ++= B .0EF GH PQ --=C .0EF GH PQ +-=D .0EF GH PQ -+=2.向量a ,b 与任何向量都不能构成空间的一个基底,则( )A .a 与b 共线B .a 与b 同向C .a 与b 反向D .a 与b 共面3.已知平面α内有一个点()212A ,-,,α的一个法向量为()312=,,n ,则下列点P 中,在平面α内的是( )A .(1,-1,1)B .(1,3,32) C .(1,-3,32) D .(-1,3,32-)4.已知点()()()100010001A B C ,,,,,,,,,则面ABC 的法向量可以是( )A .(1,1,1)B .1(1,,1)2-C .1(0,,0)2D .(-1,0,1)5.已知A B C 、、三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A B C 、、一定共面的是( ) A .OM OA OB OC =++B .2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++6.(2015春 宜城市校级期中)已知(1,21,0)a t t =--,(2,,2)b t t =,则||a b -的最小值为( )A B C D7. 在棱长为1的正方体ABCD-A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为()AB.2C.3 D.5二、填空题8.已知a =(x ,2,-4),b =(-1,y ,3),c =(1,-2,z ),且a ,b ,c 两两垂直,则(x ,y ,z )=______. 9.(2015秋 莆田校级月考改编)已知向量(0,2,1)a =,(1,1,2)b =-的夹角为 。

高二数学选修2-1第三章空间向量与立体几-知识点+习题+答案

高二数学选修2-1第三章空间向量与立体几-知识点+习题+答案

空间向量与立体几何1、空间向量的概念:()1在空间,具有大小和方向的量称为空间向量.()2向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.()3向量AB 的大小称为向量的模(或长度),记作AB . ()4模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. ()5与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. ()6方向相同且模相等的向量称为相等向量.2、空间向量的加法和减法:()1求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.()2求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a OA =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a 的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律.分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量. 8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C AP =AB +A ;或对空间任一定点O ,有x y C OP =OA +AB +A ;或若四点P ,A ,B ,C 共面,则()1x y z C x y z OP =OA+OB+O ++=. 9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈. 10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作a b ⊥.11、已知两个非零向量a 和b ,则cos ,a b a b 〈〉称为a ,b 的数量积,记作a b ⋅.即cos ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0.12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积. 13、若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,a a a =⋅; ()4cos ,a b a b a b⋅〈〉=;()5a b a b ⋅≤.14、向量数乘积的运算律:()1a b b a ⋅=⋅;()2()()()a b a b a b λλλ⋅=⋅=⋅;()3()a b c a c b c +⋅=⋅+⋅.15、若i ,j ,k 是空间三个两两垂直的向量,则对空间任一向量p ,存在有序实数组{},,x y z ,使得p xi yj zk =++,称xi ,yj ,zk 为向量p 在i ,j ,k 上的分量.16、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.17、若三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.18、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .19、设()111,,a x y z =,()222,,b x y z =,则()1()121212,,a b x x y y z z +=+++.()2()121212,,a b x x y y z z -=---. ()3()111,,a x y z λλλλ=. ()4121212a b x x y y z z ⋅=++.()5若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. ()6若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===. ()721a a a x =⋅=+()821cos ,a b a b a bx ⋅〈〉==+.()9()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =20、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.21、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点. 22、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O 与向量a ,b 就确定了平面α的位置. 23、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 24、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b ⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.25、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔ 0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.26、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.27、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.28、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.29、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.30、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 31、在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.32、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA ⋅=PA 〈PA 〉=.空间向量与立体几何练习题1一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与MB 1相等的向量是A.-21a +21b +c B.21a +21b +c C.21a -21b +c D.-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OC OB OA OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9πB.10πC.11πD.12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A.BD ∥平面CB 1D 1 B.AC 1⊥BDC.AC 1⊥平面CB 1D 1①正方体 ②圆锥 ③三棱台 ④正四棱锥俯视图 正(主)视图 侧(左)视图2 3 2 2D.异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A.6 B.552 C.15 D.10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52 二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为. 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面PAD的距离为.三、解答题(共80分)15.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG.. 17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证:2262GF C'B'D'MP DC BA俯视图正视图121121ED C BA P (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD . 18.(本小题满分14分)如图,已知点P 在正方体''''D CB A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积; (2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=,E F ,分别是BC PC ,的中点.(1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为62,求二面角E AF C --的余弦值. 参考答案 一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A. 2.1),,(=++∈++=⇔z y x R z y x OC z OB y OA x OM C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在MC MB MA MC y MB x MA y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF BD EF 21,21//=∴=∴且, 41120cos 1121,cos 21210-=⨯⨯⨯>=<⋅=⋅=⋅∴DC BD DC BD DC BD DC EF 故选B.4.B5.B6.D7.D8.D9.D10.由于4,cos =⋅=><⋅=ACAC AB AC AB AB AD ,所以522=-=AD AB BD ,故选A PBECD FAD 'C 'B'A'PD C BA二、填空题 11.912.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则DB CD AC AB ++=∵θθcos 6)180cos(,0,0,2,5,30-=-⋅=⋅=⋅=⋅===DB AC DB AC DB CD CD AC DB CD AC00222222222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=∴θθθθ由于AC DB DB CD CD AC DB CD AC DB CD AC AB14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系 设平面PAD 的法向量是(,,)m x y z =,(0,2,0),(1,1,2)AD AP ==,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-,1(2,0,2)B A =-,∴1B 到平面PAD 的距离1655B A m d m⋅==. 三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中,连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥,从而EG BC '∥.又BC '⊄平面EFG ,ABC DE FGA 'B 'C 'D '所以BC '∥面EFG . 17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴EF ∥AD ,∵AD ⊂面ACD ,EF ⊄面ACD ,∴直线EF ∥面ACD ;(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵BD ⊂面BCD ,∴面EFC ⊥面BCD .18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =,,,(001)CC '=,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>,,,由已知60DH DA <>=,, 由cos DA DH DA DH DA DH =<>,,可得2m = 解得m=21DH ⎛⎫= ⎪ ⎪⎝⎭. (1)因为0011cos 2DH CC +⨯'<>==,, 所以45DH CC '<>=,,即DP 与CC '所成的角为45.(2)平面AA D D ''的一个法向量是(010)DC =,,. 因为01101cos 2DH DC ++⨯<>==,, 所以60DH DC <>=,,可得DP 与平面AA D D ''所成的角为30. 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又ACPC C =∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EBzyxEDC BAP∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==23=BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGB∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-设平面ADE 和平面ABE 的法向量分别为(,,),(',',')m a b c n a b c ==由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+= 令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==-- 设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PAAD A =,所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大.此时tan 2AE EHA AH AH ∠===,因此AH =2AD =,所以45ADH ∠=,所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E 作EO AC ⊥于O ,则EO ⊥平面PAC ,过O 作OS AF ⊥于S ,连接ES ,则ESO ∠为二面角E AF C --的平面角, 在Rt AOE △中,3sin 302EO AE ==,3cos302AO AE ==, 又F 是PC 的中点,在Rt ASO △中,32sin 454SO AO ==,又SE ===Rt ESO △中,cos SO ESO SE ∠===, 即所求二面角的余弦值为5. 解法二:由(1)知AE AD AP ,,两两垂直,以A 为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC ,的中点,所以(000)10)0)(020)A B C D -,,,,,,,,,,1(002)0)12P E F ⎫⎪⎪⎝⎭,,,,,,,, 所以31(300)122AE AF ⎛⎫== ⎪ ⎪⎝⎭,,,,,. 设平面AEF 的一法向量为111()x y z =,,m ,则00AE AF ⎧=⎪⎨=⎪⎩,,m m 因此111101022x y z =++=⎪⎩,. 取11z =-,则(021)=-,,m , 因为BD AC ⊥,BD PA ⊥,PA AC A =,所以BD ⊥平面AFC ,故BD 为平面AFC 的一法向量.B又(0)BD =-,,所以cos 5BD BD BD<>===,m m m . 因为二面角E AF C --为锐角,所以所求二面角的余弦值为5. 空间向量与立体几何2一、选择题(每小题5分,共60分) 1.下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g2.已知点(3,1,4)A --,则点A 关于x 轴对称的点的坐标为( ) A .)4,1,3(-- B .)4,1,3(--- C .)4,1,3( D .)4,1,3(--3.若向量)2,1,2(),2,,1(-==b a λ,且a 与b 的夹角余弦为98,则λ等于( )A .2B .2-C .2-或552D .2或552-4.若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( )A .不等边锐角三角形B .直角三角形C .钝角三角形D .等边三角形5.若A )12,5,(--x x x ,B )2,2,1(x x -+,当B A取最小值时,x 的值等于( ) A .19 B .78-C .78D .14196.空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos <,OA BC >的值是()A .21B .22C .-21D .07.设n m 、表示直线,βα、表示平面,则下列命题中不正确...的是( ). A .βα⊥⊥m ,m ,则α//β B .m//n ,=βαα ,则m//n C .α⊥m ,β//m , 则βα⊥D .n //m ,α⊥m , 则 α⊥n 8.在棱长均为2的正四面体BCD A -中,若以三角形ABC 为视角正面的三视图中,其左视图的面积是( ).ABDA.3 B.362C.2D.229、如图,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行 B.相交且垂直C.异面 D.相交成60°10、点P在平面ABC外,若PA=PB=PC,则点P在平面ABC上的射影是△ABC的()A.外心 B.重心 C.内心 D.垂心11、如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是()(A)2(B)12(C)22+(D)112、已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()(A)2对(B)3对(C)4对(D)5对二、填空题(每小题4分,共24分)13.若向量)2,3,6(),4,2,4(-=-=ba,则(23)(2)a b a b-+=__________________。

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

人教版高中数学选修2-1第三章-空间向量与立体几何练习题及答案

第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1. 下列命题中不正确的命题个数是( ) ①若A 、B 、C 、D 是空间任意四点,则有AB +BC + CD +DA =0;②对空间任意点O 及不共线的三点A 、B 、C ,若OP =x OA +y OB +z OC (其中x 、y 、z ∈R ),则P 、A 、B 、C 四点共面;③若a 、b 共线,则a 及b 所在直线平行。

