乐亭县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知f (x )在R 上是奇函数,且满足f (x+4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2015)=( ) A .2B .﹣2C .8D .﹣82. 给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行; ③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个 3. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)4. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .95. 已知圆C 方程为222x y +=,过点(1,1)P -与圆C 相切的直线方程为( )A .20x y -+=B .10x y +-=C .10x y -+=D .20x y ++= 6. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪N B .M ∩N C .∁I M ∪∁I N D .∁I M ∩∁I N7. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线8. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)89. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种D .114种10.△ABC 中,A (﹣5,0),B (5,0),点C 在双曲线上,则=( )A .B .C .D .±11.在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8 C .6 D .412.已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣13.方程x= 所表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分14.等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 2a 6=( )A .6B .9C .36D .7215.设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( ) A .﹣2 B .﹣4 C .0D .4二、填空题16.已知函数22tan ()1tan x f x x =-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.17.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .18.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .19.在(1+x )(x 2+)6的展开式中,x 3的系数是 .三、解答题20.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.21.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.22.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?23.在直角坐标系xOy中,已知一动圆经过点(2,0)且在y轴上截得的弦长为4,设动圆圆心的轨迹为曲线C .(1)求曲线C 的方程;111](2)过点(1,0)作互相垂直的两条直线,,与曲线C 交于A ,B 两点与曲线C 交于E ,F 两点, 线段AB ,EF 的中点分别为M ,N ,求证:直线MN 过定点P ,并求出定点P 的坐标.24.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.25.【常州市2018届高三上武进区高中数学期中】已知函数()()221ln f x ax a x x =+--,R a ∈.⑴若曲线()y f x =在点()()1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1sin 8g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.乐亭县高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】解:∵f(x+4)=f(x),∴f(2015)=f(504×4﹣1)=f(﹣1),又∵f(x)在R上是奇函数,∴f(﹣1)=﹣f(1)=﹣2.故选B.【点评】本题考查了函数的奇偶性与周期性的应用,属于基础题.2.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.3.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.4.【答案】C【解析】解:∵A={0,1,2},B={x﹣y|x∈A,y∈A},∴当x=0,y分别取0,1,2时,x﹣y的值分别为0,﹣1,﹣2;当x=1,y分别取0,1,2时,x﹣y的值分别为1,0,﹣1;当x=2,y分别取0,1,2时,x﹣y的值分别为2,1,0;∴B={﹣2,﹣1,0,1,2},∴集合B={x﹣y|x∈A,y∈A}中元素的个数是5个.故选C.5. 【答案】A 【解析】试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=+∴-++=,由,1d r k =∴=,所以切线方程为20x y -+=,故选A.考点:直线与圆的位置关系. 6. 【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6}, ∴M ∪N={1,2,3,6,7,8}, M ∩N={3};∁I M ∪∁I N={1,2,4,5,6,7,8}; ∁I M ∩∁I N={2,7,8}, 故选:D .7. 【答案】B【解析】解:方程(x 2﹣4)2+(y 2﹣4)2=0则x 2﹣4=0并且y 2﹣4=0,即,解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.8. 【答案】C 【解析】试题分析:由图可知存在常数,使得方程()f x t =有两上不等的实根,则314t <<,由1324x +=,可得14x =,由213x =,可得3x =(负舍),即有12111,4223x x ≤<≤≤,即221143x ≤≤,则()212123133,162x f x x x ⎡⎫=⋅∈⎪⎢⎣⎭.故本题答案选C.考点:数形结合.【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.9.【答案】A【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.根据分步计数原理,共有3×2×3=18种分配方案.②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.由分类计数原理,可得不同的分配方案共有18+18=36种,故选A.【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.10.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.11.【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r•x3n﹣4r,则∵二项式(x3﹣)n(n∈N*)的展开式中,常数项为28,∴,∴n=8,r=6.故选:B.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B13.【答案】C【解析】解:x=两边平方,可变为3y2﹣x2=1(x≥0),表示的曲线为双曲线的一部分;故选C.【点评】本题主要考查了曲线与方程.解题的过程中注意x的范围,注意数形结合的思想.14.【答案】D【解析】解:设等比数列{a n}的公比为q,∵a1=3,a1+a3+a5=21,∴3(1+q2+q4)=21,解得q2=2.则a2a6=9×q6=72.故选:D.15.【答案】B【解析】解:因为f(x)+f(y)=f(x+y),令x=y=0,则f (0)+f (0)=f (0+0)=f (0), 所以,f (0)=0; 再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0, 所以,f (﹣x )=﹣f (x ), 所以,函数f (x )为奇函数. 又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4, 所以,f (0)+f (﹣3)=﹣4. 故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题.二、填空题16.【答案】π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++ ,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:,π.17.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.18.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆1362722=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()()()4340153401522222=++---+-=a ,故2=a ,5492=-=b ,故所求双曲线的标准方程为15422=-x y .故答案为:15422=-x y . 考点:双曲线的简单性质;椭圆的简单性质.19.【答案】 20 .【解析】解:(1+x )(x 2+)6的展开式中,x 3的系数是由(x 2+)6的展开式中x 3与1的积加上x 2与x 的积组成;又(x 2+)6的展开式中,通项公式为 T r+1=•x 12﹣3r ,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20.三、解答题20.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点; 当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21xh x e x =--,令'()()21xm x h x e x ==--,则'()2xm x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号. 21.【答案】【解析】解:(1)a=1时,f(x)=4x﹣22x+2,f(x)﹣1=(2x)2﹣2•(2x)+1=(2x﹣1)2=0,∴2x=1,解得:x=0;(2)4x﹣a•(2x+1﹣1)+1>0在(0,1)恒成立,a•(2•2x﹣1)<4x+1,∵2x+1>1,∴a>,令2x=t∈(1,2),g(t)=,则g′(t)===0,t=t0,∴g(t)在(1,t0)递减,在(t0,2)递增,而g(1)=2,g(2)=,∴a≥2;(3)若函数f(x)有零点,则a=有交点,由(2)令g (t )=0,解得:t=,故a ≥.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数零点问题,是一道中档题. 22.【答案】 【解析】解:(1)(x ∈N *) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.23.【答案】(1) 24y x =;(2)证明见解析;(3,0). 【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,11(,)A x y ,22(,)B x y , 则直线:(1)y k x =-,1212(,)22x x y y M ++, 由24,(1),y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 2242(24)416160k k k ∆=+-=+>,考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当)(x f 不含参数时,可通过解不等式)0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件),(),0)((0)(''b a x x f x f ∈≤≥恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是)('x f 不恒等于的参数的范围.24.【答案】(1)1222=+y x .(2)||||PB PA ⋅的最大值为,最小值为21.【解析】试题解析:解:(1)曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),消去参数α得曲线C 的普通方程为1222=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θθsin cos 1t y t x 代入1222=+y x 得01cos 2)sin 2(cos 222=-++θθθt t (6分)设B A ,对应的参数分别为21,t t ,则]1,21[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为21. (10分)考点:参数方程化成普通方程.25.【答案】⑴2a =⑵11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭⑶2【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()在点11f (,())处的切线方程,代入点211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;(3)由题意得,2min max f x g x +≥()(),分析可得必有()()215218f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:⑵()()()211'ax x f x x-+=,∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,410{ 610a a -≥∴-≥,得14a ≥;若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,410{ 610a a -≤∴-≤,得16a ≤,综上,实数a 的取值范围为11,,64⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;⑶由题意得,()()min max 2f x g x +≥,()max 128g x g π⎛⎫== ⎪⎝⎭ ,()min 158f x ∴≥,即()()21521ln 8f x ax a x x =+--≥,由()()()()()222112111'221ax a x ax x f x ax a x x x+---+=+--==, 当0a ≤时,()10f < ,则不合题意;当0a >时,由()'0f x =,得12x a=或1x =-(舍去), 当102x a<<时,()'0f x <,()f x 单调递减, 当12x a>时,()'0f x >,()f x 单调递增. ()min 11528f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥,整理得,()117ln 2228a a -⋅≥, 设()1ln 2h x x x =-,()21102h x x x∴=+>',()h x ∴单调递增,a Z ∈ ,2a ∴为偶数,又 ()172ln248h =-<,()174ln488h =->,24a ∴≥,故整数a 的最小值为2。
乐亭县高中2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县高中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.在正方体ABCD﹣A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所成的角θ的取值范围是()A.0<B.0C.0D.02.将函数f(x)=sin2x的图象向右平移个单位,得到函数y=g(x)的图象,则它的一个对称中心是()A.B.C.D.3.已知||=3,||=1,与的夹角为,那么|﹣4|等于()A.2B.C.D.134.若几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.π5.设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为()A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x6. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=( )A .30°B .60°C .120°D .150°7. 是平面内不共线的两向量,已知,,若三点共线,则的值是12,e e 12AB e ke =- 123CD e e =-,,A B D ( )A .1B .2C .-1D .-28. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D .9. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( )A .4x+2y=5B .4x ﹣2y=5C .x+2y=5D .x ﹣2y=510.一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体M AB FMC E -积为,多面体的体积为,则( )1111]1V BCE ADF -2V =21V V A .B .C .D .不是定值,随点的变化而变化413121M11.已知a=log 20.3,b=20.1,c=0.21.3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .a <c <bD .b <c <a12.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A .B .C .D .二、填空题13.函数的定义域是,则函数的定义域是__________.111]()y f x =[]0,2()1y f x =+14.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .15.的展开式中).16.设,则17.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF 的重心到准线距离为 . 18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .三、解答题19.啊啊已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合,直线l 的参数方程为(t 为参数),圆C 的极坐标方程为p 2+2psin (θ+)+1=r 2(r >0).(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)若圆C 上的点到直线l 的最大距离为3,求r 值. 20.已知函数f (x )=alnx+,曲线y=f (x )在点(1,f (1))处的切线方程为y=2.(I )求a 、b 的值;(Ⅱ)当x >1时,不等式f (x )>恒成立,求实数k 的取值范围.21.若f (x )是定义在(0,+∞)上的增函数,且对一切x ,y >0,满足f ()=f (x )﹣f (y )(1)求f (1)的值,(2)若f (6)=1,解不等式f (x+3)﹣f ()<2.22.(本小题满分12分)已知等差数列的前项和为,且,.{}n a n n S 990S =15240S =(1)求的通项公式和前项和;{}n a n a n n S (2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的1(1)n n a b n =+n S {}n b n n S t <*n ∈N t 取值范围.23.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).24.等差数列{a n}的前n项和为S n.a3=2,S8=22.(1)求{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和T n.乐亭县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】解:∵A1B∥D1C,∴CP与A1B成角可化为CP与D1C成角.∵△AD1C是正三角形可知当P与A重合时成角为,∵P不能与D1重合因为此时D1C与A1B平行而不是异面直线,∴0<θ≤.故选:D.2.【答案】D【解析】解:函数y=sin2x的图象向右平移个单位,则函数变为y=sin[2(x﹣)]=sin(2x﹣);考察选项不难发现:当x=时,sin(2×﹣)=0;∴(,0)就是函数的一个对称中心坐标.故选:D.【点评】本题是基础题,考查三角函数图象的平移变换,函数的对称中心坐标问题,考查计算能力,逻辑推理能力,常考题型.3.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题. 4.【答案】B【解析】解:根据几何体的三视图,得该几何体是圆锥被轴截面截去一半所得的几何体,底面圆的半径为1,高为2,所以该几何体的体积为V几何体=×π•12×2=.故选:B.【点评】本题考查了利用空间几何体的三视图求几何体体积的应用问题,是基础题目.5.【答案】C【解析】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故答案C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.6.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题.7.【答案】B【解析】考点:向量共线定理.8.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.9.【答案】B【解析】解:线段AB的中点为,k AB==﹣,∴垂直平分线的斜率k==2,∴线段AB的垂直平分线的方程是y﹣=2(x﹣2)⇒4x﹣2y﹣5=0,故选B.【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法. 10.【答案】B【解析】考点:棱柱、棱锥、棱台的体积.11.【答案】C【解析】解:由对数和指数的性质可知,∵a=log20.3<0b=20.1>20=1c=0.21.3 <0.20=1∴a<c<b故选C.12.【答案】C【解析】考点:三视图.二、填空题-13.【答案】[]1,1【解析】考点:函数的定义域.14.【答案】 a≤0或a≥3 .【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.15.【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3.所以系数为:故答案为:16.【答案】9【解析】由柯西不等式可知17.【答案】 .【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.18.【答案】 2:1 .【解析】解:设圆锥、圆柱的母线为l,底面半径为r,所以圆锥的侧面积为:=πrl圆柱的侧面积为:2πrl所以圆柱和圆锥的侧面积的比为:2:1故答案为:2:1三、解答题19.【答案】【解析】解:(Ⅰ)根据直线l的参数方程为(t为参数),消去参数,得x+y﹣=0,直线l的直角坐标方程为x+y﹣=0,∵圆C的极坐标方程为p2+2psin(θ+)+1=r2(r>0).∴(x+)2+(y+)2=r2(r>0).∴圆C的直角坐标方程为(x+)2+(y+)2=r2(r>0).(Ⅱ)∵圆心C(﹣,﹣),半径为r,…(5分)圆心C到直线x+y﹣=0的距离为d==2,又∵圆C上的点到直线l的最大距离为3,即d+r=3,∴r=3﹣2=1.【点评】本题重点考查了曲线的参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化等知识. 20.【答案】【解析】解:(I)∵函数f(x)=alnx+的导数为f′(x)=﹣,且直线y=2的斜率为0,又过点(1,2),∴f(1)=2b=2,f′(1)=a﹣b=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣解得a=b=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)当x>1时,不等式f(x)>,即为(x﹣1)lnx+>(x﹣k)lnx,即(k﹣1)lnx+>0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令g(x)=(k﹣1)lnx+,g′(x)=+1+=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令m(x)=x2+(k﹣1)x+1,①当≤1即k≥﹣1时,m(x)在(1,+∞)单调递增且m(1)≥0,所以当x>1时,g′(x)>0,g(x)在(1,+∞)单调递增,则g(x)>g(1)=0即f(x)>恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当>1即k<﹣1时,m(x)在上(1,)上单调递减,且m(1)<0,故当x∈(1,)时,m(x)<0即g′(x)<0,所以函数g(x)在(1,)单调递减,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当x∈(1,)时,g(x)<0与题设矛盾,综上可得k的取值范围为[﹣1,+∞)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.【答案】【解析】解:(1)在f()=f(x)﹣f(y)中,令x=y=1,则有f(1)=f(1)﹣f(1),∴f(1)=0;(2)∵f(6)=1,∴2=1+1=f(6)+f(6),∴不等式f(x+3)﹣f()<2等价为不等式f(x+3)﹣f()<f(6)+f(6),∴f(3x+9)﹣f(6)<f(6),即f()<f(6),∵f(x)是(0,+∞)上的增函数,∴,解得﹣3<x<9,即不等式的解集为(﹣3,9).22.【答案】n【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用.23.【答案】【解析】解:由12x2﹣ax﹣a2>0⇔(4x+a)(3x﹣a)>0⇔(x+)(x﹣)>0,①a>0时,﹣<,解集为{x|x<﹣或x>};②a=0时,x2>0,解集为{x|x∈R且x≠0};③a<0时,﹣>,解集为{x|x<或x>﹣}.综上,当a>0时,﹣<,解集为{x|x<﹣或x>};当a=0时,x2>0,解集为{x|x∈R且x≠0};当a<0时,﹣>,解集为{x|x<或x>﹣}.24.【答案】【解析】解:(1)设等差数列{a n}的公差为d,∵a3=2,S8=22.∴,解得,∴{a n}的通项公式为a n=1+(n﹣1)=.(2)∵b n===﹣,∴T n=2+…+=2=.。
乐亭县第一中学2018-2019学年高二上学期第二次月考试卷数学
