人教A版高中数学必修二同步学习讲义:1.1空间几何体的结构特征 第2课时

合集下载

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)

【同步课堂】人教A版高中数学必修2第一章1.1.1-2空间几何体的结构课件(共40张PPT)
棱柱 2.其余各面都是四边形(侧面)
3.每相邻两个侧面的公共边(侧棱)都互 相平行
10
探究问题 1:
长方体按如图截去一角后所得的两部分还是棱柱 吗?
D’
C’
A’
B’
D C
A
B
11
探究问题 2:
有两个面互相平行,其余各面都是平行四边形的几 何体是棱柱吗? 定义: 1、有两个面互相平行,
2、其余各面都是四边形,
D
C 底面
的侧棱。
A
B
棱锥可以表示为:棱锥S-ABCD
底面是三角形,四边形,五边形----的棱锥分 别叫三棱锥,四棱锥,五棱锥---
13
思考:一个棱锥至少有几个面?一个N棱锥有分别 有多少个底面和侧面?有多少条侧棱?有多少个 顶点?
至少有4个面;1个底面,N个侧面,N条侧棱,1个顶 点.
14
练习:下列几何体是不是棱锥,为什么?
旋转体: 由一个平面图形绕它所在平面内的
一条定直线旋转所形成的封闭几何体
注:棱柱与圆柱统称为柱体
5
1.棱柱的结构特征:
①有两个面互相平行 ②其余各面都是四边形
③每相邻两个四边形的公共边互相平行
有两个面互相平行,其余各面都是四边形,每相邻两个四
边形的公共边互相平行,由这些面围成的图形叫做棱柱
6
1、棱柱 1、两个互相平行的面叫棱柱的底面。
3、每相邻两个四边形的公共边 都互相平行。
12
2.棱锥的结构特征
有一个面是多边形,其余各面都是有一个公共顶
点的三角形,由这些面所围成的多面体叫做棱锥.
底面:棱锥中的多边形面叫做棱锥的底面或底。 S 顶点
侧面:有公共顶点的各个三角形面叫做棱锥

