中职数学第二章不等式测验试卷

合集下载

中职数学第二章不等式小测试卷(2020级)+参考答案

中职数学第二章不等式小测试卷(2020级)+参考答案

2020-2021学年第一学期2020级中职数学第二章《不等式》测试卷(时间:90分钟,总分:100分)班级: 姓名: 座号:二、填空题:(3′×5=15′)1.不等式235x −<的解集为 ;2.不等式2560x x −+<的解集为 ;3.设2{|||<4},{|160}A x x B x x ==−>,则A B ⋂= ;4. 函数y = 的定义域为 ;5.设全集为R ,A 为不等式1836x −<的解集,则U C A = .三、解答题:(40′,每题8′)1.已知集合{|02},{|1}A x x B x x =<<=<,求A B ⋂;2.已知集合()(){|210},{|1}A x x x B x x =−+≤=>,求A B ⋃;3. 已知a b ≠,||a b a b −=−,试比较23a +与21b −的大小;4.解不等式936x −≥;虬髯客数字工作室5.比较2345a a ++与2224a a −−的大小.一、 选择题:(3′×15=45′)1.不等式342−<−x x 的解集是( )A {}1|>x xB {}1|−<x xC {}1|<x xD {}1|−>x x 2.下列各式中,错误的是( ) A 21−>− B523ππ<C 01>−D 02>x 3.不等式()02>−x x 的解集是( )A {}2|>x xB {}20|><x x x 或C {}20|<<x xD {}0|<x x 4.不等式()()021≤+−x x 的解集是( )A {}2|−≤x xB {}1|≥x xC {}12|≤≤−x xD {}12|<<−x x 5.不等式3)(7)0x x −−>( 的解集是( )(2019合格性4)A 3,7](B (3,7)C ,3][7,)∞+∞(-D 3(7)∞∞(-,),+ 6.不等式012<−x 的解集是( )虬髯客数字工作室A {}11|<<−x xB {}1|±≠x xC {}11|>−<x x x 或D Ø 7.不等式212x <的解集是( )(2020等级性1)A. ∅B. (,6)−∞C. (6,6)−+D. (,6)(6,)−∞−+∞8.不等式11<−x 的解集是( )A {}20|<<x xB {}1|<x xC {}0|≠x xD {}20|><x x x 或 9.不等式组⎩⎨⎧≤−>01x x 的解集可以在数轴上表示为( )10.已知一元二次方程022=+−c x x 有实数解,则常数C 的取值范围是( ) A ()+∞∞−, B [)+∞−,1 C ()1,∞− D (]1,∞− 11.不等式组⎩⎨⎧>+≥−12112x x 的解集是( )A {}1|−>x xB {}1|≥x xC {}11|<<−x xD {}1|<x x 12.式子24x −有意义时,未知数x 的取值范围是( )A ()2,2−B []2,2−C ()()+∞−∞−,22,D (][)+∞∞−,22, 13.不等式20x −<的解是( )A 2x <B 2x >C 2x <−D 2x >− 14.集合{|30}x x −<<用区间表示为( )(2020合格性3)A. (3,0)−B. (3,0]−C. [3,0)−D. [3,0]− 15.将{|2,}x x x R ≠∈表示成区间是( )A (,2)(2,)−∞⋃+∞B (,2)−∞C (2,)+∞D (,)−∞+∞ 参考答案1. (,4)−∞;2. (2,3);3. φ;4. [9,)+∞;5. (,4][8,)−∞⋃+∞. 三、解答题:(40′,每题8′) 1.解:{|02},{|1}A x x B x x =<<=< {|02},{|11}A x x B x x ∴=<<=−<<(0,1)A B ∴⋂=.2.解:()(){|210},{|1}A x x x B x x =−+≤=> {|12},{|11}A x x B x x x ∴=−≤≤=<−>或A B R ∴⋃=.3.解:(23)a +−(21b −)=2242()4a b a b −+=−+又a b ≠,||a b a b −=− a b ∴>2()40a b ∴−+> 23a ∴+>21b −.4.解:936x −≥ 396x ∴−≥39639615x x x x ∴−≤−−≥∴≤≥或或∴不等式解集为(,1][5,)−∞⋃+∞.5.解:2(345)a a ++−222(224)69(3)0a a a a a −−=++=+≥ ∴2345a a ++≥2224a a −−.。