A .1 B .2 C .3 D .42.设OABC 是四面体,G 1是△ABC 的重心,G 是OG 1上一点,且OG =3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .(41,41,41) B .(43,43,43) C .(31,31,31) D .(32,32,32) 3.在平行六面体ABCD -EFGH 中,AG xAC y AF z AH =++,________.x y z ++=则4.已知四边形ABCD 中,AB =a -2c ,CD =5a +6b -8c ,对角线AC 、BD 的中点分别为E 、F ,则EF =_____________.5.已知矩形ABCD ,P 为平面ABCD 外一点,且PA ⊥平面ABCD ,M 、N 分别为PC 、PD 上的点,且M 分PC 成定比2,N 分PD 成定比1,求满足MN xAB y AD z AP =++的实数x 、y 、z 的值.§3.1.3空间向量的数量积运算1.已知正四棱柱1111ABCD A B C D -中,1AA =2AB ,E 为1AA 重点,则异面直线BE 及1CD 所形成角的余弦值为( )A .1010 B . 15C .31010 D . 352.如图,设A ,B ,C ,D 是空间不共面的四点,且满足0AB AC ⋅=,0AC AD ⋅=,0AB AD ⋅=,则△BCD 的形状是( )A .钝角三角形B .锐角三角形C .直角三角形D .不确定的3.已知ABCD -A 1B 1C 1D 1 为正方体,则下列命题中错误的命题为__________.4.如图,已知:平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60° (1)证明:C 1C ⊥BD ;_C_D_A_P_ N_B_M(2)当1CDCC 的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. §3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示1.已知向量(2,2,3)OA =-,(,1,4)OB x y z =-,且平行四边形OACB 的对角线的中点坐标为M 31(0,,)22-,则(,,)x y z =( ) A .(2,4,1)--- B .(2,4,1)-- C .(2,4,1)-- D .(2,4,1)--2.已知(2,2,4)a=-,(1,1,2)b =-,(6,6,12)c =--,则向量、、a b c ( )A .可构成直角三角形B .可构成锐角三角形C .可构成钝角三角形D .不能构成三角形3.若两点的坐标是A (3cosα,3sinα,1),B (2cosθ,2sinθ,1),则|AB |的取值范围是( ) A .[0,5] B .[1,5] C .(1,5) D .[1,25]4.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a 的值为 .5.如图,正三棱柱ABC -A 1B 1C 1的底边长为a ,侧棱长为2a .建立适当的坐标系,⑴写出A ,B ,A 1,B 1的坐标;⑵求AC 1及侧面ABB 1A 1所成的角.3.2立体几何中的向量方法1.到一定点(1,0,1)的距离小于或等于2的点的集合为( ) A .222{(,,)|(1)(1)4}x y z x y z -++-≤ B .222{(,,)|(1)(1)4}x y z x y z -++-= C .222{(,,)|(1)(1)2}x y z x y z -++-≤ D .222{(,,)|(1)(1)2}x y z x y z -++-=2. 正方体ABCD —A 1B 1C 1D 1中,直线BC 1及平面A 1BD 所成角的余弦值为( ) A .42 B .32 C .33 D .23 3. 已知斜三棱柱111ABC A B C -,90BCA ∠=,2AC BC ==,1A 在底面ABC 上的射影恰为AC 的中点D ,又知11BA AC ⊥.(1)求证:1AC ⊥平面1A BC ;D 1C 1B 1A 1DABCC 1 B 1 A 1B A(2)求1C 到平面1A AB 的距离;(3)求二面角1A A B C --余弦值的大小.B 4. 如图,在直三棱柱111ABC A B C -中, AB =1,1AC AA ==(1)证明:1ABA C ⊥; (2)求二面角A —1A C —B 的大小.5. 如右图,四棱锥S-ABCD 棱S D 上的点. (1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求二面角P-AC-D 的大小 (3)在(2)的条件下,侧棱S C 上是否存在一点E , 使得BE ∥平面PAC .若存在,求S E :EC 的值; 若不存在,试说明理由.参考答案第三章 空间向量及立体几何3.1空间向量及其运算§3.1.1空间向量及其加减运算 §3.1.2空间向量的数乘运算1.A2.A3.324.3a +3b -5c5.如图所示,取PC 的中点E ,连结NE ,则MN EN EM =-. 连结AC ,则§3.1.3空间向量的数量积运算1.C2.B3. ③④4.(1)设1,,CB a CD b CC c === ,则||||a b =,BD CD CB b a =-=- ,所以1()||||cos 60||||cos 600CC b a c b c a c b c a c ⋅=-⋅=⋅-⋅=︒-︒=BD ,11BD CC BD CC ∴⊥⊥即 ; (2)1,2,CD x CD CC ==1设则 2CC =x, 设1,,A A a AD b DCc ===,11,A C a b c C D a c =++=-,2211242()()6A C C D a b c a c a a b b c c xx ∴⋅=++⋅-=+⋅-⋅-=+-,令24260xx +-=,则2320x x --=,解得1x =,或23x =-(舍去),_C_D _A_P_ N _B _M _EA 1§3.1.4空间向量的正交分解及其坐标表示§3.1.5空间向量运算的坐标表示 1.A 2.D 3.B 4.165. (1)建系如图,则A (0,0,0) B (0,a ,0)A 1(0,0,2a ),C 1(-23a ,a 2,2a) (2)解法一:在所建的坐标系中,取A 1B 1的中点M , 于是M (0,a 2,2a),连结AM ,MC 1则有所以,MC 1⊥平面ABB 1A 1.因此,AC 1及AM 所成的角就是AC 1及侧面ABB 1A 1所成的角.∴2194a AC AM ⋅=,而|13||3,||2AC a AM a ==,由cos<1,AC AM >=1132||||AC AM AC AM ⋅=,∴ <1,AC AM >=30°. ∴AC 1及侧面ABB 1A 1所成的角为30°. 3.2立体几何中的向量方法 新 课 标 第 一网1.A2.C3. (1)如右图,取AB 的中点E ,则//DE BC ,因为BC AC ⊥,所以DEAC ⊥,又1A D ⊥平面ABC ,以1,,DE DC DA 为,,x y z 轴建立空间坐标系, 则()0,1,0A -,()0,1,0C ,()2,1,0B ,()2,0,0CB =,由10AC CB ⋅=,知1A C CB ⊥, 又11BA AC ⊥,从而1AC ⊥平面1A BC .(2)由1AC ⋅2130BA t =-+=,得t =.设平面1A AB 的法向量为(),,n x y z =,(1AA =,()2,2,0AB =,所以10220n AA y n AB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,设1z =,则()3,n =-,所以点1C 到平面1A AB 的距离1AC n d n⋅==7. (3)再设平面1A BC 的法向量为(),,m x y z =,(10,CA =-,()2,0,0CB =,所以13020m CA y z m CB x ⎧⋅=-+=⎪⎨⋅==⎪⎩,设1z =,则()0,3,1m =,故cos ,m n m n m n⋅<>==⋅77-,根据法向量的方向,可知二面角1A A B C --的余弦值大小为77. 4.(1)三棱柱111ABC A B C -为直三棱柱,由正弦定理030ACB∠=.如右图,建立空间直角坐标系, 则1(0,0,0),(1,0,0)(0,3,0),(0,0,3)A B C A(2) 如图可取(1,0,0)m AB ==为平面1AA C 的法向量,设平面1A BC 的法向量为(,,)n l m n =,则10,0,130BC n AC n BC ⋅=⋅==-又(,,), 不妨取1,(3,1,1)mn ==则,1A AC BD ∴--15二面角的大小为arccos 5. 5. (1)连结BD ,设AC 交于BD 于O ,由题意知SO ABCD ⊥平面.以O 为坐标原点,OB OC OS ,,分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如右图.设底面边长为a ,则高62SO a =.于是 62(0,0,),(,0,0)22S a D a -,2(0,,0)2C a ,2(0,,0)2OC a =,26(,0,)22SD a a =--,0OC SD ⋅= ,故OC SD ⊥.从而 AC SD ⊥. (2)由题设知,平面PAC 的一个法向量26()2DSa =,平面DAC 的一个法向量600aOS =(,,,设所求二面角为θ,则3cos OS DS OS DSθ⋅==,得所求二面角的大小为30°._C_A_S_F_BO(3)在棱SC 上存在一点E 使//BE PAC 平面.由(2)知DS 是平面PAC 的一个法向量,且),(0,)DS CS ==.设,CEtCS = 则((1)BE BC CE BC tCS t =+=+=-,而 103BE DC t ⋅=⇔=.即当:2:1SE EC =时,BE DS ⊥.而BE 不在平面PAC 内,故//BE PAC 平面. 作 者 于华东 责任编辑 庞保军。

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.3知识点总结含同步练习题及答案

高中数学选修2-1(人教B版)第三章空间向量与立体几何3.3知识点总结含同步练习题及答案
高中数学选修2-1(人教B版)知识点总结含同步练习题及答案
第三章 空间向量与立体几何 3.3 异面直线的距离(补充)
一、知识清单
异面直线的距离
二、知识讲解
1.异面直线的距离 描述: 设直线 a ,b 是异面直线,则存在直线 l 与直线 a ,b 均相交且垂直,此时直线 l 称为异面直 线 a ,b 的公垂线,直线 l 夹在直线a ,b 之间的部分称为异面直线a ,b 的公垂线段.异面直线 a, b 的公垂线段的长度称为异面直线 a ,b 的距离. 例题: 如图,长方体 ABCD − A 1 B 1 C1 D 1 中, AB = BC = 1,AA 1 = 2 ,求直线 A 1 C 2
因此直线 A 1 C1 与 B 1 B 之间的距离为
√2 . 2
高考不提分,赔付1万元,关注快乐学了解详情。
解:连接 B 1 D 1 交 A 1 C1 于 E 点,因为长方体中 AB = BC,所以长方体上下底面均为正 方形,故 A 1 C1 ⊥ B 1 D 1 . 又长方体可知 BB 1 ⊥ 面 A 1 B 1 C1 D 1 ,B 1 E ⊂ 面 A 1 B 1 C1 D 1 ,所以 BB 1 ⊥ B 1 E. 综上可知,B 1 E 为异面直线 A 1 C1 和 BB 1 的公垂线,结合 AB = BC = 1,所以

高三数学选修21第3章空间向量与立体几何专项练习(带答案)-最新学习文档

高三数学选修21第3章空间向量与立体几何专项练习(带答案)-最新学习文档

高三数学选修2-1第3章空间向量与立体几何专项练习(带答案)空间向量与立体几何知识点是高中必考知识点之一,以下是第3章空间向量与立体几何专项练习,希望对大家有帮助。

一、填空题1.判断下列各命题的真假:①向量AB的长度与向量BA的长度相等;②向量a与b平行,则a与b的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤有向线段就是向量,向量就是有向线段.其中假命题的个数为________.2.已知向量AB,AC,BC满足|AB|=|AC|+|BC|,则下列叙述正确的是________.(写出所有正确的序号)①AB=AC+BC②AB=-AC-BC③AC与BC同向;④AC与CB同向.3.在正方体ABCD-A1B1C1D中,向量表达式DD1-AB+BC化简后的结果是________.4.在平行六面体ABCD-A1B1C1D中,用向量AB,AD,AA1来表示向量AC1的表达式为___________________________________________________ _____________________.5.四面体ABCD中,设M是CD的中点,则AB+12(BD+BC)化简的结果是________.6.平行六面体ABCDA1B1C1D1中,E,F,G,H,P,Q分别是A1A,AB,BC,CC1,C1D1,D1A1的中点,下列结论中正确的有________.(写出所有正确的序号)① +GH+PQ② -GH-PQ③ +GH-PQ④ -GH+PQ=0.7.如图所示,a,b是两个空间向量,则AC与AC是________向量,AB与BA是________向量.8.在正方体ABCD-A1B1C1D中,化简向量表达式AB+CD+BC+DA 的结果为________.二、解答题9.如图所示,已知空间四边形ABCD,连结AC,BD,E,F,G 分别是BC,CD,DB的中点,请化简(1)AB+BC+CD,(2)AB+GD+EC,并标出化简结果的向量.10.设A是△BCD所在平面外的一点,G是△BCD的重心.求证:AG=13(AB+AC+AD).能力提升11.在平行四边形ABCD中,AC与BD交于点O,E是线段OD的中点,AE的延长线与CD交于点F.若AC=a,BD=b,则AF=______________________.12.证明:平行六面体的对角线交于一点,并且在交点处互相平分.参考答案1①真命题;②假命题,若a与b中有一个为零向量时,其方向是不确定的;③真命题;④假命题,终点相同并不能说明这两个向量的方向相同或相反;⑤假命题,向量可用有向线段来表示,但并不是有向线段.2.④解析由|AB|=|AC|+|BC|=|AC|+|CB|,知C点在线段AB上,否则与三角形两边之和大于第三边矛盾,所以AC与CB同向.3.BD1解析如图所示,∵DD1=AA1,DD1-AB=AA1-AB=BA1,BA1+BC=BD1,DD1-AB+BC=BD1.4.AC1=AB+AD+AA1解析因为AB+AD=AC,AC+AA1=AC1,所以AC1=AB+AD+AA1.5.AM解析如图所示,因为12(BD+BC)=BM,所以AB+12(BD+BC)=AB+BM=AM.6.①解析观察平行六面体ABCDA1B1C1D1可知,向量EF,GH,PQ 平移后可以首尾相连,于是EF+GH+PQ=0.7.相等相反8.0解析在任何图形中,首尾相接的若干个向量和为零向量.9.解 (1)AB+BC+CD=AC+CD=AD.(2)∵E,F,G分别为BC,CD,DB的中点.BE=EC,EF=GD.AB+GD+EC=AB+BE+EF=AF.故所求向量AD,AF,如图所示.10.证明连结BG,延长后交CD于E,由G为△BCD的重心,知BG=23BE.∵E为CD的中点,BE=12BC+12BD.AG=AB+BG=AB+23BE=AB+13(BC+BD)=AB+13[(AC-AB)+(AD-AB)]=13(AB+AC+AD).11.23a+13b解析 AF=AC+CF=a+23CD=a+13(b-a)=23a+13b.12.证明如图所示,平行六面体ABCDABCD,设点O是AC的中点,则AO=12AC=12(AB+AD+AA).设P、M、N分别是BD、CA、DB的中点.则AP=AB+BP=AB+12BD=AB+12(BA+BC+BB)=AB+12(-AB+AD+AA)=12(AB+AD+AA).同理可证:AM=12(AB+AD+AA)AN=12(AB+AD+AA).由此可知O,P,M,N四点重合.故平行六面体的对角线相交于一点,且在交点处互相平分. 第3章空间向量与立体几何专项练习的全部内容就是这些,查字典数学网预祝大家取得更好的成绩。

(典型题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)

(典型题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)

