变化率与导数课件

合集下载

高中数学选修1课件:3.1.1变化率与导数

高中数学选修1课件:3.1.1变化率与导数

r(V2 ) r(V1) f (x2 ) f (x1)
V2 V1
x2 x1
设某个变量 f 随 x 的变化而变化,
从 x 经过 △x , 量 f 的改变量为
f f (x x) f (x)
量 f 的平均变化率为
f f (x x) f (x)
x
x
令 x 0,则得到f 在x 的(瞬时)变化率:
t=0.2,0.4,0.6,0.8(min)时,血管中 药物浓度的瞬时变化率,把数据用表格 的形式列出。(精确到0.1)
血管中药物浓度的瞬时变化率, 就是药物浓度 函数f(t)在此时刻的导数, 从图象上看,它表示
曲线在该点处的切线的斜率. (数形结合,以直代曲)
以简单对象刻画复杂的对象
t
0.2
药物浓度的 瞬时变化率
(3) 物体在t =2时的瞬时速度.
v s 2g 1 gt
t
2
(1) 将 t=0.1代入上式,得
O s(2)
v 2.05g 20.09(m / s) (2) 将 t=0.01代入上式,得
s(2+t) s
v 2.005g 19.65(m / s)
( 3) 当t 0,2 t 2
平均速度 v 的极限为:
x0
x
T
P
f (x 0 )
o
x0
x 即 kPT tan f (x 0 )
函数y f (x)在点x0处的导数f (x0 )在几何上表示 曲线y f (x)在点M (x0, f (x0 ))处的切线的斜率。
曲线y f (x)在点M (x0 , f (x0 ))处
的切线方程为 y y0 f (x0 )(x x0 )
0.01 -13.149

高中数学 第2章 变化率与导数 2 导数的概念及其几何意义课件 北师大版选修22

高中数学 第2章 变化率与导数 2 导数的概念及其几何意义课件 北师大版选修22

(2)∵f(x)= x,
∴Δy=f(1+Δx)-f(1)= 1+Δx-1,
∴ΔΔyx=
1+ΔΔxx-1=
1+Δx-1 1+Δx+1 Δx 1+Δx+1

1 1+Δx+1.
∴Δlxi→m 0 ΔΔxy=Δlxi→m 0 1+1Δx+1=12,
∴f′(1)=12.
根据定义求导数是求函数的导数的基本方法,
1 C.2 解析:
1 D.4 ΔΔyx=2+1ΔΔxx-12=-4+12Δx,
当Δx→0时,ΔΔxy→-14,故在x=2处的导数为-14. 答案: A
3.设函数y=f(x)为可导函数,且满足 Δlxi→m 0
f1-f1-x x
=-1,则曲线y=f(x)在点(1,f(1))处切线的倾斜角为______.
=Δlxi→m 0
Δx+x0+1 Δx-x10 Δx
=Δlxi→m 0
Δx+x0-x0+ΔxΔx Δx
=Δlxi→m 0 1+x0x-0+1Δx=1-x120,
又∵g′(x0)=34,∴1-x102=34, ∴x20=4,∴x0=2或-2.
利用导数求切线方程
已知曲线y=
1 3
通常分三步:
(1)计算函数值的增量Δy=f(x0+Δx)-f(x0);
(2)计算函数值的增量Δy与自变量的增量Δx的比值ΔΔyx;
(3)计算上述增量的比值在Δx→0时的极限,就是该函数在
x0点的导数,即f′(x0)=Δlxi→m 0
ΔΔyx=Δlxi→m 0源自fx0+Δx-fx0 Δx
.这
三步简称为:一差,二比,三极限.
1.已知函数f(x)在x=a处可导,则 hl→ima
fh-fa h-a
等于

2022-2023学年人教A版选择性必修第二册 5-1-1 变化率问题与导数的概念 课件(31张)

2022-2023学年人教A版选择性必修第二册 5-1-1 变化率问题与导数的概念 课件(31张)