最新中职数学第二章不等式测验试卷

最新中职数学第二章不等式测验试卷

中职数学第二章不等式单元测验试卷班级 姓名 学号 得分一、选择题:(每题3分,共30分)1、设,a b c d >>,则下列不等式中正确的是 ( )A .a c b d ->-B .a c b d +>+C .ac bd >D .a d b c +>+2、290x ->的解集是 ( )A .(3,)±+∞B .(3,)+∞C .(,3)(3,)-∞-⋃+∞D .(3,)-+∞3、不等式2210x x ++≤的解集是 ( )A .{}1x x ≤-B .RC .∅D .{}1x x =-4、不等式22x +<的解集是 ( )A .(,1)-∞-B .(1,3)-C .51(,)22--D .5(,)2-+∞5、已知0,0a b b +><则 ( )A .a b a b >>->-B .a a b b >->>-C .a b b a >->>-D .a b a b ->->>6、若二次函数223y x x =--,则使0y <的自变量x 的取值范围是 ( )A .{}13x x -<<B .{}13x x x =-=或C .{}13x x x <->或D .R7、不等式(1)(31)0x x ++≤的解集是 ( )A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎡⎫-+∞⎪⎢⎣⎭C .11,3⎡⎤--⎢⎥⎣⎦D .(]1,1,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭8、若不等式2104x mx ++≤的解集是∅,则实数m 的取值范围是 ( ) A .1m < B .11m m >-<或 C .11m -<< D .11m m ><-或9、已知{}23,A x x x Z =-<≤∈,12a =,则下列关系正确的是 ( ) A .a A ∈ B .a A ∉ C .a A ≥ D .a A ≤10、不等式226101x x x --<+的解集为 ( )A .13x x ⎧⎫>-⎨⎬⎩⎭ B .12x x ⎧⎫<⎨⎬⎩⎭ C .1132x x ⎧⎫-<<⎨⎬⎩⎭ D .1132x x x ⎧⎫<->⎨⎬⎩⎭或二、填空题:(每题2分,共16分)11、若a b >,且10c +<,则2ac 2bc12、设集合{}80A x x =+>,{}30B x x =-<,{}83C x x =-<<,则集合A ,B,C 的关系为13、不等式20x x -≥的解集为14、已知集合{}{}201,3x x bx c ++==-,则不等式20x bx c ++<的解集为 15、已知不等式220kx kx +->的解集是∅,则k 的取值范围是16、集合{}2x x ≤用区间表示为17、设集合{}80A x x =+<,{}10B x x =+<,则A B ⋂=18、已知集合[]0,M a =,[]0,10N =,如果M N ⊆,则a ∈三、简答题:(共54分)19、解下列不等式:(本题每小题5分,共20分)(1)22150x x --≥ (2)260x x --+>(3)231x -≥ (4)345x -<20、制作一个高为20cm 的长方形容器,底面矩形的长比宽多10cm ,并且容积不少于40003cm .问:底面矩形的宽至少应为多少? (本题8分)21、已知不等式210ax bx +->的解集是{}34x x <<,求实数,a b 的值。

中职教育数学《不等式和函数》测试

中职教育数学《不等式和函数》测试

第二章:不等式一、填空题:(每空2分)1、设72<-x ,则<x 。

2、设732<-x ,则<x 。

3、设b a <,则2+a 2+b ,a 2 b 2。

4、不等式042<+x 的解集为: 。

5、不等式231>-x 的解集为: 。

6、已知集合)6,2(=A ,集合(]7,1-=B ,则=B A ,=B A7、已知集合)4,0(=A ,集合(]2,2-=B ,则=B A ,=B A8、不等式组⎩⎨⎧<->+4453x x 的解集为: 。

9、不等式062<--x x 的解集为: 。

10、不等式43>+x 的解集为: 。

二、选择题(每题3分)1、不等式732>-x 的解集为( )。

A .5>x B.5<x C.2>x D.2<x2、不等式02142≤-+x x 的解集为( )。

A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3-3、不等式123>-x 的解集为( )。

A .()+∞⎪⎭⎫ ⎝⎛-∞-,131, B. ⎪⎭⎫ ⎝⎛-1,31 C. ()+∞⎪⎭⎫ ⎝⎛∞-,131, D. ⎪⎭⎫ ⎝⎛1,31 4、不等式组⎩⎨⎧<->+0302x x 的解集为( ).A .()3,2- B. ()2,3- C. φ D. R5、已知集合()2,2-=A ,集合()4,0=B ,则=B A ( )。

