十年高考真题分类汇编(2010-2019) 数学 专题01 集合 (含解析)
十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}【解答】解:∵U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},∴∁U A={1,6,7},则B∩∁U A={6,7}故选:C.2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B={0,2}.故选:A.3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R【解答】解:∵集合A={x|x<2},B={x|3﹣2x>0}={x|x},∴A∩B={x|x},故A正确,B错误;A∪B={x||x<2},故C,D错误;故选:A.4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2【解答】解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.6.【2014年新课标1文科01】已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【解答】解:M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N={x|﹣1<x<1},故选:B.7.【2013年新课标1文科01】已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4} B.{2,3} C.{9,16} D.{1,2}【解答】解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.8.【2012年新课标1文科01】已知集合A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.A⊊B B.B⊊A C.A=B D.A∩B=∅【解答】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x∴B⊊A.故选:B.9.【2011年新课标1文科01】已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【解答】解:∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3}∴P的子集共有22=4故选:B.10.【2010年新课标1文科01】已知集合A={x||x|≤2,x∈R},B={x|4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题 1.若集合,,则AB =( )A .B .C .D .【答案】A 【解析】 解:,则,故选:A . 2.已知集合,,则AB =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【答案】C 【解析】,,又,所以,故本题选C.3.已知集合,,则A B =( )A .B .{}1,0,1,2,3-C .{}3,2--D .【答案】B 【解析】因为,∴.4.已知全集U =R ,集合,则()U A B =ð( )A .(1,2)B .(]1,2 C .(1,3) D .(,2]-∞【答案】B 【解析】由24x >可得2x >,可得13x <<,所以集合,(,2]U A =-∞ð,所以()U A B =ð(]1,2,故选B.5.已知集合,集合,则集合A B ⋂的子集个数为( ) A .1 B .2C .3D .4【答案】D 【解析】由题意得,直线1y x =+与抛物线2y x =有2个交点,故A B ⋂的子集有4个. 6.已知集合,,则()R M N ⋂ð=( )A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}【答案】D 【解析】 由题意,集合,则或3}x ≥又由,所以,故选D.7.已知集合,,则()R A B I ð=( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【答案】B 【解析】 因为,所以,又,所以.8.已知R 是实数集,集合,,则()AB =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【答案】A 【解析】即故选A 。
十年高考真题分类汇编(2010-2019) 数学 专题01 集合 解析版
十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
(新课标全国I卷)20102019学年高考数学真题分类汇编专题01集合与常用逻辑用语文(含解析)
专题01会集与常用逻辑用语一、会集小题:10年10考,每年1题,都是交集、并集、补集和子集运算为主,多与解不等式等交汇,新定义运算也有较小的可能,但是难度较低;基本上是每年的送分题,相信命题组对会集小题进行大幅度变动的信心不大.1.(2019年)已知会集U{1,2,3,4,5,6,7},A{2,3,4,5},B{2,3,6,7},则BeUA()A.{1,6} B .{1,7} C .{6,7} D .{1,6,7}【答案】C【分析】U {1,2,3,4,5,6,7},A {2,3,4,5},B{2,3,6,7},C U A{1,6,7},则B e U A {6,7},应选C.2.(2018年)已知会集 A 0,2,B 2,1,0,1,2,则A B ()A.0,2 B .1,2 C .0D .2,1,0,1,2【答案】A【分析】∵A0,2 ,B2,1,0,1,2 ,∴0,2 ,应选A.3.(2017年)已知会集A={x|x<2},B={x|3 ﹣2x>0},则()3 3A.A∩B={x|x <2} B .A∩B=? C .A∪B={x|x<2} D .A∪B=R【答案】A3 3【分析】∵会集A={x|x<2},B={x|3 ﹣2x>0}={x|x<2},∴A∩B={x|x<2},故A正确,B错误;A∪B={x|x <2},故C,D错误;应选A.4.(2016年)设会集A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}【答案】B【分析】∵A={1,3,5,7},B={x|2≤x≤5},∴A∩B={3,5}.应选B.5.(2015年)已知会集A={x|x=3n+2,n∈N},B={6,8,10,12,14},则会集A∩B中元素的个数为()A.5B.4C.3D.2【答案】D【分析】A={x|x=3n+2,n∈N}={2,5,8,11,14,17,},∴A∩B={8,14},故会集A∩B中元素的个数为2个,应选D.6.(2014年)已知会集M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)【答案】B【分析】∵M={x|﹣1<x<3},N={x|﹣2<x<1},∴M∩N={x|﹣1<x<1},应选B.7.(2013年)已知会集A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【分析】依据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选A.8.(2012年)已知会集A={x|x2﹣x﹣2<0},B={x|﹣1<x<1},则()A.ABB.BAC.A=B D.A∩B=?【答案】B【分析】由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在会集B中的元素都属于会集A,但是在3会集A中的元素不必定在会集B中,比方x=2,∴BA.应选B.9.(2011年)已知会集M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个【答案】B【分析】∵M={0,1,2,3,4},N={1,3,5},∴P=M∩N={1,3},∴P的子集共有22=4个,应选B.10.(2010年)已知会集A={x||x| ≤2,x∈R},B={x| ≤4,x∈Z},则A∩B=()A.(0,2)B.[0,2] C.{0,2} D.{0,1,2}【答案】D【分析】A={x||x|≤2,x∈R}={x|﹣2≤x≤2},B={x| ≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},∴A∩B={0,1,2},应选D.二、常用逻辑用语小题:10年1考,只有2013年考了一道复合命题的真假判断.这个考点包括的小考点较多,而且简单与函数、不等式、数列、三角函数和立体几何交汇,热门就是“充要条件”;难点:否定与否命题;冷点:全称与特称;思想:逆否.要注意,这种题可以分为两大类,一类只涉及形式的变换,比较简单;另一类涉及命题的真假判断,比较复杂.(2013()年)已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1﹣x2,则以下命题中为真命题的是A.p∧qB.¬p∧q C.p∧¬q D.¬p∧¬q【答案】B【分析】由于x=﹣1时,2﹣1>3﹣1,因此命题p:?x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,由于f(0)=﹣1<0,f(1)=1>0.因此函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:?x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.应选B.。
理科数学2010-2019高考真题十年分类专题一 集合与常用逻辑用语 第一讲集合(A组)答案部分
专题一 集合与常用逻辑用语第一讲 集合(A 组)答案部分2019年1.解析:依题意可得,2426023{|}{|}{} |M x x N x x x x x =-=--=-<<,<<<, 所以2|}2{M N x x =-<<. 故选C .2.解析:由{}2560(,2)(3,)A x x x =-+>=-∞+∞,{}10(,1)A x x =-<=-∞,则(,1)A B =-∞.故选A.3.解析 因为{}1,0,1,2A =-,2{|1}{|11}B x x x x ==-, 所以{}1,0,1A B =-.故选A .2010-2018年一、选择题1.B 【解析】因为2{20}=-->A x x x ,所以2{|20}=--R ≤A x x x{|12}=-≤≤x x ,故选B .2.C 【解析】由题意知,{|10}A x x =-≥,则{1,2}A B =.故选C .3.A 【解析】通解 由223+≤x y 知,≤x y又∈Z x ,∈Z y ,所以{1,0,1}∈-x ,{1,0,1}∈-y ,所以A 中元素的个数为1133C C 9=,故选A .优解 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆223+=x y 中有9个整点,即为集合A 的元素个数,故选A .4.A 【解析】∵{|0}B x x =<,∴{|0}AB x x =<,选A . 5.C 【解析】∵1B ∈,∴21410m -⨯+=,即3m =,∴{1,3}B =.选C .6.B 【解析】集合A 、B 为点集,易知圆221x y +=与直线y x =有两个交点,所以A B 中元素的个数为2.选B . 7.D 【解析】由题意得,{|13}A x x =<<,3{|}2B x x =>,则3(,3)2AB =. 选D . 8.C 【解析】由已知可得()(){}120B x x x x =+-<∈Z ,{}12x x x =-<<∈Z ,,∴{}01B =,,∴{}0123A B =,,,,故选C . 9.D 【解析】(,2][3,)S =-∞+∞,所以(0,2][3,)S T =+∞,故选D .10.A 【解析】由于{|21}B x x ,所以{1,0}A B .11.A 【解析】{}|13A x x x =-≤或≥,故A B ⋂=[-2,-1].12.D 【解析】{}|12N x x =≤≤,∴M N ⋂={1,2}.13.B 【解析】∵{}1,2B =-,∴A B ⋂={}214.B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .15.A 【解析】{}1,4,9,16B =,∴{}1,4A B ⋂=16.A 【解析】∵(1,3)M =-,∴{}0,1,2M N =17.C 【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.18.B 【解析】A =(-1,2),故B ⊂≠A ,故选B.19.B 【解析】{1,3}P M N ==,故P 的子集有4个.。
(北京卷)十年真题(2010_2019)高考数学真题分类汇编专题01集合文(含解析)