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

高中数学必修2(人教A版)第一章几何空间体1.1知识点总结含同步练习及答案

描述:例题:描述:高中数学必修2(人教A版)知识点总结含同步练习题及答案第一章 空间几何体 1.1 空间几何体的结构一、学习任务认识柱、锥、台、球及其简单组合体的结构特征,能运用这些结构特征描述现实生活中简单物体的结构.二、知识清单典型空间几何体空间几何体的结构特征 组合体展开图 截面分析三、知识讲解1.典型空间几何体空间几何体的概念只考虑物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.2.空间几何体的结构特征多面体由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点;连接不在同一个面上的两个顶点的线段叫做多面体的对角线.按多面体的面数可把多面体分为四面体、五面体、六面体.其中,四个面均为全等的正三角形的四面体叫做正四面体.旋转体由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.这条定直线叫做旋转体的轴.棱柱的结构特征一般地,有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱(prism).棱柱中,两个互相平行的面叫做底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的用一个平行于棱锥底面的平面去截棱锥,得到两个几何体,一个是______,另一个是______.解:棱锥;棱台.⋯⋯余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧棱与底面的公共顶点叫做棱柱的顶点.底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱,可以用表示底面各顶点的字母或一条对角线端点的字母表示棱柱,如下图的六棱柱可以表示为棱柱或棱柱 .侧棱与底面不垂直的棱柱叫做斜棱柱;侧棱与底面垂直的棱柱叫做直棱柱;底面是正多边形的直棱柱叫做正棱柱;底面是平行四边形的棱柱叫做平行六面体;侧棱与底面垂直的平行六面体叫做直平行六面体.棱锥的结构特征一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥(pyramid).这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱.底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体.棱锥也用表示顶点和底面各顶点的字母或者用表示顶点和底面一条对角线端点的字母来表示,如下图的四棱锥表示为棱锥 或者棱锥 .棱锥的底面是正多边形,且它的顶点在过底面中心且与底面垂直的直线上,这个棱锥叫做正棱锥.正棱锥各侧面都是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做棱锥的斜高.⋯⋯⋯⋯ABCDEF−A′B′C′D′E′F′DA′⋯⋯⋯⋯S−ABCD S−AC棱台的结构特征用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台(frustum of a pyramid).原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面的距离叫做棱台的高.由正棱锥截得的棱台叫做正棱台,正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.圆柱的结构特征以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱(circular cylinder).旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线.圆锥的结构特征以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥(circular cone).圆台的结构特征例题:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台(frustum of a cone).棱台与圆台统称为台体.球的结构特征以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球(solid sphere).半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.球常用表示球心的字母 表示.O下列命题中,正确的是( )A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱B.棱柱中互相平行的两个面叫做棱柱的底面C.棱柱的侧面是平行四边形,而底面不是平行四边形D.棱柱的侧棱长相等,侧面是平行四边形解:D如图(1),满足 A 选项条件,但不是棱柱;对于 B 选项,如图(2),构造四棱柱,令四边形 是梯形,可知 ,但这两个面不能作为棱柱的底面;C选项中,若棱柱是平行六面体,则它的底面是平行四边形.ABCD−A1B1C1D1ABCD面AB∥面DCB1A1C1D1若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥解:D如下图,正六边形 中,,那么正六棱锥中,,即侧棱长大于底面边长.ABCDEF OA=OB=⋯=AB S−ABCDEF SA>OA=AB描述:3.组合体简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成.如图所示的几何体中,是台体的是( )A.①② B.①③ C.③ D.②③解:C利用棱台的定义求解.①中各侧棱的延长线不能交于一点;②中的截面不平行于底面;③中各侧棱的延长线能交于一点且截面与底面平行.有下列四种说法:①圆柱是将矩形旋转一周所得的几何体;②以直角三角形的一直角边为旋转轴,旋转所得几何体是圆锥;③圆台的任意两条母线的延长线,可能相交也可能不相交;④半圆绕其直径所在直线旋转一周形成球.其中错误的有( )A.个 B. 个 C. 个 D. 个解:D圆柱是矩形绕其一条边所在直线旋转形成的几何体,故①错;以直角三角形的一条直角边所在直线为轴,旋转一周,才能构成圆锥,②错;圆台是由圆锥截得,故其任意两条母线延长后一定交于一点,③错;半圆绕其直径所在直线旋转一周形成的是球面,故④错误.1234例题:描述:4.展开图空间形体的表面在平面上摊平后得到的图形,是画法几何研究的一项内容.描述图中几何体的结构特征.解:图(1)所示的几何体是由两个圆台拼接而成的组合体;图(2)所示的几何体是由一个圆台挖去一个圆锥得到的组合体;图(3)所示的几何体是在一个圆柱中间挖去一个三棱柱后得到的组合体.下图中的几何体是由哪个平面图形旋转得到的( )解:D)不在同一平面内的有______对.3内.解:C描述:例题:5.截面分析截面用平面截立体图形所得的封闭平面几何图形称为截面.平行截面、中截面与立体图形底面平行的截面称为平行截面,等分立体图形的高的平行截面称为中截面.轴截面包含立体图形的轴线的截面称为轴截面.球截面球的截面称为球截面.球的任意截面都是圆,其中通过球心的截面称为球的大圆,不过球心的截面称为球的小圆.球心与球的截面的圆心连线垂直于截面,并且有 ,其中 为球的半径, 为截面圆的半径, 为球心到截面的距离.+=r 2d 2R 2R r d 下面几何体的截面一定是圆面的是( )A.圆台 B.球 C.圆柱 D.棱柱解:B如图所示,是一个三棱台 ,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解:如图,过 ,, 三点作一个平面,再过 ,, 作一个平面,就把三棱台分成三部分,形成的三个三棱锥分别是 ,,.ABC −A ′B ′C ′A ′B C A ′B C ′ABC −A ′B ′C ′−ABC A ′−B B ′A ′C ′−BC A ′C ′如图,正方体 中,,, 分别是 ,, 的中点,那么正方体中过点 ,, 的截面形状是( )A.三角形 B.四边形 C.五边形 D.六边形ABCD −A 1B 1C 1D 1P Q R AB AD B 1C 1P QR作截面图如图所示,可知是六边形.ii)若两平行截面在球心的两侧,如图(2)所示,则 解:四、课后作业 (查看更多本章节同步练习题,请到快乐学)答案:1.如图,能推断这个几何体可能是三棱台的是 .A .B .C .D .C ()=2,AB =3,=3,BC =4A 1B 1B 1C 1=1,AB =2,=1.5,BC =3,=2,AC =3A 1B 1B 1C 1A 1C 1=1,AB =2,=1.5,BC =3,=2,AC =4A 1B 1B 1C 1A 1C 1AB =,BC =,CA =A 1B 1B 1C 1C 1A 1答案:2. 纸制的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开、外面朝上展平,得到如图所示的平面图形,则标" "的面的方位是 .A .南B .北C .西D .下B △()3. 向高为 的水瓶中注水,注满为止,如果注水量 与水深 的函数关系的图象如图所示,那么水瓶的形状是.A .H V h ()高考不提分,赔付1万元,关注快乐学了解详情。

人教A版高中数学必修二空间几何体的结构课件

人教A版高中数学必修二空间几何体的结构课件
球心与截面圆圆心的距离为d,则R、r、
d三者之间的关系如何?
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
O Rd
r Oˊ P
R2 r2 d 2
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
几何体的分类
柱体
锥体
台体

人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
几何体的分类 以下四种几何体分别是什么?
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
柱体
ቤተ መጻሕፍቲ ባይዱ
锥体
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
棱台的结构特征
D’
D A’
C’
B’
上底扩大
上底缩小






上底扩大
上底缩小
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
思考:下面的空间几何体是什么?
NBA
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)
用一个截面去截
一个球,截面是圆 面。
O
球面被经过球心的平面截得的圆叫做大圆。 球面被不过球心的截面截得的圆叫球的小圆。
人教A版高中数学必修二第一章1.2.3 空间几 何体的 结构课 件(2)