A .()4,2- B. ()0,2- C. ()4,2 D. ()2,06、要使函数42-=x y 有意义,则x 的取值范围是( )。

A .[)+∞,2 B.(][)+∞-∞-,22, C.[]2,2- D. R7、不等式0122≥++x x 的解集是( )。

A .{}1- B.R C.φ D. ()()+∞--∞-,11,8、不等式()()043<-+x x 的解集为( )。

(完整版)中职不等式练习题

(完整版)中职不等式练习题

第二章不等式复习测试题一、选择题:(每小题2分,共20分)1、已知0,0a b >>,则下列等式成立的是( )()1b b A a a >+ 1()b b B a a +> 11()C a b > ()2b aD a b+> 2、下列不等式正确的是( )32()A a a> ()32B a a > ()32C a a +>+ ()33D a a +>- 3、二次不等式2320x x -+<的解集为( ){}()0A x x ≠ {}()12B x x << {}()12C x x -<< {}()0D x x >4、不等式502x x +>-的解集是( ){}()52A x x -<< {}()52B x x x <->或 {}()5C x x <- {}()2D x x >5、不等式31x -<-的解集是( )()A φ {}()3B x x < {}()3C x x > ()D R6、在下列的不等式中解集是空集的是( )2()340A x x --≥ 2()440B x x -+≥ 2()340C x x -+≥ 2()340D x x -+<7、不等式2112x x +≤+的解集是( ) {}()12A x x x ≥<-或 {}()1B x x <- {}()1C x x ≤ {}()21D x x -<≤8、不等式2384x x -+<的解集是( )2()23A x x x ⎧⎫><⎨⎬⎩⎭或 2()3B x x ⎧⎫<⎨⎬⎩⎭ 2()23C x x ⎧⎫<<⎨⎬⎩⎭ {}()2D x x >9、若{}20A x x =<,{}20B x x =>。

则A B ⋃是( ){}()0A x x > {}(),0B x x R x ∈≠且 ()C R ()D φ10、若{}23A x x =-<,{}3B x x =≥。

(完整版)中职数学第二章不等式测验试卷

(完整版)中职数学第二章不等式测验试卷

中职数学第二章不等式单元测验试卷班级姓名学号得分一、选择题:(每题3分,共30分)1、设,则下列不等式中正确的是(),a b c d >>A . B . C . D .a c b d ->-a c b d +>+ac bd >a d b c +>+2、的解集是( )290x ->A . B . C . D .(3,)±+∞(3,)+∞(,3)(3,)-∞-⋃+∞(3,)-+∞3、不等式的解集是 ( )2210x x ++≤A . B .R C . D .{}1x x ≤-∅{}1x x =-4、不等式的解集是 ()22x +<A . B . C . D .(,1)-∞-(1,3)-51(,22--5(,)2-+∞5、已知则 ()0,0a b b +><A .B .C .D .a b a b >>->-a a b b >->>-a b b a >->>-a b a b->->>6、若二次函数,则使的自变量的取值范围是 ( )223y x x =--0y <x A . B . C . D .R {}13x x -<<{}13x x x =-=或{}13x x x <->或7、不等式的解集是()(1)(31)0x x ++≤A . B . C . D .1,3⎛⎤-∞- ⎥⎝⎦1,3⎡⎫-+∞⎪⎢⎣⎭11,3⎡⎤--⎢⎥⎣⎦(]1,1,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭8、若不等式的解集是,则实数的取值范围是 ( )2104x mx ++≤∅m A . B . C . D .1m <11m m >-<或11m -<<11m m ><-或9、已知,,则下列关系正确的是 ( ){}23,A x x x Z =-<≤∈12a =A . B . C . D .a A ∈a A ∉a A ≥a A≤10、不等式的解集为( )226101x x x --<+A .B .C .D .13x x ⎧⎫>-⎨⎬⎩⎭12x x ⎧⎫<⎨⎬⎩⎭1132x x ⎧⎫-<<⎨⎬⎩⎭1132x x x ⎧⎫<->⎨⎬⎩⎭或二、填空题:(每题2分,共16分)11、若,且,则a b >10c +<2ac 2bc 12、设集合,,,则集合A ,B,C {}80A x x =+>{}30B x x =-<{}83C x x =-<<的关系为13、不等式的解集为20x x -≥14、已知集合,则不等式的解集为{}{}201,3x x bx c ++==-20x bx c ++<15、已知不等式的解集是,则的取值范围是 220kx kx +->∅k 16、集合用区间表示为{}2x x ≤17、设集合,,则 {}80A x x =+<{}10B x x =+<A B ⋂=18、已知集合,,如果,则 []0,M a =[]0,10N =M N ⊆a ∈三、简答题:(共54分)19、解下列不等式:(本题每小题5分,共20分)(1)(2)22150x x --≥260x x --+>(3) (4)231x -≥345x -<20、制作一个高为20cm 的长方形容器,底面矩形的长比宽多10cm ,并且容积不少于4000.问:底面矩形的宽至少应为多少? (本题8分)3cm21、已知不等式的解集是,求实数的值。