3.在 f′(x0)=lim Δx→0
fx0+ΔΔxx-fx0中,Δx 不可能为(
C
)
A.大于 0 B.小于 0
C.等于 0 D.大于 0 或小于 0
强研习·重点难点要突破
研习 1 函数的平均变化率
[典例 1] (1)函数 y=1x从 x=1 到 x=2 的平均变化率为( B )
A.-1
B.-12
C.-2
D.2
(2)已知函数 y=3x-x2 在 x0=2 处的增量为 Δx=0.1,则ΔΔxy的值为( B )
A.-0.11
B.-1.1
C.3.89
D.0.29
(1) [解析] 平均变化率为ΔΔxy=122- -11=-12. (2) [解析] ∵Δy=f(2+0.1)-f(2)=(3×2.1-2.12)-(3×2-22)=-0.11, ∴ΔΔyx=-00.1.11=-1.1.
研习 2 求瞬时速度 [典例 2] 一个做直线运动的物体,其位移 s 与时间 t 的关系是 s(t)=3t-t2. (1)求此物体的初速度; (2)求此物体在 t=2 时的瞬时速度.
[解] (1)当 t=0 时的速度为初速度. 在 0 时刻取一时间段[0,0+Δt],即[0,Δt], ∴Δs=s(Δt)-s(0)=[3Δt-(Δt)2]-(3×0-02)=3Δt-(Δt)2, ΔΔst=3Δt-ΔtΔt2=3-Δt, Δlit→m0ΔΔst=Δlit→m0(3-Δt)=3. ∴物体的初速度为 3.
时速度,即瞬时速度 v=lim Δt→0
ΔΔst=Δlit→ m0
st0+ΔΔtt-st0.
知识点 2 函数的平均变化率 对于函数 y=f(x),设自变量 x 从 x0 变化到 x0+Δx,相应地,函数值 y 就从 f(x0)变化到 f(x0+Δx).这时,x 的变化量为 Δx,y 的变化量为 Δy=___f_(x_0_+__Δ_x_)_-__f(_x_0_) __.我们把比值ΔΔyx, 即ΔΔyx=f__x0_+__Δ_Δx_x_-__f_x_0__叫做函数 y=f(x)从 x0 到 x0+Δx 的平均变化率.

2014年人教A版选修1-1课件 3.1 变化率与导数

2014年人教A版选修1-1课件 3.1  变化率与导数

x

练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (1) h h( 65 ) h(0) 49 65 65 2 4.9 ( ) + 6.5 + 10 (4.9 02 + 6.5 0 + 10) 49 49 0. h 0 0. 实际是 65 65 t 0 . t 65 这样吗? 49 49 49 65 ]这时段的平均速度为 0. 计算得 t 在 [0, 49
练习: (补充) 运动员起跳后相对于水面的高度 h (m) 与起跳后 的时间 t (s) 存在函数关系 h(t) 4.9t2+6.5t+10. 求以 下时间段的函数增量 △h 和自变量增量 △t, 并求出 该段的平均变化率, 解释其物理意义. (1) 0 t 65 ; (2) 0 t 65 ; (3) 65 t 65 . 98 49 49 98 解: (3) h h( 65 ) h( 65 ) 49 98 65 65 65 65 2 2 4.9 ( ) + 6.5 + 10 (4.9 ( ) + 6.5 + 10) 49 49 98 98 13 65 13 65 . h 4 98 4 98 13 . t 65 4 65 65 65 t . 98 49 98 98 这时段的平均速度为负, 速度是向下的.

人教A版高中数学选修22变化率与导数PPT课件

人教A版高中数学选修22变化率与导数PPT课件
问题二:高台跳水
在高台跳水运动中,运动 员相对于水面的高度h(单位: m)与起跳后的时间t(单位:s) 存在函数关系
h(t) 4.9t 2 6.5t 10
V 如果用运动员在某段时间内的平均速度
描述其运动状态,那么:
(1)在0t0.5 这段时间里,V = h(0.5) h(0) 4.05(m / s)
微积分的创立
到了十七世纪,有许多科学问题需要解决,这些 问题也就成了促使微积分产生的因素。归结起来,大 约有四种主要类型的问题:第一类是研究运动的时候 直接出现的,也就是求即时速度的问题。第二类问题 是求曲线的切线的问题。第三类问题是求函数的最大 值和最小值问题。第四类问题是求曲线长、曲线围成 的面积、曲面围成的体积、物体的重心、一个体积相 当大的物体作用于另一物体上的引力。
0.5 0
(2)在1t2 这段时间里, V = h(2) h(1) -8.2(m / s)
21
人教A版高中数学选修22变化率与导数 PPT课 件
人教A版高中数学选修22变化率与导数 PPT课 件
探究
计算运动员在
0 t 65 49
这段时间
里的平均速度,并思考以下问题:
(1)运动员在这段时间是静止的吗?
lim x0 x x0 lim
x
x 0
x
x0 x( x0 x x0 )
lim
1
1
x0 x0 x x0 2 x0
例3 将原油精炼为汽油、柴油、塑胶等各种不同产品, 需要对原油进行冷却和加热. 如果在第 x h时, 原油的温 度为 y=f (x) = x2–7x+15 (0≤x≤8) . 计算第2h与第6h时, 原 油温度的瞬时变化率,并说明它们的意义.

