3.1 变化率与导数
高中数学选修1课件:3.1.1变化率与导数
r(V2 ) r(V1) f (x2 ) f (x1)
V2 V1
x2 x1
设某个变量 f 随 x 的变化而变化,
从 x 经过 △x , 量 f 的改变量为
f f (x x) f (x)
量 f 的平均变化率为
f f (x x) f (x)
x
x
令 x 0,则得到f 在x 的(瞬时)变化率:
t=0.2,0.4,0.6,0.8(min)时,血管中 药物浓度的瞬时变化率,把数据用表格 的形式列出。(精确到0.1)
血管中药物浓度的瞬时变化率, 就是药物浓度 函数f(t)在此时刻的导数, 从图象上看,它表示
曲线在该点处的切线的斜率. (数形结合,以直代曲)
以简单对象刻画复杂的对象
t
0.2
药物浓度的 瞬时变化率
(3) 物体在t =2时的瞬时速度.
v s 2g 1 gt
t
2
(1) 将 t=0.1代入上式,得
O s(2)
v 2.05g 20.09(m / s) (2) 将 t=0.01代入上式,得
s(2+t) s
v 2.005g 19.65(m / s)
( 3) 当t 0,2 t 2
平均速度 v 的极限为:
x0
x
T
P
f (x 0 )
o
x0
x 即 kPT tan f (x 0 )
函数y f (x)在点x0处的导数f (x0 )在几何上表示 曲线y f (x)在点M (x0, f (x0 ))处的切线的斜率。
曲线y f (x)在点M (x0 , f (x0 ))处
的切线方程为 y y0 f (x0 )(x x0 )
0.01 -13.149
人教新课标版(A)高二选修1-1 3.1变化率与导数同步练习题
人教新课标版(A )高二选修1-1 3.1 变化率与导数同步练习题【基础演练】题型一:变化率问题与导数概念一般地,()()1212x x x f x f x f --=△△我们称为平均变化率,如果0x →△时,()()x x f x x f limx flim000x 0x △△△△△△-+=→→存在,称此极限值为函数()x f y =在0x 处的导数,记作()0x f ',请根据以上知识解决以下1~5题。
1. 一质点运动的方程为2t 35s -=,则在一段时间[]t 1,1△+内相应的平均速度为 A. 6t 3+△ B. 6t 3+-△ C. 6t 3-△ D. 6t 3--△2. 将半径为R 的球加热,若球的半径增加△R ,则球的体积增加△y 约等于A.R R 343△πB. R R 42△πC. 2R 4πD. R R 4△π3. 已知函数1x y +=2的图象上一点(1,2)及邻近一点()y 2,x 1△△++,则xy△△等于A. 2B. 2xC. 2+△xD. 2+△2x4. 自变量0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数A. 在区间[]10x ,x 上的平均变化率B. 在0x 处的变化率C. 在1x 处的变化量D. 在区间[]10x ,x 上的导数5. (2004·山东)若函数()x f 在a x =处的导数为A ,求()()x2x a f x a f lim 0x △△△△--+→。
题型二:导数的物理意义在物体的运动规律中,如果()t s s =,那么物体的瞬时速度()()tt s t t s limt s limv 0t 0t △△△△△△-+==→→;如果()t v v =,那么物体的加速度()()t t v t t v lim t v lim a 0t 0t △△△△△△-+==→→,请根据以上知识解决以下6~7题。
6. 若一物体运动方程如下:()()()⎪⎩⎪⎨⎧≥-+<≤+=3t 3t 3293t 02t 3s 22 求物体在1t =或3t =时的速度。
2025高考数学一轮复习-3.1-变化率与导数、导数的计算【课件】
2.某跳水运动员离开跳板后,他达到的高度与时间的函数关系式是 h(t)=10-4.9t2 +8t(距离单位:米,时间单位:秒),则他在 0.5 秒时的瞬时速度为_____3_._1_______米/秒.
【解析】 ∵h′(t)=-9.8t+8,∴他在 0.5 秒时的瞬时速度为 h′(0.5)=3.1 米/秒.
易错易混 5.(多选)下列求导运算正确的是( BC ) A.x+1x′=1+x12 B.(log2x)′=xl1n2 C.(3x)′=3x·ln3 D.(x2cosx)′=-2xsinx
【解析】
因为
x+1x
′=1-
1 x2
,所以选项A不正确;因为(log2x)′=
1 xln2
,所以选项B
正确;因为(3x)′=3xln3,所以选项C正确;因为(x2cosx)′=2xcosx-x2sinx,所以选项D不正
(2)函数 y=f(x)的导数 f ′(x)反映了函数 f(x)的瞬时变化趋势,其正负号反映了变化的 方向,其大小|f′(x)|反映了变化的快慢,|f ′(x)|越大,曲线在这点处的切线越“陡”.
『基础过关』
思考辨析
1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x0)是函数 y=f(x)在 x=x0 附近的平均变化率.( × ) (2)f ′(x0)与[f(x0)]′表示的意义相同.( × ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (4)函数 f(x)=sin(-x)的导数是 f ′(x)=cosx.( × )
3
2.分别求下列函数的导数 (1)y=x2sinx; (2)y=lnx+1x; (3)y=coesx x; (4)y=ln(2x-5); (5)y=xsin2x+2πcos2x+2π.
2014年人教A版选修1-1课件 3.1 变化率与导数
x
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (1) h h( 65 ) h(0) 49 65 65 2 4.9 ( ) + 6.5 + 10 (4.9 02 + 6.5 0 + 10) 49 49 0. h 0 0. 实际是 65 65 t 0 . t 65 这样吗? 49 49 49 65 ]这时段的平均速度为 0. 计算得 t 在 [0, 49
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (3) h h( 65 ) h( 65 ) 49 98 65 65 65 65 2 2 4.9 ( ) + 6.5 + 10 (4.9 ( ) + 6.5 + 10) 49 49 98 98 13 65 13 65 . h 4 98 4 98 13 . t 65 4 65 65 65 t . 98 49 98 98 这时段的平均速度为负, 速度是向下的.
变化率与导数
变化率与导数
变化率与导数是微积分中的重要概念,它们能够帮助我们准确地表达和计算特定函数在特定点的斜率。
变化率可以定义为一个函数在某一点的变化量与该点前后变化量之比。
其定义式如下:
变化率 = 变化量/原始量
其中,变化量就是位于某一点处曲线上的一段段区域的变化量,而原始量则是位于曲线前后的一段段区域的变化量。
变化率的单位一般用“%”或者“1/X”表示,其中X 代表原始量。
变化率是一个值,用来估计特定函数在特定点处的变化情况。
当我们想要更加精确地表达函数变化情况时,就需要使用导数。
导数是变量x的函数y在x处的一阶微分,也就是某一点处函数的斜率。
它可以用下面的公式来表示:
dy/dx=f'(x)
其中,f'(x) 是函数y关于x的导数,它可以表示函数y在x处的斜率,也就是函数y在x处的变化速率。
因此,导数有助于我们更精确地表达函数的变化情况,它可以表示函数在特定点处的变化速度。
总之,变化率与导数都是微积分中重要的概念,它们都是用来表示函数在特定点处的变化情况。
变化率用来表
示函数在特定点处的变化量与原始量之比,而导数则是根据函数的一阶微分来表示函数在特定点处的斜率,从而表示函数在特定点处的变化速率。
2012高中数学 3.1.1、2变化率与导数 精品课件同步导学 新人教A版选修1-1
• 答案: B
• 2.如果质点M按照规律s=3t2 运动,则在t=3时的瞬时速
度为( • A.6 • C.54
解析:
) B.18 D.81
2 2 Δs 33+Δt -3×3 = =18+3Δt Δt Δt
• 答案:
Δs s′=lim =lim (18+3Δt)=18.故选 B. Δt Δt→0 Δt→0
• 解答本题,根据瞬时速度和平均速度的意义,准确应用公 式来求.