2019-2020数学新课堂设计同步必修二人教A版讲义:第一章 空间几何体1.1 第2课时 Word版含答案

2019-2020数学新课堂设计同步必修二人教A版讲义:第一章 空间几何体1.1 第2课时 Word版含答案

第2课时圆柱、圆锥、圆台、球及简单组合体的结构特征学习目标 1.认识圆柱、圆锥、圆台、球的结构特征(重点).2.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.3.圆柱、圆台、圆锥之间关系的理解(重点).知识点1圆柱的结构特征【预习评价】1.在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示圆柱的任意两条母线平行,过两条母线的截面是矩形.2.圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线吗?提示不一定.圆柱的母线与轴是平行的.知识点2圆锥【预习评价】(正确的打“√”,错误的打“×”)(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(√)(2)过轴的截面是全等的等边三角形.(×)提示不一定是等边三角形,但一定是等腰三角形.知识点3圆台【预习评价】(正确的打“√”,错误的打“×”)(1)圆台有无数条母线,且它们相等,但延长后不相交于一点.(×)提示延长后相交于一点.(2)过任意两条母线的截面是等腰梯形.(√)知识点4球【预习评价】1.半圆或圆绕它的直径所在直线旋转一周形成什么?提示半圆或圆绕它的直径所在直线旋转一周形成球面.2.用一个平面去截球,得到的是一个圆吗?提示不是,得到的是一个圆面,球是一个几何体,包括表面及其内部.知识点5简单组合体1.概念:由简单几何体组合而成的几何体叫做简单组合体.常见的简单组合体大多是由具有柱、锥、台、球等几何结构特征的物体组成的.2.基本形式:一种是由简单几何体拼接而成,另一种是由简单几何体截去或挖去一部分而成.【预习评价】观察下列几何体,分析它们是由哪些基本几何体组成的.提示图1是由圆柱中挖去圆台形成的,图2是由球、棱柱、棱台组合而成的.题型一旋转体的结构特征【例1】给出下列命题:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是()A.①②B.②③C.①③D.②④解析由圆柱、圆锥、圆台的定义及母线的性质可知②④正确,①③错误.答案 D规律方法简单旋转体判断问题的解题策略(1)准确掌握圆柱、圆锥、圆台和球的生成过程及其特征性质是解决此类概念问题的关键.(2)解题时要注意两个明确:①明确由哪个平面图形旋转而成;②明确旋转轴是哪条直线.【训练1】下列命题正确的是________(只填序号).①以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转180°形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段.解析①以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰所在直线为轴旋转一周才可以得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四个不同的点,则这四点就在球面上,故⑤错误;根据球的半径定义,知⑥正确.答案④⑥题型二简单组合体的结构特征【例2】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?解旋转后的图形如图所示.其中图①是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图②是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.规律方法(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.【训练2】 如图,将直角梯形ABCD 绕边AB 所在的直线旋转一周,由此形成的几何体是由哪些简单几何体组成的?解 画出形成的几何体如图所示.由图可知,旋转得到的几何体是由一个圆柱和一个圆锥组成的.方向1 有关圆柱、圆锥、圆台的计算问题【例3-1】 用一个平行于圆锥底面的平面截这个圆锥,截得的圆台上、下底面的面积之比为1∶16,截去的圆锥的母线长是3 cm ,求圆台的母线长. 解 设圆台的母线长为l cm ,截得圆台的上底面的半径为r cm.根据题意,得圆台的下底面的半径为4r cm.根据相似三角形的性质,得33+l =r 4r .解得l =9.所以圆台的母线长为9 cm.方向2有关球的简单计算问题【例3-2】已知球的半径为10 cm,若它的一个截面圆的面积为36π cm2,则球心与截面圆圆心的距离是________cm.解析如图,设截面圆的半径为r,球心与截面圆圆心之间的距离为d,球半径为R.由示意图易构造出一个直角三角形,解该直角三角形即可.由已知,R=10 cm,由πr2=36π cm2,得r=6 cm,所以d=R2-r2=100-36=8(cm).答案8规律方法(1)旋转体中有关底面半径、母线、高的计算,可利用轴截面求解,即将立体问题平面化.(2)利用球的截面,将立体问题转化为平面问题是解决球的有关问题的关键.课堂达标1.下列几何体是台体的是()解析台体包括棱台和圆台两种,A的错误在于四条侧棱没有交于一点;B的错误在于截面与圆锥底面不平行;C是棱锥;结合棱台和圆台的定义可知D正确.答案 D2.用一个平面去截一个几何体,得到的截面是三角形,这个几何体可能是() A.圆柱B.圆台C.球体D.棱台解析圆柱、圆台和球体无论怎样截,截面可能是曲面,也可能是矩形(圆柱),不可能截出三角形.只有棱台可以截出三角形,故选D.答案 D3.过球面上任意两点A,B作大圆,可能的个数是()A.有且只有一个B.一个或无穷多个C.无数个D.以上均不正确解析当过A,B的直线经过球心时,经过A,B的截面所得的圆都是球的大圆,这时过A,B作球的大圆有无数个;当直线AB不经过球心O时,经过A,B,O 的截面就是一个大圆,这时只能作出一个大圆.答案 B4.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的母线长为________.解析如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC=34AB2,∴3=34AB2,∴AB=2.