一、选择题1.定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件: (1)a a b ⊥⨯,b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量两两垂直,且三个向量的方向依次与拇指、食指、中指的指向一致);(2)a b ⨯的模sin ,a b a b a b ⨯=⋅(,a b 表示向量a 、b 的夹角); 如图,在正方体1111ABCD A BC D -,有以下四个结论:①1AB AC ⨯与1BD 方向相反; ②AB AC BC AB ⨯=⨯;③6BC AC ⨯与正方体表面积的数值相等; ④()1AB AB CB ⨯⋅与正方体体积的数值相等. 这四个结论中,正确的结论有( )个 A .4B .3C .2D .12.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .(0,63D .()63,+∞3.如图:在直棱柱111ABC A B C -中,1AA AB AC ==,AB AC ⊥,,,P Q M 分别是A 1B 1,BC,CC 1的中点,则直线PQ 与AM 所成的角是( )A .6π B .4π C .3π D .2π 4.若向量(3,1,0)a =,(1,0,)b z =,,3a b π=,则实数z 的值为( )A .2B .2C .2±D .2±5.在长方体1111ABCD A BC D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5 C .5 D .2 6.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( ) A .2B .3C .5D .67.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35C .45+D .422+8.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A 7B .75C .72D .749.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333C .5510(,,)333D .448(,,)33310.如图,直三棱柱111ABC A B C -中,AC BC ⊥,12AC BC AA ===,点Q 为1A B 的中点,若动点P 在直线11B C 上运动时,异面直线AB 与PQ 所成角的最小值为( )A .30°B .45°C .60︒D .无法确定11.如图,在边长为2的正方体1111ABCD A BC D -中,E 为BC 的中点,点P 在底面ABCD 上移动,且满足11B P D E ⊥,则线段1B P 的长度的最大值为( )A 45B .2C .22D .312.以下命题①||||a b -||a b =+是,a b 共线的充要条件;②若{,,}a b c 是空间的一组基底,则{,,}a b b c c a +++是空间的另一组基底; ③|()|||||||a b c a b c ⋅=⋅⋅. 其中正确的命题有( ) A .0个B .1个C .2个D .3个二、填空题13.ABC △中,90C ∠︒=,60A ∠︒=,2AB =,M 为AB 中点,将BMC △沿CM 折叠,当平面BMC ⊥平面AMC 时,A ,B 两点之间的距离为_____. 14.已知直线l 的倾斜角为θ,则直线l 的一个方向向量为_______________. 15.如图,平行六面体ABCD A B C D ''''-中,1,2,AB AD AA BAD BAA ===∠=∠''60DAA =='∠,则AC '的长为__________16.如图,已知边长为1的正'A BC ∆的顶点'A 在平面α内,顶点,B C 在平面α外的同一侧,点','B C 分别为,B C 在平面α内的投影,设''BB CC ≤,直线'CB 与平面''A CC 所成的角为ϕ.若'''A B C ∆是以角'A 为直角的直角三角形,则tan ϕ的最小值__________. 17.若向量()()()1,1,,1,2,1,1,1,1a x b c ===,满足条件()()·22c a b -=-,则x = __________.18.如图,直三棱柱111ABC A B C -中,12AA =,1AB BC ==, 90ABC ∠=︒,外接球的球心为O ,点E 是侧棱1BB 上的一个动点.有下列判断:① 直线AC 与直线1C E 是异面直线;②1A E 一定不垂直1AC ; ③ 三棱锥1E AAO -的体积为定值; ④1AE EC +的最小值为22. 其中正确的序号序号是______.19.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是________.20.已知平面α⊥平面β,且l αβ⋂=,在l 上有两点A ,B ,线段AC α⊂,线段BD β⊂,并且AC l ⊥,BD l ⊥,6AB =,24BD =,8AC =,则CD =______.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且22PA PD AD ===,设E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求直线EF 与平面PBD 所成角的正弦值.22.如图,平面ABCDE⊥平面CEFG,四边形CEFG为正方形,点B在正方形ACDE的外部,且5,4===.AB BC AC⊥.(1)证明:AD CF(2)求平面BFG与平面ABCDE所成锐二面角的余弦值.23.如图所示,在梯形ABCD中,AB∥CD,∠BCD=120°,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.-中,PD⊥平面ABCD,四边形ABCD是等腰梯形24.如图,在四棱锥P ABCD====分别是,AB DC BC CD AD AB M N//,2,4,,AB AD的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C PN D --的大小为60°,求四棱锥P ABCD -的体积.25.如图,在三棱柱111ABC A B C -中,已知ABC 是直角三角形,侧面11ABB A 是矩形,AB =BC =1,BB 1=2,13BC =.(1)证明:BC 1⊥AC .(2)E 是棱CC 1的中点,求直线B 1C 与平面ABE 所成角的正弦值.26.如图,在四棱锥 P -ABCD 中,△PAB 为正三角形,四边形ABCD 为矩形,且平面PAB ⊥平面ABCD ,AB =2,PC =4(1)求证:平面PAB ⊥平面PAD(2)在线段PA 上是否存在一点N ,使得二面角A -BD -N 313N 的位置;若不存在,请说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据外积的定义逐项判断即可得到结果. 【详解】对于①,根据向量外积的第一个性质可知1AB AC ⨯与1BD 方向相同,故①错误;对于②,根据向量外积的第一个性质可知AB AC ⨯与BC AB ⨯方向相反,不会相等,故②错误;对于③,根据向量外积的第二个性质可知sin4ABCDBC AC BC AC Sπ⨯=⋅⋅=,则6BC AC ⨯与正方体表面积的数值相等,故③正确;对于④,1AB AB ⨯与CB 的方向相反,则()10AB AB CB ⨯⋅<,故④错误. 故选:D. 【点睛】本题考查正方体的性质和信息迁移,解题的关键在于依据新概念的性质进行推理论证,属难题.2.C解析:C 【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】 如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO .OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AOOB ∴==.在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C. 【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题.3.D解析:D 【分析】建立空间直角坐标系,结合直线的方向向量确定异面直线所成的角即可. 【详解】以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -, 设2AB =,则()()()()0,0,0,1,0,2,1,1,0,0,2,1A P Q M , 据此可得:()()0,1,2,0,2,1PQ AM =-=,0PQ AM ⋅=,故PQ AM ⊥,即直线PQ 与AM 所成的角是2π. 本题选择D 选项.【点睛】本题主要考查空间向量的应用,异面直线所成的角的求解等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】分析:根据两个向量的数量积的定义式,推导出其所成角的余弦公式,从而利用cos ,a b a b a b⋅<>=,结合22a a =,将有关量代入求得z 的值,得到结果.详解:根据题意得22331cos ,23101021a b z z ⨯===++⋅+++, 化简得22z =,解得2z =± C.点睛:该题考查的是有关向量夹角余弦公式的问题,在解题的过程中,需要把握住向量夹角余弦公式,再者就是向量的模的平方和向量的平方是相等的,还有就是向量的模的坐标运算式.5.C解析:C 【详解】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D 为坐标原点,DA,DC,DD 1为x,y,z轴建立空间直角坐标系,则11(0,0,0),(1,0,0),(1,1,3),D A B D ,所以11(1,0,3),(1,1AD DB =-=,因为111111cos ,52AD DB AD DB AD DB ⋅===⨯,所以异面直线1AD 与1DB 所成角的余C. 点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.6.A解析:A 【解析】解:由题意可知:()1,1,b a t tt -=---- , 则:(b a t -=--= ,即b a - 本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.7.B解析:B 【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离 【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤(2,,23MP a b ∴=--,(),4,0MC a b =--•0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-=M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B 【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题8.C解析:C 【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长. 【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,03M (0,0,3P (x ,y ,0). 于是有AM =(0,13MP =(x ,y ,3 由于AM ⊥MP ,所以(0,13•(x ,y ,30, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2371()4-=.故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题9.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】 设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 10.A解析:A【分析】分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,利用空间向量即可得到所求角的余弦值的最大值,再根据余弦函数的单调性即可得到结果.【详解】因为在直三棱柱111ABC A B C -中,AC BC ⊥,所以1,,CA CB CC 两两互相垂直, 所以分别以1,,CA CB CC 为,,x y z 轴建立空间直角坐标系,如图:因为12AC BC AA ===,所以(2,0,0)A ,(0,2,0)B ,1(2,0,2)A ,所以(1,1,1)Q ,设(0,,2)P y ,则(2,2,0)AB =-,(1,1,1)PQ y =--,设异面直线AB 与PQ 所成角为θ,则cos θ=|cos ,|AB PQ <>=||||||AB PQ AB PQ ⋅24401(1)1y =++⨯+-+ 2223y y =-+22232y y y =-+23221y y =-+211223()33y =-+ 223≤3=3y =时等号成立) 又(0,)2πθ∈,且cos y θ=在(0,)2π内递减, 所以[,)62ππθ∈, 所以异面直线AB 与PQ 所成角的最小值为30°.故选:A【点睛】本题考查了利用空间向量解决夹角,考查了异面直线所成角的范围以及余弦函数的单调性,属于中档题.11.D解析:D【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P x y ,根据110B P D E ⋅=得出x 、y 满足的关系式,并求出y 的取值范围,利用二次函数的基本性质求得1B P 的最大值.【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,2,2B 、()10,0,2D 、()1,2,0E ,设点()(),,002,02P x y x y ≤≤≤≤,()11,2,2D E =-,()12,2,2B P x y =---,11D E B P ⊥,()112224220B P D E x y x y ∴⋅=-+-+=+-=,得22x y =-, 由0202x y ≤≤⎧⎨≤≤⎩,得022202y y ≤-≤⎧⎨≤≤⎩,得01y ≤≤, ()()2221224548B P x y y y ∴=-+-+=-+01y ≤≤,当1y =时,1B P 取得最大值3.故选:D.【点睛】本题考查立体几何中线段长度最值的计算,涉及利用空间向量法处理向量垂直问题,考查计算能力,属于中等题.12.B解析:B【分析】①||||||a b a b -=+共线,反之不成立,即可判断出结论;②利用基底的定义即可判断出真假;③|()||||||||cos ,|a b c a b c a b =<>,即可判断出真假.【详解】①||||||a b a b a -=+⇒,b 共线,反之不成立,||||||a b a b -=+是a ,b 共线的充分不必要条件,因此不正确;②若{a ,b ,}c 是空间的一组基底,假设,,a b b c c a +++共面,则存在唯一一组实数,x y ,使=()()a b x b c y c a ++++成立,即()a b xb x y c ya +=+++,所以1,1,0x y x y ==+=,显然无解,假设不成立,即,,a b b c c a +++不共面,则{a b +,b c +,}c a +是空间的另一组基底,正确;③|()|||||||cos ,a b c a b c a b =<>,而cos ,a b <>不一定等于1,因此不正确.其中正确的命题有一个.故选:B .【点睛】本题考查了向量共线、共面定理、数量积运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.二、填空题13.【解析】【分析】取MC 中点O 连结AOBO 推导出AC =BM =AM =CM =1AO =BO =AO ⊥MCAO ⊥平面BMCAO ⊥BO 由此能求出AB 两点之间的距离【详解】取MC 中点O 连结AOBO ∵△ABC 中∠C =解析:2【解析】【分析】取MC 中点O ,连结AO ,BO ,推导出AC =BM =AM =CM =1,AO BO AO ⊥MC ,AO ⊥平面BMC ,AO ⊥BO ,由此能求出A ,B 两点之间的距离.【详解】取MC 中点O ,连结AO ,BO ,∵△ABC 中,∠C =90°,∠A =60°,AB =2,M 为AB 中点,∴AC =BM =AM =CM =1,∴AO =2131()2-=, BO =22011172cos1201214222BM MO BM OM ⎛⎫+-⨯⨯⨯=+-⨯⨯⨯-= ⎪⎝⎭ AO ⊥MC ,将△BMC 沿CM 折叠,当平面BMC ⊥平面AMC 时,AO ⊥平面BMC ,∴AO ⊥BO ,∴A ,B 两点之间的距离|AB |=22371044BO AO +=+=, 故答案为:102. 【点睛】 本题考查两点间距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.14.(cos sin )【分析】分类讨论:当倾斜角为时可以得出直线的一个方向向量;当倾斜角不等于时先求出直线的斜率然后再写出直线的一个方向向量最后综合即可得出答案【详解】当时直线与垂直则可得直线的一个方解析:(cos θ,sin θ)【分析】分类讨论:当倾斜角θ为90︒时,可以得出直线的一个方向向量;当倾斜角θ不等于90︒时,先求出直线的斜率,然后再写出直线的一个方向向量,最后综合即可得出答案.【详解】当90θ︒=时,直线l 与x 垂直,则可得直线l 的一个方向向量为()0,1;当90θ︒≠时,则可得直线l 的斜率为tan k θ=,则可得直线l 的一个方向向量为()1,tan θ或()cos ,sin θθ;令θ90︒=,则有()()cos ,sin 0,1θθ=,综上可得:直线l 的倾斜角为θ时,直线l 的一个方向向量为()cos ,sin θθ.故答案为:()cos ,sin θθ.【点睛】本题考查了直线方向向量的求解,注意做题时一定要考虑到直线的倾斜角可能为90︒,属于一般难度的题.15.【解析】所以 解析:11 【解析】22222||222AC AB BC CC AB BC CC AB BC BC CC AB CC =++=+++⋅+⋅'''⋅'+' 222000112211cos60221cos60212cos6011=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=所以11AC =' 16.【解析】如图建系设则可得且故又因为故又故又因为且故故答案为 解析:22【解析】如图建系,设()()0,,,,0,B b m C c n ,则()()222210,,,0,11cos 600b m c n b m c n m n ⎧+=+=⎪=⋅⎨⎪<≤⎩,可得12mn =且0m n <≤,故22m ≤,又因为221c n +=,故1n <,又12mn =, 故12m >,又因为212tan 1,22b m m ϕ==-<≤且,故 2tan ϕ,故答案为22. 17.2【解析】因为向量所以则解之得应填答案解析:2【解析】因为向量(1,1,),(1,2,1),(1,1,1)a x b c ===,所以(0,0,1),2(2,4,2)c a x b -=-=,则()(2)222c a b x -⋅=-=-,解之得2x =,应填答案2。

(必考题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)(2)

(必考题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(包含答案解析)(2)