专题01集合历年考题细目表历年高考真题汇编1.【2019年北京文科01】已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)【解答】解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.2.【2018年北京文科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.3.【2018年北京文科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y>4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.4.【2017年北京文科01】已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.5.【2016年北京文科01】已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.6.【2015年北京文科01】若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.7.【2014年北京文科01】若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.8.【2013年北京文科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.9.【2012年北京文科01】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.(,3)D.(3,+∞)【解答】解:因为B={x∈R|(x+1)(x﹣3)>0}={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0}={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.10.【2011年北京文科01】已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1] B.[1,+∞)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到∁U P=(﹣∞,1)∪(1,+∞).故选:D.11.【2010年北京文科01】集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},。
十年高考真题分类汇编(2010-2019) 数学 专题01 集合
十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)
(2010-2019)十年高考数学真题分类汇编:三角函数(含解析)1.(2019·全国2·理T10文T11)已知α∈0,π2,2sin 2α=cos 2α+1,则sin α=()A.15B.√55C.√33D.2√55【答案】B【解析】∵2sin 2α=cos 2α+1,∴4sin αcos α=2cos2α.∵α∈(0,π2),∴cos α>0,sin α>0,∴2sin α=cos α.又sin2α+cos2α=1,∴5sin2α=1,即sin2α=15.∵sin α>0,∴sin α=√55.故选B.2.(2019·全国2·文T8)若x1=π4,x2=3π4是函数f(x)=sin ωx(ω>0)两个相邻的极值点,则ω=()A.2B.32C.1 D.12【答案】A【解析】由题意,得f(x)=sin ωx的周期T=2πω=23π4−π4=π,解得ω=2,故选A.3.(2019·全国2·理T9)下列函数中,以π2为周期且在区间π4,π2单调递增的是()A.f(x)=|cos 2x|B.f(x)=|sin 2x|C.f(x)=cos|x|D.f(x)=sin|x|【答案】A【解析】y=|cos 2x|的图象为,由图知y=|cos 2x|的周期为π2,且在区间(π4,π2)内单调递增,符合题意;y=|sin 2x|的图象为,由图知它的周期为π2,但在区间(π4,π2)内单调递减,不符合题意;因为y=cos|x|=cos x,所以它的周期为2π,不符合题意;y=sin |x|的图象为,由图知其不是周期函数,不符合题意.故选A.4.(2019·天津·理T7)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)是奇函数,将y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g(x).若g(x)的最小正周期为2π,且g(π4)=√2,则f(3π8)=()A.-2B.-√2C.√2D.2【答案】C【解析】已知函数为奇函数,且|φ|<π,故φ=0. f(x)=Asin ωx.∴g(x)=Asin x.∵g(x)的最小正周期为2π,∴2πω=2π,∴ω=1. ∴g(x)=Asin x.由g(π4)=√2,得Asin π4=√2,∴A=2.∴f(x)=2sin 2x.∴f(3π8)=2sin 3π4=√2.故选C.5.(2019·北京·文T8)如图,A,B是半径为2的圆周上的定点,P为圆周上的动点,∠APB是锐角,大小为β.图中阴影区域的面积的最大值为( )A.4β+4cos βB.4β+4sin βC.2β+2cos βD.2β+2sin β【答案】B【解析】(方法一)如图,设圆心为O ,连接OA ,OB ,半径r=2,∠AOB=2∠APB=2β,阴影部分Ⅰ(扇形)的面积S 1=βr 2=4β为定值,S △OAB =12|OA||OB|sin 2β=2sin 2β为定值,全部阴影部分的面积S=S △PAB +S 1-S △OAB .当P 为弧AB 的中点时S △PAB 最大,最大值为12(2|OA|sin β)(OP+|OA|cosβ)=2sin β(2+2cos β)=4sin β+2sin 2β,所以全部阴影部分的面积S 的最大值为4β+4sin β,故选B.(方法二)观察图象可知,当P 为弧AB 的中点时,阴影部分的面积S 取最大值,此时∠BOP=∠AOP=π-β,面积S的最大值为βr 2+S △POB +S △POA =4β+12|OP||OB|sin(π-β)+12|OP||OA|sin(π-β)=4β+2sin β+2sinβ=4β+4sin β,故选B.6.(2019·全国3·理T12)设函数f(x)=sin (ωx +π5)(ω>0),已知f(x)在[0,2π]有且仅有5个零点,下述四个结论:①f(x)在(0,2π)有且仅有3个极大值点 ②f(x)在(0,2π)有且仅有2个极小值点 ③f(x)在(0,π10)单调递增 ④ω的取值范围是[125,2910) 其中所有正确结论的编号是( )A.①④B.②③C.①②③D.①③④ 【答案】D【解析】∵f(x)=sin (ωx +π5)(ω>0)在区间[0,2π]上有且仅有5个零点, ∴5π≤2πω+π5<6π, 解得125≤ω<2910,故④正确.画出f(x)的图像(图略),由图易知①正确,②不正确. 当0<x<π10时,π5<ωx+π5<ωπ10+π5, 又125≤ω<2910,∴ωπ10+π5<29π100+20π100=49π100<π2,∴③正确.综上可知①③④正确.故选D.7.(2018·北京·文T7)在平面直角坐标系中,AB ⏜,CD ⏜,EF ⏜,GH ⏜是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( ) A.AB⏜ B.CD⏜C.EF ⏜ D.GH ⏜【答案】C【解析】若P 在AB⏜上,则由角α的三角函数线知,cos α>sin α,排除A;若P 在CD ⏜上,则tan α>sin α,排除B;若P 在GH⏜上,则tan α>0,cos α<0,sin α<0,排除D;故选C. 8.(2018·全国1·文T11)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos 2α=23,则|a-b|=( ) A.15 B.√55C.2√55D.1【答案】B。
专题01 集合-领军高考数学(文)十年真题(2010-2019)深度思考(北京卷)
专题01集合历年考题细目表题型年份考点试题位置单选题2019 交并补运算2019年北京文科01单选题2018 交并补运算2018年北京文科01单选题2018 交并补运算2018年北京文科08单选题2017 交并补运算2017年北京文科01单选题2016 交并补运算2016年北京文科01单选题2015 交并补运算2015年北京文科01单选题2014 交并补运算2014年北京文科01单选题2013 交并补运算2013年北京文科01单选题2012 交并补运算2012年北京文科01单选题2011 交并补运算2011年北京文科01单选题2010 交并补运算2010年北京文科01解答题2012 集合综合问题2012年北京文科20解答题2010 集合综合问题2010年北京文科20历年高考真题汇编1.【2019年北京文科01】已知集合A={x|﹣1<x<2},B={x|x>1},则A∪B=()A.(﹣1,1)B.(1,2)C.(﹣1,+∞)D.(1,+∞)【解答】解:∵A={x|﹣1<x<2},B={x|x>1},∴A∪B={x|﹣1<x<2}∪{x|x>1}=(﹣1,+∞).故选:C.2.【2018年北京文科01】已知集合A={x||x|<2},B={﹣2,0,1,2},则A∩B=()A.{0,1} B.{﹣1,0,1} C.{﹣2,0,1,2} D.{﹣1,0,1,2}【解答】解:A={x||x|<2}={x|﹣2<x<2},B={﹣2,0,1,2},则A∩B={0,1},故选:A.3.【2018年北京文科08】设集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2},则()A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a时,(2,1)∉A【解答】解:当a=﹣1时,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,﹣x+y >4,x+y≤2},显然(2,1)不满足,﹣x+y>4,x+y≤2,所以A不正确;当a=4,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,4x+y>4,x﹣4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确;当a=1,集合A={(x,y)|x﹣y≥1,ax+y>4,x﹣ay≤2}={(x,y)|x﹣y≥1,x+y>4,x﹣y≤2},显然(2,1)∉A,所以当且仅当a<0错误,所以C不正确;故选:D.4.【2017年北京文科01】已知全集U=R,集合A={x|x<﹣2或x>2},则∁U A=()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:∵集合A={x|x<﹣2或x>2}=(﹣∞,﹣2)∪(2,+∞),全集U=R,∴∁U A=[﹣2,2],故选:C.5.【2016年北京文科01】已知集合A={x|2<x<4},B={x|x<3或x>5},则A∩B=()A.{x|2<x<5} B.{x|x<4或x>5} C.{x|2<x<3} D.{x|x<2或x>5}【解答】解:∵集合A={x|2<x<4},B={x|x<3或x>5},∴A∩B={x|2<x<3}.故选:C.6.【2015年北京文科01】若集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B=()A.{x|﹣3<x<2} B.{x|﹣5<x<2} C.{x|﹣3<x<3} D.{x|﹣5<x<3}【解答】解:集合A={x|﹣5<x<2},B={x|﹣3<x<3},则A∩B={x|﹣3<x<2}.故选:A.7.【2014年北京文科01】若集合A={0,1,2,4},B={1,2,3},则A∩B=()A.{0,1,2,3,4} B.{0,4} C.{1,2} D.{3}【解答】解:∵A={0,1,2,4},B={1,2,3},∴A∩B={0,1,2,4}∩{1,2,3}={1,2}.故选:C.8.【2013年北京文科01】已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.9.【2012年北京文科01】已知集合A={x∈R|3x+2>0},B={x∈R|(x+1)(x﹣3)>0},则A∩B=()A.(﹣∞,﹣1)B.(﹣1,)C.(,3)D.(3,+∞)【解答】解:因为B={x∈R|(x+1)(x﹣3)>0}={x|x<﹣1或x>3},又集合A={x∈R|3x+2>0}={x|x},所以A∩B={x|x}∩{x|x<﹣1或x>3}={x|x>3},故选:D.10.【2011年北京文科01】已知全集U=R,集合P={x|x2≤1},那么∁U P=()A.(﹣∞,﹣1] B.[1,+∞)C.[﹣1,1] D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由集合P中的不等式x2≤1,解得﹣1≤x≤1,所以集合P=[﹣1,1],由全集U=R,得到∁U P=(﹣∞,1)∪(1,+∞).故选:D.11.【2010年北京文科01】集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=()A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3}【解答】解:∵集合P={x∈Z|0≤x<3},∴P={0,1,2},∵M={x∈Z|x2<9},∴M={﹣2,﹣1,0,1,2},∴P∩M={0,1,2},故选:B.12.【2012年北京文科20】设A是如下形式的2行3列的数表,a b cd e f满足性质P:a,b,c,d,e,f∈[﹣1,1],且a+b+c+d+e+f=0.记r i(A)为A的第i行各数之和(i=1,2),∁j(A)为A的第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.(1)对如下数表A,求k(A)的值1 1 ﹣0.80.1 ﹣0.3 ﹣1(2)设数表A形如1 1 ﹣1﹣2dd d﹣1其中﹣1≤d≤0.求k(A)的最大值;(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值.