【精品课件】3.1.1-2变化率问题与导数的概念

【精品课件】3.1.1-2变化率问题与导数的概念
§1.1
1 2
变化率 谁创立了导数 与导数
导数是在怎样的背景之下产生的 呢
背景
十七与十八世纪的数学家们常把自己的数学活动跟各种 不同自然领域(物理、化学、力学、技术)中的研究活动联 系起来,并由实际需要提出了许多数学问题。历史上,导数
概念产生于以下两个实际问题的研究。第一:求曲线的切线
问题,这是一个非常古老的问题,可以追溯到希腊著名的科 学家阿基米德(Archimedes,287-212B.C);第二:求非 均速运动的速度,它最早由开普勒(kepler:1571-1630),伽 利略(Galileo:1564—1642),牛顿(Newton:1642-1727)等 提出来.
y
f (x2)
f f ( x2 ) f ( x1 ) 表示函数f(x) 的图像上 x x2 x1 的两点( x1 , f ( x1 )), ( x2 , f ( x2 ))连线的斜率.
f (x1)

x2 – x1 x1 x2
y = f (x)
f (x 2) – f (x1)
4)物体从3s到3 ts的平均速度 v s(3 t ) s(3) 30 5t (m / s)
(3 t ) 3
平均速度 v 近似地刻画了在某一时间段内物体运动的快慢. 如何精确地刻画物体在某一时刻的速度呢?
物体在某一时刻的速度称为瞬时速度。
即如何求物体在t=3s的瞬时速度呢?
t 0
10t0
定义:
函数 y = f (x) 在 x = x0 处的瞬时变化率是
f ( x0 Δx) f ( x0 ) y lim lim x 0 x x 0 x 称为函数 y = f (x) 在 x = x0 处的导数, 记作 f ( x0 )

高中数学北师大版选修1-1课件:第三章变化率与导数2导数的概念及其几何意义

高中数学北师大版选修1-1课件:第三章变化率与导数2导数的概念及其几何意义

例2 已知曲线y=2x2上一点A(1,2),求:
(1)点A处的切线的斜率;

lim
Δx→0
ΔΔyx=Δlixm→0
21+Δx2-2×12 Δx
4Δx+2Δx2
= lim Δx→0
Δx
=lim (4+2Δx)=4, Δx→0
∴点A处的切线的斜率为4.
(2)点A处的切线方程.
解 点A处的切线方程是y-2=4(x-1),
得a=-7.
反思感悟 利用导数的几何意义将数与形联系起来,根据图像中切线与割线 的倾斜角的大小确定数据的大小.
跟踪训练4 (1)已知函数f(x)在R上可导,其部分图像如图所示,设 f2-f1= 2-1
a,则下列不等式正确的是 A.f′(1)<f′(2)<a
√B.f′(1)<a<f′(2)
C.f′(2)<f′(1)<a
反思感悟 根据切线斜率求切点坐标的步骤 (1)设切点坐标(x0,y0). (2)求导函数f′(x). (3)求切线的斜率f′(x0). (4)由斜率间的关系列出关于x0的方程,解方程求x0. (5)点(x0,y0)在曲线f(x)上,将x0代入求y0,得切点坐标.
跟踪训练3 已知直线l:y=4x+a与曲线C:y=f(x)=x3-2x2+3相切,求a的 值及切点坐标.
D.a<f′(1)<f′(2)
解析 由图像可知,在(0,+∞)上,函数f(x)为增函数,且曲线切线的斜率越
来越大,
f2-f1

=a,∴易知 f′(1)<a<f′(2).
2-1
(2)曲线y=x3在点(a,a3)(a≠0)处的切线与x轴及直线x=a围成的三角形的面积 为 16,则a=__±_1__.

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

高中数学 第二章 变化率与导数 2.1 变化的快慢与变化率课件 北师大版选修22

∴瞬时速度为4a,即4a=8.∴a=2.
Δ
即为平均速度,
Δ
答案:A
=
5-3(1+Δ)2 -5+3×12
=-3Δt-6.
Δ
探究一
探究二
探究三
思维辨析
瞬时变化率
1
【例2】 已知s(t)= 2gt2,其中g=10 m/s2.
(1)求t从3 s到3.1 s的平均速度;
(2)求t从3 s到3.01 s的平均速度;
(3)求t在t=3 s时的瞬时速度.
(2)函数y=3x2+2在区间[2,2+Δx]上的平均变化率为
(2+Δ)-(2)
Δ
=
3(2+Δ)2 +2-(3×22 +2)
Δ
=
12Δ+3(Δ)2
=12+3Δx.
Δ
反思感悟求函数平均变化率的步骤
第一步,求自变量的改变量Δx=x2-x1,
第二步,求函数值的改变量Δy=f(x2)-f(x1).
Δ
=
4Δ+(Δ)2
=4+Δt,
Δ
∵≤5,∴4+Δt≤5,∴Δt≤1.
又∵Δt>0,∴Δt的取值范围是(0,1].
答案:(0,1]
探究一
探究二
探究三
思维辨析
因错用平均变化率公式而致误
【典例】 已知曲线y=-2x3+2和这条曲线上的两个点P(1,0),Q(2,14),求该曲线在PQ段的平均变化率.
名师点拨对平均变化率的理解
(1)y=f(x)在区间[x1,x2]上的平均变化率是曲线y=f(x)在区间[x1,x2]
上陡峭程度的“数量化”,曲线陡峭程度是平均变化率的“视觉化”.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档