一、选择题1.已知三棱锥P ABC -的所有棱长均为2,点M 为BC 边上一动点,若AN PM ⊥且垂足为N ,则线段CN 长的最小值为( )A .2133-B .2733-C .73D .12.如图,四边形ABCD 和ABEF 都是正方形,G 为CD 的中点,60DAF ∠=,则直线BG 与平面AGE 所成角的余弦值是( )A .25B 10C 15D 21 3.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .(0,63D .()63,+∞ 4.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 1所成角的余弦值为( )A .26B .36C .56D .135.如图,点P 在正方体1111ABCD A BC D -的面对角线1BC 上运动,则下列四个结论: ①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ;1DP BC ⊥③;④平面1PDB 平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个6.在棱长为2的正方体1111ABCD A BC D -中,,E F 分别为棱1AA 、1BB 的中点,G 为棱11A B 上的一点,且1(02)AG λλ=<<,则点G 到平面1D EF 的距离为( )A .23B .2C .223λD .2557.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .223C .324D .128.如图,在大小为45°的二面角A -EF -D 中,四边形ABFE ,CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A .3B .2C .1D .32-9.在四面体O-ABC 中,G 1是△ABC 的重心,G 是OG 1上的一点,且OG=3GG 1,若OG =x OA +y OB +z OC ,则(x ,y ,z )为( )A .111,,444⎛⎫ ⎪⎝⎭B .333,,444⎛⎫ ⎪⎝⎭C .111,,333⎛⎫⎪⎝⎭ D .222,,333⎛⎫ ⎪⎝⎭10.如图,在平行六面体1111ABCD A BC D -中,M 为11AC 与11B D 的交点.若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A .11+22+a b cB .1122a b c -+C .1122-++a b c D .1122+-a b c 11.已知()()2,,,1,21,0a t t b t t ==--,则b a -的最小值是( )A .2B .3C .5D .612.在棱长为2的正方体1111ABCD A BC D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF 的距离为( )A 3λB .22C 2λD 5二、填空题13.已知正方体1111ABCD A BC D -的棱长为4,点,M N 分别是棱11,BC C D 的中点,点P 在平面1111D C B A 内,点Q 在线段1A N 上,若25PM =PQ 的最小值为______.14.设(3,3,1),(1,0,5),(0,1,0)A B C ,则AB 中点M 到C 的距离CM = _______. 15.如右图,AO ⊥平面α,点0为垂足,BC ⊂平面α,BC OB ⊥,若π4ABO ∠=,π6COB ∠=,则 tan BAC ∠=__________.16.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).17.如图,空间四边形OABC 中,,M N 分别是对边,OA BC 的中点,点G 在线段MN 上,分MN 所成的定比为2,OG xOA yOB zOC =++,则,,x y z 的值分别为_____.18.在z 轴上与点(4,1,7)A -和点(3,5,2)B -等距离的点C 的坐标为__________. 19.如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为 .20.已知()()()2,1,2,1,3,3,13,6,a b c λ=-=--=,若向量,,a b c 共面,则λ=_________.三、解答题21.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,且222PA PD AD ===E ,F 分别为PC ,BD 的中点.(1)求证://EF 平面PAD ;(2)求直线EF 与平面PBD 所成角的正弦值.22.如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中60BAD ∠=︒,22AB AD ==,45BAE GAD ∠=∠=︒.(Ⅰ)求证:平面ADG ⊥平面BDG ;(Ⅱ)求直线BG 与平面AGFE 所成角的正弦值.23.如图所示,在七面体ABCDEFG 中,底面ABCD 是边长为2的菱形,且60BAD ∠=︒,////BE CF DG ,BE ⊥底面ABCD ,2BE CF DG ===.(1)求证://AG 平面BCFE ;(2)在线段BC 上是否存在点M ,使得平面AGE 与平面MGE 所成锐二面角的余弦值为21,若存在求出线段BM 的长;若不存在说明理由﹒ 24.如图,在三棱锥P ABC -中,2PA PB =,5AC BC PC ===2AB =,点D ,E 分别为AB ,PC 的中点.(1)证明:平面PAB ⊥平面ABC ;(2)设点F 在线段BC 上,且BF FC λ=,若二面角C AE F --的大小为45°,求实数λ的值.25.如图,在四棱锥S ABCD -中,SA ⊥平面ABCD ,//AD BC ,AD AB ⊥,4AB AS ==,3AD =,6BC =,E 为SB 的中点.(1)求证://AE 平面SCD .(2)求二面角B AE C --的余弦值.26.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】取PA 中点O ,得点N 在以O 为球心,半径为1的球面上,进一步可得N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,则点N 在以1O 为圆心的圆弧上,可得当点N 在1CO 上时,CN 取最小值,求解三角形计算得答案.【详解】解:取PA 中点O ,AN PM ⊥,∴点N 在以O 为球心,半径为1的球面上, 又点N 在平面PBC 上,故N 的轨迹为一段圆弧,设点O 在平面PBC 的投影点为1O ,且点1(O PS S ∈为BC 中点),则点N 在以1O 为圆心的圆弧上, 3PS AS ==,设A 到PS 的距离为h ,则221132(3)122h ⨯⨯=⨯⨯-, 即263h =,得163OO =,21631()33PO =-=,22213PS =-=由N 在PS 上时,求得133NO =,求解Rt △1CO S ,得2212313213CO ⎛⎫=+ ⎪ ⎪=⎝⎭, 则当点N 在1CO 上时,CN 取最小值2133-, 故选:A .【点睛】本题考查空间中点、线、面间的距离计算,考查空间想象能力与思维能力,考查运算求解能力,解答的关键是弄清动点的轨迹;2.C解析:C【分析】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴建立空间直角坐标系,设2AB =,利用空间向量法可求得直线BG 与平面AGE 所成角的正弦值,再利用同角三角函数的基本关系可求得结果.【详解】以A 为原点,以AD 、AB 的方向分别为x 、y 轴的正方向,过A 作垂直平面ABCD 的直线作z 轴,建立如图所示的空间直角坐标系A xyz -.设2AB =,得()0,0,0A 、()2,1,0G 、()0,2,0B 、(1,3E ,则()2,1,0AG =,(3AE =,()2,1,0BG =-,设平面AGE 的法向量为(),,n x y z =, 则20230n AG x y n AE x y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取1x =,则2y =-,3z = 所以,平面AGE 的一个法向量为(1,3n =-, 从而10cos ,225n BGn BG n BG ⋅<>===⨯⋅, 故直线BG 与平面AGE 21015155⎛⎫-= ⎪ ⎪⎝⎭. 故选:C.【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin h l θ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.3.C解析:C【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO . OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AO OB ∴==. 在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题. 4.A解析:A【分析】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系, 利用空间向量求异面直线AE 与CD 1所成角的余弦值为2.【详解】以D 为坐标原点,分别以DA ,DC ,DD 1 所在直线为x ,y ,z 轴建立空间直角坐标系,设正方体棱长为2,则A (2,0,0),E (0,2,1),D 1(0,0,2),C (0,2,0), ()2,2,1AE =-,()10,2,2D C =- ,∵cos <1,AE DC >=4226922-=⋅. ∴异面直线AE 与CD 1所成角的余弦值为26. 故选A .【点睛】 本题主要考查异面直线所成的角的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.5.C解析:C【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确;对于②,连接1A B ,11AC ,111//AC AD 且相等,由于①知:11//AD BC , 所以11//BAC 面1ACD ,从而由线面平行的定义可得,故②正确;对于③,由于DC ⊥平面11BCBC ,所以1DC BC ⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确.故选C .【点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.6.D解析:D【分析】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,利用向量法能求出点G 到平面1D EF 的距离 .【详解】以D 为原点,DA 为x 轴、DC 为y 轴、1DD 为z 轴,建立空间直角坐标系,则()()()()12,,2,0,0,2,2,0,1,2,2,1G D E F λ,()()()12,0,1,0,2,0,0,,1ED EF EG λ=-==,设平面1D EF 的法向量(),,n x y z =,则12020n ED x z n EF y ⎧⋅=-+=⎨⋅==⎩,取1x =,得()1,0,2n =, ∴点G 到平面1D EF 的距离为 22555EG nd n ⋅===,故选D. 【点睛】本题主要考查利用空间向量求点到平面的距离,是中档题. 空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.7.B解析:B 【分析】以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系,求得11,1,22MB ⎛⎫=--- ⎪⎝⎭,()10,? 02AA =,,利用空间向量夹角余弦公式能求出异面直线MB 与1AA 所成角的余弦值.【详解】在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC , ∴以B 为原点,BA 为x 轴,BC 为y 轴,1BB 为z 轴,建立空间直角坐标系, 设11111222AA A B B C ===,则11,1,22M ⎛⎫ ⎪⎝⎭,(0,00B ,),(1,00A ,),1(1,02A ,), 11,1,22MB ⎛⎫=--- ⎪⎝⎭,1(0,02AA ,)=, 设异面直线MB 与1AA 所成角为θ,则11cos 318MB AA MB AA θ⋅===⋅, ∴异面直线MB 与1AA 所成角的余弦值为3,故选B . 【点睛】本题主要考查异面直线所成角的余弦值的求法,是基础题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.8.D解析:D 【分析】由DB ED FE BF =++,利用数量积运算性质展开即可得到答案【详解】BD ED FE BF =++, 2222222111BD BF FE ED BF FE FE ED BF ED ∴=+++++=++ 故3BD =-故选D【点睛】本题是要求空间两点之间的距离,运用空间向量将其表示,然后计算得到结果,较为基础. 9.A解析:A【分析】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,利用空间向量的运算法则求得131114444OG OG OA OB OC ===++,即得(x,y,z). 【详解】如图所示,连接AG 1交BC 于点E ,则E 为BC 中点,1(2AE AB AC =+)=1(2OB -2OA OC +), 121(33AG AE OB ==-2OA OC +). 因为OG =31GG =3(1OG OG -),所以OG=34OG 1. 则1133(44OG OG OA AG ==+)=31211114333444OA OB OA OC OA OB OC ⎛⎫+-+=++ ⎪⎝⎭ . 故答案为A【点睛】(1)本题主要考查空间向量的运算法则和基底法,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 如果三个向量,,a b c 不共面,那么对于空间任意一个向量p ,存在一个唯一的有序实数组,,x y z 使p xa yb zc =++.我们把{},,x y z 叫做空间的一个基底,其中,,a b c 叫基向量.10.C解析:C【分析】 根据空间向量的运算法则,化简得到11122BM AB AD AA =-++,即可求解. 【详解】 由题意,根据空间向量的运算法则,可得1111112BM BB B M AA B D =+=+ 1111111111111()()222222AA A D A B AA AD AB AB AD AA a b c =+-=+-=-++=-++. 故选:C.【点睛】在空间向量的线性运算时,要尽可能转化为平行四边形或三角形中,运用平行四边形法则、三角形法则,以及利用三角形的中位线、相似三角形等平面几何的性质,把未知向量转化为已知向量有直接关系的向量来解决.11.A解析:A【解析】解:由题意可知:()1,1,b a t t t -=---- ,则:(b a t -=--= ,即b a - 的最小值是2 .本题选择A 选项.点睛:本题的模长问题最终转化为二次函数求最值的问题.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.12.D解析:D【分析】由几何体为正方体,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,求出平面D 1EF 的法向量n ,结合向量的点到平面距离公式求得点M 到平面D 1EF 的距离,结合N 为EM 中点即可求解【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则M (2,λ,2),D 1(0,0,2),E (2,0,1),F (2,2,1),1ED =(﹣2,0,1),EF =(0,2,0),EM =(0,λ,1),设平面D 1EF 的法向量n =(x ,y ,z ),则12020n ED x z n EF y ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取x =1,得n =(1,0,2),∴点M 到平面D 1EF 的距离为:d =||225||55EM n n ⋅==,N 为EM 中点,所以N 到该面的距离为55 故选:D .【点睛】本题考查利用向量法求解点到平面距离,建系法与数形结合是解题关键,属于中档题二、填空题13.