【解答】解:(1)因为r1(A)=1.2,r2(A)=﹣1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=﹣1.8,所以k(A)=0.7(2)r1(A)=1﹣2d,r2(A)=﹣1+2d,c1(A)=c2(A)=1+d,c3(A)=﹣2﹣2d因为﹣1≤d≤0,所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0所以k(A)=1+d≤1当d=0时,k(A)取得最大值1(III)任给满足性质P的数表A(如下所示)a b cd e f任意改变A三维行次序或列次序,或把A中的每个数换成它的相反数,所得数表A*仍满足性质P,并且k (A)=k(A*)因此,不防设r1(A)≥0,c1(A)≥0,c2(A)≥0,由k(A)的定义知,k(A)≤r1(A),k(A)≤c1(A),k(A)≤c2(A),从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b﹣f)=a+b﹣f≤3所以k(A)≤1由(2)可知,存在满足性质P的数表A使k(A)=1,故k(A)的最大值为1.13.【2010年北京文科20】已知集合S n={X|X=(x1,x2,…,x n),x i∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…a n,),B=(b1,b2,…b n,)∈S n,定义A与B的差为A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|);A与B之间的距离为.(Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B);(Ⅱ)证明:∀A,B,C∈S n,有A﹣B∈S n,且d(A﹣C,B﹣C)=d(A,B);(Ⅲ)证明:∀A,B,C∈S n,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数.【解答】解:(Ⅰ)由题意得,A﹣B=(|0﹣1|,|1﹣1|,|0﹣1|,|0﹣0|,|1﹣0|)=(1,0,1,0,1),d(A,B)=|0﹣1|+|1﹣1|+|0﹣1|+|0﹣0|+|1﹣0|=3(Ⅱ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n因为a i,b i∈{0,1},所以|a i﹣b i|∈{0,1}(i=1,2,n)从而A﹣B=(|a1﹣b1|,|a2﹣b2|,…,|a n﹣b n|)∈S n由题意知a i,b i,c i∈{0,1}(i=1,2,n)当c i=0时,||a i﹣c i|﹣|b i﹣c i||=|a i﹣b i|当c i=1时,||a i﹣c i|﹣|b i﹣c i||=|(1﹣a i)﹣(1﹣b i)|=|a i﹣b i|所以(Ⅲ)证明:设A=(a1,a2,…,a n),B=(b1,b2,…,b n),C=(c1,c2,…,c n)∈S n,d(A,B)=k,d(A,C)=l,d(B,C)=h,记0=(0,0,…,0)∈S n,由(Ⅱ)可知因为|a i ﹣b i |∈{0,1},k ,所以|b i ﹣a i |(i =1,2,n )中1的个数为k ,|c i ﹣a i |(i =1,2,n )中1的个数为l , 设t 是使|b i ﹣a i |=|c i ﹣a i |=1成立的i 的个数.则h =l +k ﹣2t , 由此可知,k ,l ,h 三个数不可能都是奇数,即d (A ,B ),d (A ,C ),d (B ,C )三个数中至少有一个是偶数. 考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:交并补运算,集合综合问题,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =( )A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<<【★答案★】A 【解析】解:{}{}333||B x x x x =<=-<<, 则{}|32A B x x ⋂=-<<, 故选:A .2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}【★答案★】C 【解析】2560(2)(3)023x x x x x -+≤⇒--≤⇒≤≤,{}23A x x ∴=≤≤, 又{}{|15}2,3,4B x Z x =∈<<=,所以{}2,3A B ⋂=,故本题选C.3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则A B =( )A .{3,2,1,0}---B .{}1,0,1,2,3-C .{}3,2--D .{}3,2,1,0,1,2,3---【★答案★】B 【解析】因为{}2|450B x x x =∈--≤R {|15}x x =-≤≤,{3,2,1,0,1,2,3}A =---∴{}1,0,1,2,3A B ⋂=-. 故选B .4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =( )A .(1,2)B .(]1,2C .(1,3)D .(,2]-∞【★答案★】B 【解析】由24x >可得2x >, (1)(3)0x x --<可得13x <<,所以集合(2,),(1,3)A B =+∞=,(,2]UA =-∞,所以()U A B =(]1,2,故选B.5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1B .2C .3D .4【★答案★】D 【解析】由题意得,直线1y x =+与抛物线2yx 有2个交点,故A B ⋂的子集有4个.6.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂=( ) A .{-1,0,1,2,3} B .{-1,0,1,2} C .{-1,0,1} D .{-1,3}【★答案★】D 【解析】由题意,集合{}2log (1)2{|13}M x x x x =+<=-<<,则{|1RM x x =≤-或3}x ≥又由{1,0,1,2,3}N =-,所以(){1,3}R M N ⋂=-,故选D. 7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B =( )A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,3【★答案★】B 【解析】因为{}{}lg(1)1A x y x x x ==-=>,所以{}1R C A x x =≤, 又{}1,0,1,2,3B =-,所以{}()1,0,1R C A B =-.故选B8.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =R( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭【★答案★】A 【解析】1|2B x x1|2R C Bx x即(){1,0}R A C B故选A 。
十年真题(2010_2019)高考数学真题分类汇编专题01集合理(含解析)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1理科01】已知集合M={x|﹣4<x<2},N={x|x2﹣x﹣6<0},则M∩N=()A.{x|﹣4<x<3} B.{x|﹣4<x<﹣2} C.{x|﹣2<x<2} D.{x|2<x<3}【解答】解:∵M={x|﹣4<x<2},N={x|x2﹣x﹣6<0}={x|﹣2<x<3},∴M∩N={x|﹣2<x<2}.故选:C.2.【2018年新课标1理科02】已知集合A={x|x2﹣x﹣2>0},则∁R A=()A.{x|﹣1<x<2} B.{x|﹣1≤x≤2} C.{x|x<﹣1}∪{x|x>2} D.{x|x≤﹣1}∪{x|x≥2} 【解答】解:集合A={x|x2﹣x﹣2>0},可得A={x|x<﹣1或x>2},则:∁R A={x|﹣1≤x≤2}.故选:B.3.【2017年新课标1理科01】已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0} B.A∪B=R C.A∪B={x|x>1} D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.4.【2016年新课标1理科01】设集合A={x|x2﹣4x+3<0},B={x|2x﹣3>0},则A∩B=()A.(﹣3,)B.(﹣3,)C.(1,)D.(,3)【解答】解:∵集合A={x|x2﹣4x+3<0}=(1,3),B={x|2x﹣3>0}=(,+∞),∴A∩B=(,3),故选:D.5.【2014年新课标1理科01】已知集合A={x|x2﹣2x﹣3≥0},B={x|﹣2≤x<2},则A∩B=()A.[1,2)B.[﹣1,1] C.[﹣1,2)D.[﹣2,﹣1]【解答】解:由A中不等式变形得:(x﹣3)(x+1)≥0,解得:x≥3或x≤﹣1,即A=(﹣∞,﹣1]∪[3,+∞),∵B=[﹣2,2),∴A∩B=[﹣2,﹣1].故选:D.6.【2013年新课标1理科01】已知集合A={x|x2﹣2x>0},B={x|x},则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【解答】解:∵集合A={x|x2﹣2x>0}={x|x>2或x<0},∴A∩B={x|2<x或x<0},A∪B=R,故选:B.7.【2012年新课标1理科01】已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为()A.3 B.6 C.8 D.10【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x =3时,y =1,2,x =2时,y =1综上知,B 中的元素个数为10个故选:D .8.【2010年新课标1理科01】已知集合A ={x ∈R ||x |≤2}},,则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2} D .{0,1,2}【解答】解:A ={x ∈R ||x |≤2,}={x ∈R |﹣2≤x ≤2},故A ∩B ={0,1,2}.应选D .考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则AB =( ) A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<< 【答案】A【解析】 解:{}{}333||B x x x x =<=-<<,则{}|32A B x x ⋂=-<<,。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):常用逻辑用
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
28.(2014•陕西•理 T8)原命题为“若 z1,z2 互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真
假性的判断依次如下,正确的是( )
A.真,假,真 B.假,假,真
C.真,真,假 D.假,假,假
的( )
A.充要条件
B.充分而不必要条件
C.必要而不充分条件 D.既不充分也不必要条件
3
18.(2016•山东•理 T6)已知直线 a,b 分别在两个不同的平面 α,β 内.则“直线 a 和直线 b 相交”是“平面
α 和平面 β 相交”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
13.(2017•天津•理 T4)设 θ∈R,则“
π
- 12
<
π
12”是“sin
1
θ<2”的(
)
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
14.(2017•浙江•理 T6)已知等差数列{an}的公差为 d,前 n 项和为 Sn,则“d>0”是“S4+S6>2S5”的 ( )
+ ≥ 6, 1.(2019•全国 3•文 T11)记不等式组 2 - ≥ 0 表示的平面区域为 D.命题 p:∃(x,y)∈D,2x+y≥9;命题 q:∀(x,y)∈D,2x+y≤12.下面给出了四个命题 ①p∨q ②¬p∨q ③p∧¬q ④¬p∧¬q 这四个命题中,所有真命题的编号是( ) A.①③ B.①② C.②③ D.③④
十年高考真题分类汇编(2010-2019) 数学 专题01 集合
A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}
【答案】C
【解析】由已知得∁UA={1,6,7},∴B∩∁UA={6,7}.故选C.
3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()
【答案】C
【解析】由题意,得A∩B=(-1,2),故选C.
5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()
A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}
【答案】A
【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.
A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}
【答案】B
【解析】∁RB={x|x<1},A∩(∁RB)={x|0<x<1}.故选B.