[解题过程]
(1)当 t 由 t0 取得一个改变量 Δt 时,s 取得的相应改
1 1 2 1 2 变量为 Δs=2g(t0+Δt) -2gt0=gt0Δt+2g(Δt)2. 因此,在 t0 到 t0+Δt 这段时间内,物体的平均速度为: 1 gt0Δt+2gΔt2 Δs 1 v = Δt = =g· 0+2Δt).① (t Δt
2
即 g(x)在 1 到 1+Δx 之间的平均变化率为 4+2Δx.12 分
[题后感悟]
(1)求函数 f(x)在 x1 到 x2 的平均变化率的步骤:
•
(2)由f(x)在1到1+Δx之间的平均变化率为3,说明f(x)在x
=1附近的平均变化率为定值,而g(x)在1到1+Δx之间的平 均变化率为4+2Δx,说明g(x)在x=1附近的平均变化率与Δx 的大小有关.
1 所以 f′(x0)= ,故选 D. 3
【错因】
错解虽然注意到了系数关系,但却忽略了分子 Δy 与
fx0+Δx-fx0 分母 Δx 的对应关系.在导数的定义 f′(x0)=lim 中, Δx Δx→0 Δx 是分子 f(x0+Δx)与 f(x0)中此类问题时容易忽略分子与分母相应的符号或 Δx 系数的一 致性.
②∵Δy=f(1+Δx)-f(1)=[3×(1+Δx)+1]-(3×1+1)=3·Δx, Δy 3·Δx ∴ = =3, Δx Δx 即 f(x)在 1 到 1+Δx 之间的平均变化率为 3.9 分 ∵Δy=g(1+Δx)-g(1)=[2×(1+Δx)2 +1]-(2×12 +1)=4·Δx+ 2·(Δx)2, Δx Δy 4·Δx+2· ∴Δx= =4+2·Δx, Δx
人教版高中数学选修2-2课后习题参考答案
新课程数学选修2(一)—2第一章课后习题解答第一章 导数及其应用 3.1变化率与导数 练习(P6)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升.练习(P8)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”1的思想. 练习(P9) 函数33()4Vr V π=(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题1.1 A 组(P10)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第 5 s 时的瞬时速度为10 m /s ,它在第 5 s 的动能213101502k E =⨯⨯= J.4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>. 由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=.车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π1s -. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数()f x 在5x =-处切线的斜率大于零,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数()f x '的图象如图(1)所示;第二个函数的导数()f x '恒大于零,并且随着x 的增加,()f x '的值也在增加;对于第三个函数,当x 小于零时,()f x '小于零,当x 大于零时,()f x '大于零,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2导数的计算 练习(P18)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)4106y x x '=-; (4)3sin 4cos y x x '=--;(5)1sin 33xy '=-; (6)21y x '=-.习题1.2 A 组(P18)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=. 2、()9.8 6.5h t t '=-+. 3、3213()34r V Vπ'=.4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)2323sin cos cos sin x x x x xy x -+'=; (4)9899(1)y x '=+; (5)2x y e -'=-; (6)2sin(25)4cos(25)y x x x '=+++. 5、()82f x x '=-+. 由0()4f x '=有 04822x =-+,解得032x =. 6、(1)ln 1y x '=+; (2)1y x =-. 7、1xy π=-+.8、(1)氨气的散发速度()500ln 0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题1.2 B 组(P19) 1、(1)(2)当h 越来越小时,sin()sin x h xy h+-=就越来越逼近函数cos y x =.(3)sin y x =的导数为cos y x =.2、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P .x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.1.3导数在研究函数中的应用 练习(P26)1、(1)因为2()24f x x x =-+,所以()22f x x '=-.当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增;当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P29)1、24,x x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,4x x =是函数()y f x =的极小值点. 2、(1)因为2()62f x x x =--,所以()121f x x '=-.注:图象形状不唯一.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减.所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-. (2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =-时,()f x 有极大值,并且极大值为54; 当3x =时,()f x 有极小值,并且极小值为54-. (3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-; 当2x =时,()f x 有极大值,并且极大值为22 (4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-; 当1x =时,()f x 有极大值,并且极大值为2 练习(P31)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-; 又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题1.3 A 组(P31)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =--,所以()20f x '=-<. 因此,函数()24f x x =-是单调递减函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值;(2)在1x x =和4x x =处,导函数()y f x '=有极小值; (3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值.5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16; 当2x =时,()f x 有极小值,并且极小值为16-. (3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22; 当2x =时,()f x 有极小值,并且极小值为10-. (4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-; 当4x =时,()f x 有极大值,并且极大值为128. 6、(1)在[1,1]-上,当112x =-时,函数2()62f x x x =++有极小值,并且极小值为4724. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4724. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16;当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)在1[,1]3-上,函数3()612f x x x =-+在1[,1]3-上无极值.由于1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,117-. 习题3.3 B 组(P32)1、(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略(4)证明:设()ln f x x x =-,0x >. 因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<; 当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >. . 综上,ln x x x e <<,0x >图略2、(1)函数32()f x ax bx cx d =+++的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象上能大致估计它的单调区间.(2)因为32()f x ax bx cx d =+++,所以2()32f x ax bx c '=++. 下面分类讨论:当0a ≠时,分0a >和0a <两种情形: ①当0a >,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即12x x x <<时,函数32()f x ax bx cx d =+++单调递减.当0a >,且230b ac -≤时,此时2()320f x ax bx c '=++≥,函数32()f x ax bx cx d =+++单调递增. ②当0a <,且230b ac ->时,设方程2()320f x ax bx c '=++=的两根分别为12,x x ,且12x x <,当2()320f x ax bx c '=++>,即12x x x <<时,函数32()f x ax bx cx d =+++单调递增;当2()320f x ax bx c '=++<,即1x x <或2x x >时,函数32()f x ax bx cx d =+++单调递减.