【分析】取B1C1中点O 则MO ⊥面A1B1C1D1即MO ⊥OP 可得点P 在以O为圆心2以半径的位于平面A1B1C1D1内的半圆上即O 到A1N 的距离减去半径即为PQ 长度的最小值作OH ⊥A1N 于N 可得OH 解析:6525- 【分析】取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP ,可得点P 在以O 为圆心,2以半径的位于平面A 1B 1C 1D 1内的半圆上.即O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于N ,可得OH=655,PQ 长度的最小值为6525-. 【详解】如图,取B 1C 1中点O ,则MO ⊥面A 1B 1C 1D 1,即MO ⊥OP , ∵25PM =OP=2,∴点P 在以O 为圆心,2以半径的位于平面A 1B 1C 1D 1内的半圆上.可得O 到A 1N 的距离减去半径即为PQ 长度的最小值,作OH ⊥A 1N 于N ,△A 1ON 的面积为4×1114242224222-⨯⨯-⨯⨯-⨯⨯=6, ∴1162A N OH ⨯⨯=,可得OH=655,∴PQ 长度的最小值为525-. 652- 【点睛】 本题考查线段长的最小值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、数形结合思想,是中档题.14.【解析】中点解析:532【解析】中点32,,32M ⎛⎫ ⎪⎝⎭,2223532132MC ⎛⎫=+-+= ⎪⎝⎭15.【解析】因为平面平面所以根据三垂线定理可得:设因为所以所以在中有并且所以解析:6【解析】因为AO ⊥平面α,BC ⊂平面α,BC OB ⊥,所以根据三垂线定理可得:BC AB ⊥.设2OB =, 因为π4ABO ∠=,π6COB ∠=, 所以2OA =,AB =3BC = 所以在ABC △中有BC AB ⊥,并且AB =BC =,所以tan BC BAC AB ∠== 16.【分析】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系利用向量法能求出异面直线AM 与B1C 所成的角【详解】以D 为原点DA 为x 轴DC 为y 轴DD1为z 轴建立空间直角坐标系设正方体ABCD ﹣解析: 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AM 与B 1C 所成的角.【详解】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,设正方体ABCD ﹣A 1B 1C 1D 1棱长为2,则A (2,0,0),M (2,1,2),B 1(2,2,2),C (0,2,0), AM =(0,1,2),1BC =(﹣2,0,2), 设异面直线AM 与B 1C 所成的角为θ,cosθ115AM B CAMB C ⋅===⋅ ∴θ=.∴异面直线AM 与B 1C 所成的角为arccos 105. 故答案为:105arccos .【点睛】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意向量法的合理运用.17.【解析】∵∴∴故答案为解析:111,,633【解析】∵ O G OM MG =+,1 2OM OA =,2 ,3MG MN MN ON OM ==-,1 ()2ON OB OC =+,∴111 633OG OA OB OC =++,∴16x =,13y z ==,故答案为111,,63318.(00)【详解】解:由题意设C (00z )∵C 与点A (-417)和点B (35-2)等距离∴|AC|=|BC|∴点C 的坐标为(00)解析:(0,0,)【详解】解:由题意设C (0,0,z ),∵C 与点A (-4,1,7)和点B (3,5,-2)等距离,∴|AC|=|BC|, 22161(7)925(2)18z 28z 4=19z z ++-=+++∴=,∴点C 的坐标为(0,0,149)19.【详解】以D 为原点DADCDD1所在直线分别为x 轴y 轴z 轴建立空间直角坐标系如图所示则A(100)B(110)D1(001)C1(011)O(1)=(010)=(-101)设平面ABC1D1的法向量 解析:【详解】以D 为原点,DA,DC,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O (12,12,1), =(0,1,0),=(-1,0,1), 设平面ABC 1D 1的法向量n =(x,y,z), 由1·AB y 0{·AD x z 0n n ===-+=,,得令x =1,得n =(1,0,1).又=(-12,12-,0), ∴O 到平面ABC 1D 1的距离d=1·n OD n ==.20.3【解析】试题分析:由于三个向量共面所以存在实数使得即有解得考点:空间向量的正交分解及其坐标表示解析:3【解析】试题分析:由于a b c 、、三个向量共面,所以存在实数m n 、,使得=c ma nb +,即有13=2{6323m nm n m nλ-=-+=-,解得9{53m n λ===. 考点:空间向量的正交分解及其坐标表示.三、解答题21.(1)证明见解析(2)63【分析】(1)连AC ,通过证明//EF PA 可证//EF 平面PAD ;(2)取AD 的中点O ,连接PO ,以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系,利用向量法可求得结果.【详解】(1)连AC ,因为底面ABCD 是正方形,且F 为BD 的中点,则F 为AC 的中点,又E 为PC 的中点,所以//EF PA ,因为EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD .(2)取AD 的中点O ,连接PO ,因为PA PD =,∴PO AD ⊥,因为侧面PAD ⊥底面ABCD ,所以PO ⊥平面ABCD , 以O 为原点,,,OA OF OP 分别为,,x y z 轴建立空间直角坐标系,如图:因为22PA PD AD ===1OP =, 则(0,0,1)P ,(1,0,0)D -,(1,2,0)B ,(1,2,0)C -,(0,1,0)F ,11(,1,)22E -,所以11(,0,)22EF =-,(1,0,1)PD =--,(2,2,0)=--BD , 设平面PDB 的法向量为(,,)n x y z =,则00n PD n BD ⎧⋅=⎨⋅=⎩,即0220x z x y --=⎧⎨--=⎩,取1x =,则1y =-,1z =-,所以(1,1,1)n =--,所以直线EF 与平面PBD 所成角的正弦值为||||||n EF n EF ⋅⋅11|0|++==.【点睛】关键点点睛:正确建立空间直角坐标系,利用空间向量求解是本题解题关键.22.(Ⅰ)证明见解析;(Ⅱ 【分析】(Ⅰ)证明:AD DB ⊥,GD DB ⊥,即可证明BD ⊥平面ADG ,从而得到平面ADG ⊥平面BDG ;(Ⅱ)建立空间直角坐标系,利用向量方法求直线GB 与平面AEFG 所成角的正弦值. 【详解】(Ⅰ)证明:在BAD 中,22AB AD ==,60BAD ∠=︒.由余弦定理2222cos60BD AD AB AB AD =+-︒,BD , 222AB AD DB =+,AD DB ∴⊥,在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD ,GD DB ∴⊥, 又ADGD D =,,AD DG ⊂平面ADGBD ∴⊥平面ADG .又因为BD ⊂平面BDG , 所以平面ADG ⊥平面BDG ;(Ⅱ)解:如图以D 为原点建立空间直角坐标系D xyz -,45BAE GAD ∠=∠=︒,22AB AD ==,(1A ∴,0,0),(0,3,0)B ,E ,(0G ,0,1),(1AE =-,(1,0,1)AG =-,(0,1)GB =-,设平面AEFG 的法向量(,,)n xy z =,·20·0n AE x z n AG x z ⎧=-+=⎪⎨=-+=⎪⎩令1x =,得y =1z =,∴3(1,,1)3n =-,设直线GB 和平面AEFG 的夹角为θ,∴21sin |cos ,|||7||||GB n GB n GB n θ=<>==, 所以直线GB 与平面AEFG 所成角的正弦值为217.【点睛】本题考查了立体几何中的面面垂直的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 23.(1)证明见解析;(2)存在,43BM =. 【分析】(1)根据//DG CF 和ABCD 是菱形得到//AD BC ,利用面面平行的判定定理证明. (2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直,以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,假设存在M 满足条件,设(01)BM BC λλ=≤≤,分别求得平面AGE 的一个法向量()1111,,x n y z =和平面MGE 的一个法向量()2222,,n x y z =,利用12121221cos 14n n n n n n ⋅⋅==求解. 【详解】(1)∵//DG CF ,CF ⊂面BCFE 且DG ⊄面BCFE ∴//DG 面BCFE又∵//AD BC ,BC ⊂面BCFE 且AD ⊄面BCFE ∴//AD 面BCFE∵AD ⊂面ADG ,DG ⊂面ADG ,且ADDG D =∴面//ADG 面BCFE ∵AG ⊂面ADG , ∴//AG 面BCFE .(2)取BC 中点为H ,则DA ,DH ,DG 三线两两垂直以D 为坐标原点,以DA ,DH ,DG 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系D xyz -,假设存在M 满足条件,则(01)BM BC λλ=≤≤,由题得:()2,0,0A ,()3,0B ,()3,0C -,()3,2E ,()0,0,2G , ∵BM BC λ=,∴点M 坐标为:()123,0λ-,∴(2,0,2)AG =-,()3,2AE =-,()21,3,2MG λ=--,()2,0,2ME λ=, 设平面AGE 的一个法向量为:()1111,,x n y z =, 平面MGE 的一个法向量为:()2222,,n x y z =,则1111111220320n AG x z n AE x y z ⎧⋅=-+=⎪⎨⋅=-++=⎪⎩,令13x 11y =-,13z , ∴1(3,13)n =-,同理可得231,3n λ⎛⎫=-- ⎪ ⎪⎝⎭, 由题意得:1212212433213cos 473n n n n n n λλ-⋅⋅===⋅+解得:23λ=或269λ=(舍), ∴43BM =.【点睛】方法点睛:证明两个平面平行的方法有:(1)用定义,此类题目常用反证法来完成证明;(2)用判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)根据“垂直于同一条直线的两个平面平行”这一性质进行证明;(4)借助“传递性”来完成:两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化. 24.(1)证明见解析;(2)2λ=. 【分析】(1)要证平面PAB ⊥平面ABC ,只需证明PD ⊥平面ABC ,通过勾股定理可知PD CD ⊥,即可证明;(2)已知二面角的角度,求参数的值,建立出平面直角坐标系,借助法向量即可. 【详解】(1)证明:连接CD ,∵2PA PB ==,2AB =,D 为AB 的中点,∴PD AB ⊥,1PD =, 同理可得CD AB ⊥,2CD =,∵2225PC PD CD =+=,∴PD CD ⊥, ∵ABCD D =,∴PD ⊥平面ABC ;∴PD ⊂平面PAB ,∴平面PAB ⊥平面ABC ;(2)以D 为坐标原点,向量DB ,DC ,DP 的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系D xyz -,由题意得(0,0,0)D ,(1,0,0)A -,(0,2,0)C ,(0,0,1)P ,(1,0,0)B ,10,1,2⎛⎫ ⎪⎝⎭E , ∵BF FC λ=,∴22,,011AF AB BF λλλλ+⎛⎫=+=⎪++⎝⎭, 设()111,,m x y z =是平面ACE 的一个法向量,则0m AE m AC ⎧⋅=⎨⋅=⎩,∴1111110220x y z x y ⎧++=⎪⎨⎪+=⎩,令11y =-,则1122x z =⎧⎨=-⎩,∴(2,1,2)m =--, 设()222,,n x y z =是平面AEF 的一个法向量,则0n AE n AF ⎧⋅=⎨⋅=⎩,∴2222210222011x y z x y λλλλ⎧++=⎪⎪⎨+⎪+=⎪++⎩,令2(2)y λ=-+,则22242x z λλ=⎧⎨=-⎩,∴(2,2,42)n λλλ=---,∵二面角A DF P --的大小为45°,∴cos 45cos ,2||9m n m n m n λ︒⋅=<>===‖,∴2λ=或23λ=-(舍去). 【点睛】本题以三棱锥为载体,考查了平面与平面垂直的判定,以及根据已知的二面角值求参,关键点在于如何正确的建立坐标系. 25.(1)证明见解析;(2)11. 【分析】(1)取SC 的中点F ,连接,DF EF ,证明四边形ADFE 为平行四边形,可得//AE DF ,即可证//AE 平面SCD ;(2)建立如图所示空间直角坐标系,然后写出各点坐标,得平面ABE 的法向量为AD ,计算平面ACE 的法向量m ,利用数量积公式代入计算二面角的余弦值. 【详解】(1)证明:取SC 的中点F ,连接,DF EF因为E 、F 为SB 、SC 的中点,所以//EF BC 且132EF BC ==,又因为//AD BC ,3AD =,6BC =,所以//EF AD 且EF AD =,所以四边形ADFE 为平行四边形,所以//AE DF ,又AE ⊄平面SCD ,DF ⊂平面SCD ,所以//AE 平面SCD . (2)因为SA ⊥平面ABCD ,AD AB ⊥,所以建立如图所示空间直角坐标系, 则(0,0,0),(4,0,0),(4,6,0),(0,3,0),(2,0,2)A B C D E ,(2,0,2),(4,0,0),(4,6,0)AE AB AC ===,(0,3,0)AD =由题意可知AD ⊥平面ABE ,设平面ACE 的法向量(,,)m x y z =所以00AC m AE m ⎧⋅=⎨⋅=⎩,则460220x y x z +=⎧⎨+=⎩,得(3,2,3)m =--设二面角B AE C --的平面角为θ, 所以622cos cos ,11322AD m θAD m AD m⋅-====⨯,所以二面角B AE C --的余弦值为2211.【点睛】本题考查了立体几何中的线面平行的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过中位线平行证明线线平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 26.(1229,(222【分析】(1)建立空间直角坐标系,利用空间向量法求出二面角的余弦值; (2)设(),,0N x y ,即可表示出MN ,再根据//MN 平面BEF ,即可得到0m MN =,即可得到x 与y 的关系,最后根据向量的模及二次函数的性质计算可得;【详解】解:(1)如图建立空间直角坐标系,则()0,0,0D ,()0,2,0C ,()2,2,0B ,()2,0,0A ,()0,0,2G ,()0,2,1F ,()1,0,2E ,则()1,2,2BE =--,()1,2,1FE =-,()2,0,0DA =,设面BEF 的法向量为(),,n x y z =,则22020x y z x y z --+=⎧⎨-+=⎩,令2x =,则3y =,4z =,所以()2,3,4n =,而平面CDGF 的法向量为()2,0,0DA =设平面BEF 与平面CDGF 所成二面角为θ,显然二面角为锐角,所以2224229cos 292234n DA n DAθ===++ (2)设(),,0N x y ,[],0,2x y ∈,依题意30,1,2M ⎛⎫ ⎪⎝⎭,则3,1,2MN x y ⎛⎫=-- ⎪⎝⎭因为//MN 平面BEF ,所以()23162390m MN x y x y =+--=+-= 所以()222913314714422MN x y y y =+-+=-+又因为函数2133147422y x x =-+,对称轴为313122131324x -=-=>⨯,且开口向上, 所以函数2133147422y x x =-+在[]0,2上单调递减,所以当2y =时,min 222MN =,此时3,2,02N ⎛⎫ ⎪⎝⎭,所以线段MN 的最小值为222【点睛】本题考查二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.。