乐亭县第一中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知α是三角形的一个内角,且,则这个三角形是( )A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形2. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( )A .B . C. D3. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要4. 已知椭圆(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若|AF 2|+|BF 2|的最大值为8,则b 的值是( )A .B .C .D .5. 已知向量=(1,1,0),=(﹣1,0,2)且k +与2﹣互相垂直,则k 的值是( )A .1B .C .D . 6. i 是虚数单位,i 2015等于( )A .1B .﹣1C .iD .﹣i7. 若{}n a 为等差数列,n S 为其前项和,若10a >,0d <,48S S =,则0n S >成立的最大自 然数为( )A .11B .12C .13D .148. 已知集合},052|{2Z x x x x M ∈<+=,},0{a N =,若∅≠N M ,则=a ( )A .1-B .C .1-或D .1-或2- 9. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .3110.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11B C11.若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( )A .a> B.﹣<a <1 C .a <﹣1 D .a >﹣112.在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4 B .4C .2D .2二、填空题13.已知f (x )=,则f[f (0)]= .14.函数y=sin 2x ﹣2sinx 的值域是y ∈ .15.若的展开式中含有常数项,则n 的最小值等于 .16.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______. 18.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .三、解答题19.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-.(1)若不等式1()21(0)2f x m m +≤+>的解集为(][),22,-∞-+∞,求实数m 的值;(2)若不等式()2|23|2yy af x x ≤+++,对任意的实数,x y R ∈恒成立,求实数a 的最小值. 【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力.20.2008年奥运会在中国举行,某商场预计2008年从1日起前x 个月,顾客对某种奥运商品的需求总量p (x )件与月份x 的近似关系是且x ≤12),该商品的进价q (x )元与月份x 的近似关系是q (x )=150+2x ,(x ∈N*且x ≤12). (1)写出今年第x 月的需求量f (x )件与月份x 的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?21.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).22.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.;(1)证明:AB PC(2)证明:平面PAB平面FGH.23.已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和.24.如图所示,在正方体ABCD﹣A1B1C1D1中,E、F分别是棱DD1、C1D1的中点.(Ⅰ)证明:平面ADC1B1⊥平面A1BE;(Ⅱ)证明:B1F∥平面A1BE;(Ⅲ)若正方体棱长为1,求四面体A1﹣B1BE的体积.乐亭县第一中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.2.【答案】B【解析】考点:正弦定理的应用.3.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.4.【答案】D【解析】解:∵|AF1|+|AF2|=|BF1|+|BF2|=2a=6,|AF2|+|BF2|的最大值为8,∴|AB|的最小值为4,当AB⊥x轴时,|AB|取得最小值为4,∴=4,解得b2=6,b=.故选:D.【点评】本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.5.【答案】D【解析】解:∵=(1,1,0),=(﹣1,0,2),∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),又k+与2﹣互相垂直,∴3(k﹣1)+2k﹣4=0,解得:k=.故选:D.【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题.6.【答案】D【解析】解:i2015=i503×4+3=i3=﹣i,故选:D【点评】本题主要考查复数的基本运算,比较基础.7.【答案】A【解析】考点:得出数列的性质及前项和.【方法点晴】本题主要考查了等差出数列的性质及前项和问题的应用,其中解答中涉及到等差数列的性质,等差数列的前项和等公式的灵活应用的知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档题,本题的解答中,由“10a >,0d <”判断前项和的符号问题是解答的关键.8. 【答案】D 【解析】试题分析:由{}{}1,2,025,0522--=⎭⎬⎫⎩⎨⎧∈<<-=∈<+=Z x x x Z x x x x M ,集合{}a N ,0=, 又φ≠N M ,1-=∴a 或2-=a ,故选D . 考点:交集及其运算. 9. 【答案】C【解析】解:由a n+1=a n +2n ,得a n+1﹣a n =2n ,又a 1=1, ∴a 5=(a 5﹣a 4)+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =2(4+3+2+1)+1=21. 故选:C .【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.10.【答案】D 【解析】试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断. 11.【答案】B【解析】解:由x 3﹣x 2﹣x+a=0得﹣a=x 3﹣x 2﹣x , 设f (x )=x 3﹣x 2﹣x ,则函数的导数f ′(x )=3x 2﹣2x ﹣1,由f ′(x )>0得x >1或x <﹣,此时函数单调递增,由f ′(x )<0得﹣<x <1,此时函数单调递减, 即函数在x=1时,取得极小值f (1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f (﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,则﹣1<﹣a <,即﹣<a <1,故选:B .【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.12.【答案】A【解析】解:圆x2+y2﹣8x+4=0,即圆(x﹣4)2+y2 =12,圆心(4,0)、半径等于2.由于弦心距d==2,∴弦长为2=4,故选:A.【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.二、填空题13.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.14.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.15.【答案】5【解析】解:由题意的展开式的项为T r+1=C n r (x 6)n ﹣r()r=C n r =C n r令=0,得n=,当r=4时,n 取到最小值5故答案为:5.【点评】本题考查二项式的性质,解题的关键是熟练掌握二项式的项,且能根据指数的形式及题设中有常数的条件转化成指数为0,得到n 的表达式,推测出它的值.16.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,∴数列{a n }是以1为首项,以为公比的等比数列,S n ==2﹣()n ﹣1,对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立, ∴x 2+tx+1≥2,x 2+tx ﹣1≥0,令f (t )=tx+x 2﹣1,∴,解得:x ≥或x ≤,∴实数x 的取值范围(﹣∞,]∪[,+∞).17.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。
乐亭县一中2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县一中2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.352.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30B.50C.75D.1503.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2}B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2}D.{x|x<﹣lg2}4.已知直线a A平面α,直线b⊆平面α,则()a b AA.B.与异面C.与相交D.与无公共点5. 已知集合,,则( ){2,1,1,2,4}A =--2{|log ||1,}B y y x x A ==-∈A B = A .B .C .D .{2,1,1}--{1,1,2}-{1,1}-{2,1}--【命题意图】本题考查集合的交集运算,意在考查计算能力.6. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]7. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种8. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是()A .1B .﹣1C .﹣2D .0 9. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n S a ++A .B.C .D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.10.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( )A .(4,1,1)B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)11.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是()A .B .πC .D .12.棱长为的正方体的8个顶点都在球的表面上,则球的表面积为( )2O O A .B .C .D .π4π6π8π1013.直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .14.某几何体的三视图如图所示,则该几何体为()A .四棱柱B .四棱锥C .三棱台D .三棱柱15.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为()A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)二、填空题16.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.17.在平面直角坐标系中,,,记,其中为坐标原点,(1,1)=-a (1,2)=b {}(,)|M OM λμλμΩ==+a b O 给出结论如下:①若,则;(1,4)(,)λμ-∈Ω1λμ==②对平面任意一点,都存在使得;M ,λμ(,)M λμ∈Ω③若,则表示一条直线;1λ=(,)λμΩ④;{}(1,)(,2)(1,5)μλΩΩ=⑤若,,且,则表示的一条线段且长度为0λ≥0μ≥2λμ+=(,)λμΩ其中所有正确结论的序号是 .18.已知sin α+cos α=,且<α<,则sin α﹣cos α的值为 .19.已知数列{a n }的前n 项和为S n ,a 1=1,2a n+1=a n ,若对于任意n ∈N *,当t ∈[﹣1,1]时,不等式x 2+tx+1>S n 恒成立,则实数x 的取值范围为 . 三、解答题20.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4(1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.21.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值;(Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.22.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB23.已知椭圆:(),点在椭圆上,且椭圆的离心率为.C 22221x y a b +=0a b >>3(1,)2C C 12(1)求椭圆的方程;C (2)过椭圆的右焦点的直线与椭圆交于,两点,为椭圆的右顶点,直线,分别C F C P Q A C PA QA 交直线:于、两点,求证:.4x =M N FM FN ⊥24.已知等差数列{a n }满足a 2=0,a 6+a 8=10.(1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.25.在直角坐标系中,已知一动圆经过点且在轴上截得的弦长为4,设动圆圆心的轨xOy (2,0)y 迹为曲线.C (1)求曲线的方程;111]C (2)过点作互相垂直的两条直线,,与曲线交于,两点与曲线交于,两点,(1,0)C A B C E F 线段,的中点分别为,,求证:直线过定点,并求出定点的坐标.AB EF M N MN P P乐亭县一中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C 2. 【答案】B 【解析】解:该几何体是四棱锥,其底面面积S=5×6=30,高h=5,则其体积V=S ×h=30×5=50.故选B . 3. 【答案】D【解析】解:由题意可知f (x )>0的解集为{x|﹣1<x <},故可得f (10x )>0等价于﹣1<10x <,由指数函数的值域为(0,+∞)一定有10x >﹣1,而10x <可化为10x <,即10x <10﹣lg2,由指数函数的单调性可知:x <﹣lg2故选:D 4. 【答案】D 【解析】试题分析:因为直线 a A 平面α,直线b ⊆平面α,所以或与异面,故选D.//a b 考点:平面的基本性质及推论.5. 【答案】C【解析】当时,,所以,故选C .{2,1,1,2,4}x ∈--2log ||1{1,1,0}y x =-∈-A B = {1,1}-6. 【答案】D 【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故选D. 1()12201620162=⨯⨯=考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出的对称中心后再利用对称()311533212f x x x x =-+-性和的.第Ⅱ卷(非选择题共90分)7. 【答案】 C【解析】排列、组合及简单计数问题.【专题】计算题;分类讨论.【分析】根据题意,分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案.【解答】解:分4种情况讨论,①,P 船乘1个大人和2个小孩共3人,Q 船乘1个大人,R 船乘1个大1人,有A 33=6种情况,②,P 船乘1个大人和1个小孩共2人,Q 船乘1个大人和1个小孩,R 船乘1个大1人,有A 33×A 22=12种情况,③,P 船乘2个大人和1个小孩共3人,Q 船乘1个大人和1个小孩,有C 32×2=6种情况,④,P 船乘1个大人和2个小孩共3人,Q 船乘2个大人,有C 31=3种情况,则共有6+12+6+3=27种乘船方法,故选C.【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式.8.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t,t∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.9.【答案】A【解析】10.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.11.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,或﹣2φ=2kπ+,k∈Z,此时φ=kπ﹣,k∈Z,故选:C.【点评】本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,三角函数求值,难度中档12.【答案】B【解析】考点:球与几何体13.【答案】A【解析】直线x﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.14.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 15.【答案】D【解析】解:当x>0时,由xf′(x)<0,得f′(x)<0,即此时函数单调递减,∵函数f(x)是偶函数,∴不等式等价为f(||)<,即||>,即>或<﹣,解得0<x<或x>2,故x的取值范围是(0,)∪(2,+∞)故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.二、填空题16.【答案】【解析】解:(1)证明:l1的斜率显然存在,设为k,其方程为y-2pt2=k(x-2pt).①将①与拋物线x2=2py联立得,x2-2pkx+4p2t(k-t)=0,解得x 1=2pt ,x 2=2p (k -t ),将x 2=2p (k -t )代入x 2=2py 得y 2=2p (k -t )2,∴P 点的坐标为(2p (k -t ),2p (k-t )2).由于l 1与l 2的倾斜角互补,∴点Q 的坐标为(2p (-k -t ),2p (-k -t )2),∴k PQ ==-2t ,2p (-k -t )2-2p (k -t )22p(-k -t )-2p (k -t )即直线PQ 的斜率为-2t .(2)由y =得y ′=,x 22p x p∴拋物线C 在M (2pt ,2pt 2)处的切线斜率为k ==2t .2pt p其切线方程为y -2pt 2=2t (x -2pt ),又C 的准线与y 轴的交点T 的坐标为(0,-).p 2∴--2pt 2=2t (-2pt ).p 2解得t =±,即t 的值为±.121217.【答案】②③④【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力.由得,∴,①错误;(1,4)λμ+=-a b 124λμλμ-+=-⎧⎨+=⎩21λμ=⎧⎨=⎩与不共线,由平面向量基本定理可得,②正确;a b 记,由得,∴点在过点与平行的直线上,③正确;OA = a OM μ=+ a b AM μ=b M A b 由得,,∵与不共线,∴,∴,∴④2μλ+=+a b a b (1)(2)λμ-+-=0a b a b 12λμ=⎧⎨=⎩2(1,5)μλ+=+=a b a b 正确;设,则有,∴,∴且,∴表示的一(,)M x y 2x y λμλμ=-+⎧⎨=+⎩21331133x y x y λμ⎧=-+⎪⎪⎨⎪=+⎪⎩200x y x y -≤⎧⎨+≥⎩260x y -+=(,)λμΩ条线段且线段的两个端点分别为、,其长度为,∴⑤错误.(2,4)(2,2)-18.【答案】 .【解析】解:∵sin α+cos α=,<α<,∴sin 2α+2sin αcos α+cos 2α=,∴2sinαcosα=﹣1=,且sinα>cosα,∴sinα﹣cosα===.故答案为:.19.【答案】 (﹣∞,]∪[,+∞) .【解析】解:数列{a n}的前n项和为S n,a1=1,2a n+1=a n,∴数列{a n}是以1为首项,以为公比的等比数列,S n==2﹣()n﹣1,对于任意n∈N*,当t∈[﹣1,1]时,不等式x2+tx+1>S n恒成立,∴x2+tx+1≥2,x2+tx﹣1≥0,令f(t)=tx+x2﹣1,∴,解得:x≥或x≤,∴实数x的取值范围(﹣∞,]∪[,+∞).三、解答题20.【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程.(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)21.【答案】【解析】解:(I)由∵cosA=,0<A<π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos (A+C )=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B <π,∴B=.(II )∵=,∴a==c ,∵a ﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用. 22.【答案】(1);(2)证明见解析.2212x y +=【解析】试题解析:(1),∴,∴,22PF QO =212PF F F ⊥1c =,2222221121,1a b c b a b +==+=+∴,221,2b a ==即;2212x y +=(2)设方程为代入椭圆方程AB y kx b =+,,22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221,1122A B A B kb b x x x x k k --+==++A ,∴,11,A B MA MB A B y y k k x x --==()112A B A B A B A B MA MB A B A By x x y x x y y k k x x x x +-+--+=+==A ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.23.【答案】(1) ;(2)证明见解析.22143x y +=【解析】试题分析: (1)由题中条件要得两个等式,再由椭圆中的等式关系可得的值,求得椭圆的方程;c b a ,,b a ,(2)可设直线的方程,联立椭圆方程,由根与系数的关系得,,得P Q 122634m y y m -+=+122934y y m -=+直线,直线,求得点 、坐标,利用得.PA l QA l M N 0=⋅FN FM FM FN ⊥试题解析: (1)由题意得解得22222191,41,2,a b c a a bc ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩2,a b =⎧⎪⎨=⎪⎩∴椭圆的方程为.C 22143x y +=又,,111x my =+221x my =+∴,,则,,112(4,)1y M my -222(4,)1y N my -112(3,1y FM my =- 222(3,1y FN my =- 1212212121222499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++ 22222363499906913434m m m m m -+=+=-=---+++∴FM FN⊥考点:椭圆的性质;向量垂直的充要条件.24.【答案】【解析】解:(1)设等差数列{a n }的公差为d ,∵a 2=0,a 6+a 8=10.∴,解得,∴a n ﹣1+(n ﹣1)=n ﹣2.(2)=.∴数列{}的前n 项和S n =﹣1+0+++…+,=+0++…++,∴=﹣1++…+﹣=﹣2+﹣=,∴S n =.25.【答案】(1) ;(2)证明见解析;.24y x =(3,0)【解析】(2)易知直线,的斜率存在且不为0,设直线的斜率为,,,11(,)A x y 22(,)B x y 则直线:,,(1)y k x =-1212(,)22x x y y M ++由得,24,(1),y x y k x ⎧=⎨=-⎩2222(24)0k x k x k -++=,2242(24)416160k k k ∆=+-=+>考点:曲线的轨迹方程;直线与抛物线的位置关系.【易错点睛】导数法解决函数的单调性问题:(1)当不含参数时,可通过解不等式)(x f )0)((0)(''<>x f x f 直接得到单调递增(或递减)区间.(2)已知函数的单调性,求参数的取值范围,应用条件恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意),(),0)((0)(''b a x x f x f ∈≤≥参数的取值是不恒等于的参数的范围.)('x f。
乐亭县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( ) A .2+B .1+C.D.2. 命题“∀a ∈R ,函数y=π”是增函数的否定是( )A .“∀a ∈R ,函数y=π”是减函数B .“∀a ∈R ,函数y=π”不是增函数C .“∃a ∈R ,函数y=π”不是增函数D .“∃a ∈R ,函数y=π”是减函数3. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)4. 定义在R 上的偶函数()f x 满足(3)()f x f x -=-,对12,[0,3]x x ∀∈且12x x ≠,都有1212()()0f x f x x x ->-,则有( )A .(49)(64)(81)f f f <<B .(49)(81)(64)f f f << C. (64)(49)(81)f f f << D .(64)(81)(49)f f f <<5. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( ) A.B.C.D.6. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .D .7. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .3238. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()xC .y=x+D .y=ln (x+1)9. 抛物线y=4x 2的焦点坐标是( )A .(0,1)B .(1,0)C .D .10.已知双曲线(a >0,b >0)的右焦点F ,直线x=与其渐近线交于A ,B 两点,且△ABF 为钝角三角形,则双曲线离心率的取值范围是( )A .B .C .D .11.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 12.已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( )A .{1}-B .{1}C .{-D . 二、填空题13.已知一组数据1x ,2x ,3x ,4x ,5x 的方差是2,另一组数据1ax ,2ax ,3ax ,4ax ,5ax (0a >)的标准差是a = .14.设函数 则______;若,,则的大小关系是______.15.在极坐标系中,O 是极点,设点A ,B 的极坐标分别是(2,),(3,),则O 点到直线AB的距离是 .16.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为.17.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.18.在数列中,则实数a=,b=.三、解答题19.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.20.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.21.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.22.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.23.已知函数f(x)=1+(﹣2<x≤2).(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域.24.已知p:,q:x2﹣(a2+1)x+a2<0,若p是q的必要不充分条件,求实数a的取值范围.乐亭县外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD的面积为,故选:A.2.【答案】C【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数y=π”是增函数的否定是:“∃a∈R,函数y=π”不是增函数.故选:C.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.3.【答案】B【解析】解:∵f(x)是偶函数∴f(﹣x)=f(x)不等式,即也就是xf(x)>0①当x>0时,有f(x)>0∵f(x)在(0,+∞)上为减函数,且f(2)=0∴f(x)>0即f(x)>f(2),得0<x<2;②当x<0时,有f(x)<0∵﹣x>0,f(x)=f(﹣x)<f(2),∴﹣x>2⇒x<﹣2综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2)故选B4.【答案】A【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.1111]5.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.6.【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x是奇函数,故是偶函数。
乐亭县实验中学2018-2019学年高二上学期数学期末模拟试卷含解析
z1 在复平面内对应的点在 | z1 |2 z2
A.第一象限
【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 18.在等差数列 {an } 中, a1 2016 ,其前 n 项和为 S n ,若 于 .