当0a <,且230b ac -≤时,此时2()320f x ax bx c '=++≤,函数32()f x ax bx cx d =+++单调递减 1.4生活中的优化问题举例 习题1.4 A 组(P37)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<.令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.3、如图,设圆柱的高为h ,底半径为R , 则表面积222S Rh R ππ=+ 由2V R h π=,得2V h Rπ=. (第2题)因此,2222()222V V S R R R R R Rππππ=+=+,0R >. 令2()40V S R R R π'=-+=,解得R =.当R ∈时,()0S R '<;当)R ∈+∞时,()0S R '>. 因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可以得到,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2xm ,半圆的面积为28x π2m ,矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘单价. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.求导得1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题1.4 B 组(P37)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<.令1()7005L x x '=-+=,解得350x =.当(180,350)x ∈时,()0L x '>;当(350,680)x ∈时,()0L x '>. 因此,350x =是函数()L x 的极大值点,也是最大值点.所以,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c cc x a x b b-=-+⨯=--,54b a x <<. 令845()0c ac bc L x x b b+'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<.当458a bx +=是函数()L x 的极大值点,也是最大值点. 所以,销售价为458a b+元/件时,可获得最大利润.1.5定积分的概念 练习(P42) 83. 说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、22112()[()2]()i i i i i s s v t n n n n n n '∆≈∆=∆=-+⋅=-⋅+⋅,1,2,,i n =.于是 111()n n ni i i i i is s s v t n ==='=∆≈∆=∆∑∑∑2112[()]ni i n n n ==-⋅+⋅∑22211111()()()2n n n n n n n n -=-⋅--⋅-⋅+2231[12]2n n=-++++31(1)(21)26n n n n ++=-⋅+111(1)(1)232n n =-+++取极值,得1111115lim [()]lim [(1)(1)2]323nnn n i i i s v n n n n →∞→∞====-+++=∑∑ 说明:进一步体会“以不变代变”和“逼近”的思想. 2、223km.说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2304x dx =⎰. 说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线3y x =与直线0x =,2x =,0y =所围成的曲边梯形的面积4S =.习题1.5 A 组(P50)1、(1)10021111(1)[(1)1]0.495100100i i x dx =--≈+-⨯=∑⎰; (2)50021111(1)[(1)1]0.499500500i i x dx =--≈+-⨯=∑⎰; (3)100021111(1)[(1)1]0.499510001000i i x dx =--≈+-⨯=∑⎰. 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法.2、距离的不足近似值为:18112171310140⨯+⨯+⨯+⨯+⨯=(m ); 距离的过剩近似值为:271181121713167⨯+⨯+⨯+⨯+⨯=(m ).3、证明:令()1f x =. 用分点 011i i n a x x x x x b -=<<<<<<=将区间[,]a b 等分成n 个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,,)i i n ξ=作和式 11()nni i i b af x b a nξ==-∆==-∑∑, 从而 11lim nban i b adx b a n→∞=-==-∑⎰, 说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义,0⎰表示由直线0x =,1x =,0y =以及曲线y =所围成的曲边梯形的面积,即四分之一单位圆的面积,因此4π=⎰.5、(1)03114x dx -=-⎰. 由于在区间[1,0]-上30x ≤,所以定积分031x dx -⎰表示由直线0x =,1x =-,0y =和曲线3y x =所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得10133311011044x dx x dx x dx --=+=-+=⎰⎰⎰.由于在区间[1,0]-上30x ≤,在区间[0,1]上30x ≥,所以定积分131x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.(3)根据定积分的性质,得202333110115444x dx x dx x dx --=+=-+=⎰⎰⎰由于在区间[1,0]-上30x ≤,在区间[0,2]上30x ≥,所以定积分231x dx -⎰等于位于x轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.说明:在(3)中,由于3x 在区间[1,0]-上是非正的,在区间[0,2]上是非负的,如果直接利用定义把区间[1,2]-分成n 等份来求这个定积分,那么和式中既有正项又有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质3可以将定积分231x dx-⎰化为02331x dx x dx -+⎰⎰,这样,3x 在区间[1,0]-和区间[0,2]上的符号都是不变的,再利用定积分的定义,容易求出031x dx -⎰,230x dx ⎰,进而得到定积分231x dx -⎰的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义. 习题1.5 B 组(P50)1、该物体在0t =到6t =(单位:s )之间走过的路程大约为145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1)9.81v t =.(2)过剩近似值:8111899.819.8188.292242i i =⨯⨯⨯=⨯⨯=∑(m ); 不足近似值:81111879.819.8168.672242i i =-⨯⨯⨯=⨯⨯=∑(m ) (3)49.81tdt ⎰; 49.81d 78.48t t =⎰(m ).3、(1)分割在区间[0,]l 上等间隔地插入1n -个分点,将它分成n 个小区间:[0,]l n ,2[,]l l n n ,……,(2)[,]n l l n -, 记第i 个区间为(1)[,]i l iln n-(1,2,i n =),其长度为 (1)il i l l x n n n-∆=-=.把细棒在小段[0,]l n ,2[,]l l n n ,……,(2)[,]n ll n-上质量分别记作: 12,,,n m m m ∆∆∆,则细棒的质量1ni i m m ==∆∑.(2)近似代替当n 很大,即x ∆很小时,在小区间(1)[,]i l iln n-上,可以认为线密度2()x x ρ=的值变化很小,近似地等于一个常数,不妨认为它近似地等于任意一点(1)[,]i i l il n n ξ-∈处的函数值2()i i ρξξ=. 于是,细棒在小段(1)[,]i l il n n-上质量2()i i i lm x nρξξ∆≈∆=(1,2,i n =).(3)求和得细棒的质量 2111()nnni i i i i i l m m x nρξξ====∆≈∆=∑∑∑. (4)取极限细棒的质量 21lim ni n i lm nξ→∞==∑,所以20l m x dx =⎰..1.6微积分基本定理练习(P55) (1)50; (2)503; (3)533-; (4)24; (5)3ln 22-; (6)12; (7)0; (8)2-.说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题1.6 A 组(P55)1、(1)403; (2)13ln 22--; (3)9ln 3ln 22+-;(4)176-; (5)2318π+; (6)22ln 2e e --. 说明:本题利用微积分基本定理和定积分的性质计算定积分.2、3300sin [cos ]2xdx x ππ=-=⎰.它表示位于x 轴上方的两个曲边梯形的面积与x 轴下方的曲边梯形的面积之差. 或表述为:位于x 轴上方的两个曲边梯形的面积(取正值)与x 轴下方的曲边梯形的面积(取负值)的代数和. 习题1.6 B 组(P55)1、(1)原式=221011[]222x e e =-; (2)原式=4611[sin 2]22x ππ=; (3)原式=3126[]ln 2ln 2x =.2、(1)cos 1sin [][cos cos()]0mx mxdx m m m m ππππππ--=-=---=⎰;(2)sin 1cos [sin sin()]0mx mxdx m m m m ππππππ--=|=--=⎰;(3)21cos 2sin 2sin []224mx x mx mxdx dx m πππππππ----==-=⎰⎰;(4)21cos 2sin 2cos []224mx x mx mxdx dx mπππππππ---+==+=⎰⎰.3、(1)0.202220()(1)[]49245245t kt kt t kt t g g g g g gs t e dt t e t e t e k k k k k k----=-=+=+-=+-⎰.(2)由题意得 0.2492452455000t t e -+-=.这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围. 根据指数函数的性质,当0t >时,0.201t e -<<,从而 5000495245t <<, 因此,500052454949t <<. 