答案 25.指出如图(1)(2)所示的图形是由哪些简单几何体构成的.解分割原图,使它的每一部分都是简单几何体.图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体.图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.课堂小结1.圆柱、圆锥、圆台的关系如图所示.2.球面、球体的区别和联系3.处理台体问题常采用还台为锥的补体思想.4.处理组合体问题常采用分割思想.5.重视圆柱、圆锥、圆台的轴截面在解决几何量中的特殊作用,切实体会空间几何平面化的思想.基础过关1.圆柱的母线长为10,则其高等于()A.5 B.10 C.20 D.不确定解析圆柱的母线长与高相等,则其高等于10.答案 B2.如图是由哪个平面图形旋转得到的()解析图中所给的几何体是由上部的圆锥和下部的圆台组合而成的,故轴截面的上部是直角三角形,下部为直角梯形构成,故选D.答案 D3.下列说法正确的是()A.到定点的距离等于定长的点的集合是球B.球面上不同的三点可能在同一条直线上C.用一个平面截球,其截面是一个圆D.球心与截面圆心(截面不过球心)的连线垂直于该截面解析对于A,球是球体的简称,球体的外表面我们称之为球面,球面是一个曲面,是空心的,而球是几何体,是实心的,故A错;对于B,球面上不同的三点一定不共线,故B错;对于C,用一个平面截球,其截面是一个圆面,而不是一个圆,故C也是错误的.所以选D.答案 D4.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为()A.4 B.3 2 C.2 3 D.2 6解析圆台的母线长l、高h和上、下两底面圆的半径r,R满足关系式l2=h2+(R-r)2,求得h=26,即两底面之间的距离为2 6.答案 D5.观察下列四个几何体,其中可看作是由两个棱柱拼接而成的是________(填序号).解析①可看作由一个四棱柱和一个三棱柱组合而成,④可看作由两个四棱柱组合而成.答案 ①④6.已知一个圆柱的轴截面是一个正方形,且其面积是Q ,则此圆柱的底面半径为________(用Q 表示).解析 设圆柱的底面半径为r ,则母线长为2r .∴4r 2=Q ,解得r =Q 2,∴此圆柱的底面半径为Q2.答案 Q27.圆台的上底周长是下底周长的13,轴截面面积等于392,母线与底面的夹角为45°,求此圆台的高、母线长及两底面的半径.解 设圆台上、下底面半径分别为r ,R ,母线长为l ,高为h . 由题意,得2πr =13·2πR ,即R =3r .① 12(2r +2R )·h =392,即(R +r )h =392.②又母线与底面的夹角为45°,则h =R -r =22l .③ 联立①②③,得R =21,r =7,h =14,l =14 2.8.已知一个圆锥的底面半径为r ,高为h ,在此圆锥内有一个内接正方体,这个内接正方体的顶点在圆锥的底面和侧面上,求此正方体的棱长.解 作出圆锥的一个纵截面如图所示:其中AB ,AC 为母线,BC 为底面直径,DG ,EF 是正方体的棱,DE ,GF 是正方体的上、下底面的对角线.设正方体的棱长为x ,则DG =EF =x ,DE =GF =2x .依题意,得△ABC ∽△ADE ,∴hh -x =2r2x,∴x =2rh h +2r ,即此正方体的棱长为2rhh +2r.能力提升9.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是()A.4 B.3 C.2 D.0.5解析如图所示,∵两个平行截面的面积分别为5π,8π,∴两个截面圆的半径分别为r1=5,r2=2 2.∵球心到两个截面的距离d1=R2-r21,d2=R2-r22,∴d1-d2=R2-5-R2-8=1,∴R2=9,∴R=3.答案 B10.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列图形中的(填序号)()解析易知截面是一个非等边的等腰三角形,排除A、D;等腰三角形的底边是正三棱锥的一条棱,这条棱不可能与内切球有交点,所以排除B;而等腰三角形的两条腰正好是正三棱锥两个面的中线,且经过内切球在两个面上的切点,所以正确答案是C.答案 C11.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为________.解析设圆锥的底面半径为r,母线长为l,则4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径r=1,所以该圆锥的高为h =l 2-r 2=22-12= 3.答案312.圆台的两底面面积分别为1,49,平行于底面的截面面积的2倍等于两底面面积之和,求圆台的高被截面分成的两部分的比.解 将圆台还原为圆锥,如图所示.O 2,O 1,O 分别是圆台上底面、截面和下底面的圆心,V 是圆锥的顶点,令VO 2=h ,O 2O 1=h 1,O 1O =h 2,则⎩⎪⎨⎪⎧h +h1h =49+121,h +h 1+h 2h =491,所以⎩⎪⎨⎪⎧h 1=4h ,h 2=2h ,即h 1∶h 2=2∶1.故圆台的高被截面分成的两部分的比为2∶1.13.(选做题)如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .求:(1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离; (3)f (x )的最大值.解 将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,∴L =2πr =2π.∴∠ASM =L 2πl ×360°=2π2π×4×360°=90°.(1)由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离, 在△SAM 中,∵S △SAM =12SA ·SM =12AM ·SR , ∴SR =SA ·SM AM =4xx 2+16(0≤x ≤4), 即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4).(3)∵f (x )=x 2+16(0≤x ≤4)是增函数, ∴f (x )的最大值为f (4)=32.。