15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=()
13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=()
A.{0,1}B.{-1,0,1}
C.{-2,0,1,2}D.{-1,0,1,2}
【答案】A
【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):函数
49.(2016•全国 1•T9)函数 y=2x -e 在[-2,2]的图象大致为( )
2
50.(2016•浙江•文 T3)函数 y=sin x 的图象是( )
x
51.(2016•浙江•文 T7)已知函数 f(x)满足:f(x)≥|x|,且 f(x)≥2 ,x∈R.( )
b
A.若 f(a)≤|b|,则 a≤b B.若 f(a)≤2 ,则 a≤b
cc
A.a <b
cc
B.ab <ba
C.alogbc<blogac
D.logac<logbc
9
46.(2016•全国 3•理 T6)已知 a=2 ,b=4:,c=25 ,则( )
A.b<a<c B.a<b<c C.b<c<a D.c<a<b
9
47.(2016•全国 3•文 T7)已知 a=2 ,b=3 ,c=25 ,则( )
!"#
35.(2017•全国 1•文 T8)函数 y= 的部分图象大致为( )
-%&!
!"#
36.(2017•全国 3•文 T7)函数 y=1+x+ 的部分图象大致为( )
5
37.(2017•山东•理
T10)已知当
x∈[0,1]时,函数
2
y=(mx-1)
的图象与
y=√x+m
的图象有且只有一个交点,则正
③f(x)在[-π,π]有 4 个零点 ④f(x)的最大值为 2
其中所有正确结论的编号是( )
A.①②④ B.②④
C.①④
D.①③
6.(2019•全国 3•理 T11 文 T12)设 f(x)是定义域为 R 的偶函数,且在(0,+∞)单调递减,则( )
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)
(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( ) A.√2 B.2 C.5√2 D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=√(-1)2+12=√2,故选A.2.(2019·全国·1理T7文T8)已知非零向量a ,b 满足|a|=2|b|,且(a-b)⊥b ,则a 与b 的夹角为( ) A.π6 B.π3C.2π3D.5π6【答案】B【解析】因为(a-b)⊥b , 所以(a-b )·b=a ·b-b 2=0, 所以a ·b=b 2.所以cos<a ,b>=a ·b|a |·|b |=|b |22|b |2=12,所以a 与b 的夹角为π3,故选B.3.(2018·全国1·理T6文T7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 【答案】A【解析】如图,EB ⃗⃗⃗⃗⃗ =-BE⃗⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −14BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=3 4AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ .4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.0【答案】B【解析】a·(2a-b)=2a2-a·b=2-(-1)=3.5.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√3【答案】A【解析】∵b2-4e·b+3=0,∴(b-2e)2=1,∴|b-2e|=1.如图所示,平移a,b,e,使它们有相同的起点O,以O为原点,向量e所在直线为x轴建立平面直角坐标系,则b的终点在以点(2,0)为圆心,半径为1的圆上,|a-b|就是线段AB的长度.要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.7.(2018·天津·理T8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则 A.2116 B.32C.2516D.3【答案】A【解析】如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD=∠CAB =60°,∠ACD=∠ACB =30°,则D(0,0),A(1,0),B (32,√32),C(0,√3).设E(0,y)(0≤y≤√3),则AE⃗⃗⃗⃗⃗ =(-1,y),BE ⃗⃗⃗⃗⃗ =(-32,y-√32),∴AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =32+y 2-√32y=(y-√34)2+2116,∴当y=√34时,AE ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ 有最小值2116.8.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.0【答案】C【解析】连接MN ,∵BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ =3AN ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =3AM⃗⃗⃗⃗⃗⃗ .∴MN ∥BC ,且MN BC =13,∴BC ⃗⃗⃗⃗⃗ =3MN ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ ),∴BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ -|OM ⃗⃗⃗⃗⃗⃗ |2)=3[2×1×(-12)-1]=-6.9.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-32 C.-43 D.-1【答案】B【解析】以BC 所在的直线为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立平面直角坐标系,如图.可知A(0,√3),B(-1,0),C(1,0).设P(x ,y),则PA ⃗⃗⃗⃗ =(-x ,√3-y),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y),PC ⃗⃗⃗⃗ =(1-x ,-y).所以PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =(-2x ,-2y).所以PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )=2x 2-2y(√3-y)=2x 2+2(y -√32)2−32≥-32. 当点P 的坐标为(0,√32)时,PA ⃗⃗⃗⃗ ·(PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )取得最小值为-32,故选10.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3 B.2√2C.√5D.2【答案】A【解析】建立如图所示的平面直角坐标系, 则A(0,1),B(0,0),D(2,1).设P(x ,y),由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45. 易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0).由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P(x ,y)在圆(x-2)2+y 2=45上, 所以圆心C 到直线12x-y+1-z=0的距离d≤r,即√14+1≤2√55,解得1≤z≤3,11.(2017·全国2·文T4)设非零向量a ,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b| 【答案】A【解析】由|a+b|=|a-b|,平方得a 2+2a ·b+b 2=a 2-2a ·b+b 2,即a ·b=0.又a ,b 为非零向量,故a ⊥b ,故选A.12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434 B.494 C.37+6√34 D.37+2√334【答案】B【解析】设△ABC 的外心为D ,则|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2. 以D 为原点,直线DA 为x 轴,过D 点的DA 的垂线 为y 轴,建立平面直角坐标系, 则A(2,0),B(-1,-√3),C(-1,√3). 设P(x ,y),由已知|AP⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1,∵PM ⃗⃗⃗⃗⃗⃗ =MC⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y)与点(-1,-3√3)距离平方的14,∴(|BM⃗⃗⃗⃗⃗⃗ |2)max =14[√32+(0+3√3)22=494, 故选B.13.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.18C.14D.118【答案】B【解析】方法1(基向量法):如图所示,选取AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,则AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )+12×12AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ . 故AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ 2−14AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB⃗⃗⃗⃗⃗ 2 =34−14×1×1×12−12=18.14.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b ,则m=( ) A.-8B.-6C.6D.8【答案】D【解析】由题意可知,向量a+b=(4,m-2).由(a+b)⊥b ,得4×3+(m-2)×(-2)=0,解得m=8.故选D.15.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.2【答案】C【解析】由已知2a+b=(1,0), 所以(2a+b )·a=1×1+0×(-1)=1.故选C.16.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于( )A.-32 B.-53C.53D.32【答案】A【解析】∵a=(1,2),b=(1,1),∴c=(1+k ,2+k). ∵b ⊥c ,∴b ·c=1+k+2+k=0.∴k=-3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 【答案】A【解析】AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(3,-1),所以AD⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5. 18.(2015·山东·理T4)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2 B.-34a 2 C.34a 2 D.32a 2【答案】D【解析】如图,设BA ⃗⃗⃗⃗⃗ =a ,BC⃗⃗⃗⃗⃗ =b. 则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA⃗⃗⃗⃗⃗ =(a+b)·a=a 2+a ·b=a 2+a ·a ·c os 60°=a 2+12a 2=32a 2.19.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M ,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.6【答案】C【解析】如图所示,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =(AB⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ )·(13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ) =13|AB ⃗⃗⃗⃗⃗ |2-316|AD ⃗⃗⃗⃗⃗ |2+14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗=13×36-316×16=9.20.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t ,|AC⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.21【答案】A【解析】以点A 为原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图. 则A(0,0),B (1t ,0),C(0,t), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=(0,1). ∴AP⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4). ∴点P 的坐标为(1,4),PB⃗⃗⃗⃗⃗ =(1t-1,-4),PC ⃗⃗⃗⃗ =(-1,t-4). ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13,当且仅当1t =4t ,即t=12时取“=”. ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为13.21.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) 【答案】A【解析】∵AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3,1),AC ⃗⃗⃗⃗⃗ =(-4,-3), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4). 22.(2015·重庆·理T6)若非零向量a ,b 满足|a|=2√23|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π【答案】A【解析】由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a ·b-2|b|2=0.