因此50000.2749245 3.3610e-⨯-≈⨯,52450.2749245 1.2410e-⨯-≈⨯,所以,70.271.2410245 3.3610t e ---⨯<<⨯.从而,在解方程0.2492452455000t t e -+-=时,0.2245t e -可以忽略不计.因此,.492455000t -≈,解之得 524549t ≈(s ). 说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7定积分的简单应用 练习(P58)(1)323; (2)1.说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程. 练习(P59)1、52533(23)[3]22s t dt t t =+=+=⎰(m ).2、42403(34)[4]402W x dx x x =+=+=⎰(J ). 习题1.7 A 组(P60)1、(1)2; (2)92.2、2[]b b a a q q q qW k dr k k k r r a b==-=-⎰. 3、令()0v t =,即40100t -=. 解得4t =. 即第4s 时物体达到最大高度.最大高度为 424(4010)[405]80h t dt t t =-=-=⎰(m ). 4、设t s 后两物体相遇,则 2(31)105ttt dt tdt +=+⎰⎰,解之得5t =. 即,A B 两物体5s 后相遇.此时,物体A 离出发地的距离为 523500(31)[]130t dt t t +=+=⎰(m ).5、由F kl =,得100.01k =. 解之得1000k =. 所做的功为 0.120.10010005005W ldl l ==|=⎰(J ).6、(1)令55()501v t t t=-+=+,解之得10t =. 因此,火车经过10s 后完全停止. (2)1021000551(5)[555ln(1)]55ln1112s t dt t t t t =-+=-++=+⎰(m ). 习题1.7 B 组(P60)1、(1)22a aa x dx --⎰表示圆222x y a +=与x 轴所围成的上半圆的面积,因此2222aaa a x dx π--=⎰(2)120[1(1)]x x dx ---⎰表示圆22(1)1x y -+=与直线y x =所围成的图形(如图所示)的面积,因此,2120111[1(1)]114242x x dx ππ⨯---=-⨯⨯=-⎰. 2、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为2y ax =,则2()2b h a =⨯,所以24ha b =.从而抛物线的方程为 224hy x b =.于是,抛物线拱的面积232202204422()2[]33b b h h S h x dx hx x bh b b =-=-=⎰. 3、如图所示.解方程组223y x y x⎧=+⎨=⎩得曲线22y x =+与曲线3y x =交点的横坐标11x =,22x =. 于是,所求的面积为122201[(2)3][3(2)]1x x dx x x dx +-+-+=⎰⎰.y xO1(第1(2)题)yxh b O (第2题)4、证明:2[]()R hR h R RMm Mm MmhW Gdr G G r r R R h ++==-=+⎰. 第一章 复习参考题A 组(P65)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x xy x+'=; (2)23(2)(31)(53)y x x x '=-+-; (3)22ln ln 2x xy x x '=+; (4)2422(21)x x y x -'=+. 3、32GMm F r '=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略.5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >.由于 所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a--=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--.令()0S a '=,即2212()02(1)a aS a a -'=⋅=-. 当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于 所以,当2a =,即直线的倾斜角为时,的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++,0 1.6x <<.令()0V x '=,即26 4.4 1.60x x -++=. 所以,415x =-(舍去),或1x =. 当(0,1)x ∈时,()0V x '>;当(1,1.6)x ∈时,()0V x '<. 因此,1x =是函数()V x 在(0,1.6)的极大值点,也是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3.11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080)x ≤≤. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x,打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯23168.396655.9072 6.34x x=--,5.0898.38x <<. 令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.14、(1)2; (2)22e -; (3)1;(4)原式=22222000cos sin (cos sin )[sin cos ]0cos sin x x dx x x dx x x x xπππ-=-=+=+⎰⎰;(5)原式=22001cos sin 2[]224x x x dx πππ---==⎰.15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2.17、由F kl =,得0.0490.01k =. 解之得 4.9k =.所做的功为 20.30.30.10.14.9 4.90.1962l W ldl ==⨯|=⎰(J )第一章 复习参考题B 组(P66)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,()0b t '>,所以细菌在增加;当55t <<+()0b t '<,所以细菌在减少.2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4lr =是函数()S r 在(0,)2l 内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得h =.容易知道,h =是函数()V h 的极大值点,也是最大值点.所以,当h R =时,容积最大.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得3α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x > 令0y '=,即29600160x -=,24x ≈.容易知道,24x =是函数y 的极小值点,也是最小值点.当24x =时,960020(1624)()9412424⨯+÷≈(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元.5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x=++⨯,50100x ≤≤令0y '=,解得53x ≈(km /h ). 此时,114y ≈(元) 容易得到,53x ≈是函数y 的极小值点,也是最小值点.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.6、原式=4404422022[]2xxx x x e dx e dx e dx e e e e -----=+=-+|=+-⎰⎰⎰.7、解方程组 2y kx y x x=⎧⎨=-⎩ 得,直线y kx =与抛物线2y x x =-交点的横坐标为0x =,1k -.抛物线与x 轴所围图形的面积2312100111()[]23236x x S x x dx =-=-=-=⎰.由题设得11200()2k k Sx x dx kxdx --=--⎰⎰31221001()[]23kkk x x x kx dx x ---=--=-⎰3(1)6k -=.又因为16S =,所以31(1)2k -=.于是1k =说明:本题也可以由面积相等直接得到111220()()kk k x x kx dx kxdx x x dx -----=+-⎰⎰⎰,由此求出k 的值. 但计算较为烦琐.新课程数学选修2—2第二章课后习题解答第二章推理与证明2.1合情推理与演绎推理 练习(P77)1、由12341a a a a ====,猜想1n a =.2、相邻两行数之间的关系是:每一行首尾的数都是1,其他的数都等于上一行中与之相邻的两个数的和.3、设111O PQ R V -和222O P Q R V -分别是四面体111O PQ R -和222O P Q R -的体积, 则111222111222O PQR O P Q R V OP OQ OR V OP OQ OR --=⋅⋅. 练习(P81) 1、略.2、因为通项公式为n a 的数列{}n a , 若1n na p a +=,其中p 是非零常数,则{}n a 是等比数列;……………………大前提 又因为0cq ≠,则0q ≠,则11n n nn a cq q a cq++==;……………………………小前提 所以,通项公式为(0)n n a cq cq =≠的数列{}n a 是等比数列. ……………………结论 3、由AD BD >,得到ACD BCD ∠>∠的推理是错误的. 因为这个推理的大前提是“在同一个三角形中,大边对大角”,小前提是“AD BD >”,而AD 与BD 不在同一个三角形中.习题2.1 A 组(P83)1、21n a n =+()n N *∈. 2、2F V E +=+.3、当6n ≤时,122(1)n n -<+;当7n =时,122(1)n n -=+;当8n =时,122(1)n n ->+()n N *∈.4、212111(2)n n A A A n π++≥-(2n >,且n N *∈). 5、121217n n b b b b b b -=(17n <,且n N *∈).6、如图,作DE ∥AB 交BC 于E .因为两组对边分别平行的四边形是平行四边形, 又因为AD ∥BE ,AB ∥DE . 所以四边形ABED 是平行四边形.因为平行四边形的对边相等.又因为四边形ABED 是平行四边形. 所以AB DE =.