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。

人教A版高中数学必修二课件1-1-1空间几何体的结构(共38张PPT)

人教A版高中数学必修二课件1-1-1空间几何体的结构(共38张PPT)

体的;棱和棱的公共点叫做多面体的.


顶点
(3)我们把一个平面图形绕它所在平面内的一条定直线
旋转所形成的封闭几何体,叫做.旋这转条体定直线叫做旋转体
的.

2.一般地:有两个面,其互余相各平面行都是,并且相邻两个 四边四形边的形公共边,这些面围成的几何体叫做棱互柱相.平的行两个
平面叫做棱柱的底面,其余各面叫做互侧相面平;行相邻两个侧面
2.理解棱锥定义时,注意“有公共顶点”这一重要条件, 否则就不是棱锥了.
如图是由三棱锥M-PBC和四棱锥P-ABCD拼合而成 的几何体.显然它符合“有一个面是多边形,其余各面都是 三角形的要求”,但它不是棱锥.
3.下面两个图形中的几何体都不是棱台,图(1)中,
截面A1B1C1D1与底面虽然平行,但各侧棱AA1,BB1,CC1, DD1延长后不能相交于一点;图(2)中显然各侧棱延长后能 交于一点,即原几何体为棱锥,但截面A1B1C1D1与底面 ABCD不平行.
[解析] 若两点为球的直径的端点,可做无数个大 圆.球是一个几何体,包括到球心的距离小于半径的点, 到定点的距离等于定长的所有点的集合组成球面,而不是 球,球与球面是不同的两个概念,∴①③错,②正确,故 选C.
2.以下棱柱中,最多只有一对面互相平行的是( )
A.三棱柱
B.四棱柱
C.五棱柱D.六棱柱
高中数学课件
灿若寒星整理制作
1.1 空间几何体的结构
1.1.1 柱、锥、台、球的结构 特征
阅读教材P2-6,回答下列问题: 1.(1)只考虑物体占有空间部分的,形而状不和考大虑小其它因
素,则这个空间部分叫做一个空间几何体.
(2)多面体是由若干个所围成的几何体.围成多面体的

高中数学必修2:1.1 空间几何体的结构特征(人教版高中数学必修2第二章空间几何体)

高中数学必修2:1.1 空间几何体的结构特征(人教版高中数学必修2第二章空间几何体)

五棱柱
棱柱的表示方法
用表示底面各顶点的字母表示棱柱,如: 棱柱ABCDE- A1B1C1D1E1
侧棱 A
棱锥的结构特征
S
顶点
有一个面是多边形(底
侧面 面),其余各面都是有一
D
C 个公共顶点的三角形(侧
底面
面)。
B
棱锥的分类
S
A
B
D
C
按底面多边形的边数,可分为三棱锥、四棱锥、五棱 锥、……其中三棱锥又叫四面体 .
高中数学 必修2 设计:学霸兔
高中数学 必修2 设计:学霸兔
1.1.1 柱、锥、台、球的结构特征
观察下面的空间几何体,它们与平面图形 有什么有什么联系?
组成几何体的每个面 都是平面多边形
组成几何体的每个面 不都是平面多边形
我们把由若干 平面多边形 围成的几何体叫做 多面体 .
我们把由一个平面图形绕它所在的平面内的一条定直线旋 转所成的封闭几何体叫做 旋转体.
棱台的表示方法
A1 D1
C B1 1
与棱柱表示方法一样,棱台也是用表示上、下底面各顶 点的字母来表示,如 棱台ABCD-A1B1C1D1 。
圆柱的结构特征
A’
O’ B’ 轴 以矩形的一边所在直线为旋
转轴,其余边旋转形成的曲


线
面 面所围成的几何体叫做圆柱。
A
O
B
底面
圆柱的结构特征
O’
圆柱用它的轴的字母表示,如
F
C
A
B
思考:倾斜后的几何体还是棱柱吗?
棱柱的结构特征
E’ F’ A’
D’ B’ C’
侧棱 F A
ED
B