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(1)

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试(答案解析)(1)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 2.长方体12341234A A A A B B B B -的底面为边长为1的正方形,高为2,则集合12{|i j x x A B A B =⋅,{1,2,3,4},{1,2,3,4}}i j ∈∈中元素的个数为( )A .1B .2C .3D .43.在空间四边形OABC 中,OA OB OC ==,3AOB AOC π∠=∠=,则cos ,OA BC 的值为( ) A .0 B .2 C .12- D .124.如图,棱长为2的正方体1111ABCD A BC D -中,M 是棱1AA 的中点,点P 在侧面11ABB A 内,若1D P CM ⊥,则PBC ∆的面积的最小值为( )A 25B 5C .45D .15.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.正方体1111ABCD A BC D -的棱长为a ,点M 在1AC 且112AM MC =,N 为1B B 的中点,则MN 为( )A .216aB .66aC .156aD .153a 7.正方体1111ABCD A BC D -中,点E ,F 分别是棱,CD BC 上的动点,且2BF CE =,当三棱锥1C C EF -的体积取得最大值时,记二面角1111,,C EF C C EF A A EF A ------的平面角分别为,,αβγ,则( )A .αβγ>>B .αγβ>>C .βαγ>>D .βγα>> 8.如图,在四棱锥P ABCD -中,侧面PAD 是边长为4的正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为平面ABCD 上的动点,且满足•0MP MC =,则点M 到直线AB 的最远距离为( )A .25B .35+C .45+D .422+ 9.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .7 B .75 C .7 D .7 10.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333 C .5510(,,)333 D .448(,,)33311.如图,棱长为1的正方体1111ABCD A BC D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )A .12B .24C .22D .3212.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,DC =2,DA =DD 1=1,点M 、N 分别为A 1D 和CD 1上的动点,若MN ∥平面AA 1C 1C ,则MN 的最小值为( )A .53B .23C .56D .52二、填空题13.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H.且D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________.14.如图,在正三棱柱111ABC A B C -中,12,AB AC AA === ,E F 分别是,BC 11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所成角的余弦值为10,则线段BD 的长为_______.15.在空间四边形ABCD 中,E F 、分别是AB CD 、中点,且5,EF =又6,8AD BC ==,则AD 与BC 所成角的大小为____________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC =,则二面角B ﹣AD ﹣C 的余弦值为_____.17.已知(1,2,1),(2,2,2)A B -,点P 在z 轴上,且PA PB =,则点P 的坐标为____________.18.已知向量=211a -(,,),(,1,1)b λ=-,若a 与b 的夹角为钝角,则λ的取值范围是______.19.已知,若向量互相垂直,则k 的值为____. 20.已知P 是正方体1111ABCD A BC D -的棱11A D 上的动点,设异面直线AB 与CP 所成的角为α,则cos α的最小值为__________.三、解答题21.如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 是一个菱形,3ABC π∠=,2AB =,23PA =.(1)若Q 是线段PC 上的任意一点,证明:平面PAC ⊥平面QBD ;(2)求直线DB 与平面PBC 所成角θ的正弦值.22.如图,多面体PABCDE 的底面ABCD 是菱形,PA ⊥底面ABCD ,//PA DE ,且2PA AD DE ==.(1)证明:平面PAC ⊥平面PCE ;(2)若直线PC 与平面ABCD 所成的角为45︒,求二面角P CE D --的余弦值. 23.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ;(2)求二面角11B AC C --的大小.24.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且3CD =,E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(Ⅰ)证明://BF 平面PCD ;(Ⅱ)求二面角P BD F --的正弦值;(Ⅲ)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为39?若存在,求出此时PM 的长;若不存在,说明理由. 25.如图,在正方体1111ABCD A BC D -中,E 为1BB 的中点.(1)证明:1//BC 平面1AD E ;(2)求直线1BC 到平面1AD E 的距离;(3)求平面1AD E 与平面ABCD 夹角的余弦值.26.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,12AA=,CH ⊥平面11AA B B ,且3CH =.(1)求1AC 与平面ABC 所成角的正弦值;(2)在线段11A B 上是否存在一点P ,使得平面PBC ⊥平面ABC ?若存在,求出1B P 的长;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】建立空间直角坐标系,结合向量的数量积的定义,进行计算,即可求解.【详解】由题意,因为正方体12341234A A A A B B B B -的底面为班车为1的正方形,高为2, 建立如图所示的空间直角坐标系,则12341234(1,1,0),(0,1,0),(0,0,0),(1,0,0),(1,1,2),(0,1,2),(0,0,2),(1,0,2)A A A A B B B B , 则12(1,0,2)A B =-, 与11(0,0,2)A B =相等的向量为223344A B A B A B ==,此时1211224A B A B ⋅=⨯=, 与14(0,1,2)A B =-相等的向量为23A B ,此时1214224A B A B ⋅=⨯=, 与41(0,1,2)A B =相等的向量为32A B ,此时1241224A B A B ⋅=⨯=, 与21(1,0,2)A B =相等的向量为34A B ,此时1221143A B A B ⋅=-+=, 与12(1,0,2)A B =-相等的向量为43A B ,此时1212145A B A B ⋅=+=, 体对角线向量为13(1,1,2)A B =--,此时1213145A B A B ⋅=+=, 24(1,1,2)A B =-,此时1224143A B A B ⋅=-+=,31(1,1,2)A B =,此时1231143A B A B ⋅=-+=,42(1,1,2)A B =-,此时1242145A B A B ⋅=+=,综上集合11{|,{1,2,3,4},{1,2,3,4}}{3,4,5}i j x x A B A B i j =⋅∈∈=,集合中元素的个数为3个.故选:C .【点睛】本题主要考查了集合的元素的计算,以及向量的数量积的运算,其中解答中建立恰当的空间直角坐标系,熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.3.A解析:A【分析】利用OB OC =,以及两个向量的数量积的定义可得cos ,OA BC <>的值,即可求解.【详解】由题意,可知OB OC =,则()OA BC OA OC OB OA OC OA OB ⋅=⋅-=⋅-⋅ cos cos 33OA OC OA OB ππ=⋅-⋅1()02OA OC OB =⋅-=, 所以OA BC ⊥,所以∴cos ,0OA BC <>=.故选A .【点睛】本题主要考查了两个向量的数量积的定义,两个向量的夹角公式的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.A解析:A【分析】建立空间直角坐标系,设出P 点的坐标,利用1CM D P ⊥求得P 点坐标间的相互关系,写出三角形PBC 面积的表达式,利用二次函数的对称轴,求得面积的最小值.【详解】以1,,DA DC DD 分别为,,x y z 轴建立空间直角坐标系,依题意有()()()()12,0,1,0,2,0,0,0,2,2,,M C D P a b ,()()12,2,1,2,,2MC D P a b =--=-,由于1CM D P ⊥,故()()2,2,12,,24220a b a b --⋅-=-+-+=,解得22b a =-.根据正方体的性质可知,BC BP ⊥,故三角形PBC 为直角三角形,而()2,2,0B ,故()0,2,PB a b =--=PBC 的面积为(122BC PB ⨯⨯==126105a ==时,面积取得最小值为2655⎛⎫=⎝⎭,故选A. 【点睛】本小题主要考查空间两条直线相互垂直的坐标表示,考查三角形面积的最小值的求法,还考查了划归与转化的数学思想.属于中档题.空间两条直线相互垂直,那么两条直线的方向向量的数量积为零.对于两个参数求最值,可利用方程将其中一个参数转化为另一个参数,再结合函数最值相应的求法来求最值.5.A解析:A【分析】建立空间直角坐标系,求出向量AM 与1BC 的向量坐标,利用数量积求出异面直线A M 与1B C 所成角的余弦值.【详解】以D 为坐标原点,建立空间直角坐标系,如图所示:设正方体的棱长为1,则(1,0,0)A ,1(1,0,1)A ,(1,1,0)B ,1(1,1,1)B ,(0,1,0)C ∵M 为11A B 的中点 ∴1(1,,1)2M ∴1(0,,1)2AM =,52AM =;1(1,0,1)B C =--,12B C =. ∴异面直线A M 与1B C 所成角的余弦值为11110cos ,10AM B C AM B C AM B C⋅===⋅ 故选A.【点睛】本题主要考查异面直线所成的角的定义和求法,找出两异面直线所成的角∠AEM (或其补角),是解题的关键.如果异面直线所成的角不容易找,则可以通过建立空间直角坐标系,利用空间向量来求解.6.A解析:A【分析】建立空间直角坐标系,写出各个点的坐标,利用坐标关系求得线段的长度.【详解】建立如图所示的空间直角坐标系则N(a ,a ,12a),C 1(0,a ,a ),A (a ,0,0) 因为11AM MC 2=所以11AM AC 3= 所以113DM DA AC =+ ()()1211,0,0,,,,3333a a a a a a a ⎛⎫=+-= ⎪⎝⎭所以121,,336MN DN DM a a a ⎛⎫=-= ⎪⎝⎭所以222121213366MN a a a a ⎛⎫⎛⎫⎛⎫=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以选A【点睛】本题考查了空间直角坐标系的简单应用,利用坐标求得线段长度,属于基础题. 7.A解析:A【分析】设正方体的棱长为2,CE a =,则22CF a =-,列出三棱锥1C C EF -的体积关系式,可知当12a =时,1C C EF V -取得最大值,以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用法向量求出,,αβγ的余弦值,根据余弦值的大小关系可得结果.【详解】以D 为原点,DA 为x 轴、DC 为y 轴,1DD 为z 轴,建立空间直角坐标系:设正方体的棱长为2,CE a =,则22CF a =-,由0222a <-≤,得01a ≤<,11C C EF C CEF V V --=113CEF CC S =⨯⨯△211211(22)2()32324a a a ⎡⎤=⨯-⨯=--+⎢⎥⎣⎦, 所以当12a =时,1C C EF V -取得最大值16. 此时,3(2,0,0),(020),(00)2A C E ,,,,,(1,2,0)F ,11(2,0,2),(0,2,2)A C , 1(1,,0)2EF =,1(1,0,2)C F =-,1(1,2,2)A F =--, 设平面1C EF 的法向量为111(,,)m x y z =,平面1A EF 的法向量为222(,,)n x y z =,则100m EF m C F ⎧⋅=⎪⎨⋅=⎪⎩,即111110220x y x z ⎧+=⎪⎨⎪-=⎩,取11x =,则1112,2y z =-=,所以1(1,2,)2m =-, 100n EF n A F ⎧⋅=⎪⎨⋅=⎪⎩,即22222102220x y x y z ⎧+=⎪⎨⎪-+-=⎩,取21x =则2252,2y z =-=-,所以5(1,2,)2n =--, 取平面CEF 和平面AEF 的法向量为1(0,0,2)AA =, 由图可知,,,αβγ均为锐角,则cos α=11||||||m AA m AA ⋅1140044=++⨯++21=, ||cos ||||m n m n β⋅==5|14|4125141444+-++⨯++105=,11||cos =||||n AA n AA γ⋅=25140044++⨯++5=, 所以cos cos cos αβγ<<,根据余弦函数在(0,)2π内单调递减,可得αβγ>>.故选:A【点睛】本题考查了三棱锥的体积公式,考查了二面角的向量求法,考查了运算求解能力,属于中档题. 8.B解析:B【分析】建立空间直角坐标系,求出点M 的轨迹,然后求出点M 到直线AB 的最远距离【详解】以D 为原点,DA 为x 轴,DC 为y 轴,过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系则(2,0,23P ,()0,4,0,C 设(),,0M a b ,04,04a b ≤≤≤≤ (2,,23MP a b ∴=--,(),4,0MC a b =-- •0MP MC =,22•240MP MC a a b b ∴=-+-+=,整理得()()22125a b -+-= M ∴为底面ABCD 内以()12O ,为圆心,以5r = 则点M 到直线AB 的最远距离为41535-=故选B【点睛】本题考查了运动点的轨迹问题,需要建立空间直角坐标系,结合题意先求出运动点的轨迹,然后再求出点到线的距离问题9.C解析:C【分析】建立空间直角坐标系,写出点的坐标,设出动点的坐标,利用向量的坐标公式求出向量坐标,利用向量垂直的充要条件列出方程求出动点P 的轨迹方程,得到P 的轨迹是底面圆的弦,利用勾股定理求出弦长.【详解】建立空间直角坐标系.设A (0,﹣1,0),B (0,1,0),S (0,0,3),M (0,0,3),P (x ,y ,0). 于是有AM =(0,1,3),MP =(x ,y ,3-). 由于AM ⊥MP ,所以(0,1,3)•(x ,y ,3-)=0, 即y 34=,此为P 点形成的轨迹方程,其在底面圆盘内的长度为22371()4-=. 故选C .【点睛】本题考查通过建立坐标系,将求轨迹问题转化为求轨迹方程、考查向量的数量积公式、向量垂直的充要条件、圆的弦长的求法.属中档题10.D解析:D【分析】设OM OC λ=,故(),,2M λλλ,()()242633MA MB OA OM OB OM λ⎛⎫=--⋅=- ⎪⎝-⎭⋅,计算得到答案. 【详解】设OM OC λ=,即(),,2OM OC λλλλ==,故(),,2M λλλ,()()()()1,2,322,1,22MA MB OA OM OB OM λλλλλλ⋅=-⋅-=---⋅--- 224261610633λλλ⎛⎫=-+=-- ⎪⎝⎭, 当43λ=时,向量数量积有最小值,此时448,,333M ⎛⎫ ⎪⎝⎭. 故选:D.【点睛】本题考查了向量的数量积,二次函数求最值,意在考查学生的计算能力和综合应用能力. 11.B解析:B【分析】如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA ,利用点到平面距离的向量公式即得解. 【详解】如图建立空间直角坐标系,则:1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22O D A B C 111(,,0)22OD ∴=-- 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A1AB A D ∴⊥,又11AD A D ⊥,1AB AD1A D ∴⊥平面11ABC D故平面11ABC D 的一个法向量为:1(1,0,1)DA = O ∴到平面11ABC D 的距离为:1111||224||2OD DA d DA ⋅=== 故选:B【点睛】本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.12.A解析:A【分析】 先建立空间坐标系,设出(),0,M m m ,()0,22,N n n -+,转化条件得1m n +=,利用函数即可得解.【详解】如图建系,由题意可设(),0,M m m ,()0,22,N n n -+,∴(),22,MN m n n m =---,又 ()10,0,1AA =,()1,2,0AC =-, ∴平面11AAC C 的法向量()2,1,0n =,又 //MN 面11AACC ,∴=0MN n ⋅即1m n +=,∴()()2222222941MN m n n m m m =+-+-=-+,∴MN 最小值为5 故选:A.