中职数学第2章《不等式》单元检测试题含答案【基础模块上册】

中职数学第2章《不等式》单元检测试题含答案【基础模块上册】

中职数学第二章《不等式》单元检测(满分100分,时间:90分钟)一.选择题(3分*10=30分)题号12345678910答案1.不等式-1≤x≤4用区间表示为:()A.(-1,4)B.(-1,4]C.[-1,4)D.[-1,4]2.若a<b,则不等式(x-a)(b-x)>0的解集补集是()A.{x丨a<x<b}B.{x丨x≤b或x≥a}C.{x丨x<a或x>b}D.x丨x≥b或x≤a}3.不等式x-3<0的解集是()x-2A.(2,3)B.(-∞,2)∪(3,+∞)C.(-2,-3)D.(-∞,-3)∪(-2,+∞)4.不等式x2-x-2<0的解集是()A.(-2,1)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-∞,-1)∪(2,+∞)5.已知x>y,则下列式子中错误的是()A.y<xB.x-8>y-8C.5x>5yD.-3x>-3y6.若a>b,c>d,则()A.a-c>b-dB.a+c>b+dC.a c>bdD.a>bc d7.下列说法不正确的是()A.若a>b,则ac2>bc2(c≠0)B.若a>b,则b<aC.若a>b则-a>-bD.若a>b,b>c,则a>c⎨8.不等式 ax 2 + bx + c < 0(a ≠ 0) 的解集是φ ,那么()A. a < 0, ∆ > 0B. a < 0, ∆ ≥ 0C. a > 0, ∆ ≥ 0D. a > 0, ∆ ≤ 09.使“ a > b > 0 ”成立的充分不必要条件是()A. a 2 > b 2 > 0B. 5a > 5bC. a - 1 > b - 1D. a - 3 > b - 310.若 0 < a < 1,则不等式 (a - x)( x - 1 ) > 0 的解集是()aA. a < x < 1aB. 1 < x < aC. x < a 或x > 1a aD. x < 1 或x > aa二.填空题(4 分*8=32 分)11.不等式 2 x - 1 ≥ 1 的解集是______________x - 212.下列不等式(1)m-3>m-5,(2)5-m>3-m,(3)5m>3m,(4)5+m>5-m,正确的有___个13.不等式组 ⎧ x -1 > 0的解集为:________________;⎩ x - 2 < 014.不等式∣2x-1∣<3 的解集是_____________________ ;15.已知方程 x 2 - 3x + m = 0 的一个根是 1,则另一个根是____m = ______;16.不等式 (m 2 - 2m - 3) x 2 - (m - 3) x - 1 < 0 的解集为 R ,则 m ∈;17.(x-3)2≤4 的解集是____________;18.不等式 3x - 4 < 2 的整数解的个数为__________。

中职高考数学一轮复习讲练测第二章不等式检测题(测)(含详解)

中职高考数学一轮复习讲练测第二章不等式检测题(测)(含详解)