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

人教版高一数学必修二辅导讲义:1.1空间几何体的结构

第一章、空间几何体1.1空间几何体的结构1.1.1柱、锥、台、球的结构特征(一)课本知识:1.空间几何体(1)空间几何体的定义空间中的物体都占据着空间的一局部,假设只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体.类别多面体旋转体定义由假设干个围成的几何体由一个平面图形绕它所在平面内的一条旋转所形成的.图形相关概念面:围成多面体的各个.棱:相邻两个面的.顶点:的公共点.轴:形成旋转体所绕的 .2.多面体多面体定义图形及表示相关概念棱柱有两个面互相,其余各面都是,并且每相邻两个四边形的公共边都互相,由这些面所围成的多面体叫做棱柱.如图可记作:棱柱底面(底):两个互相平行的面.侧面:.侧棱:相邻侧面的.顶点:侧面与底面的.棱锥有一个面是,其余各面都是有一个公共顶点的,由这些面所围成的多面体叫做棱锥如图可记作:棱锥底面(底):面.侧面:有公共顶点的各个.侧棱:相邻侧面的.顶点:各侧面的.棱台用一个的平面去截棱锥,底面与截面之间的局部叫做棱台.如图可记作:棱台上底面:原棱锥的.下底面:原棱锥的.侧面:其余各面.侧棱:相邻侧面的公共边.顶点:侧面与上(下)底面的公共顶点.知识梳理:要点一棱柱、棱锥、棱台的概念1.棱柱的结构特征侧棱都相等,侧面都是平行四边形,两个底面相互平行;2.棱锥的结构特征有一个面是多边形,其余各面是有一个公共顶点的三角形;3.棱台的结构特征上下底面相互平行,各侧棱的延长线交于同一点.典型例题1、有以下说法:①有两个面平行,其余各面都是平行四边形所围成的几何体一定是棱柱;②各个面都是三角形的几何体是三棱锥;③用一个平行于棱锥底面的平面去截棱锥,得到的几何体叫做棱台;④棱柱的各相邻侧面的公共边互相平行.以上说法中,正确说法的序号是________(写出所有正确说法的序号).反应训练1、有以下说法:①一个棱锥至少有四个面;②如果四棱锥的底面是正方形,那么这个四棱锥的四条侧棱都相等;③五棱锥只有五条棱;④用与底面平行的平面去截三棱锥,得到的截面三角形和底面三角形相似.以上说法中,正确说法的序号是________(写出所有正确说法的序号).典型例题2、长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两局部后,各局部形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.反应训练2、以下说法:①有两个面互相平行,其余的面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确的个数为( ) A.3 B.2 C.1 D.0 要点三多面体的外表展开图1.绘制多面体的外表展开图要结合多面体的几何特征,发挥空间想象能力或者是亲手制作多面体模型,在解题过程中,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面,便可得到其外表展开图.2.假设是给出多面体的外表展开图,来判断是由哪一个多面体展开的,那么可把上述过程逆推.典型例题3、请画出以下图所示的几何体的外表展开图.反应训练3、根据右图所给的几何体的外表展开图,画出立体图形1.1.1柱、锥、台、球的结构特征(二)1.1.2简单组合体的结构特征课本知识:1.旋转体旋转体结构特征图形表示圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的所围成的旋转体叫做圆柱.旋转轴叫做圆柱的轴;于轴的边旋转而成的圆面叫做圆柱的底面;于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,于轴的边都叫做圆柱侧面的母线我们用表示圆柱轴的字母表示圆柱,左图可表示为圆锥以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的所围成的旋转体叫做圆锥我们用表示圆锥轴的字母表示圆锥,左图可表示为圆台用平行于的平面去截圆锥,底面与截面之间的局部叫做圆台我们用表示圆台轴的字母表示圆台,左图可表示为球以半圆的直径所在直线为旋转轴,旋转一周所形成的旋转体叫做球体,简称球.半圆的圆心叫做球的,半圆的半径叫做球的半径,半圆的直径叫做球的直径球常用球心字母进行表示,左图可表示为(1)定义:由组合而成的几何体叫做简单组合体.(2)简单组合体的两种根本形式:由简单几何体而成;由简单几何体一局部而成.特别提醒:圆是一条封闭的曲线,圆面是一个圆围成的圆内平面.球是几何体,球面是指半圆沿直径旋转形成的曲面,球是旋转体.知识梳理:要点一、旋转体的结构特征圆柱、圆锥、圆台、球从生成过程来看,它们分别是由矩形、直角三角形、直角梯形、半圆绕着某一条直线旋转而成的几何体,因此它们统称为旋转体.但应注意的是:所谓旋转体就是一个平面图形绕着这个平面图形所在的平面内一条直线旋转一周所得到的几何体,因此它还含有除圆柱、圆锥、圆台、球之外的几何体.典型例题1、以下说法:①在圆柱的上、下两底面的圆周上各取一点,那么这两点的连线是圆柱的母线;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,那么这两点的连线是圆台的母线;④圆柱的任意两条母线相互平行.其中正确的选项是( )A.①②B.②③C.①③D.②④反应训练1、以下说法中正确的选项是( )A.圆台是直角梯形绕其一边旋转而成的B.圆锥是直角三角形绕其一边旋转而成的C.圆柱不是旋转体D.圆台可以看作是平行于底面的平面截一个圆锥而得到的要点二圆柱、圆锥、圆台的侧面展开图把柱、锥、台体沿一条侧棱或母线展开成平面图,这样便把空间问题转化成了平面问题,对解决简单空间几何体的面积问题或侧面上(球除外)两点间的距离问题,是很有效的方法.典型例题2、如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?反应训练2、假设本例中蚂蚁围绕圆柱转两圈,如下图,那么它爬行的最短距离是多少?要点三简单组合体的结构特征判断实物图是由哪些简单几何体所组成的图形问题,首先要熟练掌握简单几何体的结构特征,其次要善于将复杂的组合体“分割〞成几个简单的几何体.简单组合体有以下三种形式:1.多面体与多面体的组合体:即由两个或两个以上的多面体组合而成的几何体.2.多面体与旋转体的组合体:即由一个多面体与一个旋转体组合而成的几何体.3.旋转体与旋转体的组合体:即由两个或两个以上的旋转体组合而成的几何体.典型例题3、请描述如下图的组合体的结构特征.反应训练3、说出以下几何体的结构特征.一、选择题1.以下说法中正确的选项是( )A .棱柱中两个互相平行的平面一定是棱柱的底面B .棱柱的面中,至少有两个面互相平行C .棱柱中一条侧棱的长叫棱柱的高D .棱柱的侧面是平行四边形,但它的底面一定不是平行四边形2.如图,D ,E ,F 分别是等边△ABC 各边的中点,把该图按虚线折起,可以得到一个( )A .棱柱 B .棱锥 C .棱台 D .旋转体3.以下三个说法,其中正确的选项是( )①用一个平面去截棱锥,棱锥底面和截面之间的局部是棱台; ②两个底面平行且相似,其余各面都是梯形的多面体是棱台; ③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台. A .0个 B .1个 C .2个 D .3个4.在长方体ABCD -A 1B 1C 1D 1中,AB =3,AD =2,CC 1=1,一条绳子从点A 沿外表拉到点C 1,那么绳子的最短的长是( )A .3 2 B .2 5 C.26 D .65.如图,以下几何体中,________是棱柱,________是棱锥,________是棱台.6.在正方体上任意选择4个顶点,它们可能是如下各种几何图形的4个顶点,这些几何体是________(写出所有正确结论的序号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.7.在如下图的三棱柱ABC -A 1B 1C 1中,请连接三条线,把它分成三局部,使每一局部都是一个三棱锥.8.如下图,在正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=2,由顶点B 沿棱柱侧面(经过棱AA 1)到达顶点C 1,与AA 1的交点记为M .求:(1)三棱柱侧面展开图的对角线长;(2)从B 经M 到C 1的最短路线长及此时A 1MAM的值.1.以下说法正确的选项是( )A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心2.底面半径为2且底面水平放置的圆锥被过高的中点且平行于底面的平面所截,那么截得的截面圆的面积为( )A.πB.2π C.3πD.4π3.以下说法正确的有( )①球的半径是球面上任意一点与球心的连线段②球的直径是球面上任意两点间的连线段③用一个平面截一个球,得到的是一个圆④不过球心的截面截得的圆的半径小于球半径A.①② B.①④ C.①②④D.③④4.如下图的几何体,关于其结构特征,以下说法不正确的选项是( )A.该几何体是由两个同底的四棱锥组成的几何体B.该几何体有12条棱、6个顶点C.该几何体有8个面,并且各面均为三角形D.该几何体有9个面,其中一个面是四边形,其余均为三角形5.给出以下说法:(1)直角三角形绕一边旋转得到的旋转体是圆锥(2)夹在圆柱的两个平行截面间的几何体还是一个旋转体(3)圆锥截去一个小圆锥后剩余局部是圆台(4)通过圆台侧面上一点,有无数条母线其中正确的说法是________(写出所有正确说法的序号).6.把一个圆锥截成圆台,圆台的上下底面半径之比是14,母线长为10,那么圆锥的母线长是________.7.如图(1)所示,正三棱柱的底面边长是4cm、过BC的一个平面交侧棱AA′于D,假设AD的长为2cm,求截面△BCD的面积.图(1) 图(2)8.从一个底面半径和高都是R的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到如以下图所示的几何体.如果用一个与圆柱下底面距离等于l并且平行于底面的平面去截它,求所得截面的面积.。