S10 S8 2 ,则 S 2016 的值等 10 8
第 8 页,共 14 页
则{an}的前 28 项之和 S28= 故选:C.
=14(a6+a23)=28.
【点评】本题考查了等差数列的通项公式性质及其前 n 项和公式、函数的对称性,考查了推理能力与计算能力 ,属于中档题. 12.【答案】A 【解析】因为 y tan x 在
, 上单调递增,且 x ,所以 tan x tan ,即 tan x 1 .反之,当 2 4 4 2 2 tan x 1 时, k x k ( k Z ) ,不能保证 x ,所以“ x ”是“ tan x 1 ” 2 4 2 4 2 4
24.现有 5 名男生和 3 名女生. (1)若 3 名女生必须相邻排在一起,则这 8 人站成一排,共有多少种不同的排法? (2)若从中选 5 人,且要求女生只有 2 名,站成一排,共有多少种不同的排法?
第 4 页,共 14 页
第 5 页,共 14 页
乐亭县实验中学 2018-2019 学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题
【解析】解:设两个向量的夹角为 θ, 因为|2 ﹣ |=1,| ﹣2 |=1, 所以 所以 所以 5 [ 所以 故答案为:[ ,1]. , = =1,所以 ,1], ; ,所以 5a2﹣1∈[ ], , ,
乐亭县二中2018-2019学年高二上学期数学期末模拟试卷含解析
求得 10≤ω<12, 故选:A. 5. 【答案】 A
【解析】解:取 a=﹣ 时,f(x)=﹣ x|x|+x,
∵f(x+a)<f(x),
∴(x﹣ )|x﹣ |+1>x|x|,
(1)x<0 时,解得﹣ <x<0;
(2)0≤x≤ 时,解得 0
第 8 页,共 15 页
采用系统抽样的间隔为 30÷6=5,
只有选项 C 中编号间隔为 5,
故选:C. 9. 【答案】C
【解析】解:若双曲线 C 的方程为 ﹣ =1,则双曲线的方程为,y=± x,则必要性成立,
若双曲线 C 的方程为 ﹣ =2,满足渐近线方程为 y=± x,但双曲线 C 的方程为 ﹣ =1 不成立,即充分性 不成立, 故“双曲线 C 的渐近线方程为 y=± x”是“双曲线 C 的方程为 ﹣ =1”的必要不充分条件,
)
A.3,6,9,12,15,18 B.4,8,12,16,20,24
C.2,7,12,17,22,27 D.6,10,14,18,22,26
9. “双曲线 C 的渐近线方程为 y=± x”是“双曲线 C 的方程为 ﹣ =1”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件 D.不充分不必要条件
;
(3)x> 时,解得
,
第 7 页,共 15 页
综上知,a=﹣ 时,A=(﹣ , ),符合题意,排除 B、D;
取 a=1 时,f(x)=x|x|+x, ∵f(x+a)<f(x),∴(x+1)|x+1|+1<x|x|, (1)x<﹣1 时,解得 x>0,矛盾; (2)﹣1≤x≤0,解得 x<0,矛盾; (3)x>0 时,解得 x<﹣1,矛盾; 综上,a=1,A=∅,不合题意,排除 C, 故选 A. 【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查 学生分析解决问题的能力,注意排除法在解决选择题中的应用. 6. 【答案】D 【解析】解:A 样本数据:82,84,84,86,86,86,88,88,88,88. B 样本数据 84,86,86,88,88,88,90,90,90,90 众数分别为 88,90,不相等,A 错. 平均数 86,88 不相等,B 错. 中位数分别为 86,88,不相等,C 错
乐亭县高中2018-2019学年高二上学期第一次月考试卷数学
乐亭县高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知全集U={0,1,2,3,4},集合A={0,1,3},B={0,1,4},则(∁U A)∪B为()A.{0,1,2,4} B.{0,1,3,4} C.{2,4} D.{4}2.设α、β是两个不同的平面,l、m为两条不同的直线,命题p:若平面α∥β,l⊂α,m⊂β,则l∥m;命题q:l∥α,m⊥l,m⊂β,则β⊥α,则下列命题为真命题的是()A.p或q B.p且q C.¬p或q D.p且¬q3.已知函数f(x)=2ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(1,+∞)B.(0,1) C.(﹣1,0)D.(﹣∞,﹣1)4.sin(﹣510°)=()A.B.C.﹣D.﹣5.已知两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,则=()A.﹣2 B.2 C.﹣D.6.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①② B.②③ C.③D.③④7.两个随机变量x,y的取值表为若x,y具有线性相关关系,且y^=bx+2.6,则下列四个结论错误的是()A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.658. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )A .①B .②C .③D .④9. 已知数列{}n a 的各项均为正数,12a =,114n n n n a a a a ++-=+,若数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n =( )A .35B . 36C .120D .12110.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .3511.如图,空间四边形ABCD 中,M 、G 分别是BC 、CD的中点,则等( )A .B .C .D .12.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A .4B .5C .6D .7二、填空题13.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .14.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .15.已知椭圆+=1(a >b >0)上一点A 关于原点的对称点为B ,F 为其左焦点,若AF ⊥BF ,设∠ABF=θ,且θ∈[,],则该椭圆离心率e 的取值范围为 .16.求函数在区间[]上的最大值 .17.设MP 和OM 分别是角的正弦线和余弦线,则给出的以下不等式:①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM ,其中正确的是 (把所有正确的序号都填上).18.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)三、解答题19.已知p :﹣x 2+2x ﹣m <0对x ∈R 恒成立;q :x 2+mx+1=0有两个正根.若p ∧q 为假命题,p ∨q 为真命题,求m 的取值范围.20.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6(-C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.21.设a ,b 互为共轭复数,且(a+b )2﹣3abi=4﹣12i .求a ,b 的值.22.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.23.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC . (Ⅰ)求证:AB ⊥SC ;(Ⅱ)设D ,F 分别是AC ,SA 的中点,点G 是△ABD 的重心,求证:FG ∥平面SBC ; (Ⅲ)若SA=AB=2,AC=4,求二面角A ﹣FD ﹣G 的余弦值.24.(本题满分12分)已知向量(sin cos ))a x x x =+,)cos sin ,(cos x x x b -=,R x ∈,记函数 x f ⋅=)(.(1)求函数)(x f 的单调递增区间;(2)在ABC ∆中,角C B A ,,的对边分别为c b a ,,且满足C a c b cos 22=-,求)(B f 的取值范围.【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.乐亭县高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵U={0,1,2,3,4},集合A={0,1,3},∴C U A={2,4},∵B={0,1,4},∴(C U A)∪B={0,1,2,4}.故选:A.【点评】本题考查集合的交、交、补集的混合运算,是基础题.解题时要认真审题,仔细解答.2.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.3.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.4.【答案】C【解析】解:sin(﹣510°)=sin(﹣150°)=﹣sin150°=﹣sin30°=﹣,故选:C.5.【答案】C【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,∴,或,则=﹣. 故选:C .【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.6. 【答案】D【解析】【分析】对于①可构造四棱锥CABD 与四面体OABC 一样进行判定;对于②,使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥;对于③取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,对于④先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r ,可判定④的真假.【解答】解:∵四面体OABC 的三条棱OA ,OB ,OC 两两垂直,OA=OB=2,OC=3, ∴AC=BC=,AB=当四棱锥CABD 与四面体OABC 一样时,即取CD=3,AD=BD=2 此时点D ,使四面体ABCD 有三个面是直角三角形,故①不正确使AB=AD=BD ,此时存在点D ,使四面体ABCD 是正三棱锥,故②不正确;取CD=AB ,AD=BD ,此时CD 垂直面ABD ,即存在点D ,使CD 与AB 垂直并且相等,故③正确; 先找到四面体OABC 的内接球的球心P ,使半径为r ,只需PD=r 即可 ∴存在无数个点D ,使点O 在四面体ABCD 的外接球面上,故④正确 故选D 7. 【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入y ^=bx +2.6得b =0.95,即y ^=0.95x +2.6,当y ^=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差e 的均值为0,∴C 正确.样本点(3,4.8)的残差e ^=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D. 8. 【答案】D【解析】解:幂函数y=x 为增函数,且增加的速度比价缓慢,只有④符合. 故选:D .【点评】本题考查了幂函数的图象与性质,属于基础题.9. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前n 项和.由114n n n na a a a ++-=+得2214n na a +-=,∴{}2n a 是等差数列,公差为4,首项为4,∴244(1)4n a n n =+-=,由0n a >得n a =1112n n a a +==+,∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n项和为11111)(1)52222n +++==,∴120n =,选C . 10.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24. 故答案为:C 11.【答案】C【解析】解:∵M、G 分别是BC 、CD 的中点,∴=,=∴=++=+=故选C【点评】本题考查的知识点是向量在几何中的应用,其中将化为++,是解答本题的关键.12.【答案】A 解析:模拟执行程序框图,可得S=0,n=0满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5满足条件5≤k ,S=75,n=6 …若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4.故选:二、填空题13.【答案】 [] .【解析】解:由题设知C 41p (1﹣p )3≤C 42p 2(1﹣p )2,解得p ,∵0≤p ≤1,∴,故答案为:[].14.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值15.【答案】 [,﹣1] .【解析】解:设点A (acos α,bsin α),则B (﹣acos α,﹣bsin α)(0≤α≤);F (﹣c ,0); ∵AF ⊥BF ,∴=0,即(﹣c ﹣acos α,﹣bsin α)(﹣c+acos α,bsin α)=0,故c 2﹣a 2cos 2α﹣b 2sin 2α=0,cos 2α==2﹣,故cos α=,而|AF|=,|AB|==2c ,而sin θ===,∵θ∈[,],∴sinθ∈[,],∴≤≤,∴≤+≤,∴,即,解得,≤e≤﹣1;故答案为:[,﹣1].【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用.16.【答案】.【解析】解:∵f(x)=sin2x+sinxcosx=+sin2x=sin(2x﹣)+.又x∈[,],∴2x﹣∈[,],∴sin(2x﹣)∈[,1],∴sin(2x﹣)+∈[1,].即f(x)∈[1,].故f(x)在区间[,]上的最大值为.故答案为:.【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题.17.【答案】②【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,∵,∴OM<0<MP.故答案为:②.【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.18.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.三、解答题19.【答案】【解析】解:若p 为真,则△=4﹣4m <0,即m >1 … 若q为真,则,即m ≤﹣2 …∵p ∧q 为假命题,p ∨q 为真命题,则p ,q 一真一假 若p 真q假,则,解得:m >1 … 若p 假q真,则,解得:m ≤﹣2 …综上所述:m ≤﹣2,或m >1 …20.【答案】(1)047522=++-+y x y x ;(2)425)2()25(22=-+-y x . 【解析】试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程022=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为25,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.试题解析:(1)设圆P 的方程是022=++++F Ey Dx y x ,则由已知得⎪⎩⎪⎨⎧=+-+-+=++++=++++026)2(6004040001222222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为047522=++-+y x y x .(2)由圆的对称性可知,圆心P 的横坐标为25241=+,故圆心)2,25(P , 故圆P 的半径25)20()251(||22=-+-==AP r ,故圆P 的标准方程为425)2()25(22=-+-y x .考点:圆的方程 21.【答案】【解析】解:因为a ,b 互为共轭复数,所以设a=x+yi ,则b=x ﹣yi ,a+b=2x ,ab=x 2+y 2,所以4x 2﹣3(x 2+y 2)i=4﹣12i ,所以,解得,所以a=1+i ,b=1﹣i ;或a=1﹣i ,b=1+i ;或a=﹣1+i ,b=﹣1﹣i ;或a=﹣1﹣i ,b=﹣1+i .【点评】本题考查了共轭复数以及复数相等;正确设出a ,b 是解答的关键.22.【答案】【解析】(Ⅰ)∵EC EF DE ⋅=2,DEF DEF ∠=∠ ∴DEF ∆∽CED ∆,∴C EDF ∠=∠……………………2分 又∵AP CD //,∴C P ∠=∠, ∴P EDF ∠=∠.(Ⅱ)由(Ⅰ)得P EDF ∠=∠,又PEA DEF ∠=∠,∴EDF ∆∽EPA ∆,∴EDEPEF EA =,∴EP EF ED EA ⋅=⋅,又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅. ∵EC EF DE ⋅=2,2,3==EF DE ,∴ 29=EC ,∵2:3:=BE CE ,∴3=BE ,解得427=EP .∴415=-=EB EP BP .∵PA 是⊙O 的切线,∴PC PB PA ⋅=2∴)29427(4152+⨯=PA ,解得4315=PA .……………………10分 23.【答案】【解析】(Ⅰ)证明:∵SA ⊥平面ABC ,AB ⊂平面ABC , ∴SA ⊥AB ,又AB ⊥AC ,SA ∩AC=A , ∴AB ⊥平面SAC ,又AS ⊂平面SAC ,∴AB ⊥SC .(Ⅱ)证明:取BD 中点H ,AB 中点M , 连结AH ,DM ,GF ,FM , ∵D ,F 分别是AC ,SA 的中点, 点G 是△ABD 的重心,∴AH 过点G ,DM 过点G ,且AG=2GH , 由三角形中位线定理得FD ∥SC ,FM ∥SB , ∵FM ∩FD=F ,∴平面FMD ∥平面SBC ,∵FG ⊂平面FMD ,∴FG ∥平面SBC .(Ⅲ)解:以A 为原点,AB 为x 轴,AC 为y 轴,AS 为z 轴,建立空间直角坐标系, ∵SA=AB=2,AC=4,∴B (2,0,0),D (0,2,0),H (1,1,0),A (0,0,0),G (,,0),F (0,0,1),=(0,2,﹣1),=(),设平面FDG 的法向量=(x ,y ,z ), 则,取y=1,得=(2,1,2),又平面AFD 的法向量=(1,0,0),cos <,>==.∴二面角A ﹣FD ﹣G 的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.24.【答案】【解析】(1)由题意知,)cos )(sin cos (sin 23cos sin )(x x x x x x b a x f +-+=⋅= )32sin(2cos 232sin 21π-=-=x x x ……………………………………3分 令223222πππππ+≤-≤-k x k ,Z k ∈,则可得12512ππππ+≤≤-k x k ,Z k ∈.∴)(x f 的单调递增区间为]125,12[ππππ+-k k (Z k ∈).…………………………5分。
乐亭县第一中学校2018-2019学年高二上学期第二次月考试卷数学
乐亭县第一中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.2. 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 33. 数列中,若,,则这个数列的第10项( ) A .19B .21C .D .4. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)5. 函数y=+的定义域是( )A .{x|x ≥﹣1}B .{x|x >﹣1且x ≠3}C .{x|x ≠﹣1且x ≠3}D .{x|x ≥﹣1且x ≠3}6. 若向量(1,0,x )与向量(2,1,2)的夹角的余弦值为,则x 为( )A .0B .1C .﹣1D .27. 如图Rt △O ′A ′B ′是一平面图形的直观图,斜边O ′B ′=2,则这个平面图形的面积是( )A. B .1 C. D.8. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β9. 已知直线l的参数方程为1cos sin x t y t αα=+⎧⎪⎨=⎪⎩(t 为参数,α为直线l 的倾斜角),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,圆C 的极坐标方程为4sin()3πρθ=+,直线l 与圆C 的两个交点为,A B ,当||AB 最小时,α的值为( )A .4πα=B .3πα=C .34πα=D .23πα=10.设长方体的长、宽、高分别为2a 、a 、a ,其顶点都在一个球面上,则该球的表面积为( ) A .3πa 2 B .6πa 2 C .12πa 2D .24πa 2 11.下列命题中的假命题是( )A .∀x ∈R ,2x ﹣1>0B .∃x ∈R ,lgx <1C .∀x ∈N +,(x ﹣1)2>0D .∃x ∈R ,tanx=212.某几何体的三视图如图所示,则该几何体为( )A .四棱柱B .四棱锥C .三棱台D .三棱柱二、填空题13.在△ABC 中,点D 在边AB 上,CD ⊥BC ,AC=5,CD=5,BD=2AD ,则AD 的长为 .14.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x ﹣1)<f (2﹣x )的解集是 .15.函数f (x )=log a (x ﹣1)+2(a >0且a ≠1)过定点A ,则点A 的坐标为 .16.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).17.已知关于 的不等式在上恒成立,则实数的取值范围是__________18.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.三、解答题19.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.20.已知f (x )=x 2+ax+a (a ≤2,x ∈R ),g (x )=e x ,φ(x )=.(Ⅰ)当a=1时,求φ(x )的单调区间;(Ⅱ)求φ(x )在x ∈[1,+∞)是递减的,求实数a 的取值范围;(Ⅲ)是否存在实数a ,使φ(x )的极大值为3?若存在,求a 的值;若不存在,请说明理由.21.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .22.若函数f (x )=sin ωxcos ωx+sin 2ωx ﹣(ω>0)的图象与直线y=m (m 为常数)相切,并且切点的横坐标依次构成公差为π的等差数列. (Ⅰ)求ω及m 的值;(Ⅱ)求函数y=f (x )在x ∈[0,2π]上所有零点的和.23.已知f (x )=lg (x+1)(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,g (x )=f (x ),求函数y=g (x )(x ∈[1,2])的反函数.24.在正方体1111D ABC A B C D 中,,E G H 分别为111,,BC C D AA 的中点. (1)求证:EG 平面11BDD B ;(2)求异面直线1B H 与EG 所成的角]乐亭县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .2. 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y 轴建立直角坐标系,易得抛物线过点(3,﹣1),其方程为y=﹣,那么正(主)视图上部分抛物线与矩形围成的部分面积S 1==2=4,下部分矩形面积S 2=24,故挖掘的总土方数为V=(S 1+S 2)h=28×20=560m 3.故选:A .【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题.3. 【答案】C【解析】 因为,所以,所以数列构成以为首项,2为公差的等差数列,通项公式为,所以,所以,故选C答案:C4. 【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.5.【答案】D【解析】解:由题意得:,解得:x≥﹣1或x≠3,故选:D.【点评】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.6.【答案】A【解析】解:由题意=,∴1+x=,解得x=0故选A【点评】本题考查空间向量的夹角与距离求解公式,考查根据公式建立方程求解未知数,是向量中的基本题型,此类题直接考查公式的记忆与对概念的理解,正确利用概念与公式解题是此类题的特点.7.【答案】D【解析】解:∵Rt△O'A'B'是一平面图形的直观图,斜边O'B'=2,∴直角三角形的直角边长是,∴直角三角形的面积是,∴原平面图形的面积是1×2=2故选D.8.【答案】D【解析】【分析】由题设条件,平面α∩β=l ,m 是α内不同于l 的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 综上D 选项中的命题是错误的 故选D9. 【答案】A【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系.在直角坐标系中,圆C的方程为22((1)4x y +-=,直线l 的普通方程为tan (1)y x α=-,直线l 过定点M ,∵||2MC <,∴点M 在圆C 的内部.当||AB 最小时,直线l ⊥直线MC ,1MC k =-,∴直线l 的斜率为1,∴4πα=,选A .10.【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B11.【答案】C【解析】解:A .∀x ∈R ,2x ﹣1=0正确;B .当0<x <10时,lgx <1正确;C .当x=1,(x ﹣1)2=0,因此不正确;D .存在x ∈R ,tanx=2成立,正确. 综上可知:只有C 错误.故选:C .【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.12.【答案】A 【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A. 考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹.二、填空题13.【答案】5.【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,∵CD⊥BC,∴CD∥AE,∵CD=5,BD=2AD,∴,解得AE=,在RT△ACE,CE===,由得BC=2CE=5,在RT△BCD中,BD===10,则AD=5,故答案为:5.【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.14.【答案】(1,2).【解析】解:∵f(x)=log a x(其中a为常数且a>0,a≠1)满足f(2)>f(3),∴0<a<1,x>0,若f(2x﹣1)<f(2﹣x),则,解得:1<x<2,故答案为:(1,2).【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题.15.【答案】 (2,2) .【解析】解:∵log a 1=0, ∴当x ﹣1=1,即x=2时,y=2, 则函数y=log a (x ﹣1)+2的图象恒过定点 (2,2).故答案为:(2,2).【点评】本题考查对数函数的性质和特殊点,主要利用log a 1=0,属于基础题.16.【答案】 【解析】【知识点】空间几何体的三视图与直观图 【试题解析】该几何体是半个圆柱。