不等式检测题一、选择题1.下列说法正确的是( )A .某人月收入x 不高于2 000元可表示为“x <2 000”B .小明的身高x ,小华的身高y ,则小明比小华矮表示为“x >y ”C .某变量x 至少是a 可表示为“x ≥a ”D .某变量y 不超过a 可表示为“y ≥a ” 2.下列不等式恒成立的是( ) A .a 2+1>2a B .a 2+1>2a C .a 2+b 2≥2(a -b -1)D .a 2+b 2>ab3.设b <a ,d <c ,则下列不等式中一定成立的是( ) A .a -c <b -d B .ac <bd C .a +c >b +dD .a +d >b +c4.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.若a ,b ,c ∈R,且a>b ,则下列不等式成立的是 ( )A.1a <1b B.a 2>b 2 C.ac 2+1>b c 2+1D.a |c|>b |c|6.不等式x 2-3x+2<0的解集是 ()A .{x|x<-2或x>-1} B.{x|x<1或x>2} C.{x|1<x<2} D.{x|-2<x<-1}7.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( ) A .-81 B .81 C .-64D .648.不等式x -1x≥2的解集为 ( )A.{x|-1≤x<0}B.{x|x ≥-1}C.{x|x ≤-1}D.{x|x ≤-1或x>0} 9.与不等式x -32-x ≥0同解的不等式是( )A .(x -3)(2-x )≥0B .0<x -2≤1C .2-x x -3≥0D .(x -3)(2-x )>010. .不等式127x ≤-≤的解集为( )A . (,][3,)-∞-+∞B .[1,3]C .[5,1)[3,9)-D .[5,9)-二、填空题1.已知x<1,则x 2+2与3x 的大小关系为 .2.已知a ,b 为实数,则(a+3)(a -5) (a+2)(a -4).(填“>”“<”或“=”)3 .不等式-x 2-3x+4>0的解集为 . 4.若不等式(x -a)(x -b)<0的解集为{x|1<x<2},则a+b 的值为 .5. .不等式x+1x>3的解集为.6 .已知一元二次方程ax 2+bx+c=0的两根为-2,3,a<0,那么ax 2+bx+c>0的解集为 8.设集合A={x|x 2-5x+6>0},B={x|x -1<0},则A ∩B= .9.已知集合M={x|-9x 2+6x -1<0},N={x|x 2-3x -4<0},则M ∩N= .10.不等式2x -13x+1>1的解集是.11. 11x -≤的解集是 三、解答题1.解不等式组214101x x x x ≥-⎧⎨+>+⎩①②2.设{2||2},{|280}A x x a B x x x =-≤=--≥且AB φ=,求实数a 取值范围。