2018-2019学年最新人教A版高中数学必修二同步学习讲义:1.1空间几何体的结构特征第2课时

2018-2019学年最新人教A版高中数学必修二同步学习讲义:1.1空间几何体的结构特征第2课时

第2课时
旋转体与简单组合体的结构特征学习目标 1.了解圆柱、圆锥、圆台、球的定义
.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.
知识点一圆柱
思考观察如图所示的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?答案
以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体.梳理圆柱的结构特征
圆柱图形及表示
定义:以矩形的一边所在直线为旋转轴,
其余三边旋转形成的面所围成的旋转体叫做圆柱
图中圆柱表示为圆柱O ′O 相关概念:
圆柱的轴:旋转轴
圆柱的底面:垂直于轴的边旋转而成的圆面
圆柱的侧面:平行于轴的边旋转而成的曲面圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边
知识点二
圆锥思考
仿照圆柱的定义,你能定义什么是圆锥吗?答案
以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.
梳理圆锥的结构特征。

高中数学 第一章 空间几何体 1.1.2 简单组合体的结构特征课件 新人教A版必修2

高中数学 第一章 空间几何体 1.1.2 简单组合体的结构特征课件 新人教A版必修2

[解] (1)以AB为轴旋转所得旋转体是圆台.如图①所 示.
(2)以BC为轴旋转所得的旋转体是一组合体:下部为圆 柱,上部为圆锥.如图②所示.
(3)以CD为轴旋转所得的旋转体为一组合体:上部为圆 锥,下部为圆台,再挖去一个小圆锥.如图③所示.
(4)以AD为轴旋转所得的旋转体为一组合体:一个圆柱上 部挖去一个圆锥.如图④所示.
第一章
空间几何体特征
要点整合夯基础 典例讲练破题型
课堂达标练经典 课时作业
[目标] 1.了解组合体的概念; 2.会用柱、锥、台、球 的结构特征描述简单组合体的结构特征.
[重点] 对简单组合体两种基本形式的认识. [难点] 把简单组合体分解为简单几何体.
(2)与正方体的各棱均相切的球与正方体相连接的点是正方体
各棱的中点,故应作出经过正方体一组平行棱中点的截面,则
球的轴截面是其正方形截面的外接圆,
如图(2)所示,设球的半径为R3,易求得
球的半径R3=
2 2 a.
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
(2)(A)中的几何体由一个三棱柱和一个圆柱组合而成,其 中圆柱内切于三棱柱.
(B)中的几何体由一个圆锥和一个四棱柱组合而成,其中 四棱柱内接于圆锥.
(C)中的几何体由一个球和一个三棱锥组合而成.其中三 棱锥内接于球.
会识别较复杂的图形是学好立体几何的第一步,我们应注 意观察周围的物体,然后将它们“分拆”成几个简单的几何 体,进而培养我们的空间想象能力和识图能力.
[变式训练1] 请描述如图所示的组合体的结构特征.
解:①是由一个圆台挖去一个圆锥后剩下的部分得到 的组合体;
②是由一个四棱柱和一个四棱锥组合而成的组合体.