【点睛】本题考查了空间向量的应用,考查了转化化归和函数思想,属于中档题. 二、填空题13.【解析】【分析】利用平面可以得到从而为中点同理可得为中点再根据三棱锥为正三棱锥得到故四边形为矩形从而可计算其面积【详解】因为故在底面上的射影为底面三角形的外心又为等边三角形故在底面上的射影为底面三角 解析:452【解析】【分析】利用SB 平面DEFH 可以得到DHSB ,从而H 为SA 中点,同理可得F 为SC 中点,再根据三棱锥S ABC -为正三棱锥得到AC SB ⊥,故四边形HDEF 为矩形,从而可计算其面积.【详解】因为SA SB SC ==,故S 在底面上的射影为底面三角形的外心,又ABC ∆为等边三角形,故S 在底面上的射影为底面三角形的中心,所以三棱锥S ABC -为正三棱锥,所以SB AC ⊥.因SB 平面DEFH ,SB ⊂平面ABS ,平面ABS平面DEFH DH =,故SB DH ,因AD DB =,故AH HS =,1,2DHBS DH BS =,同理1,2EF BS EF BS =, 故,DH EF DH EF =,所以四边形DEFH 为平行四边形,又由,D E 为中点可得DE AC ,故DH DE ⊥,故四边形DEFH 为矩形. 又153,2DE DH ==,故矩形DEFH 的面积为452. 【点睛】 (1)正三棱锥中,对棱是相互垂直的,且顶点在底面的投影是底面正三角形的中心. (2)通过线面平行可以得到线线平行,注意利用线面平行这个条件时,要合理构建过已知直线的平面(该平面与已知平面有交线).14.【分析】以E 为原点EAEC 为xy 轴建立空间直角坐标系设用空间向量法求得t 进一步求得BD 【详解】以E 为原点EAEC 为xy 轴建立空间直角坐标系如下图解得t=1所以填【点睛】利用空间向量求解空间角与距离的解析:【分析】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,设(0,,2)(11)D t t -≤≤,用空间向量法求得t ,进一步求得BD.【详解】以E 为原点,EA,EC 为x,y 轴建立空间直角坐标系,如下图.1(0,0,0),,2),(0,1,0),(0,,2)(11)2E F B D t t --≤≤ 31(,,2),(0,1,2)2EF BD t ==+2(1)4102cos 5(1)4t EF BD EF BD t θ++⋅===⋅++ 解得t=1,所以22BD =,填22.【点睛】利用空间向量求解空间角与距离的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.15.【分析】将平移到一起利用勾股定理求得线线角为【详解】解:取中点连接中分别为的中点且同理可得且与所成的直角或锐角就是异面直线与所成角中得即异面直线与所成角等于故答案为:【点睛】方法点睛:平移法是立体几 解析:90【分析】将,AD BC 平移到一起,利用勾股定理求得线线角为90.【详解】解:取BD 中点G ,连接EG FG 、,ABD 中,,E G 分别为,AB BD 的中点,//EG AD ∴且132EG AD ==,同理可得//,FG BC 且142FG BC ==, EG ∴与FG 所成的直角或锐角就是异面直线AD 与BC 所成角, EFG △中,3,4,5EG GF EF ===,222EG FG EF ∴+=,得90,EGF ∠=︒即异面直线AD 与BC 所成角等于90,故答案为:90.【点睛】方法点睛:平移法是立体几何中求线线角的常用方法之一,平移时通常结合三角形中位线定理把欲求的角平移到一个三角形中,然后再解三角形即可.16.【分析】如图所示建立空间直角坐标系平面的法向量平面的法向量利用夹角公式计算得到答案【详解】设中点为则故故两两垂直如图所示建立空间直角坐标系平面的法向量设平面的法向量为则解得:则法向量夹角故二面角B ﹣【分析】如图所示建立空间直角坐标系,平面ABD 的法向量()11,0,0n =,平面ACD的法向量()21,n =,利用夹角公式计算得到答案.【详解】设BD 中点为O,则AO CO ==AC =,故AO CO ⊥,故,,OA OC OD 两两垂直,如图所示建立空间直角坐标系.平面ABD 的法向量()11,0,0n =,设平面ACD 的法向量为()2,,n x y z =,()(),,0,1,0A C D ,则220,0n CD n AD ⋅=⋅=,解得:()21,n =,则法向量夹角1212cos 5n n n n θ⋅===⋅.故二面角B ﹣AD ﹣C .【点睛】本题考查了二面角,意在考查学生的空间想象能力和计算能力.17.【解析】设P(00z)由|PA|=|PB|得1+4+(z−1)2=4+4+(z−2)2解得z=3故点P 的坐标为(003)解析:()003,, 【解析】设P(0,0,z),由|PA|=|PB|,得1+4+(z−1)2=4+4+(z−2)2,解得z=3,故点P 的坐标为(0,0,3). 18.【解析】即解析:12λλ<≠-且【解析】0a b a b ⋅<且与不共线 ,即212110,1λλ---<≠⇒ 12λλ<≠-且 19.【分析】由向量垂直的坐标运算直接计算【详解】由题意∵与互相垂直∴=解得故答案为【点睛】本题考查空间向量垂直的坐标运算解题关键是掌握向量垂直的充要条件即 解析:522-或 【分析】由向量垂直的坐标运算直接计算.【详解】 由题意2,5,1a b a b ==⋅=-,∵ka b +与2ka b -互相垂直,∴222()(2)2ka b ka b k a ka b b +⋅-=-⋅-=22250k k +-⨯=,解得522k k ==-或, 故答案为522-或. 【点睛】本题考查空间向量垂直的坐标运算,解题关键是掌握向量垂直的充要条件,即0a b a b ⊥⇔⋅=.20.【解析】试题分析:因为//所以即为异面直线与所成的角为因为是正方体所以因为所以所以当时考点:1异面直线所成的角;2线面垂直线线垂直解析:3【解析】试题分析:因为AB //CD ,所以PCD ∠即为异面直线AB 与CP 所成的角为α.因为1111ABCD A BC D -是正方体,所以11CD ADD A ⊥面,因为11DP ADDA ⊂面,所以DC DP ⊥.所以cos CD CP α=,当1CP CA =时,min 1(cos )CD CA α=== 考点:1、异面直线所成的角;2、线面垂直、线线垂直.三、解答题21.(1)证明见解析;(2. 【分析】(1)通过证明,PA BD AC BD ⊥⊥证得BD ⊥平面PAC ,由此证得平面PAC ⊥平面QBD .(2)建立空间直角坐标系,利用直线DB 的方向向量和平面PBC 的法向量,计算出直线DB 与平面PBC 所成角θ的正弦值.【详解】 (1)证明:PA ⊥平面ABCD ,BD ⊂面ABCD ,PA BD ∴⊥,底面ABCD 是一个菱形,AC BD ∴⊥, 又AC PA A ⋂=,BD ∴⊥平面PAC ,BD ⊂平面QBD ,∴平面PAC ⊥平面QBD .(2)设ACBD O =,取PC 中点E ,连结OE ,则//OE PA ,故OE AC ⊥,如图,建立空间直角坐标系,则(3,0,0)B ,(0,1,0)C,(D ,(0,1,2P -,(3,1,0)CB ∴=-,(0,CP =-,(2DB =,设(,,)m x y z =为平面PBC 的一个法向量,则302230m CBx y m CP y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩, 取3y =,则(1,3,1)m =,5cos ,5m m nn DB m ⋅∴<>==⋅, 5sin |cos ,|m DB θ∴=<>=.【点睛】在利用向量法计算线面角时,要注意利用公式计算所得为线面角的正弦值,而不是余弦值. 22.(1)证明见解析;(2)6 【分析】(1)连接BD ,交AC 于点O ,设PC 中点为F ,连接OF ,EF ,则由三角形中位线定理可得//OF PA ,且12OF PA =,再结合已知条件可得四边形OFED 为平行四边形,从而可得//BD EF ,由线面垂直的判定定理可得BD ⊥平面PAC ,进而得EF ⊥平面PAC ,再利用面面垂直的判定定理可证得结论;(2)由直线PC 与平面ABCD 所成的角为45︒,再结合已知可得ABC 为等边三角形,设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可【详解】解:(1)证明:连接BD ,交AC 于点O , 设PC 中点为F ,连接OF ,EF因为O ,F 分别为AC ,PC 的中点, 所以//OF PA ,且12OF PA =, 因为//DE PA ,且12DE PA =, 所以//OF DE ,且OF DE =, 故四边形OFED 为平行四边形, 所以//OD EF ,即//BD EF ,因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA BD ⊥. 因为ABCD 是菱形, 所以BD AC ⊥. 因为PAAC A =,所以BD ⊥平面PAC , 因为//BD EF , 所以EF ⊥平面PAC , 因为FE ⊂平面PCE , 所以平面PAC ⊥平面PCE .(2)设2PA AD ==,则1DE =.因为直线PC 与平面ABCD 所成的角为45︒, 所以45PCA ︒∠=, 所以2AC PA ==, 所以AC AB =, 故ABC 为等边三角形.设BC 的中点为M ,连接AM ,则AM BC ⊥.以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -(如图所示).则()0,0,2P ,)3,1,0C,()0,2,1E ,()0,2,0D ,()3,1,2PC =-,()3,1,1CE =-,()0,0,1DE =,设平面PCE 的法向量为{}111,,x n y z =,则00n PC n CE ⎧⋅=⎪⎨⋅=⎪⎩,即11111132030x y z x y z ⎧+-=⎪⎨-++=⎪⎩, 令11y =,则1132x z ⎧=⎪⎨=⎪⎩,所以()3,1,2n =,该平面CDE 的法向量为()222,,m x y z =,则00m DE m CE ⎧⋅=⎪⎨⋅=⎪⎩,即2222030z x y z =⎧⎪⎨-++=⎪⎩,令21x =,则223y z ⎧=⎪⎨=⎪⎩,所以()1,3,0m =,设二面角P CE D --的大小为θ,由于θ为钝角, 所以236cos cos ,4222n m n m n mθ⋅=-=-=-=-⋅⋅,所以二面角P CE D --的余弦值为6-. 【点睛】关键点点睛:此题考查面面垂直的判定,考查由线面角求二面角,解题的关键是由直线PC 与平面ABCD 所成的角为45︒,结合已知条件得ABC 为等边三角形,然后取BC 的中点M ,连接AM ,从而以A 为原点,AM ,AD ,AP 分别为x ,y ,z 轴,建立空间直角坐标系A xyz -,利用空间向量求解即可,属于中档题 23.(1)证明见解析;(2)56π. 【分析】(1)建立空间直角坐标系,证明平面111A B C 法向量与向量CE 垂直. (2)求二面角两个半平面的法向量所成角即可.【详解】(1)因为点1B 在平面ABC 内的正投影为B ,所以1B B BA ⊥,1B BBC ,又AB BC ⊥,如图建立空间直角坐标系B xyz -,()0,0,0B ,()2,0,0A ,()0,2,0C ,()12,0,4A ,()10,0,4B ,()10,2,2C ,()1,0,2E ,设平面111A B C 的法向量()1,,n x y z =,()112,0,0A B =-,()110,2,2B C =-,即20,220,x y z -=⎧⎨-=⎩取1y =,得1(0,1,1)n =,又()1,2,2CE =-,()10112210CE n ⋅=⨯+⨯-+⨯=, 所以1CE n ⊥,又CE ⊄平面111A B C 所以//CE 平面111A B C ;(2)设平面111A B C 的法向量()2,,n x y z =,()12,0,4B A =-,()110,2,2B C =-, 即240,220,x z y z -=⎧⎨-=⎩取1y =,得()22,1,1n =,同理可求平面1ACC 的法向量()31,1,0n =, 所以2323233cos ,2n n n n n n ⋅==⋅,由图知二面角11B AC C --的平面角是钝角, 所以二面角11B AC C --的平面角是56π. 【点睛】关键点睛:利用题设垂直条件,建立空间直角坐标系. 24.(Ⅰ)证明见解析;(Ⅱ465Ⅲ)存在,7PM =. 【分析】(Ⅰ)建立空间直角坐标系,求出平面BCD 的法向量以及直线BF 的方向向量,根据向量数量积为零,即可证明;(Ⅱ)分别求出平面PBD 与平面FBD 的法向量,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系求出其正弦值;(Ⅲ)设PM PC λ=,()0,1λ∈,利用空间向量法表示出直线BM 和平面BDF 所成角的正弦值,即可得到方程,求出λ,即可求出PM 的长; 【详解】解:(Ⅰ)由题意得://BC DE ,=BC DE ,90ADC ∠=︒, 所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A ,()3,0B,()1,0,0D -,(3P ,()3,0C -,132F ⎛ ⎝⎭设平面PCD 的法向量为(),,m x y z =,()0,3,0DC =,(3DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则3030x z ⎧=⎪⎨=⎪⎩, 则0y =,不妨设3x =-1z =, 可得()3,0,1m =-又13,3,2BF ⎛= ⎝⎭,可得0BF m ⋅=,又因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(Ⅱ)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即11110x ⎧+=⎪⎨=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n x yz =,32DF ⎛=⎝⎭, 则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即22220302x x z ⎧=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-,因此有121212cos ,65n n n n n n ⋅==-⋅ (注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F --.(Ⅲ)设((),PMPC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(Ⅱ)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得13PM ⎛=- ⎝⎭, 所以73PM =. 【点睛】本题考查了立体几何中的线面垂直的判定和二面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解. 25.(1)证明见解析;(2)23;(3)23.【分析】建立空间直角坐标系A xyz -,设正方体的棱长为2(1)求出平面1AD E 的法向量和1BC ,由11BC n ⊥可得答案;(2)直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,利用AB n d n⋅=可得答案;(3)求出平面ABCD 的一个法向量设平面1AD E 与平面ABCD 夹角为θ,111cos cos n n n n n n θ⋅=⋅=可得答案.【详解】如图建立空间直角坐标系A xyz -,设正方体的棱长为2则(0,0,0)A ,(0,2,0)B ,1(2,0,2)D ,1(2,2,2)C , (0,2,1)E , (1)设平面1AD E 的法向量为1111(,,)n x y z =,100n AD n AE ⎧⋅=⎨⋅=⎩22020x z y z +=⎧∴⎨+=⎩,令1x =,则1,z =-1,2y =111,,12n ⎛⎫∴=- ⎪⎝⎭,1(2,0,2)BC =, 111(2,0,2)1,,12202C n B ⎛⎫⋅=⋅-=-= ⎪⎝⎭,∴11BC n ⊥,1C B ⊄面1AD E 1//BC ∴平面1AD E .(2)1//BC 平面1AD E ,直线1BC 到平面1AD E 的距离即为点B 到平面1AD E 的距离,(0,2,0)AB =,111,,12n ⎛⎫=- ⎪⎝⎭,11AB n d n ⋅==10120(1)21114⨯+⨯+⨯-++=23, ∴直线1BC 到平面1AD E 的距离为23.(3)平面ABCD 的一个法向量为(0,0,2)n =,设平面1AD E 与平面ABCD 夹角为θ,11 1,,1 2n⎛⎫=-⎪⎝⎭,111cos cosn nn nn nθ⋅=⋅==10102(1)212114⨯+⨯+⨯-++=23,所以平面1AD E与平面ABCD夹角的余弦值23.【点睛】方法点睛:本题考查空间中线面平行关系、线面距离、面面角的求法,关键点是建立空间直角坐标系,利用向量法解决问题,考查学生的空间想象力和运算能力.26.(1)311055;(2)存在,115B P =.【分析】(1)以点1B为坐标在原点建立空间直角坐标系,利用向量法可求得结果;(2)假设存在点P,设(,0,0)Pλ,且[]0,2λ∈,利用平面PBC的法向量与平面ABC 的法向量垂直列式可解得结果.【详解】(1)以点1B为坐标在原点建立空间直角坐标系,如图:则1(0,0,0)B,1(2,0,0)A,(2,2,0)A,(0,2,0)B ,(1,1,3)C ,(1)(2,0,0)AB=-,(1,1,3)AC=--,设平面ABC 的一个法向量(,,)n x y z=则n ABn AC⎧⋅=⎨⋅=⎩,即2030xx y z-=⎧⎨--+=⎩,令1z=得(0,3,1)n=,设1AC与平面ABC所成角为θ,1(1,1,3)AC=-,110333sin11055119091AC nAC nθ⋅++∴===++⨯++⋅(2)假设存在点P,设(,0,0)Pλ,且[]0,2λ∈,(,2,0)PBλ∴=-,(1,1,3)BC=-,设平面PBC的法向量(,,)m x y z=,则m PBm BC⎧⋅=⎨⋅=⎩,即2030x yx y zλ-+=⎧⎨-+=⎩,令1x=得11,,263mλλ⎛⎫=-⎪⎝⎭,平面PBC⊥平面ABC,m n∴⊥,即31263m nλλ=⋅=+-,得[]10,25λ=∈,∴存在这样的点1,0,05P⎛⎫⎪⎝⎭使得平面PBC⊥平面ABC,且115B P=.【点睛】关键点点睛:将平面与平面垂直问题转化为两个平面的法向量垂直求解是本题的解题关键.。