因为与同一条线段等长的两条线段的长度相等,又因为AB DE =,AB DC =, 所以DE DC = 因为等腰三角形的两底角是相等的.又因为△DEC 是等腰三角形, 所以DEC C ∠=∠ 因为平行线的同位角相等又因为DEC ∠与B ∠是平行线AB 和DE 的同位角, 所以DEC B ∠=∠ 因为等于同角的两个角是相等的,又因为DEC C ∠=∠,DEC B ∠=∠, 所以B C ∠=∠ 习题2.1 B 组(P84)1、由123S =-,234S =-,345S =-,456S =-,567S =-,猜想12n n S n +=-+.2、略.3、略.2.2直接证明与间接证明 练习(P89)1、因为442222cos sin (cos sin )(cos sin )cos 2θθθθθθθ-=+-=,所以,命题得证. 2>,只需证22>,即证1313+>+>,只需要22>,即证4240>,这是显然成立的. 所以,命题得证. 3、因为222222222()()()(2sin )(2tan )16sin tan a b a b a b αααα-=-+==, 又因为sin (1cos )sin (1cos )1616(tan sin )(tan sin )16cos cos ab αααααααααα+-=+-=⋅22222222sin (1cos )sin sin 161616sin tan cos cos αααααααα-===, 从而222()16a b ab -=,所以,命题成立.说明:进一步熟悉运用综合法、分析法证明数学命题的思考过程与特点.(第6练习(P91)1、假设B ∠不是锐角,则90B ∠≥︒. 因此9090180C B ∠+∠≥︒+︒=︒. 这与三角形的内角和等于180°矛盾.所以,假设不成立. 从而,B ∠一定是锐角.2成等差数列,则=所以22=,化简得5=225=,即2540=, 这是不可能的. 所以,假设不成立..说明:进一步熟悉运用反证法证明数学命题的思考过程与特点. 习题2.2 A 组(P91)1、由于0a ≠,因此方程至少有一个跟bx a=.假设方程不止一个根,则至少有两个根,不妨设12,x x 是它的两个不同的根,则1ax b =①2ax b =②①-②得12()0a x x -=因为12x x ≠,所以120x x -≠,从而0a =,这与已知条件矛盾,故假设不成立. 2、因为(1tan )(1tan )2A B ++=展开得1tan tan tan tan 2A B A B +++=,即tan tan 1tan tan A B A B +=-. ①假设1tan tan 0A B -=,则cos cos sin sin 0cos cos A B A B A B -=,即cos()0cos cos A B A B += 所以cos()0A B +=.因为A ,B 都是锐角,所以0A B π<+<,从而2A B π+=,与已知矛盾.因此1tan tan 0A B -≠.①式变形得tan tan 11tan tan A BA B +=-,即tan()1A B +=.又因为0A B π<+<,所以4A B π+=. 说明:本题也可以把综合法和分析法综合使用完成证明.3、因为1tan 12tan αα-=+,所以12tan 0α+=,从而2sin cos 0αα+=.另一方面,要证3sin 24cos2αα=-,只要证226sin cos 4(cos sin )αααα=-- 即证222sin 3sin cos 2cos 0αααα--=, 即证(2sin cos )(sin 2cos )0αααα+-=由2sin cos 0αα+=可得,(2sin cos )(sin 2cos )0αααα+-=,于是命题得证. 说明:本题可以单独使用综合法或分析法进行证明,但把综合法和分析法结合使用进行证明的思路更清晰.4、因为,,a b c 的倒数成等差数列,所以211b ac =+.假设2B π<不成立,即2B π≥,则B 是ABC ∆的最大内角,所以,b a b c >>(在三角形中,大角对大边), 从而11112a c b b b +>+=. 这与211b a c=+矛盾. 所以,假设不成立,因此,2B π<.习题2.2 B 组(P91)1、要证2s a <,由于22s ab <,所以只需要2s s b<,即证b s <.因为1()2s a b c =++,所以只需要2b a b c <++,即证b a c <+. 由于,,a b c 为一个三角形的三条边,所以上式成立. 于是原命题成立. 2、由已知条件得2b ac =①2x a b =+,2y b c =+②要证2a cx y+=,只要证2ay cx xy +=,只要证224ay cx xy += 由①②,得22()()2ay cx a b c c a b ab ac bc +=+++=++,24()()2xy a b b c ab b ac bc ab ac bc =++=+++=++, 所以,224ay cx xy +=,于是命题得证. 3、由tan()2tan αβα+=得sin()2sin cos()cos αβααβα+=+,即sin()cos 2cos()sin αβααβα+=+. ……①要证3sin sin(2)βαβ=+即证3sin[()]sin[()]αβααβα+-=++即证3[sin()cos cos()sin ]sin()cos cos()sin αβααβααβααβα+-+=+++ 化简得sin()cos 2cos()sin αβααβα+=+,这就是①式.所以,命题成立.说明:用综合法和分析法证明命题时,经常需要把两者结合起来使用. 2.3数学归纳法 练习(P95)1、先证明:首项是1a ,公差是d 的等差数列的通项公式是1(1)n a a n d =+-. (1)当1n =时,左边=1a ,右边=11(11)a d a +-=, 因此,左边=右边. 所以,当1n =时命题成立. (2)假设当n k =时,命题成立,即1(1)k a a k d =+-. 那么,11(1)[(1)1]k k k a a d a k d d a k d +=+=+-+=++-. 所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立.再证明:该数列的前n 项和的公式是1(1)2n n n S na d -=+. (1)当1n =时,左边=11S a =,右边=111(11)12a d a ⨯-⨯+=,因此,左边=右边. 所以,当1n =时命题成立.(2)假设当n k =时,命题成立,即1(1)2k k k S ka d -=+.那么,1111(1)[(1)1]2k k k k k S S a ka d a k d ++-=+=++++-1(1)(1)[1]2k k a k d -=+++1(1)(1)2k kk a d +=++所以,当1n k =+时,命题也成立.根据(1)和(2),可知命题对任何n N *∈都成立. 2、略.。
人教A版高中数学选修1-1《三章导数及其应用3.1变化率与导数3.2导数的概念》优质课教案_24
1.1.2导数的概念(一)教材分析本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念》是第2课时.导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度.导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用.导数概念是我们今后学习微积分的基础•同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.(二)教学目标(1)在上一节学习平均变化率的基础上,了解瞬时速度、瞬时变化率的概念;(2)理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;(3)会求函数在某点的导数及简单应用.(三)教学重点与难点重点:通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念. 难点:使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念.(四)教学过程1. 复习引入(1)函数y = f(x)从x i到X2的平均变化率公式;(2)函数y = f(x)从x0到X Q L X的平均变化率公式.2. 合作探究在高台跳水运动中,运动员在不同时刻的速度是不同的. 我们把物体在某一时刻(某一位置)的速度称为瞬时速度.探究一:瞬时速度的求解从前面的学习我们知道,平均速度只能粗略地描述某段时间内物体的运动状态,不一定能反映运动员在某一时刻的瞬时速度. 如何求运动员的瞬时速度呢?设计意图:让学生产生进一步学习的需求,即有必要知道任意时刻的速度.以高台跳水运动为例,研究运动员在某一时刻的瞬时速度.在高台跳水运动中,如果运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在关系ht =-4.9t26.5t 10.探究:如何求运动员瞬时速度?比如t =2s的瞬时速度是多少?平均速度与瞬时速度有关系吗?设计意图:问题具体化,即求运动员在t=2s时的瞬时速度.针对具体的问题情境,寻求解决问题的想法.我们求t=2s的瞬时速度是多少,先察t=2s附近平均速度的情况:(2) 我们如何表示运动员在t=2s 时的瞬时速度? (3) 运动员在某一时刻t o 的瞬时速度怎样表示?设计意图:从特殊到一般,即从特殊点t=2上升到任意点t=t °瞬时速度的表示. (4) 函数f(x)在x=x 0处的瞬时变化率怎样表示?设计意图:舍弃具体变化率问题的实际意义,抽象为数学问题,定义导数. 探究二:导数的定义瞬时速度是平均速度—当览趋近于0时的极限.L t导数的定义:函数y =f(x)在x =x o 处的瞬时变化率是啊卡=|m f(xo:-f (xo),我们称它为函数y = f(x)在x=x o 处的导数,记作 f (x o ) 或 y'U 即 f(x o )pm of(x x)—f(x o )注意:(1) 函数应在点X 。
21-22版:3.1.1 变化率问题~3.1.2 导数的概念(步步高)
学核心素养.
3 随堂演练
PART THREE
1.f(x)=2x+1在[1,2]内的平均变化率为
A.0
B.1
√C.2
D.3
解析 f(x)=2x+1 在[1,2]上的平均变化率为ΔΔxy=f22--1f1=2.
12345
2.如图,函数y=f(x)在A,B两点间的平均变化率是
√A.-1
B.1
C.2
D.-2
反思 感悟
求平均变化率的主要步骤 (1)先计算函数值的改变量Δy=f(x2)-f(x1). (2)再计算自变量的改变量Δx=x2-x1. (3)得平均变化率ΔΔyx=fxx22--fx1x1.
跟踪训练1 已知函数f(x)=x2+2x-5的图象上的一点A(-1,-6)及邻近一点
B(-1+Δx,-6+Δy),则
2 题型探究
PART TWO
一、函数的平均变化率
命题角度1 求函数的平均变化率 例1 求函数f(x)=x2在x=1,2,3附近的平均变化率,取Δx的值为 1,哪一点附
3 近的平均变化率最大?