设a 与b 的夹角为θ,则3|a|2-|a||b|cos θ-2|b|2=0,即3·(2√23|b |)2−2√23|b|2cos θ-2|b|2=0,整理,得cos θ=√22.故θ=π4.23.(2015·重庆·文T7)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3 B.π2C.2π3D.5π6【答案】C【解析】因为a ⊥(2a+b),所以a ·(2a+b)=0, 即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a|2+|a||b|cos θ=0. 又|b|=4|a|,所以2|a|2+4|a|2cos θ=0, 则cos θ=-12,从而θ=2π3.24.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 【答案】A 【解析】如图,∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 25.(2014·全国1·文T6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗C.BC ⃗⃗⃗⃗⃗D.12BC⃗⃗⃗⃗⃗ 【答案】A【解析】EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )-12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-12(BA ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ )=12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12×2AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,故选A.26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a ,b 的夹角为π6,则实数m=( ) A.2√3 B.√3 C.0 D.-√3【答案】B【解析】∵cos<a ,b>=a ·b|a ||b |, ∴cos π6=√3m 2×√32+m 2,解得m=√3.27.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9) 【答案】A【解析】2a-b=(4-(-1),8-1)=(5,7).故选A.28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 【答案】B【解析】由题意得b-a=(3,1)-(1,2)=(2,-1),故选B.29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】对于A ,C ,D ,都有e 1∥e 2,故选B.30.(2014·全国2·理T3文T4)设向量a ,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.5 【答案】A【解析】∵|a+b|=√10,∴(a+b)2=10.∴|a|2+|b|2+2a·b=10,①∵|a-b|=√6,∴(a-b)2=6,∴|a|2+|b|2-2a·b=6,②由①-②得a·b=1,故选A.31.(2014·大纲全国·文T6)已知a,b为单位向量,其夹角为60°,则(2a-b)·b=( )A.-1B.0C.1D.2【答案】B【解析】由已知得|a|=|b|=1,<a,b>=60°,∴(2a-b)·b=2a·b-b2=2|a||b|cos<a,b>-|b|2=2×1×1×c os 60°-12=0,故选B.32.(2014·大纲全国·理T4)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )A.2B.√2C.1D.√22【答案】B【解析】∵(a+b)⊥a,|a|=1,∴(a+b)·a=0.∴|a|2+a·b=0.∴a·b=-1.又(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+|b|2=0.∴|b|2=2.∴|b|=√2.故选B.33.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0 C.3 D.152【答案】C【解析】由已知(2a-3b)⊥c,可得(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,展开化简,得4k-12=0,所以k=3.故选C.34.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A.√22B.12C.0D.-1【答案】C【解析】∵a ⊥b ,∴a ·b=0, ∴-1+2cos 2θ=0,即cos 2θ=0.35.(2012·重庆·理T6)设x ,y ∈R ,向量a=(x ,1),b=(1,y),c=(2,-4),且a ⊥c ,b ∥c ,则|a+b|= ( ) A.√5 B.√10 C.2√5 D.10【答案】B【解析】由a ⊥c ,得a ·c=2x-4=0,解得x=2.由b ∥c 得12=y-4,解得y=-2,所以a=(2,1),b=(1,-2),a+b=(3,-1),|a+b|=√10.故选B.36.(2010·全国·文T2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( ) A.865 B.-865C.1665D.-1665【答案】C【解析】b=(2a+b)-2a=(3,18)-(8,6)=(-5,12), 因此cos<a ,b>=a ·b |a ||b |=165×13=1665.37.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a ,b>= . 【答案】−√210【解析】cos<a ,b>=a ·b|a ||b |=√22+22×√(-8)+62=2√2×10=-√210. 38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b ,则m= . 【答案】8【解析】∵a=(-4,3),b=(6,m),a ⊥b , ∴a ·b=0,即-4×6+3m=0,即m=8.39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 【答案】-1【解析】∵AD ∥BC ,且∠DAB=30°,∴∠ABE=30°. ∵EA=EB ,∴∠EAB=30°.∠AEB=120°.在△AEB 中,EA=EB=2, BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ) =-BA ⃗⃗⃗⃗⃗ 2+BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =-12+2√3×2×c os 30°+5×2√3×c os 30°+5×2×c os 180°=-22+6+15=-1.40.(2019·全国3·理T13)已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos<a ,c>= . 【答案】23【解析】∵a ,b 为单位向量, ∴|a|=|b|=1.又a ·b=0,c=2a-√5b ,∴|c|2=4|a|2+5|b|2-4√5a ·b=9,∴|c|=3. 又a ·c=2|a|2-√5a ·b=2, ∴cos<a ,c>=a ·c|a |·|c |=21×3=23.41.(2019·浙江·T17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 【答案】0 2√5 【解析】(基向量处理)λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |min =0,由于λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =2AB⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |max =2√42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC 的值是 .【答案】√3【解析】如图,过点D 作DF ∥CE ,交AB 于点F , 由BE=2EA ,D 为BC 中点,知BF=FE=EA ,AO=OD.又AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ ) =32(23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC⃗⃗⃗⃗⃗ 2) =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2+32AC⃗⃗⃗⃗⃗ 2, 得12AB ⃗⃗⃗⃗⃗ 2=32AC ⃗⃗⃗⃗⃗ 2,即|AB⃗⃗⃗⃗⃗ |=√3|AC ⃗⃗⃗⃗⃗ |,故AB AC=√3. 43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= . 【答案】-1【解析】由题意,得ma-b=(m+1,-m). ∵a ⊥(ma-b),∴a ·(ma-b)=0,即m+1=0, ∴m=-1.44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 . 【答案】-3【解析】依题意,设E(0,a),F(0,b),不妨设a>b ,则 a-b=2,AE ⃗⃗⃗⃗⃗ =(1,a),BF ⃗⃗⃗⃗ =(-2,b),a=b+2,所以AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b 2+2b-2=(b+1)2-3, 故所求最小值为-3.45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 【答案】3【解析】设A(a ,2a)(a>0),则由圆心C 为AB 的中点得C (a+52,a),☉C:(x-5)(x-a)+y(y-2a)=0.将其与y=2x 联立解得x D =1,D(1,2).因为AB ⃗⃗⃗⃗⃗ =(5-a ,-2a),CD ⃗⃗⃗⃗⃗ =(1-a+52,2-a),AB ⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =0,所以(5-a)·(1-a+52)+(-2a)(2-a)=0,即a 2-2a-3=0,解得a=3或a=-1.因为a>0,所以a=3.46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 【答案】12【解析】2a+b=(4,2),c=(1,λ), 由c ∥(2a+b),得4λ-2=0,得λ=12.47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m ,1),若向量a+b 与a 垂直,则m= . 【答案】7【解析】因为a=(-1,2),b=(m ,1), 所以a+b=(m-1,3).因为a+b 与a 垂直,所以(a+b )·a=0,即-(m-1)+2×3=0,解得m=7.48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b ,则λ= . 【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,∴λ=-3.49.(2017·全国1·理T13)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= . 【答案】2【解析】因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·c os 60°+4|b|2=22+4×2×1×12+4×1=12, 所以|a+2b|=√12=2√3.50.(2017·天津,理13文14)在△ABC 中,∠A =60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 . 【答案】311【解析】由题意,知|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2, AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =3×2×c os 60°=3, AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =λ-23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+2λ3AC ⃗⃗⃗⃗⃗ 2 =λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R),则m+n= . 【答案】3【解析】由tan α=7可得cos α=5√2,sin α=5√2,则5√2=OA⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |·|OC ⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,由cos ∠BOC=√22可得√22=OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OB ⃗⃗⃗⃗⃗⃗ |·|OC⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,因为cos ∠AOB=cos (α+45°)=cos αc os 45°-sin αsin45°=5√2×√22−5√2×√22=-35,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-35,所以m-35n=15,-35m+n=1, 所以25m+25n=65,所以m+n=3.52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 . 【答案】√33【解析】∵e 1,e 2是互相垂直的单位向量, ∴可设a=√3e 1-e 2=(√3,-1),b=e 1+λe 2=(1,λ). 则<a ,b >=60°.∴cos<a ,b>=c os 60°=a ·b|a ||b |=√3-2=12,即√3-λ=2+1,解得λ=√33.53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 . 【答案】[-5√2,1]【解析】设P(x ,y),由PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,易得x 2+y 2+12x-6y≤20.把x 2+y 2=50代入x 2+y 2+12x-6y≤20得2x-y+5≤0. 由{2x -y +5=0,x 2+y 2=50,可得{x =-5,y =-5或{x =1,y =7.由2x-y+5≤0表示的平面区域及P 点在圆上,可得点P 在圆弧EPF 上,所以点P 横坐标的取值范围为[-5√2,1].54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为 .