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)(1)

(压轴题)高中数学高中数学选修2-1第二章《空间向量与立体几何》测试卷(答案解析)(1)

一、选择题1.在四面体OABC 中,空间的一点OM 满足1126OM OA OB OC λ=++,若MA ,MB ,MC 共面,则λ=( ) A .12 B .13 C .512 D .712 2.过平面α外一点A 引斜线段AB 、AC 以及垂线段AO ,若AB 与α所成角是30,6AO =,AC BC ⊥,则线段BC 长的取值范围是( )A .()0,6B .()6,+∞C .()0,63D .()63,+∞ 3.已知空间三点坐标分别为A (4,1,3),B(2,3,1),C (3,7,-5),又点P (x,-1,3) 在平面ABC 内,则x 的值 ( )A .-4B .1C .10D .114.在直三棱柱111ABC A B C -中,1111122AA A B B C ==,且AB BC ⊥,点M 是11AC 的中点,则异面直线MB 与1AA 所成角的余弦值为( )A .13B .22C .32D .125.已知正方体1111ABCD A BC D -,M 为11A B 的中点,则异面直线A M 与1BC 所成角的余弦值为( )A .105B .1010C .32D .626.下列命题中是真命题的是( )A .分别表示空间向量的两条有向线段所在的直线是异面直线,则这两个向量不是共面向量B .若a b =,则,a b 的长度相等而方向相同或相反C .若向量,AB CD ,满足AB CD >,且AB 与CD 同向,则AB CD >D .若两个非零向量AB 与CD 满足0AB CD +=,则//AB CD7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在坐标平面上的正投影图形的面积,则( ) A .123S S S ==B .21=S S 且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠9.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面的中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)若,AM MP ⊥则点P 形成的轨迹的长度为( ) A .7 B .7 C .7 D .7 10.已知()()()1,2,3,2,1,2,1,1,2,OA OB OC ===,点M 在直线OC 上运动.当MA MB ⋅取最小值时,点M 的坐标为( )A .(2,2,4)B .224(,,)333 C .5510(,,)333 D .448(,,)33311.已知A 、B 、C 是不共线的三点,O 是平面ABC 外一点,则在下列条件中,能得到点M 与A 、B 、C 一定共面的条件是( )A .111222OM OA OB OC =++ B .OM OA OB OC =++ C .1133OM OA OB OC =-+ D .2OM OA OB OC =-- 12.在长方体1111ABCD A BC D -中,若13AC =,则111()AB AC AD AC ++⋅=( ) A .0 B .3 C .3D .6 二、填空题13.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,11AB AC AA ===,已知G 和E 分别为11A B 和1CC 的中点,D 和F 分别为线段AC 和AB 上的动点(不包括端点),若DG EF ⊥,则线段DF 长度的取值范围为______.14.如图,在四面体ABCD 中,若截面PQMN 是正方形,则有以下四个结论,其中结论正确的是__________________.(请将你认为正确的结论的序号都填上,注意:多填、错填、少填均不得分.)①//AC 截面PQMN ;②AC BD ⊥;③AC BD =;④异面直线PM 与BD 所成的角为045.15.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m 、n 所成角的正弦值为________.16.在四面体ABCD 中,△ABD 和△BCD 均为等边三角形,AB =2,6AC ,则二面角B ﹣AD ﹣C 的余弦值为_____.17.在正方体1111ABCD A BC D -中,M 为棱11A B 的中点,则异面直线AM 与1BC 所成的角的大小为________(结果用反三角函数值表示).18.已知点()121A --,,,()222B ,,,点P 在Z 轴上,且点P 到,A B 的距离相等,则点P 的坐标为___________.19.将边长为a 的正方形ABCD 沿对角线AC 折起,使BD a =,则三棱锥D ABC -的体积为 .20.已知棱长为1的正方体1111ABCD A BC D -中,E ,F 分别是11B C 和11C D 的中点,点1A 到平面DBEF 的距离为________________.三、解答题21.在几何体111ABC A B C -中,点1A 、1B 、1C 在平面ABC 内的正投影分别为A 、B 、C ,且AB BC ⊥,114AA BB ==,12AB BC CC ===,E 为1AB 的中点.(1)求证://CE 平面111A B C ;(2)求二面角11B AC C --的大小.22.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)若//PB 平面AEC ,请确定点E 的位置,并说明理由.(2)设2AB AP ==,3AD =,若13PE PD =,求二面角P AC E --的正弦值. 23.如图,已知ABCD 为正方形,GD ⊥平面ABCD ,//AD EG 且2AD EG =,//GD CF 且2GD FC =,2DA DG ==.(1)求平面BEF 与平面CDGF 所成二面角的余弦值;(2)设M 为FG 的中点,N 为正方形ABCD 内一点(包含边界),当//MN 平面BEF 时,求线段MN 的最小值.24.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:平面111A AMN EB C F ⊥;(2)设O 为111A B C △的中心,若//AO 平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.25.如图,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,14AA =,点D 是BC 的中点.(1)求异面直线1A B 与1C D 所成角的余弦值;(2)求平面1ADC 与平面1A BA 所成的二面角(是指不超过90的角)的余弦值. 26.如图,在ABC 中,90B ∠=︒,2AB =,1BC =,D ,E 两点分别是边AB ,AC 的中点,现将ABC 沿DE 折成直面角A DE B --.(1)求证:平面ADC ⊥平面ABE ;(2)求直线AD 与平面ABE 所成角的正切值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据向量共面定理求解.【详解】 由题意1126MA OA OM OA OB OC λ=-=--, 1526MB OB OM OA OB OC λ=-=-+-,11(1)26MC OC OM OA OB OC λ=-=--+-, ∵MA ,MB ,MC 共面,∴在在实数唯一实数对(,)m n ,使得MA mMB nMC =+,1126OA OB OC λ--1511(1)2626m OA OB OC n OA OB OC λλ⎛⎫⎡⎤=-+-+--+- ⎪⎢⎥⎝⎭⎣⎦, ∴111222511666(1)m n m n m n λλλ⎧--=⎪⎪⎪-=-⎨⎪-+-=-⎪⎪⎩,解得132313m n λ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩. 故选:B .【点睛】结论点睛:本题考查空间向量共面定理.空间上任意三个不共面的向量都可以作为一个基底,其他向量都可用基底表示,且表示方法唯一.,,OA OB OC 是不共面的向量,OM xOA yOB zOC =++,则,,,M A B C 共面⇔1x y z ++=.2.C解析:C【分析】画出已知图形,可得出OBC ∆是以OB 为斜边的直角三角形,求出OB 的长度,则线段BC 长的范围即可求出.【详解】如下图所示:AO α⊥,BC α⊂,BC AO ∴⊥.又BC AC ⊥,AO AC A ⋂=,AO 、AC ⊂平面ACO ,BC ∴⊥平面ACO . OC ⊂平面ACO ,OC BC ∴⊥,在Rt OAB ∆中,6AO =,30ABO =∠,63tan 30AO OB ∴==. 在平面α内,要使得OBC ∆是以OB 为斜边的直角三角形,则0BC OB <<,即063BC <<BC 长的取值范围是(0,63.故选C.【点睛】本题考查线段长度的取值范围的求解,同时也考查了线面角的定义,解题的关键就是推导出线面垂直,得出线线垂直关系,从而构造直角三角形来求解,考查推理能力与计算能力,属于中等题. 3.D解析:D【分析】利用平面向量的共面定理即可求出答案 【详解】(),1,3P x -点在平面ABC 内,λμ∴存在实数使得等式AP AB AC λμ=+成立()()()4,2,02,2,21,6,8x λμ∴--=--+--42226028x λμλμλμ-=--⎧⎪∴-=+⎨⎪=--⎩,消去λμ,解得11x =故选D【点睛】本题主要考查了空间向量的坐标运算,共面向量定理的应用,熟练掌握平面向量的共面定理是解决本题的关键,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学选修2-1知识点梳理重点题型(常考知识点)巩固练习【巩固练习】 一、选择题 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面; ③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量总可以唯一表示为z y x ++=. 其中正确命题的个数为 ( ) A .0 B .1 C .2 D .32.(2015秋 武威校级期末)向量(1,2,2)a =-,(2,4,4)b =--,则a 与b ( ) A .相交 B .垂直 C .平行 D .以上都不对3.(2015春 济南校级期中改编)下列各组向量中不平行的是( )A .(1,2,2)a =-,(2,4,4)b =--B .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g4.已知A (-4,6,-1)、B (4,3,2),则下列各向量中是平面AOB 的一个法向量的是 ( ) A .(0,1,6) B .(-1,2,-1) C .(-15,4,36) D .(15,4,-36) 5.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则D 的坐标为( )A.7412⎛⎫- ⎪⎝⎭,, B.(241),,C.(2141)-,,D.(5133)-,,6. 如图所示,ABCD -EFGH 是边长为1的正方体,若P 在正方体内部且满足312423AP AB AD AE =++,则P 到AB 的距离为( )A .56B .12C .6D .67.已知A B C 、、三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A B C 、、一定共面的是( )A .OM OA OB OC =++B .2OM OA OB OC =--C .1123OM OA OB OC =++D .111333OM OA OB OC =++二、填空题8.若向量)2,3,6(),4,2,4(-=-=b a,则(23)(2)=a b a b -+________.9.设(331)(105)(010)A B C ,,,,,,,,,则AB 的中点M 到点C 的距离CM =________.10.若(3)a b +⊥)57(b a -,且(4)a b -⊥)57(b a-,则a 与b 的夹角为________.11.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,=3BE ED ,以{AB ,AC ,AD }为基底,则GE = .EM GDCBA三、解答题12. (2015 福建)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB=BE=EC=2,G ,F 分别是线段BE ,DC 的中点. (Ⅰ)求证:GF ∥平面ADE ;(Ⅱ)求平面AEF 与平面BEC 所成锐二面角的余弦值.13. 如图,四面体ABCD 中,BO OD =,BE CE =,2CA CB CD BD ====,AB AD = (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的余弦值; (Ⅲ)求点E 到平面ACD 的距离.14. 已知1111ABCD A B C D -是底面边长为1的正四棱柱,1O 是11A C 和11B D 的交点. (1)设1AB 与底面1111A B C D 所成的角的大小为α,平面11AB D 与平面111A B D 的夹角为β.求证:tan βα; (2)若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A B C D -的高.15. 如图,四棱锥S ABCD -倍,P 为侧棱SD 上的点. (Ⅰ)求证:AC SD ⊥;(Ⅱ)若SD ⊥平面PAC ,求平面PAC 与平面ACD 的夹角大小;(Ⅲ)在(Ⅱ)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC .若存在,求SE ∶EC 的值;若不存在,试说明理由.【答案与解析】 1.【答案】A【解析】①错,若a 、b 共线,则a 、b 所在的直线平行或共线;②错,空间中任意两个向量都是共面向量;③错,若、、三向量两两共面,则、、三向量不一定共面,如正方体1111ABCD A B C D -中,向量AB ,AD ,1AA 不共面;④错,这是共面向量的推论,必须满足条件=1x y z ++. 故选项为A.2.【答案】C 【解析】解:∵向量(1,2,2)a =-,(2,4,4)2(1,2,2)2b a =--=--=-,则a 与b 平面, 故选:C 。

3.【答案】D【解析】2//;3//;b a a b d c d c =-⇒=-⇒而零向量与任何向量都平行,故选D. 4.【答案】D【解析】 设法向量为(x ,y ,z ),则4604320x y z x y z -+-=⎧⎨++=⎩,,解得1549x y z y ⎧=⎪⎨⎪=-⎩,.令y =4,则得法向量(15,4,-36).5.【答案】D【解析】设()D x y z ,,.ABCD 为平行四边形()()-3=2262=-3-7+5-7=6+5=2.x BA DC x y z y z ⎧⎪⇔=⇔⇔⎨⎪⎩,,,,,, 解得=5=13=-3x y z ,,.所以()513-3D ,,. 6.【答案】A【解析】分别以AB 、AD 、AE 所在直线为x 、y 、z 轴建立空间直角坐标系,则312423P ⎛⎫⎪⎝⎭,,.P 点在AB 上的射影坐标为30004⎛⎫ ⎪⎝⎭,,,∴ P 到AB 的距离为15||6PO ⎛== . 7. 【答案】D【解析】由共面向量定理的推理可知,若,,,M A B C 四点共面,则对于空间任意一点O ,有()1O M x O A y O Bz O C x y z=++++=,故选D. 8.【答案】212-【解析】23(10,13,14)a b -=--,2(16,4,0)a b +=-,则()()232160520212a -ba b ----+==.9.【解析】点M 的坐标为3(2,,3)2,1(2,,3)2CM =,2||2CM ==. 10.【答案】0【解析】由题意可知,2222(3)(75)=716150(4)(75)=733200.a b a b a a b b a b a b a a b b ⎧+-+-=⎪⎨⎪---+=⎩, 即224935,4935.a b b a a b ⎧=⎪⎨⎪=⎩ 则223535353549,,cos ,1494949ba ba b a b b a b b a b a ba ==<>====所以向量a b ,的夹角为0 11.【答案】1131234AB AC AD + 【解析】连接ME .ABC ∆中,BC AC AB =,则()11=22BM BC AC AB =,()111222AM AB BM AB AC AB AB AC =+=+=+, 111366GM AM AB AC ==+;ABD ∆中,BD AD AB =,则()3344BE BD AD AB ==;BME ∆中,()()3111342424ME BE BM AD AB AC AB AB AC AD ===+; GME ∆中,11113113=+=664241234GE GM ME AB AC AB AC AD AB AC AD ⎛⎫⎛⎫=++++ ⎪ ⎪⎝⎭⎝⎭.12. 【解析】解法一:(Ⅰ)如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,所以GH ∥AB ,且12GH AB =, 又F 是CD 中点,所以12DFCD =,由四边形ABCD 是矩形得,AB ∥CD ,AB=AC ,所以GH ∥DF ,且GH =DF .从而四边形HGFD 是平行四边形,所以GF ∥DH ,从而四边形HGFD 是平行四边形,所以GF ∥DH ,又DH 趟平面ADE ,GF 平面ADE ,所以GF ∥ADE .(Ⅱ)如图,在平面BEC内,过点B作BQ∥EC,因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ以B为原点,分别以BE BQ BA,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以(002)BA =,,为平面BEC的法向量,设()n x y z=,,为平面AEF的法向量.又(202)(221)AE AF=-=-,,,,,由,,⎧⋅=⎪⎨⋅=⎪⎩n AEn AF得220220x zx y z-=⎧⎨+-=⎩,,取z=2得(212)n=-,,.从而42cos323||||,⋅〈〉===⨯⋅n BAn BAn BA,所以平面AEF与平面BEC所成锐二面角的余弦值为23.解法二:(Ⅰ)如图,取AB中点M,连接MG,MF,又G是BE的中点,可知GM∥AE,又AE⊂面ADE,GM⊄面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂面ADE,MF⊄面ADE,所以MF∥面ADE.又因为GM∩MF=M,GM⊂面GMF,MF⊂面GMF,所以面GMF∥平面ADE,因为GF⊂面GMF,所以GM∥平面ADE.(Ⅱ)同解法一.13. 【解析】如图建立空间坐标系,然后可以用向量求解.(Ⅰ)连结CO∵AB=AD ,∴AO BD ⊥,又∵1AO =,CO =,∴222AO CO AC +=,∴AO OC ⊥, ∴AO ⊥平面BOC ,(Ⅱ)如图,以O 为原点建立空间直角坐标系,则B (1,0,0),(0,0,1)A ,C ,(1,0,0)D -,1(2E ,∴(1,0,1)BA =-,(1,CD =-∴2cos ,||||BA CD BA CD BA CD ⋅〈〉==⋅∴异面直线AB 与CD .(Ⅲ)1)AC =-,(1,0,1)DA =,1(2EC =-,设平面ACD 的法向量为(,,),n x y z = 则0n DA n AC ⎧⋅=⎪⎨⋅=⎪⎩,即00x z z +=⎧⎪-=,令1,y =得(3,1,n =-∴点E 到平面ACD 的距离||3||7EC n h n ⋅===.14. 【解析】设正四棱柱的高为h .⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠= ∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===. ⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h 11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =, ∵ 11110n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D 的距离为2||43||n AC d n h ⋅===,则2h =. 15 【解析】(Ⅰ)证明:连BD ,设AC 交BD 于O ,由题意知SO ⊥平面ABCD .以O 为坐标原点,,,OB OC OS 分别为x 轴、y 轴、z 轴正方向,建立坐标系O xyz -如图.(Ⅱ)由题设知,平面PAC 的一个法向量2()2DS a =,平面DAC 的一个法向量)OS a =,设所求角为θ,则 23cos ==θ, 平面PAC 与平面DAC 的夹角为30︒.(Ⅲ)在棱SC 上存在一点E 使//BE PAC 平面.由(Ⅱ)知DS 是平面PAC的一个法向量,且2()2DS a =,(0,)2CS a =-.设CE tCS =,(,(1),)222BE BC CE BC tCSa a t at =+=+=--则 而310=⇔=⋅t ,即当:2:1SE EC =时,BE DS ⊥, 而BE 不在平面PAC 内,故//BE PAC 平面.。

相关文档
最新文档