乐亭县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交但不垂直2. 某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则的值是()m n +A .10B .11C .12D .13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.3. 命题:“∀x ∈R ,x 2﹣x+2<0”的否定是( )A .∀x ∈R ,x 2﹣x+2≥0B .∃x ∈R ,x 2﹣x+2≥0C .∃x ∈R ,x 2﹣x+2<0D .∀x ∈R ,x 2﹣x+2<04. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,)D .[,1)5. 在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .6. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 307. cos80cos130sin100sin130︒︒-︒︒等于( )A B .12 C .12-D .8. 已知空间四边形,、分别是、的中点,且,,则( )ABCD M N AB CD 4AC =6BD =A .B .C .D .15MN <<210MN <<15MN ≤≤25MN <<9. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )A .B .C .D .10.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725-C. 725±D .242511.直线在平面外是指( )A .直线与平面没有公共点B .直线与平面相交C .直线与平面平行D .直线与平面最多只有一个公共点12.复数的值是( )i i -+3)1(2A .B .C .D .i 4341+-i 4341-i 5351+-i 5351-【命题意图】本题考查复数乘法与除法的运算法则,突出复数知识中的基本运算,属于容易题.二、填空题13.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .14.函数f (x )=(x >3)的最小值为 .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.若非零向量,满足|+|=|﹣|,则与所成角的大小为 .17.在中,已知,则此三角形的最大内角的度数等ABC ∆sin :sin :sin 3:5:7A B C =于__________.18.等比数列{a n }的公比q=﹣,a 6=1,则S 6= .三、解答题19.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7},(1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.20.如图,⊙O 的半径为6,线段AB 与⊙相交于点C 、D ,AC=4,∠BOD=∠A ,OB 与⊙O 相交于点.(1)求BD 长;(2)当CE ⊥OD 时,求证:AO=AD .21.(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个,,x y z 盒中的球数.(1)求,,的概率;0x =1y =2z =(2)记,求随机变量的概率分布列和数学期望.x y ξ=+ξ【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力.22.已知f (x )=log 3(1+x )﹣log 3(1﹣x ).(1)判断函数f (x )的奇偶性,并加以证明;(2)已知函数g (x )=log,当x ∈[,]时,不等式 f (x )≥g (x )有解,求k 的取值范围.23.如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ′,证明:BC ′∥面EFG .24.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.乐亭县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l ⊥α.故选:B . 2. 【答案】C【解析】由题意,得甲组中,解得.乙组中,78888486929095887m +++++++=3m =888992<<所以,所以,故选C .9n =12m n +=3. 【答案】B【解析】解:因为全称命题的否定是特称命题,所以命题:“∀x ∈R ,x 2﹣x+2<0”的否定是∃x ∈R ,x 2﹣x+2≥0.故选:B .【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查. 4. 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 5. 【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O ,A ,B 三点能构成三角形,则O ,A ,B 三点不共线。
乐亭县一中2018-2019学年高二上学期第二次月考试卷数学
乐亭县一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设函数f (x )在x 0处可导,则等于( )A .f ′(x 0)B .f ′(﹣x 0)C .﹣f ′(x 0)D .﹣f (﹣x 0)2. “1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知(2,1)a =-,(,3)b k =-,(1,2)c =(,2)k =-c ,若(2)a b c -⊥,则||b =( ) A. B. C. D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.4.已知两不共线的向量,,若对非零实数m ,n 有m+n与﹣2共线,则=( )A .﹣2B .2 C.﹣ D.5. 已知不等式组⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x 表示的平面区域为D ,若D 内存在一点00(,)P x y ,使001ax y +<,则a 的取值范围为( )A .(,2)-∞B .(,1)-∞C .(2,)+∞D .(1,)+∞ 6. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( ) A .[﹣6,2] B .[﹣6,0)∪( 0,2] C .[﹣2,0)∪( 0,6] D .(0,2]7. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=28. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④9. 过点(0,﹣2)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A .B .C .D .10.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )A .4πB .12πC .16πD .48π11.特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥012.已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.二、填空题13.棱长为2的正方体的顶点都在同一球面上,则该球的表面积为 .14.若全集,集合,则15.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填B 方格的数字,则不同的填法共有 种(用数字作答).16.在△ABC 中,a=4,b=5,c=6,则= .17.若函数f(x)=3sinx﹣4cosx,则f′()=.18.方程(x+y﹣1)=0所表示的曲线是.三、解答题19.(1)已知f(x)的定义域为[﹣2,1],求函数f(3x﹣1)的定义域;(2)已知f(2x+5)的定义域为[﹣1,4],求函数f(x)的定义域.20.已知等差数列{a n}的前n项和为S n,公差d≠0,S2=4,且a2,a5,a14成等比数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)从数列{a n}中依次取出第2项,第4项,第8项,…,第2n项,…,按原来顺序组成一个新数列{b n},记该数列的前n项和为T n,求T n的表达式.21.已知函数f(x)=aln(x+1)+x2﹣x,其中a为非零实数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若y=f(x)有两个极值点α,β,且α<β,求证:<.(参考数据:ln2≈0.693)22.已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,说明理由.23.(本小题满分16分)给出定义在()+∞,0上的两个函数2()ln f x x a x =-,()g x x =- (1)若()f x 在1=x 处取最值.求的值;(2)若函数2()()()h x f x g x =+在区间(]0,1上单调递减,求实数的取值范围; (3)试确定函数()()()6m x f x g x =--的零点个数,并说明理由.24.如图:等腰梯形ABCD ,E 为底AB 的中点,AD=DC=CB=AB=2,沿ED 折成四棱锥A ﹣BCDE ,使AC=.(1)证明:平面AED ⊥平面BCDE ; (2)求二面角E ﹣AC ﹣B 的余弦值.乐亭县一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解: =﹣=﹣f ′(x 0),故选C .2. 【答案】A【解析】解:设A={x|1<x <2},B={x|x <2}, ∵A ⊊B ,故“1<x <2”是“x <2”成立的充分不必要条件. 故选A .【点评】本题考查的知识点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键.3. 【答案】A 【解析】4. 【答案】C【解析】解:两不共线的向量,,若对非零实数m ,n 有m +n 与﹣2共线,∴存在非0实数k 使得m +n =k (﹣2)=k ﹣2k ,或k (m +n )=﹣2,∴,或,则=﹣. 故选:C .【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.5. 【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域D 如图所示,先求z ax y =+的最小值,当12a ≤时,12a -≥-,z ax y =+在点1,0A ()取得最小值a ;当12a >时,12a -<-,z ax y =+在点11,33B ()取得最小值1133a +.若D 内存在一点00(,)P x y ,使001ax y +<,则有z ax y =+的最小值小于1,∴121a a ⎧≤⎪⎨⎪<⎩或12111a a ⎧>⎪⎪⎨⎪+<⎪,∴2a <,选A . 6. 【答案】B【解析】解:设此等比数列的公比为q , ∵a+b+c=6, ∴=6, ∴b=.当q >0时, =2,当且仅当q=1时取等号,此时b ∈(0,2];当q <0时,b =﹣6,当且仅当q=﹣1时取等号,此时b ∈[﹣6,0).∴b 的取值范围是[﹣6,0)∪( 0,2]. 故选:B .【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.7. 【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.8.【答案】A【解析】解:①∵A1B∥平面DCC1D1,∴线段A1B上的点M到平面DCC1D1的距离都为1,又△DCC1的面积为定值,因此三棱锥M﹣DCC1的体积V==为定值,故①正确.②∵A1D1⊥DC1,A1B⊥DC1,∴DC1⊥面A1BCD1,D1P⊂面A1BCD1,∴DC1⊥D1P,故②正确.③当0<A1P<时,在△AD1M中,利用余弦定理可得∠APD1为钝角,∴故③不正确;④将面AA1B与面A1BCD1沿A1B展成平面图形,线段AD1即为AP+PD1的最小值,在△D1A1A中,∠D1A1A=135°,利用余弦定理解三角形得AD1==<2,故④不正确.因此只有①②正确.故选:A.9.【答案】A【解析】解:若直线斜率不存在,此时x=0与圆有交点,直线斜率存在,设为k,则过P的直线方程为y=kx﹣2,即kx﹣y﹣2=0,若过点(0,﹣2)的直线l与圆x2+y2=1有公共点,则圆心到直线的距离d≤1,即≤1,即k2﹣3≥0,解得k≤﹣或k≥,即≤α≤且α≠,综上所述,≤α≤,故选:A.10.【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,∴几何体的侧面积为2π×2×h=12π,解得h=3,∴几何体的体积V=π×22×3=12π.故选B.【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.11.【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.12.【答案】D第Ⅱ卷(共90分)二、填空题13.【答案】12 【解析】考点:球的体积与表面积.【方法点晴】本题主要考查了球的体积与表面积的计算,其中解答中涉及到正方体的外接球的性质、组合体的结构特征、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于基础题,本题的解答中仔细分析,得出正方体的体对角线的长就外接球的直径是解答的关键. 14.【答案】{|0<<1} 【解析】∵,∴{|0<<1}。
乐亭县第一中学2018-2019学年高三上学期11月月考数学试卷含答案
乐亭县第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 如图,半圆的直径AB=6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则的最小值为( )A. B .9 C. D .﹣92. 已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111] A .)22,0( B .)33,0( C .)55,0( D .)66,0(3. i 是虚数单位,计算i+i 2+i 3=( )A .﹣1B .1C .﹣iD .i4. 如图,棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 为线段A 1B 上的动点,则下列结论正确的有( ) ①三棱锥M ﹣DCC 1的体积为定值 ②DC 1⊥D 1M ③∠AMD 1的最大值为90° ④AM+MD 1的最小值为2.A .①②B .①②③C .③④D .②③④5. 实数x ,y满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3) C.(,2) D.(,0)6. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)7. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________8. 定义集合运算:A*B={z|z=xy ,x ∈A ,y ∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( ) A .0B .2C .3D .69. 定义行列式运算:.若将函数的图象向左平移m(m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .B .C .D .10.若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( ) A .64π B .16π C .12π D .4π11.已知曲线C 1:y=e x 上一点A (x 1,y 1),曲线C 2:y=1+ln (x ﹣m )(m >0)上一点B (x 2,y 2),当y 1=y 2时,对于任意x 1,x 2,都有|AB|≥e 恒成立,则m 的最小值为( )A .1B .C .e ﹣1D .e+112.某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( ) A .4320 B .2400 C .2160 D .1320二、填空题13.已知z 是复数,且|z|=1,则|z ﹣3+4i|的最大值为 .14.已知数列}{n a 的前n 项和为n S ,且满足11a =-,12n n a S +=(其中*)n ∈N ,则n S = . 15.将曲线1:C 2sin(),04y x πωω=+>向右平移6π个单位后得到曲线2C ,若1C 与2C 关于x 轴对称,则ω的最小值为_________.16.长方体ABCD ﹣A 1B 1C 1D 1的棱AB=AD=4cm ,AA 1=2cm ,则点A 1到平面AB 1D 1的距离等于 cm .17.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .18.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 三、解答题19.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.20.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值; (Ⅲ)若,使得不等式成立,求实数的取值范围.21.(本小题满分12分)数列{}n b 满足:122n n b b +=+,1n n n b a a +=-,且122,4a a ==. (1)求数列{}n b 的通项公式; (2)求数列{}n a 的前项和n S .22.设命题p :实数x 满足x 2﹣4ax+3a 2<0,其中a >0;命题q :实数x 满足x 2﹣5x+6≤0(1)若a=1,且q ∧p 为真,求实数x 的取值范围; (2)若p 是q 必要不充分条件,求实数a 的取值范围.23.已知函数f (x )=2cos 2ωx+2sin ωxcos ωx ﹣1,且f (x )的周期为2.(Ⅰ)当时,求f (x )的最值;(Ⅱ)若,求的值.24.在中,,,.(1)求的值;(2)求的值。
乐亭县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
乐亭县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 数列中,,对所有的,都有,则等于( ){}n a 11a =2n ≥2123n a a a a n =A A 35a a +A .B .C .D .2592516611631152. 如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是()A .1﹣B .﹣C .D .3. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .64. 已知三棱锥外接球的表面积为32,,三棱锥的三视图如图S ABC -π090ABC ∠=S ABC -所示,则其侧视图的面积的最大值为( )A .4B .C .8D .5. 在△ABC 中,已知a=2,b=6,A=30°,则B=()A .60°B .120°C .120°或60°D .45°6. 在下面程序框图中,输入,则输出的的值是()44N =S A .B .C .D .251253255260【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是把正整数除以4后按余数分类.7. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n S a ++A . B .C .D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.8.某个几何体的三视图如图所示,该几何体的表面积为92+14π,则该几何体的体积为()A.80+20πB.40+20πC.60+10πD.80+10π9.某几何体的三视图如图所示,则它的表面积为()A.B.C.D.10.三个实数a、b、c成等比数列,且a+b+c=6,则b的取值范围是()A.[﹣6,2]B.[﹣6,0)∪(0,2]C.[﹣2,0)∪(0,6]D.(0,2]11.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.708 1.323 2.072 2.706 3.841 5.024 6.6357.87910.828A .25%B .75%C .2.5%D .97.5%12.三个数60.5,0.56,log 0.56的大小顺序为( )A .log 0.56<0.56<60.5B .log 0.56<60.5<0.56C .0.56<60.5<log 0.56D .0.56<log 0.56<60.5二、填空题13.设函数f (x )=,①若a=1,则f (x )的最小值为 ;②若f (x )恰有2个零点,则实数a 的取值范围是 .14.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 . 15.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 16.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则20x y t +-=216y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2;②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值;④当x=﹣1时,(i ,j )有2种不同取值;⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号) 18.设全集______.三、解答题19.(本小题满分12分)已知.1()2ln ()f x x a x a R x=--∈(Ⅰ)当时,求的单调区间;3a =()f x (Ⅱ)设,且有两个极值点,其中,求的最小值.()()2ln g x f x x a x =-+()g x 1[0,1]x ∈12()()g x g x -【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.20.已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.21.