【答案】6【解析】方法1:设P(cos α,sin α),α∈R ,则AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(cos α+2,sin α),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2cos α+4.当α=2k π,k ∈Z 时,2cos α+4取得最大值,最大值为6. 故AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为6. 方法2:设P(x ,y),x 2+y 2=1,-1≤x≤1,AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(x+2,y),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2x+4,故AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为6.55.(2016·北京·文T9)已知向量a=(1,√3),b=(√3,1),则a 与b 夹角的大小为 . 【答案】π6【解析】设a 与b 的夹角为θ,则cos θ=a ·b|a ||b |=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.56.(2016·全国1·文T13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】−23【解析】∵a ⊥b ,∴a ·b=x+2(x+1)=0, 解得x=-23.57.(2016·山东·文T13)已知向量a=(1,-1),b=(6,-4).若a ⊥(ta+b),则实数t 的值为 . 【答案】-5【解析】由a ⊥(ta+b)可得a ·(ta+b)=0, 所以ta 2+a ·b=0,而a 2=12+(-1)2=2,a ·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5. 58.(2016·全国2·文T13)已知向量a=(m ,4),b=(3,-2),且a ∥b ,则m= . 【答案】-6【解析】因为a ∥b ,所以-2m-4×3=0,解得m=-6.59.(2016·全国1·理T13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】-2【解析】∵|a+b|2=|a|2+|b|2, ∴(m+1)2+32=m 2+1+5,解得m=-2.60.(2015·浙江·文T13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|= . 【答案】2√33【解析】因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b|c os 30°=1,所以|b|=1cos30°=2√33. 61.(2015·全国2·理T13)设向量a ,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 【答案】12【解析】由题意知存在实数t ∈R ,使λa+b=t(a+2b),得{λ=t ,1=2t ,解得λ=12.62.(2015·北京·理T13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 【答案】12−16【解析】如图,∵MN ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC⃗⃗⃗⃗⃗ , ∴x=12,y=-16.63.(2014·湖北·理T11)设向量a=(3,3),b=(1,-1).若(a +λb)⊥(a-λb),则实数λ= . 【答案】±3【解析】由题意得(a+λb)·(a-λb)=0,即a 2-λ2b 2=0,则a 2=λ2b 2, λ2=a 2b 2=(√32+32)2[√12+(-1)]=182=9.故λ=±3.64.(2014·陕西·理T3)设0<θ<π2,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a ∥b ,则tan θ= .【答案】12【解析】由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ, 因为0<θ<π2,所以cos θ≠0,所以2sin θ=cos θ. 所以tan θ=12.65.(2014·重庆·文T12)已知向量a 与b 的夹角为60°,且a=(-2,-6),|b|=√10,则a ·b= . 【答案】10【解析】由题意得|a|=2√10,所以a ·b=|a||b|cos<a ,b>=2√10×√10×12=10.66.(2014·全国1·理T15)已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 【答案】90°【解析】由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°.故AB⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 67.(2014·湖北·文T12)若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |= . 【答案】2√5【解析】设B(x ,y),由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,可得√10=√x 2+y 2, ① OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x-3y=0, ② 由①②得x=3,y=1或x=-3,y=-1, 所以B(3,1)或B(-3,-1),故AB ⃗⃗⃗⃗⃗ =(2,4)或AB ⃗⃗⃗⃗⃗ =(-4,2),|AB⃗⃗⃗⃗⃗ |=2√5, 68.(2013·江苏·T10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 【答案】12【解析】由题意作图如图.∵在△ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23.故λ1+λ2=12.69.(2013·北京·理T13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ= .【答案】4【解析】可设a=-i+j ,i ,j 为单位向量且i ⊥j ,则b=6i+2j ,c=-i-3j.∵c =λa +μb=(6μ-λ)i+(λ+2μ)j ,∴{6μ-λ=-1,λ+2μ=-3,解得{λ=-2,μ=-12.∴λμ=4. 70.(2013·全国1·T13)已知两个单位向量a ,b 的夹角为60°,c=ta+(1-t)b.若b ·c=0,则t= .【答案】2【解析】b ·c=ta ·b+(1-t)|b|2.又|a|=|b|=1,且a 与b 的夹角为60°,b ·c=0,∴0=t|a||b|c os 60°+(1-t),0=12t+1-t.∴t=2.71.(2013·全国2·理T13文T14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗ = .【答案】2【解析】以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ }为基底,则AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,而AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , ∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2=-12×22+22=2.72.(2013·天津·理T12)在平行四边形ABCD 中,AD=1,∠BA D=60°,E 为CD 的中点.若AC⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =1,则AB 的长为 .【答案】12【解析】如图所示,在平行四边形ABCD 中,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ . 所以AC ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-12|AB ⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |+1=1,解方程得|AB ⃗⃗⃗⃗⃗ |=12(舍去|AB ⃗⃗⃗⃗⃗ |=0).所以线段AB 的长为12.73.(2013·北京·文T14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 【答案】3【解析】AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC⃗⃗⃗⃗⃗ =(1,2). 设P(x ,y),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1,可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A1B1|=√(4-3)2+22=√5,两直线间距离d=√22+1=√5,∴D的面积S=|A1B1|·d=3.74.(2012·全国·理T13文T15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=√10,则|b|= .【答案】3√2【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a|×|b|c os 45°=√22|b|,|2a-b|2=4-4×√22|b|+|b|2=10,∴|b|=3√2.75.(2012·安徽·文T11)设向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,则|a|= . 【答案】√2【解析】由题意,可得a+c=(3,3m).由(a+c)⊥b,得(a+c)·b=0,即(3,3m)·(m+1,1)=3(m+1)+3m=0,解之,得m=-12.∴a=(1,-1),|a|=√2.76.(2011·全国·文T13)已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k= .【答案】1【解析】由已知可得|a|=|b|=1,且a与b不共线,所以a·b≠1,a·b≠-1.由已知向量a+b与向量ka-b垂直,所以(a+b)·(ka-b)=0,即ka2-b2+(k-1)a·b=0,即k-1+(k-1)a·b=0,所以(k-1)(1+a·b)=0.因为a·b≠-1,即a·b+1≠0,所以k-1=0,即k=1.(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式
A.-15 B.-9
C.1 D.9
3x + 2y-6 ≤ 0,
8.(2017·全国 3·文 T5)设 x,y 满足约束条件 x ≥ 0,
则 z=x-y 的取值范围是( )
y ≥ 0,
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3] x + 3y ≤ 3,
9.(2017·全国 1·文 T7)设 x,y 满足约束条件 x-y ≥ 1, 则 z=x+y 的最大值为( ) y ≥ 0,
A.对任意实数 a,(2,1)∈A
B.对任意实数 a,(2,1)∉A
C.当且仅当 a<0 时,(2,1)∉A
D.当且仅当 a≤ 时,(2,1)∉A
1
2x + 3y-3 ≤ 0,
7.(2017·全国 2·理 T5 文 T7)设 x,y 满足约束条件 2x-3y + 3 ≥ 0,则 z=2x+y 的最小值是( ) y + 3 ≥ 0,
十年(2010—2019)数学高考真题分类汇编
不等式
1.(2019·全国 1·理 T4 文 T4)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之
√5-1 √5-1
比是 2 ( 2 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽
√5-1
喉的长度与咽喉至肚脐的长度之比也是 2 .若某人满足上述两个黄金分割比例,且腿长为 105 cm,头顶至脖
A.√2 B.2 C.2√2 D.4
x + y-2 ≤ 0, 19.(2015·重庆·文 T10)若不等式组 x + 2y-2 ≥ 0,表示的平面区域为三角形,且其面积等于43,则 m 的值为
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):三角函数
A.sinα>0 B.cosα>0
C.sin 2α>0 D.cos 2α>0
43.(2014·大纲全国·文 T2)已知角 α 的终边经过点(-4,3),则 cosα=( )
4
3
3
4
A.5
B.5
C.-5
D.-5
44.(2014·全国 1·理 T8)设 α∈
0,
π 2
,β∈
0,
π 2
,且 tan
1+sin2
段上,角 α 以 Ox 为始边,OP 为终边.若 tan α<cosα<sin α,则 P 所在的圆弧是( )
A.
B. C. D.
8.(2018·全国 1·文 T11)已知角 α 的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点
2
A(1,a),B(2,b),且 cos 2α=3,则|a-b|=( )
A.1 B.2 C.3 D.4
1
1
37.(2015·重庆·文 T6)若 tan α=3,tan(α+β)=2,则 tan β=( )
1
1
5
5
A.7
B.6
C.7
D.6
2π
38.(2015·安徽·理 T10)已知函数 f(x)=Asin(ωx+φ)(A,ω,φ 均为正的常数)的最小正周期为 π,当 x= 3
5π
11π
18.(2017·天津·T7)设函数 f(x)=2sin(ωx+φ),x∈R,其中 ω>0,|φ|<π,若 f 8 =2,f 8 =0,且 f(x)
的最小正周期大于 2π,则( )
2
π
2
2010-2019十年高考真题分类汇编数学专题01集合
十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】AA={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】DA∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】BA={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】CA∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版):不等式
A.-15 B.-9
C.1 D.9
3x + 2y-6 ≤ 0,
8.(2017·全国 3·文 T5)设 x,y 满足约束条件 x ≥ 0,
则 z=x-y 的取值范围是( )
y ≥ 0,
A.[-3,0] B.[-3,2]
C.[0,2] D.[0,3] x + 3y ≤ 3,
9.(2017·全国 1·文 T7)设 x,y 满足约束条件 x-y ≥ 1, 则 z=x+y 的最大值为( ) y ≥ 0,
A.-7 B.-6