解 在x=1附近的平均变化率为 k1=f1+ΔΔxx-f1=1+ΔΔxx2-1=2+Δx; 在x=2附近的平均变化率为 k2=f2+ΔΔxx-f2=2+ΔΔxx2-22=4+Δx; 在x=3附近的平均变化率为 k3=f3+ΔΔxx-f3=3+ΔΔxx2-32=6+Δx. 若 Δx=13,则 k1=2+31=37,k2=4+13=133,k3=6+13=139, 由于k1<k2<k3,故在x=3附近的平均变化率最大.
lim
Δt→0
ΔΔst=Δlitm→0
(2t0+1+Δt)=2t0+1,
则2t0+1=9,∴t0=4. 则物体在4 s时的瞬时速度为9 m/s.
变化率与导数的概念、导数的运算
03 高阶导数及其应用
高阶导数的定义与计算
高阶导数的定义
函数一阶导数的导数称为二阶导数,二阶导 数的导数称为三阶导数,以此类推,n-1阶 导数的导数称为n阶导数。
高阶导数的计算
高阶导数的计算可以通过连续求导得到,每 求一次导,阶数增加一阶。对于常见的基本 初等函数,其高阶导数有特定的公式或规律 可循。
导数在几何上表示曲线在某一点处的切线斜率。当函数在某一点处的导数大于0时,表示函数在该点处单调增加; 当导数小于0时,表示函数在该点处单调减少;当导数等于0时,表示函数在该点处可能达到极值点或拐点。
可导与连续的关系
可导必连续
如果一个函数在某一点处可导,则该函数在该点处必定连续。这是因为可导的定义中已经包含了函数 在该点处的极限存在且等于函数值这一条件。
成本最小化
企业在给定产量下追求成本最小化时,需要找到使得边际 成本等于平均成本的产量,即求解成本函数的一阶导数等 于零的点。
效用最大化
消费者追求效用最,即求解效用函数的一阶导数等于 零的点。
05 导数在工程学中的应用
曲线拟合与最小二乘法中的导数应用
工程优化问题中的导数应用
优化算法
在工程设计和制造过程中,经常需要解决各种优化问 题,如最小化成本、最大化效率等。导数在这些优化 算法中发挥着重要作用,它们被用来计算目标函数的 梯度或方向导数,以确定搜索方向或步长。
敏感性分析
在工程经济学中,敏感性分析是一种评估项目风险的 方法。它通过计算项目效益指标(如净现值、内部收 益率等)对于各个不确定因素的导数或偏导数,来量 化各因素对项目效益的影响程度。
变化率与导数的概念、导数的运算
目 录
• 变化率与导数的基本概念 • 导数的运算规则 • 高阶导数及其应用 • 导数在经济学中的应用 • 导数在工程学中的应用 • 数值计算中的导数逼近方法
变化率与导数导数的计算
变化率与导数导数的计算一、变化率与导数的关系在数学中,变化率是指一个量相对于另一个量的变化程度,常用来衡量两个变量之间的关系。
而导数则是描述函数在其中一点上的变化率的概念。
在一个数学函数中,比如说y=f(x),x和y分别代表自变量和因变量。
那么,当x发生微小变化Δx时,对应的y值也会发生一定的变化Δy。
这时,我们可以计算出y随着x的变化而变化的速率,也就是变化率。
变化率可以通过求平均变化率和瞬时变化率来进行计算。
平均变化率指的是通过两个点之间的变化率来计算,可以用Δy/Δx来表示。
而瞬时变化率则是在其中一点上的变化率,通过取Δx趋近于0时的极限来计算,也就是导数。
二、导数的定义与计算导数是用来衡量函数在其中一点上的变化率的数值,用dy/dx来表示。
导数的定义是:f'(x) = lim(Δx→0) (f(x+Δx) - f(x))/Δx导数表示函数f(x)在x点处的瞬时变化率。
导数可以用各种方法进行计算,其中最常用的方法包括求导法则和导数的性质。
1.求导法则(1)常数法则:如果c是一个常数,那么d(c)/dx = 0。
(2)幂法则:如果f(x) = x^n,那么d(f(x))/dx = nx^(n-1)。
(3)和差法则:如果f(x)=u(x) ± v(x),那么d(f(x))/dx =d(u(x))/dx ± d(v(x))/dx。
(4)乘法法则:如果f(x) = u(x)v(x),那么d(f(x))/dx =u(x)d(v(x))/dx + v(x)d(u(x))/dx。
(5)除法法则:如果f(x) = u(x)/v(x),那么d(f(x))/dx =(v(x)d(u(x))/dx - u(x)d(v(x))/dx)/v(x)^2(6)复合函数法则:如果f(x) = g(u(x)),那么d(f(x))/dx =g'(u(x))d(u(x))/dx。
2.导数的性质(1)导数的和差性:(f(x)±g(x))'=f'(x)±g'(x)。
1-1 3.1变化率与导数学案
§3.1 变化率与导数学案§3.1.1 变化率问题学习目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率.教学过程:一、学习背景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:1、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;2、求曲线的切线;3、求已知函数的最大值与最小值;4、求长度、面积、体积和重心等.导数是微积分的核心概念之一,它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具.导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二、新课学习(一)问题提出问题1 气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?分析: (1)当V从0增加到1时,气球半径增加了Array气球的平均膨胀率为(2)当V从1增加到2时,气球半径增加了气球的平均膨胀率为可以看出:思考: 当空气容量从V1增加到V2时,气球的平均膨胀率是多少?问题2 高台跳水在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系105.69.4)(2++-=t t t h .如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态? 思考计算: 5.00≤≤t 和21≤≤t 的平均速度v探究: 计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?(二)平均变化率概念 1.上述问题中的变化率可用式子1212)()(x x x f x f --表示,称为函数)(x f 从1x 到2x 的平均变化率.2.若设12x x x -=∆, )()(12x f x f f -=∆(这里x ∆看作是对于1x 的一个“增量”可用x x ∆+1代替2x ,同样)()(12x f x f y f -=∆=∆) 则平均变化率为=∆∆=∆∆x fx y xx f x x f x x x f x f ∆-∆+=--)()()()(111212 思考: 观察函数)(x f 的图象平均变化率=∆∆x f 1212)()(x x x f x f --表示什么?三、典例分析例 1 已知函数x x x f +-=2)(的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy. 解:例2 求2x y =在0x x =附近的平均变化率. 解:四、课堂练习1.质点运动规律为32+=t s ,则在时间)3,3(t ∆+中相应的平均速度为 .2.物体按照43)(2++=t t t s 的规律作直线运动,求在s 4附近的平均变化率.3.过曲线3)(x x f y ==上两点)1,1(P 和)1,1(y x Q ∆+∆+作曲线的割线, 求出当1.0=∆x 时割线的斜率.五、课堂反馈1. 设函数()x f y =,当自变量x 由0x 改变到x x ∆+0时,函数的改变量y ∆为( ) A ()x x f ∆+0 B ()x x f ∆+0 C ()x x f ∆⋅0 D ()()00x f x x f -∆+ 2. 一质点运动的方程为221t s -=,则在一段时间[]2,1内的平均速度为( )A -4B -8C 6D -63. 将半径为R 的球加热,若球的半径增加R ∆,则球的表面积增加S ∆等于( ) A R R ∆π8 B ()248R R R ∆+∆ππ C ()244R R R ∆+∆ππ D ()24R ∆π4. 在曲线12+=x y 的图象上取一点(1,2)及附近一点()y x ∆+∆+2,1,则xy∆∆为( ) A 21+∆+∆x x B 21-∆-∆x x C 2+∆x D xx ∆-∆+12 5.函数()x f y =的平均变化率的物理意义是指把()x f y =看成物体运动方程时,在区间[]21,t t 内的6.函数()x f y =的平均变化率的几何意义是指函数()x f y =图象上两点()()111,x f x P 、()()222,x f x P 连线的7.函数8232--=x x y 在31=x 处有增量5.0=∆x ,则()x f 在1x 到x x ∆+1上的平均变化率是 8.正弦函数x y sin =在区间⎥⎦⎤⎢⎣⎡6,0π和⎥⎦⎤⎢⎣⎡2,3ππ的平均变化率哪一个较大? 9.在受到制动后的t 秒内一个飞轮上一点P 旋转过的角度(单位:孤度)由函数()23.04t t t -=ϕ(单位:秒)给出(1)求t =2秒时,P 点转过的角度(2)求在t t ∆+≤≤22时间段内P 点转过的平均角速度,其中①1=∆t ,②1.0=∆t ③01.0=∆t§3.1.2 导数的概念学习目标:1.了解瞬时速度、瞬时变化率的概念;2.