全集U=R ,若集合A={x|3≤x <10},B={x|2<x ≤7},(1)求A ∪B ,(∁U A )∩(∁U B );(2)若集合C={x|x >a},A ⊆C ,求a 的取值范围.22.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.23.对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足:①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n].则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数不存在“和谐区间”.(3)已知:函数(a ∈R ,a ≠0)有“和谐区间”[m ,n],当a 变化时,求出n ﹣m 的最大值.24.(本小题满分12分)设椭圆的离心率,圆与直线相切,为坐标原2222:1(0)x y C a b a b +=>>12e =22127x y +=1x y a b+=O 点.(1)求椭圆的方程;C (2)过点任作一直线交椭圆于两点,记,若在线段上取一点,使(4,0)Q -C ,M N MQ QN λ=MN R 得,试判断当直线运动时,点是否在某一定直一上运动?若是,请求出该定直线的方MR RN λ=-R 程;若不是,请说明理由.乐亭县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C 【解析】试题分析:由,则,两式作商,可得,所以2123n a a a a n =A A 21231(1)n a a a a n -=-A A 22(1)n n a n =-,故选C .22352235612416a a +=+=考点:数列的通项公式.2. 【答案】A【解析】解:设扇形的半径为r ,则扇形OAB 的面积为,连接OC ,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选A .3. 【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C .【点评】本题主要考查了椭圆的简单性质.属基础题. 4. 【答案】A 【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.5.【答案】C【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B∈(0°,180°),∴B=120°或60°.故选:C.6.【答案】B7.【答案】A【解析】8. 【答案】【解析】解析:选D.该几何体是在一个长方体的上面放置了半个圆柱.依题意得(2r ×2r +πr 2)×2+5×2r ×2+5×2r +πr ×5=92+14π,12 即(8+π)r 2+(30+5π)r -(92+14π)=0,即(r -2)[(8+π)r +46+7π]=0,∴r =2,∴该几何体的体积为(4×4+π×22)×5=80+10π.129. 【答案】 A【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,∴母线长为,圆锥的表面积S=S 底面+S 侧面=×π×12+×2×2+×π×=2+.故选A .【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量. 10.【答案】B【解析】解:设此等比数列的公比为q ,∵a+b+c=6,∴=6,∴b=.当q >0时, =2,当且仅当q=1时取等号,此时b ∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.11.【答案】D【解析】解:∵k>5、024,而在观测值表中对应于5.024的是0.025,∴有1﹣0.025=97.5%的把握认为“X和Y有关系”,故选D.【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目.12.【答案】A【解析】解:∵60.5>60=1,0<0.56<0.50=1,log0.56<log0.51=0.∴log0.56<0.56<60.5.故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题.二、填空题13.【答案】 ≤a<1或a≥2 .【解析】解:①当a=1时,f(x)=,当x<1时,f(x)=2x﹣1为增函数,f(x)>﹣1,当x>1时,f(x)=4(x﹣1)(x﹣2)=4(x2﹣3x+2)=4(x﹣)2﹣1,当1<x<时,函数单调递减,当x>时,函数单调递增,故当x=时,f(x)min=f()=﹣1,②设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤0时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.14.【答案】 .【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.15.【答案】2【解析】16.【解析】17.【答案】 ①③⑤ 【解析】解:建立直角坐标系如图:则P1(0,1),P2(0,0),P3(1,0),P4(1,1).∵集合M={x|x=且i,j∈{1,2,3,4}},对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},∴=(1,﹣1),==(0,﹣1),==(1,0),∴•=1;•=1;•=1;•=1;∴当x=1时,(i,j)有4种不同取值,故③正确;④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;当i=2,j=4,或i=4,j=2时,x=0,∴M中的元素之和为0,故⑤正确.综上所述,正确的序号为:①③⑤,故答案为:①③⑤.【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题. 18.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9},故答案为:{7,9}。
乐亭县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
乐亭县第一高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设函数)(x f 是定义在)0,(-∞上的可导函数,其导函数为)('x f ,且有2')()(2x x xf x f >+,则不等式0)2(4)2014()2014(2>--++f x f x 的解集为A 、)2012,(--∞B 、)0,2012(-C 、)2016,(--∞D 、)0,2016(-2. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( )A .B .12C .12- D .2-3. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.4. 直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为( )A .B .C .D .5. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B .(0,]C .(0,) D .[,1)6. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象( )A .向右平移个单位 B .向右平移个单位C .向左平移个单位D .向左平移个单位7. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣2 8. 执行如图的程序框图,则输出S 的值为( )A .2016B .2C .D .﹣19. 已知函数f (x )=lg (1﹣x )的值域为(﹣∞,1],则函数f (x )的定义域为( ) A .[﹣9,+∞) B .[0,+∞) C .(﹣9,1) D .[﹣9,1)10.已知点M (﹣6,5)在双曲线C :﹣=1(a >0,b >0)上,双曲线C 的焦距为12,则它的渐近线方程为( )A .y=±x B .y=±x C .y=±xD .y=±x 11.若复数2b ii++的实部与虚部相等,则实数b 等于( )(A ) 3 ( B ) 1 (C )13 (D ) 12- 12.在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有( )A .20种B .22种C .24种D .36种二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()211{52128lnx x xf x m x mx x +>=-++≤,,,,若()()g x f x m =-有三个零点,则实数m 的取值范围是________.14.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.15.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .16.抛物线y=x 2的焦点坐标为( )A .(0,)B .(,0)C .(0,4)D .(0,2)17.若复数12,z z 在复平面内对应的点关于y 轴对称,且12i z =-,则复数1212||z z z +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力. 18.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方 法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为 ________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.三、解答题19.已知在等比数列{a n }中,a 1=1,且a 2是a 1和a 3﹣1的等差中项.1818 0792 4544 1716 5809 7983 86196206 7650 0310 5523 6405 0526 6238(1)求数列{a n }的通项公式;(2)若数列{b n }满足b 1+2b 2+3b 3+…+nb n =a n (n ∈N *),求{b n }的通项公式b n .20.已知定义域为R 的函数是奇函数.(1)求f (x );(2)判断函数f (x )的单调性(不必证明); (3)解不等式f (|x|+1)+f (x )<0.21. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.22.已知椭圆的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.(I )求椭圆G 的方程;(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于,求直线OP (O 是坐标原点)的斜率的取值范围.23.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .24.(本小题满分12分) 已知函数2()xf x e ax bx =--.(1)当0,0a b >=时,讨论函数()f x 在区间(0,)+∞上零点的个数; (2)证明:当1b a ==,1[,1]2x ∈时,()1f x <.乐亭县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】C.【解析】由,得:, 即,令,则当时,, 即在是减函数, ,,,在是减函数,所以由得,,即,故选2. 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系. 3. 【答案】B4. 【答案】A【解析】直线x ﹣2y+2=0与坐标轴的交点为(﹣2,0),(0,1),直线x ﹣2y+2=0经过椭圆的一个焦点和一个顶点;故.故选A.【点评】本题考查了椭圆的基本性质,只需根据已知条件求出a,b,c即可,属于基础题型.5.【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.6.【答案】A【解析】解:由于函数y=sin(3x+)=sin[3(x+)]的图象向右平移个单位,即可得到y=sin[3(x+﹣)]=sin3x的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+∅)的图象平移变换,属于中档题.7.【答案】D【解析】【分析】由题意可得圆心C1和圆心C2,设直线l方程为y=kx+b,由对称性可得k和b的方程组,解方程组可得.【解答】解:由题意可得圆C1圆心为(0,0),圆C2的圆心为(﹣2,2),∵圆C1:x2+y2=4和圆C2:x2+y2+4x﹣4y+4=0关于直线l对称,∴点(0,0)与(﹣2,2)关于直线l对称,设直线l方程为y=kx+b,∴•k=﹣1且=k•+b,解得k=1,b=2,故直线方程为x﹣y=﹣2,故选:D.8.【答案】B【解析】解:模拟执行程序框图,可得s=2,k=0满足条件k<2016,s=﹣1,k=1满足条件k<2016,s=,k=2满足条件k<2016,s=2.k=3满足条件k<2016,s=﹣1,k=4满足条件k<2016,s=,k=5…观察规律可知,s的取值以3为周期,由2015=3*671+2,有满足条件k<2016,s=2,k=2016不满足条件k<2016,退出循环,输出s的值为2.故选:B.【点评】本题主要考查了程序框图和算法,依次写出前几次循环得到的s,k的值,观察规律得到s的取值以3为周期是解题的关键,属于基本知识的考查.9.【答案】D【解析】解:函数f(x)=lg(1﹣x)在(﹣∞,1)上递减,由于函数的值域为(﹣∞,1],则lg(1﹣x)≤1,则有0<1﹣x≤10,解得,﹣9≤x<1.则定义域为[﹣9,1),故选D.【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题.10.【答案】A【解析】解:∵点M(﹣6,5)在双曲线C:﹣=1(a>0,b>0)上,∴,①又∵双曲线C的焦距为12,∴12=2,即a2+b2=36,②联立①、②,可得a2=16,b2=20,∴渐近线方程为:y=±x=±x,故选:A .【点评】本题考查求双曲线的渐近线,注意解题方法的积累,属于基础题.11.【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.12.【答案】C【解析】解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法; ②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C .二、填空题13.【答案】714⎛⎤ ⎥⎝⎦,【解析】14.【答案】73【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点12,33A ⎛⎫⎪⎝⎭处取得最大值为73.考点:线性规划.15.【答案】.【解析】解:复数z==﹣i (1+i )=1﹣i ,复数z=(i 虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.16.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y ,∴焦点坐标为(0,2).故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.17.【答案】D 【解析】18.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.三、解答题19.【答案】【解析】解:(1)设等比数列{a n}的公比为q,由a2是a1和a3﹣1的等差中项得:2a2=a1+a3﹣1,∴,∴2q=q2,∵q≠0,∴q=2,∴;(2)n=1时,由b1+2b2+3b3+…+nb n=a n,得b1=a1=1.n≥2时,由b1+2b2+3b3+…+nb n=a n ①b1+2b2+3b3+…+(n﹣1)b n﹣1=a n﹣1②①﹣②得:.,∴.【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题.20.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f (x )在R 上为减函数且是奇函数,从而不等式 f (1+|x|)+f (x )<0等价于f (1+|x|)<﹣f (x ), 即f (1+|x|)<f (﹣x ); … 又因f (x )是R 上的减函数, 由上式推得1+|x|>﹣x ,… 解得x ∈R .…21.【答案】 【解析】(Ⅰ)(3,0)F在圆22:(16M x y +=内,∴圆N 内切于圆.MNM NF +∴轨迹E 的方程为4(11OA OC =2(14)(14k k ++≤当且仅当182,5>∴∆22.【答案】【解析】解:(I)∵椭圆的左焦点为F,离心率为,过点M(0,1)且与x轴平行的直线被椭圆G截得的线段长为.∴点在椭圆G上,又离心率为,∴,解得∴椭圆G的方程为.(II)由(I)可知,椭圆G的方程为.∴点F的坐标为(﹣1,0).设点P的坐标为(x0,y0)(x0≠﹣1,x0≠0),直线FP的斜率为k,则直线FP的方程为y=k(x+1),由方程组消去y0,并整理得.又由已知,得,解得或﹣1<x0<0.设直线OP的斜率为m,则直线OP的方程为y=mx.由方程组消去y0,并整理得.由﹣1<x0<0,得m2>,∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),由﹣<x0<﹣1,得,∵x0<0,y0>0,得m<0,∴﹣<m<﹣.∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.23.【答案】(1)n a n 2=;(2)=n T )1(2+n n.考点:1.一元二次方程;2.裂项相消法求和.24.【答案】(1)当2(0,)4e a ∈时,有个公共点,当24e a =时,有个公共点,当2(,)4e a ∈+∞时,有个公共点;(2)证明见解析. 【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得2x e a x=,构造函数2()xe h x x =,利用()'h x 求出单调性可知()h x 在(0,)+∞的最小值2(2)4e h =,根据原函数的单调性可讨论得零点个数;(2)构造函数2()1x h x e x x =---,利用导数可判断()h x 的单调性和极值情况,可证明()1f x <.1试题解析:当2(0,)4ea ∈时,有0个公共点; 当24e a =,有1个公共点;当2(,)4e a ∈+∞有2个公共点.(2)证明:设2()1x h x e x x =---,则'()21xh x e x =--,令'()()21xm x h x e x ==--,则'()2xm x e =-,因为1(,1]2x ∈,所以,当1[,ln 2)2x ∈时,'()0m x <;()m x 在1[,ln 2)2上是减函数,当(ln 2,1)x ∈时,'()0m x >,()m x 在(ln 2,1)上是增函数,考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.。
乐亭县第一中学校2018-2019学年上学期高二数学12月月考试题含解析
乐亭县第一中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2. 在下列区间中,函数f (x )=()x ﹣x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3 )D .(3,4)3. 已知函数,的图象与直线的两个相邻交点的距离等于()cos (0)f x x x ωωω=+>()y f x =2y =,则的一条对称轴是( )π()f x A . B .C .D .12x π=-12x π=6x π=-6x π=4. 如图,AB 是半圆O 的直径,AB =2,点P 从A 点沿半圆弧运动至B 点,设∠AOP =x ,将动点P 到A ,B 两点的距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()5. 已知抛物线C :的焦点为F ,准y x 82=线为,P 是上一点,Q 是直线PF 与C 的一l l 个交点,若,则FQ PF 2==QF ()A .6B .3C .D .3834第Ⅱ卷(非选择题,共100分)6. 若函数则函数的零点个数为( )21,1,()ln ,1,x x f x x x ⎧-≤=⎨>⎩1()2y f x x =+A .1B .2C .3D .47. 已知函数f (x )=x (1+a|x|).设关于x 的不等式f (x+a )<f (x )的解集为A ,若,则实数a 的取值范围是( )A .B .C .D .8. 已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点M (0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( )A .3B .C .D .9. 现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A .①简单随机抽样,②系统抽样,③分层抽样B .①简单随机抽样,②分层抽样,③系统抽样C .①系统抽样,②简单随机抽样,③分层抽样D .①分层抽样,②系统抽样,③简单随机抽样10.曲线y=x 3﹣2x+4在点(1,3)处的切线的倾斜角为( )A .30°B .45°C .60°D .120°11.观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=()A .28B .76C .123D .19912.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为()A .10 13B .12.5 12C .12.5 13D .10 15二、填空题13.等差数列的前项和为,若,则等于_________.{}n a n S 37116a a a ++=13S 14.球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S ﹣ABC 的体积的最大值为 .15.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 .16.(﹣)0+[(﹣2)3] = .17.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为__________18.已知三次函数f (x )=ax 3+bx 2+cx+d 的图象如图所示,则= .三、解答题19.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P (K 2≥k )0.050.01k 3.8416.635附:K 2=.20.(本小题满分12分)若二次函数满足,()()20f x ax bx c a =++≠()()+12f x f x x -=且.()01f =(1)求的解析式;()f x (2)若在区间上,不等式恒成立,求实数的取值范围.[]1,1-()2f x x m >+m21.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周得到如图所示的几何体σ.(1)求几何体σ的表面积;(2)点M 时几何体σ的表面上的动点,当四面体MABD 的体积为,试判断M 点的轨迹是否为2个菱形.22.【徐州市2018届高三上学期期中】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点、、、在圆周上,、在边上,且,设.(1)记游泳池及其附属设施的占地面积为,求的表达式;(2)怎样设计才能符合园林局的要求?23.已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=﹣.(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间[π,]上的最大值和最小值.24.(本小题满分12分)如图长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.(1)在图中画出这个四边形(不必说明画法和理由);(2)求平面α将长方体分成的两部分体积之比.乐亭县第一中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】解:若a=0,则z=﹣2i (1+i )=2﹣2i ,点M 在第四象限,是充分条件,若点M 在第四象限,则z=(a+2)+(a ﹣2)i ,推出﹣2<a <2,推不出a=0,不是必要条件;故选:A .【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题. 2. 【答案】A【解析】解:函数f (x )=()x ﹣x ,可得f (0)=1>0,f (1)=﹣<0.f (2)=﹣<0,函数的零点在(0,1).故选:A . 3. 【答案】D 【解析】试题分析:由已知,,所以,则,令 ()2sin()6f x x πω=+T π=22πωπ==()2sin(26f x x π=+,得,可知D 正确.故选D .2,62x k k Z πππ+=+∈,26k x k Z ππ=+∈考点:三角函数的对称性.