2020届中职数学单元检测02《不等式》-对口升学总复习题含答案

2020届中职数学单元检测02《不等式》-对口升学总复习题含答案

2020届中职数学对口升学总复习单元检测试题第二单元《不等式》测试题一.选择题(本大题10小题,每小题3分,共30分)1.若m>0,n<0,则下列不等式成立的是( )A.m>n2. 下列结论中,正确的是( ).A.若a>b ,则ac 2>bc 2B.若a+b>a ,则b>0C.若b -a>-a ,则b<0D.若ab>0,则a>0且b>0 3.全集U=[-1,3],A=(0,3],则=A C U ( ).A.[-1,0)B.[-1,0]C.(-1,0]D.[-1,3]4.不等式5x ≤的解集是( ).A.[-5,5]B.[-5,+∞]C.(-∞,-5]D.(-∞,-5]⋃[5,+∞)5. a,b 是非零实数,且a<b ,则下列式子成立的是( ).A.22a b < B.a -2>b -2C.-2a>-2bD.ba 11< 6.不等式01x ≤-的解集是( ).A.),1()1,(+∞⋃-∞B.)1,(-∞C.{1}D.∅7.不等式x 2+2x+3>0的解集是( ).A.)1-,3(-B.)3,1(C.∅D.R8.不等式x 2-6x+9<0的解集是( ).A.),3()3-,(+∞⋃-∞B.)3,3(-C.RD ∅9.x 2+ax+41<0的解集是∅,则a 的取值范围是( ). A.a<1 B.a>1或a<-1 C.1a 1-≤≤ D.-1<a<110.下列结论正解的是( ).二.填空题(本大题共8小题,每小题4分,共32分)1.不等式|2x-a |<b 的解集是(1,3)则a+b= .2.不等式032-2≤++x x 的解集是 . 3.不等式0x-1≥x的解集是 . 4.|2x-1|≤3的解集是 .5.如果a>0,b>0,a+b=6,那么ab 最大值为 .6.02x 652≤++-x x 那的解集为 .7.已知a>0,则a4a +的最小值是 . 8.已知lgx+lgy=1,则y2x 5+的最小值是 . 三.解答题(本大题共6小题,共38分) 1.解不等式.(6分)(1)245x x -> (2)2(2)04x x x ->-2.若关于x 的方程0x 2=+-n mx 无实数根,求m 的取值范围(6分)3.已知关于x 的不等式0x 2≤+-n mx 的解集是[-5,1],求实数m,n 的值.(6分)4.已知b a <-x 的解集是{x|-3<x<9},求a,b (6分)5.求当m 取何值时,不等式01mx 2>++mx 恒成立(6分)6.已知不等式a <-2x (a>0)的解集为{x |-1<x<b},求a+2b 的值.(8分)第二单元《不等式》参考答案一.选择题(本大题10小题,每小题3分,共30分)二.填空题(本大题共8小题,每小题4分,共32分)1. .2. .3. .4.. 5. .6. .7. .8. .三.解答题(本大题共6小题,共38分) 1.{x|x<-1或x>5};(2,4); 2. (0,4); 3. -4;-5; 4. [0,4);5. 3;6;6. 13;),23[]1,(+∞⋃--∞ 9 [2,3] 2 4 [-1,2]第二单元《不等式》答题卡一.选择题(本大题10小题,每小题3分,共30分)二.填空题(本大题共8小题,每小题4分,共32分)1. .2. .3. .4..5. .6. .7. .8.三.解答题(本大题共6小题,共38分)1.(6分)2.(6分)3.(6分)4.(6分)5.(6分)6.(8分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学第二章不等式单元测验试卷
班级 姓名 学号 得分
一、选择题:(每题3分,共30分)
1、设,a b c d >>,则下列不等式中正确的是 ( )
A .a c b d ->-
B .a c b d +>+
C .ac bd >
D .a d b c +>+
2、290x ->的解集是 ( )
A .(3,)±+∞
B .(3,)+∞
C .(,3)(3,)-∞-⋃+∞
D .(3,)-+∞
3、不等式2210x x ++≤的解集是 ( )
A .{}1x x ≤-
B .R
C .∅
D .{}1x x =-
4、不等式22x +<的解集是 ( )
A .(,1)-∞-
B .(1,3)-
C .51(,)22--
D .5(,)2-+∞
5、已知0,0a b b +><则 ( )
A .a b a b >>->-
B .a a b b >->>-
C .a b b a >->>-
D .a b a b ->->>
6、若二次函数223y x x =--,则使0y <的自变量x 的取值范围是 ( )
A .{}13x x -<<
B .{}13x x x =-=或
C .{}13x x x <->或
D .R
7、不等式(1)(31)0x x ++≤的解集是 ( )
A .1,3⎛⎤-∞- ⎥⎝⎦
B .1,3⎡⎫-+∞⎪⎢⎣⎭
C .11,3⎡⎤--⎢⎥⎣⎦
D .(]1,1,3⎡⎫-∞-⋃-+∞⎪⎢⎣⎭
8、若不等式2104
x mx ++≤的解集是∅,则实数m 的取值范围是 ( ) A .1m < B .11m m >-<或 C .11m -<< D .11m m ><-或
9、已知{}
23,A x x x Z =-<≤∈,12
a =,则下列关系正确的是 ( ) A .a A ∈ B .a A ∉ C .a A ≥ D .a A ≤
10、不等式226101
x x x --<+的解集为 ( )
A .13x x ⎧
⎫>-⎨⎬⎩⎭ B .12x x ⎧⎫<⎨⎬⎩⎭ C .1132x x ⎧⎫-<<⎨⎬⎩⎭ D .1132x x x ⎧⎫<->⎨⎬⎩
⎭或
二、填空题:(每题2分,共16分)
11、若a b >,且10c +<,则2ac 2
bc 12、设集合{}80A x x =+>,{}30B x x =-<,{}83C x x =-<<,则集合A ,B,C 的关系为
13、不等式20x x -≥的解集为
14、已知集合{}
{}201,3x x bx c ++==-,则不等式20x bx c ++<的解集为 15、已知不等式220kx kx +->的解集是∅,则k 的取值范围是
16、集合{}2x x ≤用区间表示为
17、设集合{}80A x x =+<,{}
10B x x =+<,则A B ⋂=
18、已知集合[]0,M a =,[]0,10N =,如果M N ⊆,则a ∈
三、简答题:(共54分)
19、解下列不等式:(本题每小题5分,共20分)
(1)22150x x --≥ (2)260x x --+>
(3)231x -≥ (4)345x -<
20、制作一个高为20cm 的长方形容器,底面矩形的长比宽多10cm ,并且容积不少于40003cm .问:底面矩形的宽至少应为多少? (本题8分)
21、已知不等式210
+->的解集是{}
ax bx
<<,求实数,a b的值。

(本题8分)
34
x x
22、若方程2290
x mx
-+=没有实数根,求实数m的范围。

(本题8分)
23、实数a取何值时,不等式2
+--+-≥对任何x R
(1)2(1)3(1)0
a x a x a
∈都成立。

(本题10分)
24、已知12,x x 是方程2(2)(1)0x m x m +-++=的两个根,求2212x x +的最小值。

(本题10分)
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档