C.-5 D.-3
x ≥ 1,
x + y ≤ 3,
35.(2013·全国 2·理 T9)已知 a>0,x,y 满足约束条件
若 z=2x+y 的最小值为 1,则 a=( )
y ≥ a(x-3).
1
1
A.4
B.2
C.1
D.2
36.(2013·湖北·文 T9)某旅行社租用 A,B 两种型号的客车安排 900 名客人旅行,A,B 两种车辆的载客量分
x-3y + 3 ≥ 0,
A.8 B.7 C.2 D.1
2
2
33.(2013·重庆·文 T7)关于 x 的不等式 x -2ax-8a <0(a>0)的解集为(x1,x2),且 x2-x1=15,则 a=( )
5
7
15
15
A.2
B.2
C. 4
D. 2
x-y + 1 ≥ 0,
34.(2013·全国 2·文 T3)设 x,y 满足约束条件 x + y-1 ≥ 0,则 z=2x-3y 的最小值是( ) x ≤ 3,
十年(2010—2019)数学高考真题分类汇编
专题01 集合-领军高考数学(文)十年真题(2010-2019)深度思考(新课标Ⅰ卷)(原卷版)
专题01集合历年考题细目表历年高考真题汇编1.【2019年新课标1文科02】已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6} B.{1,7} C.{6,7} D.{1,6,7}2.【2018年新课标1文科01】已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=()A.{0,2} B.{1,2}C.{0} D.{﹣2,﹣1,0,1,2}3.【2017年新课标1文科01】已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x} B.A∩B=∅C.A∪B={x|x} D.A∪B=R4.【2016年新课标1文科01】设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3} B.{3,5} C.{5,7} D.{1,7}5.【2015年新课标1文科01】已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A .5B .4C .3D .26.【2014年新课标1文科01】已知集合M ={x |﹣1<x <3},N ={x |﹣2<x <1},则M ∩N =( ) A .(﹣2,1)B .(﹣1,1)C .(1,3)D .(﹣2,3)7.【2013年新课标1文科01】已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ) A .{1,4}B .{2,3}C .{9,16}D .{1,2}8.【2012年新课标1文科01】已知集合A ={x |x 2﹣x ﹣2<0},B ={x |﹣1<x <1},则( ) A .A ⊊B B .B ⊊A C .A =B D .A ∩B =∅9.【2011年新课标1文科01】已知集合M ={0,1,2,3,4},N ={1,3,5},P =M ∩N ,则P 的子集共有( )A .2个B .4个C .6个D .8个10.【2010年新课标1文科01】已知集合A ={x ||x |≤2,x ∈R },B ={x |4,x ∈Z },则A ∩B =( )A .(0,2)B .[0,2]C .{0,2}D .{0,1,2}考题分析与复习建议本专题考查的知识点为:集合关系及其运算,历年考题主要以选择填空题型出现,重点考查的知识点为:交并补运算,预测明年本考点题目会比较稳定,备考方向以知识点交并补运算为重点较佳.最新高考模拟试题1.若集合{}5|2A x x =-<<,{}|||3B x x =<,则A B =( )A .{}|32x x -<<B .{}|52x x -<<C .{}|33x x -<<D .{}|53x x -<<2.已知集合2{|560}A x x x =-+≤,{|15}B x Z x =∈<<,则A B =( )A .[2,3]B .(1,5)C .{}2,3D .{2,3,4}3.已知集合{3,2,1,0,1,2,3}A =---,{}2|450B x x x =∈--≤R ,则AB =( )A .{3,2,1,0}---B .{}1,0,1,2,3-C .{}3,2--D .{}3,2,1,0,1,2,3---4.已知全集U =R ,集合{}|24,{|(1)(3)0}xA xB x x x =>=--<,则()U A B =ð( )A .(1,2)B .(]1,2C .(1,3)D .(,2]-∞5.已知集合{}(,)|1,A x y y x x R ==+∈,集合{}2(,)|,B x y y x x R ==∈,则集合A B ⋂的子集个数为( ) A .1B .2C .3D .46.已知集合{}2log (1)2M x x =+<,{1,0,1,2,3}N =-,则()R M N ⋂ð=( ) A .{-1,0,1,2,3}B .{-1,0,1,2}C .{-1,0,1}D .{-1,3}7.已知集合{}lg(1)A x y x ==-,{}1,0,1,2,3B =-,则()R A B I ð=( ) A .{}1,0-B .{}1,0,1-C .{}1,2,3D .{}2,38.已知R 是实数集,集合{}1,0,1A =-,{}210B x x =-≥,则()A B =Rð( )A .{}1,0-B .{}1C .1,12⎡⎤⎢⎥⎣⎦D .1,2⎛⎫-∞ ⎪⎝⎭9.设集合{}ln 1A x x =<,{}2,1,0,1,2,3B =--,则A B ⋂=( ) A .{}1B .{}1,2C .{}2101--,,, D .{}2-10.已知集合{}1,2A =,集合{}0,2B =,设集合{},,C z z xy x A y B ==∈∈,则下列结论中正确的是( ) A .A C φ⋂= B .A C C ⋃= C .B C B ⋂=D .AB C =11.已知集合{|2}A y y x ==+,{}2|B x y x ==,则A B ⋂=( )A .{1,2}-B .{1,4}C .[0,)+∞D .R12.已知集合{}0,1,2A =,若(z A B Z ⋂=∅ð是整数集合),则集合B 可以为( ) A .{}|2,x x a a A =∈ B .{}|2,ax x a A =∈C .{}|1,x x a a N =-∈D .{}2|,x x a a N =∈13.已知集合{}|14A x N x =∈-<<,24{|}x B x =≤,则A B ⋂=( ). A .{|12}x x -≤≤ B .{1,0,1,2}- C .{}1,2D .{0,1,2}14.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( ) A .11,2⎧⎫⎨⎬⎩⎭B .11,2⎧⎫-⎨⎬⎩⎭C .10,1,2⎧⎫⎨⎬⎩⎭D .11,0,2⎧⎫-⎨⎬⎩⎭15.已知集合2{|9}U x Z x =∈<,集合2{}2A =-,,则U A =ð( ) A .{}1,0,1-B .{}1,1-C .[]1,1-D .()1,1-16.已知集合{}21|A x log x =<,集合{|B y y ==,则A B =( )A .(),2-∞B .(],2-∞C .()0,2D .[)0,+∞17.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则U M N =ð( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞18.设集合{}2,1,0,1,2A =--,{1,0,1}B =-,22(,)1,,43x y C x y x A y B ⎧⎫⎪⎪=+≤∈∈⎨⎬⎪⎪⎩⎭,则集合C 中元素的个数为( ) A .11B .9C .6D .419.已知集合{|A x y ==,2{|1}B x log x =≤,则A B ⋂=( ) A .1{|}3x x ≤≤- B .{|01}x x <≤ C .{|32}-≤≤x xD .{|2}x x ≤20.设集合{}2,1,0,1,2M =--,{}220N x x x =--<,则MN =( )A .{}2,1--B .{}1,0-C .{}0,1D .{}1,221.已知集合{2,1}A =-,{|2}B x ax ==,若A B B =,则实数a 值集合为( )A .{}1-B .{2}C .{1,2}-D .{1,0,2}-22.已知函数y =A ,则A =R ð( )A .{}{}01x x x x ≤⋃≥ B .{}{}01x x x x <⋃> C .{}01x x ≤≤D .{}01x x <<23.已知集合{|(1)(2)0},{|0}=--≤=>M x x x N x x ,则( ) A .N M ⊆B .M N ⊆C .M N ⋂=∅D .MN R =24.已知集合{|1}A x x =>,{|(2)0}B x x x =-<,则A B =( )A .{|0}x x >B .{|12}x x <<C .{|12}x x ≤<D .{|0x x >且1}x ≠25.已知集合(){}20log 12A x x =<-<,集合{}230B x x x =-≤,则AB =( )A .()2,3B .(]2,3C .[)0,5D .(]0,526.已知全集U =R ,集合{}1A x x =<,{}12B x x =-≤≤,则()U C A B ⋂=( ) A .{}|12x x <≤ B .{}12x x #C .{}11x x -≤<D .{}|1x x ≥-27.设集合A ={x|x 2﹣x ﹣2>0},B ={x|0<2log x <2},则A∩B =( ) A .(2,4)B .(1,1)C .(﹣1,4)D .(1,4)28.已知集合{}2|20A x x x =∈--≥Z ,则z C A =( ) A .{0}B .{1}C .{0,1}D .{-1,0,1,2}29.已知全集U R =,集合{}{}2|1,|0A x x B x x =≥=>,则( )A .()1,1-B .(]0,1C .()1,0-D .(]1,0-30.设集合{}{}210160,3A x x x B y y =-+<=>,则()R A C B =( )A .(]2,3B .()3,8C .[)8,+∞D .()3,+∞。
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十年高考真题分类汇编(2010—2019)数学专题01 集合1.(2019•全国1•理T1)已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3}B.{x|-4<x<-2}C.{x|-2<x<2}D.{x|2<x<3}【答案】C【解析】由题意得N={x|-2<x<3},则M∩N={x|-2<x<2},故选C.2.(2019•全国1•文T2)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【答案】C【解析】由已知得∁U A={1,6,7},∴B∩∁U A={6,7}.故选C.3.(2019•全国2•理T1)设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=( )A.(-∞,1)B.(-2,1)C.(-3,-1)D.(3,+∞)【答案】A【解析】由题意,得A={x|x<2,或x>3},B={x|x<1},所以A∩B={x|x<1},故选A.4.(2019•全国2•文T1)已知集合A={x|x>-1},B={x|x<2},则A∩B=( )A.(-1,+∞)B.(-∞,2)C.(-1,2)D.⌀【答案】C【解析】由题意,得A∩B=(-1,2),故选C.5.(2019•全国3•T1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【答案】A【解析】A={-1,0,1,2},B={x|-1≤x≤1},则A∩B={-1,0,1}.故选A.6.(2019•北京•文T1)已知集合A={x|-1<x<2},B={x|x>1},则A∪B=( )A.(-1,1)B.(1,2)C.(-1,+∞)D.(1,+∞)【答案】C【解析】∵A={x|-1<x<2},B={x|x>1},∴A∪B=(-1,+∞),故选C.7.(2019•天津•T1)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B=( )A.{2}B.{2,3}C.{-1,2,3}D.{1,2,3,4}【答案】D【解析】A∩C={1,2},(A∩C)∪B={1,2,3,4},故选D.8.(2019•浙江•T1)已知全集U={-1,0,1,2,3},集合A={0,1,2},B={-1,0,1},则(∁U A)∩B=( )A.{-1}B.{0,1}C.{-1,2,3}D.{-1,0,1,3}【答案】A【解析】∁U A={-1,3},则(∁U A)∩B={-1}.9.(2018•全国1•理T2)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}【答案】B【解析】A={x|x<-1或x>2},所以∁R A={x|-1≤x≤2}.10.(2018•全国1•文T1)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=( )A.{0,2}B.{1,2}C.{0}D.{-2,-1,0,1,2}【答案】A【解析】由交集定义知A∩B={0,2}.11.(2018•全国2•文T2,)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}【答案】C【解析】集合A、B的公共元素为3,5,故A∩B={3,5}.12.(2018•全国3•T1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}【答案】C【解析】由题意得A={x|x≥1},B={0,1,2},∴A∩B={1,2}.13.(2018•北京•T1)已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}【答案】A【解析】∵A={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.14.(2018•天津•理T1)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=( )A.{x|0<x≤1}B.{x|0<x<1}C.{x|1≤x<2}D.{x|0<x<2}【答案】B【解析】∁R B={x|x<1},A∩(∁R B)={x|0<x<1}.故选B.15.(2018•天津•文T1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C=( )A.{-1,1}B.{0,1}C.{-1,0,1}D.{2,3,4}【答案】C【解析】A∪B={-1,0,1,2,3,4}.又C={x∈R|-1≤x<2},∴(A∪B)∩C={-1,0,1}.16.(2018•浙江•T1)已知全集U={1,2,3,4,5},A={1,3},则∁U A=( )A.⌀B.{1,3}C.{2,4,5}D.{1,2,3,4,5}【答案】C【解析】∵A={1,3},U={1,2,3,4,5},∴∁U A={2,4,5},故选C.17.(2018•全国2•理T2,)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9B.8C.5D.4【答案】A【解析】满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,1),(0,0),(0,-1),(1,-1),(1,0),(1,1),共9个。