()sin()f x A x ωϕ=+4. 【答案】【解析】选B.取AP 的中点M ,则PA =2AM =2OA sin ∠AOM=2sin ,x 2PB =2OM =2OA ·cos ∠AOM =2cos ,x 2∴y =f (x )=PA +PB =2sin +2cos =2sin (+),x ∈[0,π],根据解析式可知,只有B 选项符合要求,x 2x 22x 2π4故选B.5. 【答案】A解析:抛物线C :的焦点为F (0,2),准线为:y=﹣2,y x 82=l 设P (a ,﹣2),B (m ,),则=(﹣a ,4),=(m ,﹣2),∵,∴2m=﹣a ,4=﹣4,∴m 2=32,由抛物线的定义可得|QF|=+2=4+2=6.故选A .6. 【答案】D 【解析】考点:函数的零点.【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.7. 【答案】 A【解析】解:取a=﹣时,f (x )=﹣x|x|+x ,∵f (x+a )<f (x ),∴(x ﹣)|x ﹣|+1>x|x|,(1)x <0时,解得﹣<x <0;(2)0≤x ≤时,解得0;(3)x >时,解得,综上知,a=﹣时,A=(﹣,),符合题意,排除B 、D ;取a=1时,f (x )=x|x|+x ,∵f (x+a )<f (x ),∴(x+1)|x+1|+1<x|x|,(1)x<﹣1时,解得x>0,矛盾;(2)﹣1≤x≤0,解得x<0,矛盾;(3)x>0时,解得x<﹣1,矛盾;综上,a=1,A=∅,不合题意,排除C,故选A.【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用.8.【答案】B【解析】解:依题设P在抛物线准线的投影为P′,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP′|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|≥|MF|==.即有当M,P,F三点共线时,取得最小值,为.故选:B.【点评】本题主要考查抛物线的定义解题,考查了抛物线的应用,考查了学生转化和化归,数形结合等数学思想.9.【答案】A【解析】解;观察所给的四组数据,①个体没有差异且总数不多可用随机抽样法,简单随机抽样,②将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号,系统抽样,③个体有了明显了差异,所以选用分层抽样法,分层抽样,故选A.10.【答案】B【解析】解:y/=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题. 11.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a 10+b 10=123,.故选C . 12.【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,∴中间的一个矩形最高,故10与15的中点是12.5,众数是12.5而中位数是把频率分布直方图分成两个面积相等部分的平行于Y 轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可∴中位数是13故选:C .【点评】用样本估计总体,是研究统计问题的一个基本思想方法.频率分布直方图中小长方形的面积=组距×,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型.二、填空题13.【答案】26【解析】试题分析:由题意得,根据等差数列的性质,可得,由等差数列的求和371177362a a a a a ++==⇒=.11313713()13262a a S a +===考点:等差数列的性质和等差数列的和.14.【答案】 .【解析】解:由题意画出几何体的图形如图由于面SAB ⊥面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球体的对称性可知,当S 在“最高点”,也就是说H 为AB 中点时,SH 最大,棱锥S ﹣ABC 的体积最大.∵△ABC 是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.15.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f(﹣1)=2﹣3=﹣1,即函数f(x)的图象经过的定点坐标是(﹣1,﹣1),故答案为:(﹣1,﹣1).16.【答案】 .【解析】解:(﹣)0+[(﹣2)3]=1+(﹣2)﹣2=1+=.故答案为:.17.【答案】【解析】【知识点】抛物线双曲线【试题解析】抛物线的准线方程为:x=2;双曲线的两条渐近线方程为:所以故答案为:18.【答案】 ﹣5 .【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣5三、解答题19.【答案】【解析】解:(Ⅰ)由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成2×2列联表如下:非歌迷歌迷合计男301545女451055合计7525100…将2×2列联表中的数据代入公式计算,得:K2==≈3.030因为3.030<3.841,所以我们没有95%的把握认为“歌迷”与性别有关.…(Ⅱ)由统计表可知,“超级歌迷”有5人,从而一切可能结果所组成的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2.Ω由10个等可能的基本事件组成.…用A表示“任选2人中,至少有1个是女性”这一事件,则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)},事件A由7个基本事件组成.∴P(A)= (12)【点评】本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型.20.【答案】(1);(2).()2=+1f x x x -1m <-【解析】试题分析:(1)根据二次函数满足,利用多项式相等,即()()20f x ax bx c a =++≠()()+12f x f x x -=可求解的值,得到函数的解析式;(2)由恒成立,转化为,设,a b []()1,1,x f x m ∈->231m x x <-+,只需,即可而求解实数的取值范围.()2g 31x x x =-+()min m g x <m 试题解析:(1) 满足()()20f x ax bx c a =++≠()01,1f c ==,解得,()()()()2212,112f x f x x a x b x ax bx x +-=+++--=1,1a b ==-故.()2=+1f x x x -考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转化与化归思想,试题有一定的难度,属于中档试题,其中正确把不等式的恒成立问题转化为函数的最值问题是解答的关键.21.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S △ABD =××2×sin135°=1,因而要使四面体MABD 的体积为,只要M 点到平面ABCD 的距离为1,因为在空间中有两个平面到平面ABCD 的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.22.【答案】(1)(2)【解析】试题分析:(1)根据直角三角形求两个矩形的长与宽,再根据矩形面积公式可得函数解析式,最后根据实际意义确定定义域(2)利用导数求函数最值,求导解得零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值(2)要符合园林局的要求,只要最小,由(1)知,令,即,解得或(舍去),令,当时,是单调减函数,当时,是单调增函数,所以当时,取得最小值.答:当满足时,符合园林局要求.23.【答案】 【解析】解:(1)∵=(sinx ,cosx ),=(sinx ,sinx ),∴f (x )=﹣=sin 2x+sinxcosx ﹣=(1﹣cos2x )+sin2x ﹣=﹣cos2x+sin2x ﹣=sin (2x ﹣),∴函数的周期为T==π,由2k π﹣≤2x ﹣≤2k π+(k ∈Z )解得k π﹣≤x ≤k π+,∴f (x )的单调递增区间为[k π﹣,k π+],(k ∈Z );(2)由(1)知f (x )=sin (2x ﹣),当x ∈[π,]时,2x ﹣∈[,],∴﹣≤sin (2x ﹣)≤1,故f (x )在区间[π,]上的最大值和最小值分别为1和﹣.【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题.24.【答案】【解析】解:(1)交线围成的四边形EFCG (如图所示).(2)∵平面A 1B 1C 1D 1∥平面ABCD ,平面A 1B 1C 1D 1∩α=EF ,平面ABCD ∩α=GC ,∴EF ∥GC ,同理EG ∥FC .∴四边形EFCG 为平行四边形,过E 作EM ⊥D 1F ,垂足为M ,∴EM =BC =10,∵A 1E =4,D 1F =8,∴MF =4.∴GC =EF ===,EM 2+MF 2102+42116∴GB ===4(事实上Rt △EFM ≌Rt △CGB ).GC 2-BC 2116-100过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .∴平面α将长方体分成的右边部分由三棱柱EHG FC 1C 与三棱柱HB 1C 1GBC 两部分组成.其体积为V 2=V 三棱柱EHG FC 1C +V 三棱柱HB 1C 1GBC=S △FC 1C ·B 1C 1+S △GBC ·BB 1=×8×8×10+×4×10×8=480,1212∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800.∴==,V 1V 280048053∴其体积比为(也可以).5335。
乐亭县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案
乐亭县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q2. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .3. 若P 是以F 1,F 2为焦点的椭圆=1(a >b >0)上的一点,且=0,tan ∠PF 1F 2=,则此椭圆的离心率为( )A .B .C .D .4. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin 2,则该数列的前10项和为( )A .89B .76C .77D .355. 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A .4320B .2400C .2160D .13206. 以下四个命题中,真命题的是( )A .2,2x R x x ∃∈≤- B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++< C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+ D .已知,表示两条不同的直线,,表示不同的平面,并且,,则“”是m n αβm α⊥n β⊂αβ⊥ “”的必要不充分条件//m n 【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.7. 设a=0.5,b=0.8,c=log 20.5,则a 、b 、c 的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.b<a<c8.给出下列两个结论:①若命题p:∃x0∈R,x02+x0+1<0,则¬p:∀x∈R,x2+x+1≥0;②命题“若m>0,则方程x2+x﹣m=0有实数根”的逆否命题为:“若方程x2+x﹣m=0没有实数根,则m≤0”;则判断正确的是()A.①对②错B.①错②对C.①②都对D.①②都错9.如图所示,在平行六面体ABCD﹣A1B1C1D1中,点E为上底面对角线A1C1的中点,若=+x+y ,则()A.x=﹣B.x=C.x=﹣D.x=10.某几何体的三视图如图所示,则该几何体为()A.四棱柱B.四棱锥C.三棱台D.三棱柱11.在△ABC中,b=,c=3,B=30°,则a=()A.B.2C.或2D.212.如图,正方体ABCD﹣A1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是()A.AC⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=,对任意的m ∈[﹣2,2],f (mx ﹣3x x +2)+f (x )<0恒成立,则x 的取值范围为_____.14.(lg2)2+lg2•lg5+的值为 .15.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 . 16.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .17.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .18.幂函数在区间上是增函数,则.1222)33)(+-+-=m m x m m x f (()+∞,0=m 三、解答题19.数列中,,,且满足.{}n a 18a =42a =*2120()n n n a a a n N ++-+=∈(1)求数列的通项公式;{}n a (2)设,求.12||||||n n S a a a =++ n S 20.解关于x 的不等式12x 2﹣ax >a 2(a ∈R ).21.在平面直角坐标系中,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.已知直线l 过点P (1,0),斜率为,曲线C :ρ=ρcos2θ+8cos θ.(Ⅰ)写出直线l 的一个参数方程及曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求|PA|•|PB|的值. 22.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数,()()3231312f x x k x kx =-+++其中.k R ∈(1)当时,求函数在上的值域;3k =()f x []0,5(2)若函数在上的最小值为3,求实数的取值范围.()f x []1,2k 23.(本题满分12分) 已知数列{a n }满足a 1=1,a n+1=2a n +1.(1)求数列{a n }的通项公式;(2)令b n =n (a n +1),求数列{b n }的前n 项和T n .24.已知函数,,.()xf x e x a =-+21()x g x x a e=++a R ∈(1)求函数的单调区间;()f x (2)若存在,使得成立,求的取值范围;[]0,2x ∈()()f x g x <(3)设,是函数的两个不同零点,求证:.1x 2x ()f x 121x x e +<乐亭县第一高级中学2018-2019学年上学期高二数学12月月考试题含答案(参考答案)一、选择题1.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.2.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B3.【答案】A【解析】解:∵∴,即△PF1F2是P为直角顶点的直角三角形.∵Rt△PF1F2中,,∴=,设PF2=t,则PF1=2t∴=2c,又∵根据椭圆的定义,得2a=PF1+PF2=3t∴此椭圆的离心率为e====故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题.4.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.5.【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有•=388,第二组(1,1,2,2),利用间接法,有(﹣)•=932根据分类计数原理,可得388+932=1320种,故选D.【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题.6.【答案】D7.【答案】B【解析】解:∵a=0.5,b=0.8,∴0<a<b,∵c=log20.5<0,∴c<a<b,故选B.【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题.8.【答案】C【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.②根据逆否命题的定义可知②正确.故选C.【点评】考查特称命题,全称命题,和逆否命题的概念.9.【答案】A【解析】解:根据题意,得;=+(+)=++=﹣+,又∵=+x+y,∴x=﹣,y=,故选:A.【点评】本题考查了空间向量的应用问题,是基础题目.10.【答案】A【解析】试题分析:由三视图可知,该几何体是底面为直角梯形的直四棱柱,直角梯形的上下底分别为3和4,直角腰为1,棱柱的侧棱长为1,故选A.考点:三视图【方法点睛】本题考查了三视图的问题,属于基础题型,三视图主要还是来自简单几何体,所以需掌握三棱锥,四棱锥的三视图,尤其是四棱锥的放置方法,比如正常放置,底面就是底面,或是以其中一个侧面当底面的放置方法,还有棱柱,包含三棱柱,四棱柱,比如各种角度,以及以底面当底面,或是以侧面当底面的放置方法,还包含旋转体的三视图,以及一些组合体的三视图,只有先掌握这些,再做题时才能做到胸有成竹. 11.【答案】C【解析】解:∵b=,c=3,B=30°,∴由余弦定理b2=a2+c2﹣2accosB,可得:3=9+a2﹣3,整理可得:a2﹣3a+6=0,∴解得:a=或2.故选:C.12.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.二、填空题13.【答案】2 2,3⎛⎫- ⎪⎝⎭【解析】14.【答案】 1 .【解析】解:(lg2)2+lg2•lg5+=lg2(lg2+lg5)+lg5=lg2+lg5=1,故答案为:1.15.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键. 16.【答案】 (,0) .【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.17.【答案】 240 .【解析】解:a=(cosx﹣sinx)dx=(sinx+cosx)=﹣1﹣1=﹣2,则二项式(x2﹣)6=(x2+)6展开始的通项公式为T r+1=•2r•x12﹣3r,令12﹣3r=0,求得r=4,可得二项式(x2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题.18.【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数.当是分数时,一般将其先化为根式,再判断;(2)若幂函()y xR αα=∈αα数在上单调递增,则,若在上单调递减,则;(3)在比较幂值()y x R αα=∈()0,+∞α0>()0,+∞0α<的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1三、解答题19.【答案】(1);(2).102n a n =-229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩【解析】试题分析:(1)由,所以是等差数列且,,即可求解数列的通2120n n n a a a ++-+={}n a 18a =42a ={}n a 项公式;(2)由(1)令,得,当时,;当时,;当时,,0n a =5n =5n >0n a <5n =0n a =5n <0n a >即可分类讨论求解数列.n S当时,5n ≤12||||||n n S a a a =++ 2129n a a a n n=+++=-∴.1229(5)940(5)n n n n S n n n ⎧-≤⎪=⎨-+>⎪⎩考点:等差数列的通项公式;数列的求和.20.【答案】【解析】解:由12x 2﹣ax ﹣a 2>0⇔(4x+a )(3x ﹣a )>0⇔(x+)(x ﹣)>0,①a >0时,﹣<,解集为{x|x <﹣或x >};②a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};③a <0时,﹣>,解集为{x|x <或x >﹣}.综上,当a >0时,﹣<,解集为{x|x <﹣或x >};当a=0时,x 2>0,解集为{x|x ∈R 且x ≠0};当a <0时,﹣>,解集为{x|x <或x >﹣}. 21.【答案】【解析】解:(Ⅰ)∵直线l 过点P (1,0),斜率为,∴直线l 的一个参数方程为(t 为参数);∵ρ=ρcos2θ+8cos θ,∴ρ(1﹣cos2θ)=8cos θ,即得(ρsin θ)2=4ρcos θ,∴y 2=4x ,∴曲线C 的直角坐标方程为y 2=4x .(Ⅱ) 把代入y 2=4x 整理得:3t 2﹣8t ﹣16=0,设点A ,B 对应的参数分别为t 1,t 2,则,∴.【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题. 22.【答案】(1);(2).[]1,212k ≥【解析】试题分析:(1)求导,再利用导数工具即可求得正解;(2)求导得,再()'f x =()()31x x k --分和两种情况进行讨论;1k ≤1k >试题解析:(1)解: 时,3k =()32691f x x x x =-++ 则()()()23129313f x x x x x =-+=--'令得列表()0f x '=121,3x x ==x 0()0,11()1,33()3,53()f x '+0 -0+()f x 1单调递增5单调递减1单调递增21由上表知函数的值域为()f x []1,21(2)方法一:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以()()()min 31113132f x f k k ==-+++= 即(舍) 53k =②当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以()()()322min 313132f x f k k k k k ==-+++=化简得:32340k k -+=即()()2120k k +-=所以或(舍)1k =-2k =注:也可令()3234g k k k =-+则()()23632g k k k k k =='--对()()1,2,0k g k ∀∈'≤在单调递减()3234g k k k =-+()1,2k ∈所以不符合题意()02g k <<综上所述:实数取值范围为k 2k ≥方法二:()()()()2331331f x x k x k x x k =-++=--'①当时,,函数在区间单调递减2k ≥[]()1,2,'0x f x ∀∈≤()f x []1,2 所以()()()min 28613213f x f k k ==-++⋅+= 符合题意 …………8分②当时,,函数在区间单调递增1k ≤[]()1,2,'0x f x ∀∈≥()f x []1,2所以不符合题意()()min 23f x f <=③当时,12k <<当时,区间在单调递减[)1,x k ∈()'0f x <()f x [)1,k 当时,区间在单调递增(],2x k ∈()'0f x >()f x (],2k 所以不符合题意()()()min 23f x f k f =<=综上所述:实数取值范围为k 2k ≥23.【答案】解:(1)∵a n+1=2a n +1,∴a n+1+1=2(a n +1),又∵a 1=1,∴数列{a n +1}是首项、公比均为2的等比数列,∴a n +1=2n ,∴a n =﹣1+2n ; 6分(2)由(1)可知b n =n (a n +1)=n •2n =n •2n ﹣1,∴T n =1•20+2•2+…+n •2n ﹣1,2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n=﹣n •2n=﹣1﹣(n ﹣1)•2n ,于是T n =1+(n ﹣1)•2n .则所求和为6分12nn -24.【答案】(1)的单调递增区间为,单调递减区间为;(2)或;(3)()f x (0,)+∞(,0)-∞1a >0a <证明见解析.【解析】试题解析: (1).'()1xf x e =-令,得,则的单调递增区间为;]'()0f x >0x >()f x (0,)+∞令,得,则的单调递减区间为.'()0f x <0x <()f x (,0)-∞(2)记,则,()()()F x f xg x =-21()2xx F x e x a a e=--+-.1'()2x x F x e e=+-∵,∴,1220xx e e +-≥-='()0F x ≥∴函数为上的增函数,()F x (,)-∞+∞∴当时,的最小值为.[]0,2x ∈()F x 2(0)F a a =-∵存在,使得成立,[]0,2x ∈()()f x g x <∴的最小值小于0,即,解得或.1()F x 20a a -<1a >0a <(3)由(1)知,是函数的极小值点,也是最小值点,即最小值为,0x =()f x (0)1f a =+则只有时,函数由两个零点,不妨设,1a <-()f x 12x x <易知,,10x <20x >∴,1222()()()()f x f x f x f x -=--2222()()xx e x a e x a -=-+-++2222x x e e x -=--令(),()2xxh x e ex -=--0x ≥考点:导数与函数的单调性;转化与化归思想.。