人教A版高中数学必修2:第2课时 1·1简单组合体的结构特征(平行班)

人教A版高中数学必修2:第2课时    1·1简单组合体的结构特征(平行班)
1·1空间几何体的结构
第2课时 简单组合体的结构特征
问题: 在现实生活中,有许多的物体表示的几何体,除柱体、锥体、台体 和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的, 你能列举一些吗?
简单组合体的结构特征:
1、多面体与多面体的组合体
由两个或两个以上多面体
组合而成.如图(1)是一个
解:未必是棱台,因为它们的侧棱延长后不一定交 于一点,如图,用一个平行于楔形底面的平面去截 楔形,截得的几何体虽有两个面平行,其余各面是 梯形,但它不是棱台,所以看一个几何体是否棱台, 不仅要看是否有两个面平行,其余各面是否梯形, 还要看其侧棱延长后是否交于一点.
小结:棱台的定义,除了用它作判定之外,至少还有三项用途: ①为保证侧棱延长后交于一点,可以先画棱锥再画棱台;
A
B
C
D E
练习4:说出如图的几何体的主要结构特征.
(1)
(2)
(3)
答案:(1)由两个面平行且是三角形,其余个面是平行四边形, 每相邻两个面的公共边相互平行,该几何体是三楞住. (2)该组合体是由一个半球和一个圆柱组成的.
(3)该组合体是由一个四楞台和一个长方体组成的
练习5:若一个几何体有两个面平行,且其余各面均为梯形,则它 一定是棱台,此命题是否正确,说明理由.


组合体.
图(2)是一个

的组合体.图(3)是一个
四楞住挖去一个四楞住而成的几何
体.
答案:图(1)四楞住、三楞住
(1)
(3)
(2)
图(2)四楞住、三棱锥
2、多面体与旋转体的组合体
由一个多面体与一个旋转体
组合而成,如图(4)是一

人教A版高中双数学必修二《1.1空间几何体结构特征》课件.pptx

人教A版高中双数学必修二《1.1空间几何体结构特征》课件.pptx
o′
o
七、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转
轴,半圆面旋转一周形成的旋转体叫做球体,
简称球。
(1)半圆的半径叫做球的半径。
(2)半圆的圆心叫做球心。
A
(3)半圆的直径叫做球的直径。
球半径
O
直径
2、球的表示: 用表示球心的字
球心 母表示,如球O
B
八、简单组合体的结构特征
现实世界中的物体表示的几何体,除柱体、锥体、 台体和球体等简单几何体外,还有大量的几何体 是由简单几何体组合而成的,这些几何体叫做简 单组合体。
高中数学课件
(鼎尚图文*****整理制作)
1.1空间几何体的结构
知识探究(一):空间几何体的类型
思考1:在我们周围存在着各种各样的物体,它们 都占据着空间的一部分.如果我们只考虑这些物体 的形状和大小,而不考虑其他因素,那么由这些 抽象出来的空间图形就叫做空间几何体. 你能列举那些空间几何体的实例?
简单组合体的构成有两种基本形式:
一种是由简单几何体拼接而成,如左图 所示
一种是由简单几何体截去或挖 去一部分而成,如右图所示
观察
观察下图里面的几何体,你 能说出它们各由哪些简单几 何体组合而成吗?
现实世界中,我们看到的物体大多由具有柱、 锥、台、球等几何结构特征的物体组合而成.
练习:
1、长方体AC1中,AB=3,BC=2,BB1=1,由A到 C1在长方体表面上的最短距离是多少?
BO
母 线
A
A
(1)旋转轴叫做圆锥的轴。
顶点
S
(2)垂直于轴的边旋转而成的
轴 圆面叫做圆锥的底面。
(3)不垂直于轴的边旋转而成
侧 面
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时旋转体与简单组合体的结构特征
学习目标 1.了解圆柱、圆锥、圆台、球的定义.2.掌握圆柱、圆锥、圆台、球的结构特征.3.了解简单组合体的概念及结构特征.
知识点一圆柱
思考观察如图所示的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?
答案以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体.
梳理圆柱的结构特征
知识点二圆锥
思考仿照圆柱的定义,你能定义什么是圆锥吗?
答案以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体.
梳理圆锥的结构特征
知识点三 圆台
思考 下图中的物体叫做圆台,也是旋转体,它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?
答案 (1)圆台可以是直角梯形以垂直于底边的腰所在的直线为旋转轴,其他三边旋转一周形成的面所围成的几何体.
(2)圆台也可以看作是等腰梯形以其底边的中垂线为轴,各边旋转180°形成的面所围成的几何体.
(3)类比棱台的定义圆台还可以如下得到:
用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台. 梳理 圆台的结构特征。

相关文档
最新文档