理解导数的概念,知道瞬时变化率就是导数,体会导数的思想及其内涵;3.会求函数在某点的导数. 学习过程: 一、创设情景 (一)平均变化率: (二)探究探究: 计算运动员在49650≤≤t 这段时间里的平均速度,(1)运动员在这段时间内使静止的吗?(2)你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:二、学习新知 1.瞬时速度我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:思考: 当t ∆趋近于0时,平均速度v 有什么样的变化趋势? 结论: 小结:2.导数的概念从函数)(x f y =在0x x =处的瞬时变化率是:0000()()limlim x x f x x f x fxx ∆→∆→+∆-∆=∆∆我们称它为函数()y f x =在0x x =出的导数,记作'0()f x 或0'|x x y =即0000()()()limx f x x f x f x x∆→+∆-'=∆说明: (1)导数即为函数)(x f y =在0x x =处的瞬时变化率; (2)0x x x ∆=-,当0x ∆→时,0x x →,所以000()()()lim x f x f x f x x x ∆→-'=-.三、典例分析例1 (1)求函数23x y =在1=x 处的导数.(2)求函数x x x f +-=2)(在1x =-附近的平均变化率,并求出该点处的导数. 分析: 先求)()(00x f x x f y f -∆+=∆=∆,再求xy ∆∆,最后求x y x ∆∆→∆0lim .解: (1)(2)例2 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C)为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义. 解:注: 一般地,'0()f x 反映了原油温度在时刻0x 附近的变化情况.四、课堂练习1.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为.2.求曲线3)(x x f y ==在1x =时的导数.3.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.五、课堂反馈1.自变量由0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数( )A 在区间],[10x x 上的平均变化率B 在0x 处的变化率C 在1x 处的变化率D 在区间],[10x x 上的导数2.下列各式中正确的是( )A xx f x x f y x x x ∆-∆-=→∆=)()(|000'limB xx f x x f x f x ∆∆-∆-=→∆)()()(000'lim C xx f x x f y x x x ∆+∆+=→∆=)()(|000'limD xx x f x f x f x ∆∆--=→∆)()()(0000'lim 3.设4)(+=ax x f ,若2)1('=f ,则a 的值( )A 2B . -2C 3D -34.任一做直线运动的物体,其位移s 与时间t 的关系是23t t s -=,则物体的初速度是( ) A 0B 3C -2D t 23-5.函数xx y 1+=, 在1=x 处的导数是6.13-=x y ,当2=x 时 ,=∆∆→∆xyx lim7.设圆的面积为A ,半径为r ,求面积A 关于半径r 的变化率。
高中数学选修1-1(人教A版)第三章导数及其应用3.1知识点总结含同步练习及答案
当点 Pn 趋近于点 P (x 0 , f (x 0 )) 时,割线 P Pn 趋近于确定的位置,这个确定位置的直线 P T 称为点 P 处的切线(tangent line). 割线 P Pn 的斜率是
kn =
f (x n ) − f (x 0 ) . xn − x0
当点 Pn 无限趋近于点 P 时, kn 无限趋近于切线 P T 的斜率. 函数 f (x) 在 x0 处的导数 f ′ (x0 ) 的几何意义,就是曲线 y = f (x) 在点 (x0 , f (x 0 ) 处的导数就是切线 P T 的斜率 k ,即
y ′ ,即 f ′ (x) = y ′ = lim
Δx→0
f (x + Δx) − f (x) . Δx
例题: 求函数 y = 2 2 + 5 在区间 [2, 2 + Δx] 上的平均变化率,并计算当 Δx = 1 时,平均变化率的值. x 解:因为
2
Δy = 2 × (2 + Δx)2 + 5 − (2 × 2 2 + 5) = 8Δx + 2(Δx)2 ,
高中数学选修1-1(人教A版)知识点总结含同步练习题及答案
第三章 导数及其应用 3.1 变化率与导数
一、学习任务 1. 2.
了解平均变化率的概念和瞬时变化率的意义. 了解导数概念的实际背景,体会导数的思想及其内涵.
二、知识清单
数列极限与函数极限 变化率与导数
三、知识讲解
1.数列极限与函数极限 描述: 数列极限 设 {xn } 为实数数列,a 为常数.若对任意给定的正数 ε ,总存在正整数 N ,使得当 n > N 时,有 |x n − a| < ε ,则称 数列 {x n }收敛于 a ,常数 a 称为数列 {x n } 的极限.并记作
函数的导数与变化率知识点总结
函数的导数与变化率知识点总结函数的导数是微积分中一个重要的概念,它在研究函数的性质和变化规律时起到了重要的作用。
导数可以用于求函数的切线方程、最值、极值等性质,因此在许多实际问题中都有广泛的应用。
本文将对函数的导数与变化率的知识点进行总结,并介绍其基本概念、计算方法以及几个典型应用。
1. 导数的基本概念导数表示了函数在某一点的瞬时变化率,也可以理解为函数的斜率。
对于函数f(x),其在某一点x=a处的导数记为f'(a),可以通过下式进行计算:f'(a) = lim(h→0) [f(a+h) - f(a)] / h其中,h表示变化的增量。
导数的计算实际上是求取函数在某一点的极限。
若导数存在,则说明函数在该点可微,也就是函数在该点的图像是光滑的。
2. 导数的计算方法导数的计算方法有多种,根据函数的性质和表达式的不同而有所不同。
以下是几种常见的导数计算方法:2.1 基本初等函数的导数计算对于多项式函数、指数函数、对数函数、三角函数等基本初等函数,都有相应的导数公式可以直接使用。
例如,多项式函数f(x)=ax^n的导数为f'(x)=anx^(n-1),指数函数f(x)=e^x的导数为f'(x)=e^x,对数函数f(x)=ln(x)的导数为f'(x)=1/x,三角函数如sin(x)、cos(x)的导数分别为cos(x)和-sin(x)等。
2.2 导数的基本运算法则导数的计算还可以利用导数的基本运算法则,如和差法则、积法则、商法则等。
通过将复杂函数分解为基本初等函数的求导结果,并利用这些基本运算法则进行运算,可以较容易地求得复合函数的导数。
2.3 链式法则链式法则是求复合函数导数的常用方法。
对于函数y=f(u),u=g(x),则复合函数y=f(g(x))的导数可以通过以下公式进行计算:dy/dx = dy/du * du/dx3. 变化率与导数的关系导数不仅表示了函数在某一点的瞬时变化率,还可以用于描述函数在整个定义域上的变化规律。
高中数学第三章导数及其应用3.1变化率与导数3.1.2导数的概念课时作业(含解析)新人教A版
课时作业22一、选择题 1.在f ′(x 0)=lim Δx →0 f x 0+Δx -f x 0Δx中,Δx 不可能( )A. 大于0B. 小于0C. 等于0D. 大于0或小于0解析:由导数定义知Δx 只是无限趋近于0,故选C. 答案:C2.设f (x )在x =x 0处可导,则lim Δx →0 f x 0-Δx -f x 0Δx等于( )A .-f ′(x 0)B .f ′(-x 0)C .f ′(x 0)D .2f ′(x 0)解析:lim Δx →0 f x 0-Δx -f x 0Δx=lim Δx →0-f x 0-f x 0-ΔxΔx=-lim Δx →0 f x 0-f x 0-ΔxΔx=-f ′(x 0).答案:A3.设函数f (x )在点x 0处附近有定义,且f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A. f ′(x 0)=-aB. f ′(x 0)=-bC. f ′(x 0)=aD. f ′(x 0)=b解析:∵f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2, ∴f x 0+Δx -f x 0Δx=a +b ·Δx .∴lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0 (a +b ·Δx ). ∴f ′(x 0)=a .故选C. 答案:C4.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是( )A .at 0B .-at 0C.12at 0 D .2at 0解析:∵Δs Δt =st 0+Δt -s t 0Δt =12a Δt +at 0,∴lim Δt →0 Δs Δt =at 0. 答案:A 二、填空题5.过曲线y =2x上两点(0,1),(1,2)的割线的斜率为__________. 解析:由平均变化率的几何意义知k =2-11-0=1.答案:16.