乐亭县一中2018-2019学年上学期高二数学12月月考试题含解析
乐亭县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )A .{2,1,0}--B .{1,0,1,2}-C .{2,1,0}--D .{1,,0,1}-【命题意图】本题考查集合的交集运算,意在考查计算能力.2. 已知向量与的夹角为60°,||=2,||=6,则2﹣在方向上的投影为( ) A .1B .2C .3D .43. P 是双曲线=1(a >0,b >0)右支上一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则△PF 1F 2的内切圆圆心的横坐标为( )A .aB .bC .cD .a+b ﹣c4. (﹣6≤a ≤3)的最大值为( )A .9B .C .3D .5. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D66. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 7. 复数Z=(i 为虚数单位)在复平面内对应点的坐标是( )A .(1,3)B .(﹣1,3)C .(3,﹣1)D .(2,4)8. 已知一元二次不等式f (x )<0的解集为{x|x <﹣1或x >},则f (10x )>0的解集为( ) A .{x|x <﹣1或x >﹣lg2} B .{x|﹣1<x <﹣lg2} C .{x|x >﹣lg2} D .{x|x <﹣lg2}9. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦10.设a ,b为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .211.若直线:1l y kx =-与曲线C :1()1e xf x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .12C .1 D【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.12.将y=cos (2x+φ)的图象沿x轴向右平移个单位后,得到一个奇函数的图象,则φ的一个可能值为( )A.B.﹣C.﹣D.二、填空题13.方程(x+y ﹣1)=0所表示的曲线是 .14.如果椭圆+=1弦被点A (1,1)平分,那么这条弦所在的直线方程是 .15.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.16.已知x 是400和1600的等差中项,则x= . 17.计算:×5﹣1= .18.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 三、解答题19.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?20.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.21.在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.22.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)23.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.24.已知点(1,)是函数f(x)=a x(a>0且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=+(n≥2).记数列{}前n项和为T n,(1)求数列{a n}和{b n}的通项公式;(2)若对任意正整数n,当m∈[﹣1,1]时,不等式t2﹣2mt+>T n恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.乐亭县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】C【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .2. 【答案】A【解析】解:∵向量与的夹角为60°,||=2,||=6, ∴(2﹣)•=2﹣=2×22﹣6×2×cos60°=2,∴2﹣在方向上的投影为=.故选:A .【点评】本题考查了平面向量数量积的定义与投影的计算问题,是基础题目.3. 【答案】A 【解析】解:如图设切点分别为M ,N ,Q , 则△PF 1F 2的内切圆的圆心的横坐标与Q 横坐标相同.由双曲线的定义,PF 1﹣PF 2=2a . 由圆的切线性质PF 1﹣PF 2=F I M ﹣F 2N=F 1Q ﹣F 2Q=2a ,∵F 1Q+F 2Q=F 1F 2=2c ,∴F 2Q=c ﹣a ,OQ=a ,Q 横坐标为a . 故选A .【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义.4. 【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.5.【答案】B【解析】由题意知x=a+b,a∈A,b∈B,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B 6.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB OD+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2OA OB BAAB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.7.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.8.【答案】D【解析】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x <﹣lg2 故选:D9. 【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞==⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .10.【答案】C【解析】解:,因此.a ﹣b=1.故选:C .11.【答案】C【解析】令()()()()111ex g x f x kx k x =--=-+,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10e xg x =>,知方程()0g x =在R 上没有实数解,所以k的最大值为1,故选C .12.【答案】D【解析】解:将y=cos (2x+φ)的图象沿x 轴向右平移个单位后,得到一个奇函数y=cos=cos (2x+φ﹣)的图象, ∴φ﹣=k π+,即 φ=k π+,k ∈Z ,则φ的一个可能值为,故选:D .二、填空题13.【答案】 两条射线和一个圆 .【解析】解:由题意可得x2+y2﹣4≥0,表示的区域是以原点为圆心的圆的外部以及圆上的部分.由方程(x+y﹣1)=0,可得x+y﹣1=0,或x2+y2=4,故原方程表示一条直线在圆外的地方和一个圆,即两条射线和一个圆,故答案为:两条射线和一个圆.【点评】本题主要考查直线和圆的方程的特征,属于基础题.14.【答案】x+4y﹣5=0.【解析】解:设这条弦与椭圆+=1交于P(x1,y1),Q(x2,y2),由中点坐标公式知x1+x2=2,y1+y2=2,把P(x1,y1),Q(x2,y2)代入x2+4y2=36,得,①﹣②,得2(x1﹣x2)+8(y1﹣y2)=0,∴k==﹣,∴这条弦所在的直线的方程y﹣1=﹣(x﹣1),即为x+4y﹣5=0,由(1,1)在椭圆内,则所求直线方程为x+4y﹣5=0.故答案为:x+4y﹣5=0.【点评】本题考查椭圆的方程的运用,运用点差法和中点坐标和直线的斜率公式是解题的关键.15.【答案】6【解析】解:集合A为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.16.【答案】1000.【解析】解:∵x是400和1600的等差中项,∴x==1000.故答案为:1000.17.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.2,618.【答案】[]【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()可表示点0,0的距离;(2(),x y与点(),a b间的距离;(3)yx(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.三、解答题19.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P(ξ=240)=,P(ξ=60)=P(ξ=30)=,P(ξ=0)=1﹣∴变量的分布列是ξ∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B(4,)∴Dη=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.20.【答案】【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE解:(Ⅱ)方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.所以∠AHB为二面角A﹣EF﹣C的平面角.在Rt△CEF中,因为EF=2,CF=4.EC=∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,∴由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,所以当时,二面角A﹣EF﹣C的大小为60°方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz.设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).从而,设平面AEF的法向量为,由得,,取x=1,则,即,不妨设平面EFCB的法向量为,由条件,得解得.所以当时,二面角A﹣EF﹣C的大小为60°.【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题.21.【答案】【解析】解:(1)圆O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2﹣x﹣y=0.直线l:,即ρsinθ﹣ρcosθ=1,则直线的直角坐标方程为:y﹣x=1,即x﹣y+1=0.(2)由,可得,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为.【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题.22.【答案】【解析】【知识点】样本的数据特征古典概型【试题解析】(Ⅰ)由折线图,知样本中体育成绩大于或等于70分的学生有人,所以该校高一年级学生中,“体育良好”的学生人数大约有人.(Ⅱ)设“至少有1人体育成绩在”为事件,记体育成绩在的数据为,,体育成绩在的数据为,,,则从这两组数据中随机抽取2个,所有可能的结果有10种,它们是:,,,,,,,,,.而事件的结果有7种,它们是:,,,,,,,因此事件的概率.(Ⅲ)a,b,c的值分别是为,,.23.【答案】【解析】解:(Ⅰ)由(0.006×3+0.01+0.054+x)×10=1,解得x=0.018,前三组的人数分别为:(0.006×2+0.01+0.018)×10×50=20,第四组为0.054×10×50=27人,故数学成绩的众数落在第四组,故众数为75分.(Ⅱ)分数在[40,50)、[90,100]的人数分别是3人,共6人,∴这2人成绩均不低于90分的概率P==.【点评】本题考查频率分布直方图及古典概型的问题,前者要熟练掌握直方图的基本性质和如何利用直方图求众数;后者往往和计数原理结合起来考查.24.【答案】【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=[f(2)﹣c]﹣[f(1)﹣c]=,a3=[f(3)﹣c]﹣[f(2)﹣c]=因为数列{a n}是等比数列,所以,所以c=1.又公比q=,所以;由题意可得:=,又因为b n>0,所以;所以数列{}是以1为首项,以1为公差的等差数列,并且有;当n≥2时,b n=S n﹣S n﹣1=2n﹣1;所以b n=2n﹣1.(2)因为数列前n项和为T n,所以==;因为当m∈[﹣1,1]时,不等式恒成立,所以只要当m∈[﹣1,1]时,不等式t2﹣2mt>0恒成立即可,设g(m)=﹣2tm+t2,m∈[﹣1,1],所以只要一次函数g(m)>0在m∈[﹣1,1]上恒成立即可,所以,解得t<﹣2或t>2,所以实数t的取值范围为(﹣∞,﹣2)∪(2,+∞).(3)T1,T m,T n成等比数列,得T m2=T1T n∴,∴结合1<m<n知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题.。
乐亭县实验中学2018-2019学年上学期高二数学12月月考试题含解析
乐亭县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. △ABC 中,A (﹣5,0),B (5,0),点C在双曲线上,则=( )A.B.C.D .± 2. 设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 5. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =-与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =6. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7D .5 7. 为了得到函数y=sin3x 的图象,可以将函数y=sin (3x+)的图象()A .向右平移个单位B .向右平移个单位C .向左平移个单位D .向左平移个单位8. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形9. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 10.复数i ﹣1(i 是虚数单位)的虚部是( )A .1B .﹣1C .iD .﹣i11.在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 12.设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(1,2)二、填空题13.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .14.若实数,,,a b c d 满足24ln 220b a a c d +-+-+=,则()()22a cb d -+-的最小值为 ▲ . 15.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件.16.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .17.有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同.三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是 _______元.18.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为 .三、解答题19.已知A、B、C为△ABC的三个内角,他们的对边分别为a、b、c,且.(1)求A;(2)若,求bc的值,并求△ABC的面积.20.(本小题满分12分)2014年7月16日,中国互联网络信息中心发布《第三十四次中国互联网发展状况报告》,报告显示:我国网络购物用户已达3.32亿.为了了解网购者一次性购物金额情况,某统计部门随机抽查了6月1日这一天100名网购者的网购情况,得到如下数据统计表.已知网购金额在2000元以上(不含2000元)的频率为0.4.(Ⅰ)确定x,y,p,q的值;(Ⅱ)为进一步了解网购金额的多少是否与网龄有关,对这100名网购者调查显示:购物金额在2000元以上的网购者中网龄3年以上的有35人,购物金额在2000元以下(含2000元)的网购者中网龄不足3年的有20人.(参考公式:()()()()()2n ad bc a b c d a c b d -K =++++,其中n a b c d =+++)21.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.22.(本题满分12分)已知数列}{n a 的前n 项和为n S ,233-=n n a S (+∈N n ).(1)求数列}{n a 的通项公式;(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:27<n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.23.在平面直角坐标系xOy 中.己知直线l 的参数方程为(t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρ=4. (1)写出直线l 的普通方程与曲线C 的直角坐标系方程; (2)直线l 与曲线C 相交于A 、B 两点,求∠AOB 的值.24.已知函数f (x )=的定义域为A ,集合B 是不等式x 2﹣(2a+1)x+a 2+a >0的解集.(Ⅰ) 求A ,B ;(Ⅱ) 若A ∪B=B ,求实数a 的取值范围.乐亭县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.2.【答案】B【解析】因为所以,对应的点位于第二象限故答案为:B【答案】B3.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.4.【答案】A.【解析】5. 【答案】C 【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
乐亭县高级中学2018-2019学年高二上学期第一次月考试卷数学
乐亭县高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在中,、、分别为角、、所对的边,若,则此三角形的形状一定是( ) A .等腰直角 B .等腰或直角 C .等腰D .直角2. 已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( ) A .15 B .16 C .314 D .133. 给出下列命题:①在区间(0,+∞)上,函数y=x ﹣1,y=,y=(x ﹣1)2,y=x 3中有三个是增函数;②若log m 3<log n 3<0,则0<n <m <1;③若函数f (x )是奇函数,则f (x ﹣1)的图象关于点A (1,0)对称;④若函数f (x )=3x ﹣2x ﹣3,则方程f (x )=0有2个实数根.其中假命题的个数为( )A .1B .2C .3D .44. 已知△ABC 是锐角三角形,则点P (cosC ﹣sinA ,sinA ﹣cosB )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5. 已知函数2()2ln 2f x a x x x =+-(a R ∈)在定义域上为单调递增函数,则的最小值是( ) A .14 B .12C .D . 6. sin570°的值是( )A .B .﹣C .D .﹣7. 已知平面向量(12)=,a ,(32)=-,b ,若k +a b 与a 垂直,则实数k 值为( ) A .15- B .119 C .11 D .19【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力.8. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 9. 如图所示,函数y=|2x ﹣2|的图象是( )A .B .C .D .10.在三角形中,若,则的大小为( )A .B .C .D .11.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧12.f ()=,则f (2)=( )A .3B .1C .2D .二、填空题13.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m . 15.抛物线y 2=﹣8x 上到焦点距离等于6的点的坐标是 .16.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 .17.(sinx+1)dx 的值为 .18.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .三、解答题19.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0(1)若a=,且p∧q为真,求实数x的取值范围.(2)若p是q的充分不必要条件,求实数a的取值范围.20.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.21.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.22.已知等差数列{a n}中,其前n项和S n=n2+c(其中c为常数),(1)求{a n}的通项公式;(2)设b1=1,{a n+b n}是公比为a2等比数列,求数列{b n}的前n项和T n.23.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X表示决出冠军时比赛的场数,求X的分布列及数学期望.24.如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AB∥CD,AB⊥AD,CD=2AB,E为PA的中点,M在PD上.(I)求证:AD⊥PB;(Ⅱ)若,则当λ为何值时,平面BEM⊥平面PAB?(Ⅲ)在(II)的条件下,求证:PC∥平面BEM.乐亭县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B2.【答案】D【解析】考点:等差数列.3.【答案】A【解析】解:①在区间(0,+∞)上,函数y=x﹣1,是减函数.函数y=为增函数.函数y=(x﹣1)2在(0,1)上减,在(1,+∞)上增.函数y=x3是增函数.∴有两个是增函数,命题①是假命题;②若log m3<log n3<0,则,即lgn<lgm<0,则0<n<m<1,命题②为真命题;③若函数f(x)是奇函数,则其图象关于点(0,0)对称,∴f(x﹣1)的图象关于点A(1,0)对称,命题③是真命题;④若函数f(x)=3x﹣2x﹣3,则方程f(x)=0即为3x﹣2x﹣3=0,也就是3x=2x+3,两函数y=3x与y=2x+3有两个交点,即方程f(x)=0有2个实数根命题④为真命题.∴假命题的个数是1个.故选:A.【点评】本题考查了命题的真假判断与应用,考查了基本初等函数的性质,训练了函数零点的判定方法,是中档题.4. 【答案】B【解析】解:∵△ABC 是锐角三角形,∴A+B >,∴A >﹣B ,∴sinA >sin (﹣B )=cosB ,∴sinA ﹣cosB >0, 同理可得sinA ﹣cosC >0, ∴点P 在第二象限. 故选:B5. 【答案】A 【解析】试题分析:由题意知函数定义域为),0(+∞,2'222()x x a f x x++=,因为函数2()2ln 2f x a x x x=+-(a R ∈)在定义域上为单调递增函数0)('≥x f 在定义域上恒成立,转化为2()222h x x x a =++在),0(+∞恒成立,10,4a ∴∆≤∴≥,故选A. 1考点:导数与函数的单调性. 6. 【答案】B【解析】解:原式=sin (720°﹣150°)=﹣sin150°=﹣. 故选B【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.7. 【答案】A8. 【答案】D.第Ⅱ卷(共110分)9.【答案】B【解析】解:∵y=|2x﹣2|=,∴x=1时,y=0,x≠1时,y>0.故选B.【点评】本题考查指数函数的图象和性质,解题时要结合图象进行求解.10.【答案】A【解析】由正弦定理知,不妨设,,,则有,所以,故选A答案:A11.【答案】D【解析】考点:命题的真假. 12.【答案】A【解析】解:∵f ()=,∴f (2)=f ()==3.故选:A .二、填空题13.【答案】【解析】解:∵点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),∴向量=(1+1,2﹣1)=(2,1),=(3+2,4+1)=(5,5);∴向量在方向上的投影是==.14.【答案】1 【解析】 试题分析:()()()()2213111222=-+--+-=m AB ,解得:1=m ,故填:1.考点:空间向量的坐标运算15.【答案】 (﹣4,) .【解析】解:∵抛物线方程为y 2=﹣8x ,可得2p=8, =2.∴抛物线的焦点为F (﹣2,0),准线为x=2. 设抛物线上点P (m ,n )到焦点F 的距离等于6,根据抛物线的定义,得点P 到F 的距离等于P 到准线的距离,即|PF|=﹣m+2=6,解得m=﹣4,∴n2=8m=32,可得n=±4,因此,点P的坐标为(﹣4,).故答案为:(﹣4,).【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标.着重考查了抛物线的定义与标准方程等知识,属于基础题.16.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.17.【答案】2.【解析】解:所求的值为(x﹣cosx)|﹣11=(1﹣cos1)﹣(﹣1﹣cos(﹣1))=2﹣cos1+cos1=2.故答案为:2.18.【答案】(,0).【解析】解:y′=﹣,∴斜率k=y′|x=3=﹣2,∴切线方程是:y﹣3=﹣2(x﹣3),整理得:y=﹣2x+9,令y=0,解得:x=,故答案为:.【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题.三、解答题19.【答案】【解析】解:p:,q:a≤x≤a+1;∴(1)若a=,则q:;∵p∧q为真,∴p,q都为真;∴,∴;∴实数x的取值范围为;(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;∴,∴;∴实数a的取值范围为.【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.20.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.21.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…22.【答案】【解析】解:(1)a1=S1=1+c,a2=S2﹣S1=3,a3=S3﹣S2=5﹣﹣﹣﹣﹣(2分)因为等差数列{a n},所以2a2=a1+a3得c=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)∴a1=1,d=2,a n=2n﹣1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)a2=3,a1+b1=2∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查等差数列的定义及数列求和的方法,考查学生的运算求解能力,属中档题.23.【答案】【解析】解:(Ⅰ)设甲队以4:2,4:3获胜的事件分别为A,B,∵甲队第5,6场获胜的概率均为,第7场获胜的概率为,∴,,∴甲队以4:2,4:3获胜的概率分别为和.(Ⅱ)随机变量X的可能取值为5,6,7,∴,P(X=6)=,P(X=7)=,∴随机变量X的分布列为【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力.24.【答案】【解析】(I)证明:∵平面PAB⊥平面ABCD,AB⊥AD,平面PAB∩平面ABCD=AB,∴AD⊥平面PAB.又PB⊂平面PAB,∴AD⊥PB.(II)解:由(I)可知,AD⊥平面PAB,又E为PA的中点,当M为PD的中点时,EM∥AD,∴EM⊥平面PAB,∵EM⊂平面BEM,∴平面BEM⊥平面PAB.此时,.(III)设CD的中点为F,连接BF,FM由(II)可知,M为PD的中点.∴FM∥PC.∵AB∥FD,FD=AB,∴ABFD为平行四边形.∴AD∥BF,又∵EM∥AD,∴EM∥BF.∴B,E,M,F四点共面.∴FM⊂平面BEM,又PC⊄平面BEM,∴PC∥平面BEM.【点评】本题考查了线面垂直的性质,线面平行,面面垂直的判定,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乐亭县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设定义在R 上的函数f (x )对任意实数x ,y ,满足f (x )+f (y )=f (x+y ),且f (3)=4,则f (0)+f (﹣3)的值为( )A .﹣2B .﹣4C .0D .42. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A . B .C .D .105120303. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为()A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=04. 487被7除的余数为a (0≤a <7),则展开式中x ﹣3的系数为()A .4320B .﹣4320C .20D .﹣205. 在△ABC 中,已知a=2,b=6,A=30°,则B=()A .60°B .120°C .120°或60°D .45°6. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为()A .4B .8C .10D .137. 设分别是中,所对边的边长,则直线与,,a b c ABC ∆,,A B C ∠∠∠sin 0A x ay c ++=A 的位置关系是( )sin sin 0bx B y C -+=A A .平行B . 重合C . 垂直D .相交但不垂直8. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠09. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=10.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若sinB=2sinC ,a 2﹣c 2=3bc ,则A 等于( )A .30°B .60°C .120°D .150°11.已知不等式组表示的平面区域为,若内存在一点,使,则的取值⎪⎩⎪⎨⎧≥+≤+≥-1210y x y x y x D D 00(,)P x y 001ax y +<a 范围为()A .B .C .D .(,2)-∞(,1)-∞(2,)+∞(1,)+∞12.若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)13.为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如由算得2()()()()()n ad bc K a b c d a c b d -=++++22500(4027030160)9.96720030070430K ⨯⨯-⨯==⨯⨯⨯附表:参照附表,则下列结论正确的是( )3.841 6.635 10.828k 2() 0.050 0.010 0.001P K k ≥①有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 99%②有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;99%③采用系统抽样方法比采用简单随机抽样方法更好;④采用分层抽样方法比采用简单随机抽样方法更好;A .①③B .①④C .②③D .②④14.如图F 1、F 2是椭圆C 1: +y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是()A .B .C .D .15.下列命题正确的是()A .已知实数,则“”是“”的必要不充分条件,a b a b >22a b >B .“存在,使得”的否定是“对任意,均有”0x R ∈2010x -<x R ∈210x ->C .函数的零点在区间内131()()2xf x x =-11(,)32D .设是两条直线,是空间中两个平面,若,则,m n ,αβ,m n αβ⊂⊂m n ⊥αβ⊥二、填空题16.在正方形中,,分别是边上的动点,当时,则ABCD 2==AD AB N M ,CD BC ,4AM AN⋅=MN的取值范围为 .【命题意图】本题考查平面向量数量积、点到直线距离公式等基础知识,意在考查坐标法思想、数形结合思想和基本运算能力.17.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-1212||z z z +()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、模与代数运算等基础知识,意在考查转化思想与计算能力.18.函数1()lg(1)1f x x x =++-的定义域是 ▲ .19.二项式展开式中,仅有第五项的二项式系数最大,则其常数项为 .三、解答题20.某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.(Ⅰ)求分数在[50,60)的频率及全班人数;(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.21.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4.(Ⅰ)椭圆C的标准方程.(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.22.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留22⨯95%守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111](2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20()P K k ≥0.0500.0100k 3.8416.63523.某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。
规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。
学生甲三轮考试通过的概率分别为23,34,45,且各轮考核通过与否相互独立。
(1)求甲通过该高校自主招生考试的概率;(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。
记学生甲得到教育基金的金额为X,求X的分布列和数学期望。
24.已知点F(0,1),直线l1:y=﹣1,直线l1⊥l2于P,连结PF,作线段PF的垂直平分线交直线l2于点H.设点H的轨迹为曲线r.(Ⅰ)求曲线r的方程;(Ⅱ)过点P作曲线r的两条切线,切点分别为C,D,(ⅰ)求证:直线CD过定点;(ⅱ)若P(1,﹣1),过点O作动直线L交曲线R于点A,B,直线CD交L于点Q,试探究+是否为定值?若是,求出该定值;不是,说明理由.阿啊阿25.(本小题满分12分)已知函数,设,131)(23+-=ax x x h x a x h x f ln 2)(')(-=,其中,.222ln )(a x x g +=0>x R a ∈(1)若函数在区间上单调递增,求实数的取值范围; )(x f ),2(+∞(2)记,求证:.)()()(x g x f x F +=21)(≥x F乐亭县第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B【解析】解:因为f (x )+f (y )=f (x+y ),令x=y=0,则f (0)+f (0)=f (0+0)=f (0),所以,f (0)=0;再令y=﹣x ,则f (x )+f (﹣x )=f (0)=0,所以,f (﹣x )=﹣f (x ),所以,函数f (x )为奇函数.又f (3)=4,所以,f (﹣3)=﹣f (3)=﹣4,所以,f (0)+f (﹣3)=﹣4.故选:B .【点评】本题考查抽象函数及其应用,突出考查赋值法的运用,判定函数f (x )为奇函数是关键,考查推理与运算求解能力,属于中档题. 2. 【答案】D 【解析】试题分析:分段间隔为,故选D.50301500考点:系统抽样3. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2,故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题. 4. 【答案】B解析:解:487=(49﹣1)7=﹣+…+﹣1,∵487被7除的余数为a (0≤a <7),∴a=6,∴展开式的通项为T r+1=,令6﹣3r=﹣3,可得r=3,∴展开式中x ﹣3的系数为=﹣4320,故选:B ..5. 【答案】C 【解析】解:∵a=2,b=6,A=30°,∴由正弦定理可得:sinB===,∵B ∈(0°,180°),∴B=120°或60°.故选:C . 6. 【答案】 C【解析】解:模拟执行程序,可得,当a ≥b 时,则输出a (b+1),反之,则输出b (a+1),∵2tan =2,lg =﹣1,∴(2tan )⊗lg =(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne ⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C . 7. 【答案】C 【解析】试题分析:由直线与,sin 0A x ay c ++=A sin sin 0bx B y C -+=A 则,所以两直线是垂直的,故选C. 1sin (sin )2sin sin 2sin sin 0A b a B R A B R A B ⋅+⋅-=-=考点:两条直线的位置关系.8. 【答案】D【解析】解:“且”的否定为“或”,因此其逆否命题为“若a ≠0或b ≠0,则a 2+b 2≠0”;故选D .【点评】此类题型考查四种命题的定义与相互关系,一般较简单,但要注意常见逻辑连接词的运用与其各自的否定方法、形式. 9. 【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R .B .实数是复数,实数能比较大小.C .∵=,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C . 10.【答案】C【解析】解:由sinB=2sinC ,由正弦定理可知:b=2c ,代入a 2﹣c 2=3bc ,可得a 2=7c 2,所以cosA===﹣,∵0<A <180°,∴A=120°.故选:C .【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查. 11.【答案】A【解析】解析:本题考查线性规划中最值的求法.平面区域如图所示,先求的最小值,当D z ax y =+12a ≤时,,在点取得最小值;当时,,在点取12a -≥-z ax y =+1,0A ()a 12a >12a -<-z ax y =+11,33B ()得最小值.若内存在一点,使,则有的最小值小于,∴或1133a +D 00(,)P x y 001ax y +<z ax y =+1121a a ⎧≤⎪⎨⎪<⎩,∴,选A .1211133a a ⎧>⎪⎪⎨⎪+<⎪⎩2a <12.【答案】 D【解析】解:令f (x )=﹣2x 3+ax 2+1=0,易知当x=0时上式不成立;故a==2x ﹣,令g (x )=2x ﹣,则g ′(x )=2+=2,故g (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g (x )=2x ﹣的图象如下,,g (﹣1)=﹣2﹣1=﹣3,故结合图象可知,a >﹣3时,方程a=2x ﹣有且只有一个解,即函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,故选:D . 13.【答案】D【解析】解析:本题考查独立性检验与统计抽样调查方法.由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,②正确;该地区老年9.967 6.635 人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,④正确,选D .14.【答案】 D【解析】解:设|AF 1|=x ,|AF 2|=y ,∵点A 为椭圆C 1: +y 2=1上的点,∴2a=4,b=1,c=;∴|AF 1|+|AF 2|=2a=4,即x+y=4;①又四边形AF 1BF 2为矩形,∴+=,即x 2+y 2=(2c )2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C 2的实轴长为2m ,焦距为2n ,则2m=|AF 2|﹣|AF 1|=y ﹣x=2,2n=2c=2,∴双曲线C 2的离心率e===.故选D .【点评】本题考查椭圆与双曲线的简单性质,求得|AF 1|与|AF 2|是关键,考查分析与运算能力,属于中档题. 15.【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断的真假),,p q q p ⇒⇒最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.二、填空题16.【答案】2](,)上的点到定点,最大值为,故的取值02x ££02y ££(,)x y (2,2)2MN 范围为.2]x17.【答案】D 【解析】18.【答案】()()1,11,-⋃+∞考点:定义域19.【答案】 70 .【解析】解:根据题意二项式展开式中,仅有第五项的二项式系数最大,则n=8,所以二项式=展开式的通项为T r+1=(﹣1)r C8r x8﹣2r令8﹣2r=0得r=4则其常数项为C84=70故答案为70.【点评】本题考查二项式定理的应用,涉及二项式系数的性质,要注意系数与二项式系数的区别.三、解答题20.【答案】【解析】解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,由茎叶图知:分数在[50,60)之间的频数为2,∴全班人数为.(Ⅱ)分数在[80,90)之间的频数为25﹣22=3;频率分布直方图中[80,90)间的矩形的高为.(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2,在[80,100)之间的试卷中任取两份的基本事件为:(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,其中,至少有一个在[90,100)之间的基本事件有7个,故至少有一份分数在[90,100)之间的概率是.21.【答案】【解析】(I)解:由题意可设椭圆的坐标方程为(a>b>0).∵离心率为,且椭圆C上一点到两个焦点的距离之和为4.∴,2a=4,解得a=2,c=1.∴b2=a2﹣c2=3.∴椭圆C的标准方程为.(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=﹣x(k≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=为定值.当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.因此=为定值.(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.OP⊥OQ不一定成立.下面给出证明.证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).联立,化为,∴|OP|2=x2+y2=,同理可得|OQ|2=,∴=+=.化为(kk′)2=1,∴kk ′=±1.∴OP ⊥OQ 或kk ′=1.因此OP ⊥OQ 不一定成立.【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题. 22.【答案】(1)有的把握认为孩子的幸福感强与是否留守儿童有关;(2).95%35【解析】试题解析:(1)列联表如下:幸福感强幸福感弱总计留守儿童6915非留守儿童18725总计241640∴.2240(67918)4 3.84115252416K ⨯⨯-⨯==>⨯⨯⨯∴有的把握认为孩子的幸福感强与是否留守儿童有关.95%(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:,;幸福感强的孩子3人,记作:,,1a 2a 1b 2b .3b “抽取2人”包含的基本事件有,,,,,,,,12(,)a a 11(,)a b 12(,)a b 13(,)a b 21(,)a b 22(,)a b 23(,)a b 12(,)b b ,共10个.13(,)b b 23(,)b b 事件:“恰有一人幸福感强”包含的基本事件有,,,,,A 11(,)a b 12(,)a b 13(,)a b 21(,)a b 22(,)a b 23(,)a b 共6个.故.63()105P A ==考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.23.【答案】(1)25(2)X 的分布列为数学期望为11124700()0100020003000361053E X =⨯+⨯+⨯+⨯=--解析:(1)设“学生甲通过该高校自主招生考试”为事件A ,则P (A )=23423455⨯⨯=所以学生甲通过该高校自主招生考试的概率为25-------------4分(2)X 的可能取值为0元,1000元,2000元,3000元--------------5分21(0)133P X ==-=,231(1000)(1346P X ==⨯-=,2341(2000)(1)34510P X ==⨯⨯-=2342(3000)3455P X ==⨯⨯=------------------9分所以,X 的分布列为数学期望为11124700()0100020003000361053E X =⨯+⨯+⨯+⨯=---------------------12分24.【答案】【解析】满分(13分).解:(Ⅰ)由题意可知,|HF|=|HP|,∴点H 到点F (0,1)的距离与到直线l 1:y=﹣1的距离相等,…(2分)∴点H 的轨迹是以点F (0,1)为焦点,直线l 1:y=﹣1为准线的抛物线,…(3分)∴点H 的轨迹方程为x 2=4y .…(4分)(Ⅱ)(ⅰ)证明:设P (x 1,﹣1),切点C (x C ,y C ),D (x D ,y D ).由y=,得.∴直线PC :y+1=x C (x ﹣x 1),…(5分)又PC 过点C ,y C =,∴y C +1=x C (x ﹣x 1)=x C x 1,∴y C +1=,即.…(6分)同理,∴直线CD 的方程为,…(7分)∴直线CD 过定点(0,1).…(8分)(ⅱ)由(Ⅱ)(ⅰ)P (1,﹣1)在直线CD 的方程为,得x 1=1,直线CD 的方程为.设l :y+1=k (x ﹣1),与方程联立,求得x Q =.…(9分)设A (x A ,y A ),B (x B ,y B ).联立y+1=k (x ﹣1)与x 2=4y ,得x 2﹣4kx+4k+4=0,由根与系数的关系,得x A +x B =4k .x A x B =4k+4…(10分)∵x Q ﹣1,x A ﹣1,x B ﹣1同号,∴+=|PQ|==…(11分)==,∴+为定值,定值为2.…(13分)【点评】本题主要考查直线、抛物线、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、化归与转化思想,考查考生分析问题和解决问题的能力. 25.【答案】(1).(2)证明见解析.]34,( 【解析】试题解析:解:(1)函数,,1111]131)(23+-=ax x x h ax x x h 2)('2-=所以函数,∵函数在区间上单调递增,x a ax x x a x h x f ln 22ln 2)(')(2--=-=)(x f ),2(+∞∴在区间上恒成立,所以在上恒成0222ln 2)(')('2≥--=-=x a ax x x a x h x f ),2(+∞12+≤x x a ),2(+∞∈x 立.令,则,当时,,1)(2+=x x x M 2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ),2(+∞∈x 0)('>x M ∴,∴实数的取值范围为.34)2(1)(2=>+=M x x x M ]34,(-∞(2),]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=令,则111]2ln )ln ()(222x x a x x a a P +++-=.4)ln (4)ln (2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=令,则,显然在区间上单调递减,在区间上单调递增,x x x Q ln )(-=x x x x Q 111)('-=-=)(x Q )1,0(),1[+∞则,则,故.1)1()(min ==Q x Q 41)(≥a P 21412)(=⨯≥x F 考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数,通过观察的解析式的形式,能够想到解析式里可能存()x F ()x F 在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于即可,从而对新函数求41导判单调性求出最值证得成立.。