已知f (x )=2x,则lim x →afx -f ax -a=________.解析:令x -a =Δx ,则x =a +Δx , lim x →af x -f a x -a =lim Δx →0 f a +Δx -f aΔx=lim Δx →0 2a +Δx -2a Δx =lim Δx →0 -2a a +Δx =-2a 2. 答案:-2a27.已知f (x )=1x ,且f ′(m )=-116,则f (m )=________.解析:∵f (x )=1x,∴f ′(m )=lim Δx →0f m +Δx -f mΔx=lim Δx →0 1m +Δx -1m Δx =lim Δx →0 -1m m +Δx =-1m 2. 又f ′(m )=-116,∴-1m 2=-116.∴m =±4.∴f (m )=1m =±14.答案:±14三、解答题8.已知函数f (x )=⎩⎨⎧x ,x ≥01+x 2,x <0,求f ′(1)·f ′(-1)的值.解:当x =1时,Δy Δx =f+Δx -fΔx=1+Δx -1Δx =11+Δx +1.由导数的定义,得f ′(1)=lim Δx →0 11+Δx +1=12.当x =-1时,ΔyΔx=f -1+Δx -f -Δx=1+-1+Δx 2-1--2Δx=Δx -2.由导数的定义,得f ′(-1)=lim Δx →0 (Δx -2)=-2. 所以f ′(1)·f ′(-1)=12×(-2)=-1.9.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.解:令t 0=6598,Δt 为增量.则h t 0+Δt -h t 0Δt=-t 0+Δt2+t 0+Δt +10+4.9t 20-6.5t 0-10Δt=-4.9Δtt 0+Δt +6.5ΔtΔt=-4.9(6549+Δt )+6.5.∴lim Δt →0h t 0+Δt -h t 0Δt =lim Δt →0[-4.9(6549+Δt )+6.5]=0, 即运动员在t 0=6598 s 时的瞬时速度为0 m/s.说明运动员处于跳水运动中离水面最高点处.。
人教A版2019年高中数学选修1-1学案:第三章3.1变化率与导数3.1.3导数的几何意义_含答案
3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( ) [答案](1)×(2)×(3)×(4)√2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交B [由f ′(x 0)=0知,曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以切线与x 轴平行或重合.]3.如图315所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )【导学号:97792127】图315A .12B .1C .2D .0C [由题意知f ′(5)=-1,f (5)=-5+8=3,则f (5)+f ′(5)=2.][合 作 探 究·攻 重 难](1)y =-x 在点⎝ ⎛⎭⎪⎫2,-2处的切线方程是( ) A .y =x -2 B .y =x -12C .y =4x -4D .y =4x -2(2)已知曲线y =x 3-x +2,则曲线过点P (1,2)的切线方程为__________. [思路探究] (1)先求y ′|x =12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P (1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y =-1x 在x =12处的导数:Δy =-112+Δx +112=4Δx1+2Δx.y ′|x =12=lim Δx →0Δy Δx =lim Δx →0 41+2Δx=4. 所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4. (2)设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0=lim Δx →0x 0+Δx3-x 0+Δx +2]-x 30-x 0+Δx=lim Δx →0((Δx )2+3x 0Δx +3x 20-1)=3x 20-1.所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即2x -y =0,当切点为⎝ ⎛⎭⎪⎫-12,198时,切线方程为y -198=-14x +12, 即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0. [答案] (1)C (2)2x -y =0或x +4y -9=02.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x (3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f (4)写出切线方程. 1.(1)曲线y =f (x )=2x在点(-2,-1)处的切线方程为__________.x +2y +4=0 [y ′=lim Δx →0fx +Δx -f xΔx =lim Δx →02x +Δx -2x Δx=lim Δx →0-2·Δx x x +Δx Δx =-2x 2,因此曲线f (x )在点(-2,-1)处的切线的斜率k =-2-2=-12.由点斜式可得切线方程为y +1=-12(x +2),即x +2y +4=0.](2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20,又∵A 是切点,y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =2x .∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0. (1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).[探究问题]1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图316,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB 在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图316[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D3.已知函数f(x)在区间[0,3]上的图象如图317所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图317k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f-f 2-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0ΔyΔx =lim Δx →0x +Δx 3-2x 3Δx=2 lim Δx →0Δx3+3x Δx2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0Δx2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图318所示,试根据函数图象判断0,f ′(1),f ′(3),f-f2的大小关系.图318[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f-f 3-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f-f 2<f ′(1).。
2020版数学攻略大浙江专用精练12_§3_1变化率与导数、导数的计算教师备用题库
教师专用真题精编
1.(2018课标全国Ⅰ,5,5分)设函数f(x)=x3+(a—1)x2+ax。
若f (x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()
A.y=—2x B。
y=—x
C。
y=2x D.y=x
答案D本题主要考查函数的奇偶性及导数的几何意义.
∵f(x)=x3+(a-1)x2+ax为奇函数,∴a—1=0,解得a=1,∴f(x)=x3+x,∴f '(x)=3x2+1,∴f ’(0)=1,故曲线y=f(x)在点(0,0)处的切线方程为y=x,故选D。
2。
(2018课标全国Ⅱ,13,5分)曲线y=2ln(x+1)在点(0,0)处的切线方程为。
答案y=2x
解析本题主要考查导数的几何意义.
,所以y’|x=0=2,又(0,0)为切点,
因为y'=2
x+1
所以曲线在点(0,0)处的切线方程为y=2x。
3.(2018课标全国Ⅲ,14,5分)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为-2,则a=。
答案—3
解析本题考查导数的综合应用。
设f(x)=(ax+1)e x,则f '(x)=(ax+a+1)e x,所以曲线在点(0,1)处的切线的斜率k=f ’(0)=a+1=-2,解得a=-3。
攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。