18.(2017•全国3•理T1,)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为A.3B.2C.1D.0【答案】B【解析】A表示圆x2+y2=1上所有点的集合,B表示直线y=x上所有点的集合,易知圆x2+y2=1与直线y=x相交,故A∩B中有2个元素.19.(2017•全国1•理T1)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=RC.A∪B={x|x>1}D.A∩B=⌀【答案】A【解析】∵3x<1=30,∴x<0,∴B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1}.故选A.20.(2017•全国2•理T2)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=( )A.{1,-3}B.{1,0}C.{1,3}D.{1,5}【答案】C【解析】由A∩B={1},可知1∈B,所以m=3,即B={1,3}.21.(2017•全国1•文T1)已知集合A={x|x<2},B={x|3-2x>0},则( )A.A ∩B={x |x <32} B.A ∩B=⌀ C.A ∪B={x |x <32} D.A ∪B=R 【答案】A【解析】∵A={x|x<2},B={x |x <32}, ∴A ∪B={x|x<2},A ∩B={x |x <32},故选A. 22.(2017•全国2•文T1)设集合A={1,2,3},B={2,3,4},则A ∪B=( ) A.{1,2,3,4} B.{1,2,3} C.{2,3,4} D.{1,3,4} 【答案】A【解析】因为A={1,2,3},B={2,3,4},所以A ∪B={1,2,3,4},故选A.23.(2017•全国3•文T1)已知集合A={1,2,3,4},B={2,4,6,8},则A ∩B 中元素的个数为( ) A.1 B.2 C.3 D.4 【答案】B【解析】由题意可得A ∩B={2,4},则A ∩B 中有2个元素.故选B.24.(2017•天津•理T1)设集合A={1,2,6},B={2,4},C={x ∈R|-1≤x ≤5},则(A ∪B )∩C=( ) A.{2} B.{1,2,4} C.{1,2,4,6} D.{x ∈R|-1≤x ≤5} 【答案】B【解析】∵A={1,2,6},B={2,4},∴A∪B={1,2,4,6}.∵C={x ∈R|-1≤x ≤5},∴(A ∪B )∩C={1,2,4}. 25.(2017•北京•理T1)若集合A={x|-2<x<1},B={x|x<-1或x>3},则A ∩B=( ) A.{x|-2<x<-1} B.{x|-2<x<3} C.{x|-1<x<1} D.{x|1<x<3}【答案】A【解析】A ∩B={x|-2<x<-1},故选A.26.(2017•北京•文T1)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=( ) A.(-2,2) B.(-∞,-2)∪(2,+∞) C.[-2,2] D.(-∞,-2]∪[2,+∞)【答案】C【解析】因为A={x|x<-2或x>2},所以∁U A={x|-2≤x ≤2}.27.(2016•全国1•理T1)设集合A={x|x 2-4x+3<0},B={x|2x-3>0},则A ∩B=( ) A.(-3,-32) B.(-3,32)C.(1,32)D.(32,3)【答案】D【解析】A=(1,3),B=(32,+∞),所以A ∩B=(32,3),故选D.28.(2016•全国2•理T2)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x ∈Z},则A ∪B=( ) A.{1} B.{1,2} C.{0,1,2,3} D.{-1,0,1,2,3} 【答案】C【解析】由题意可知,B={x|-1<x<2,x ∈Z}={0,1},而A={1,2,3},所以A ∪B={0,1,2,3},故选C. 29.(2016•全国3•理T1)设集合S={x|(x-2)•(x-3)≥0},T={x|x>0},则S ∩T=( ) A.[2,3]B.(-∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞) 【答案】D【解析】S={x|x ≤2或x ≥3}.因为T={x|x>0},所以S ∩T={x|0<x ≤2或x ≥3},故选D. 30.(2016•全国1•文T1)设集合A={1,3,5,7},B={x|2≤x ≤5},则A ∩B=( ) A.{1,3} B.{3,5}C.{5,7} D.{1,7} 【答案】B【解析】A ∩B={3,5},故选B.31.(2016•全国2•文T1)已知集合A={1,2,3},B={x|x 2<9},则A ∩B=( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2} C.{1,2,3} D.{1,2} 【答案】D【解析】B={x|-3<x<3},A ∩B={1,2}.故选D.32.(2016•全国3•文T1)设集合A={0,2,4,6,8,10},B={4,8},则∁A B=( ) A.{4,8} B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}【答案】C【解析】根据补集的定义,知从集合A={0,2,4,6,8,10}中去掉集合B中的元素4,8后,剩下的4个元素0,2,6,10构成的集合即为∁A B,即∁A B={0,2,6,10},故选C.33.(2016•四川•理T1)设集合A={x|-2≤x≤2},Z为整数集,则集合A∩Z中元素的个数是( )A.3B.4C.5D.6【答案】C【解析】由题意,A∩Z={-2,-1,0,1,2},故其中的元素个数为5,选C.34.(2016•天津•理T1)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=( )A.{1}B.{4}C.{1,3}D.{1,4}【答案】D【解析】由题意知集合B={1,4,7,10},则A∩B={1,4}.故选D.35.(2016•山东•理T2)设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1)B.(0,1)C.(-1,+∞)D.(0,+∞)【答案】C【解析】A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1},选C.36.(2016•浙江•理T1)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( )A.[2,3]B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞)【答案】B【解析】∵Q={x∈R|x≤-2,或x≥2},∴∁R Q={x∈R|-2<x<2}.∴P∪(∁R Q)={x∈R|-2<x≤3}=(-2,3].故选B.37.(2015•全国2•理T1)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=( )A.{-1,0}B.{0,1}C.{-1,0,1}D.{0,1,2}【答案】A【解析】∵B={x|-2<x<1},∴A∩B={-1,0}.38.(2015•全国1•文T1)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5B.4C.3D.2【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14.所以A∩B={8,14}.故选D.39.(2015•全国2•文T1)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( )A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)【答案】A【解析】由题意,得A∪B={x|-1<x<3},即A∪B=(-1,3).40.(2015•陕西•文T1)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]【答案】A【解析】∵M={0,1},N={x|0<x≤1},∴M∪N={x|0≤x≤1},即为[0,1].41.(2015•重庆•理T1,)已知集合A={1,2,3},B={2,3},则( )A.A=BB.A∩B=⌀C.A⫋BD.B⫋A【答案】D【解析】因为A={1,2,3},B={2,3},所以B⫋A.42.(2014•全国1•理T1)已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B=( )A.[-2,-1]B.[-1,2)C.[-1,1]D.[1,2)【答案】A【解析】由已知,可得A={x|x≥3或x≤-1},则A∩B={x|-2≤x≤-1}=[-2,-1].故选A.43.(2014•全国2•理T1)设集合M={0,1,2},N={x|x2-3x+2≤0},则M∩N=( )A.{1}B.{2}C.{0,1}D.{1,2}【答案】D【解析】∵N={x|x2-3x+2≤0}={x|1≤x≤2},∴M∩N={0,1,2}∩{x|1≤x≤2}={1,2}.故选D.44.(2014•全国1•文T1)已知集合M={x|-1<x<3},N={x|-2<x<1},则M∩N=( )A.(-2,1)B.(-1,1)C.(1,3)D.(-2,3)【答案】B【解析】由已知得M∩N={x|-1<x<1}=(-1,1),故选B.45.(2014•全国2•文T1)已知集合A={-2,0,2},B={x|x2-x-2=0},则A∩B=( )A.⌀B.{2}C.{0}D.{-2}【答案】B【解析】易得B={-1,2},则A∩B={2},故选B.46.(2014•辽宁•理T1)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=( )A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}【答案】D【解析】∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1}.故选D.47.(2013•全国2•理T1)已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{-1,0,1,2}C.{-1,0,2,3}D.{0,1,2,3}【答案】A【解析】M={x|-1<x<3},N={-1,0,1,2,3},所以M∩N={0,1,2},故选A.48.(2013•全国1•文T1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( )A.{1,4}B.{2,3}C.{9,16}D.{1,2}【答案】A【解析】∵B={1,4,9,16},∴A∩B={1,4}.49.(2013•全国2•文T1)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( )A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}【答案】C【解析】由题意可得M∩N={-2,-1,0}.故选C.50.(2013•上海•理T15)设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-1}.若A∪B=R,则a的取值范围为( )A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】B【解析】当a>1时,集合A={x|x≤1或x≥a},由A∪B=R,可知a-1≤1,即a≤2.故1<a≤2.当a=1时,集合A=R,显然A∪B=R.故a=1,满足题意.当a<1时,集合A={x|x≥1或x≤a},由A∪B=R,可知a-1≤a显然成立,故a<1.综上可知,a的取值范围是a≤2.故选B.51.(2013•广东•理T8)设整数n≥4,集合X={1,2,3,…,n},令集合S={(x,y,z)|x,y,z∈X,且三条件x<y<z,y<z<x,z<x<y恰有一个成立}.若(x,y,z)和(z,w,x)都在S中,则下列选项正确的是( )A.(y,z,w)∈S,(x,y,w)∉SB.(y,z,w)∈S,(x,y,w)∈SC.(y,z,w)∉S,(x,y,w)∈SD.(y,z,w)∉S,(x,y,w)∉S【答案】B【解析】由(x,y,z)∈S,不妨取x<y<z,要使(z,w,x)∈S,则w<x<z或x<z<w.当w<x<z时,w<x<y<z,故(y,z,w)∈S,(x,y,w)∈S.当x<z<w时,x<y<z<w,故(y,z,w)∈S,(x,y,w)∈S.综上可知,(y,z,w)∈S,(x,y,w)∈S.52.(2013•山东•理2,T5)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( )A.1B.3C.5D.9【答案】C【解析】当x,y取相同的数时,x-y=0;当x=0,y=1时,x-y=-1;当x=0,y=2时,x-y=-2;当x=1,y=0时,x-y=1;当x=2,y=0时,x-y=2;其他则重复.故集合B中有0,-1,-2,1,2,共5个元素,应选C.53.(2013•江西•文T2)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或4【答案】A【解析】当a=0时,显然不成立;当a≠0时,需Δ=a2-4a=0,得a=4.故选A.54.(2013•全国1•理1)已知集合A={x|x2-2x>0},B={x|−√5<x<√5},则( )A.A∩B=⌀B.A∪B=RC.B⊆AD.A⊆B【答案】B【解析】集合A={x|x<0或x>2},由图象可以看出A∪B=R,故选B.55.(2012•课标全国•理T1)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【答案】D【解析】由x∈A,y∈A,x-y∈A,得(x,y)可取如下:(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4),故集合B中所含元素的个数为10.56.(2012•大纲•理2)已知集合A={1,3,√m},B={1,m},A∪B=A,则m=()A.0或√3B.0或3C.1或√3D.1或3【答案】B【解析】∵A∪B=A,∴B⊆A,∴m=3或m=√m.∴m=3或m=0或m=1.当m=1时,与集合中元素的互异性不符,故选B.57.(2012•全国•文1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.A⫋BB.B⫋AC.A=BD.A∩B=⌀【答案】B【解析】由题意可得A={x|-1<x<2},而B={x|-1<x<1},故B ⫋A.58.(2012•大纲全国•文T1,)已知集合A={x|x是平行四边形},B={x|x是矩形},C={x|x是正方形},D={x|x是菱形},则( )A.A⊆BB.C⊆BC.D⊆CD.A⊆D【答案】B【解析】∵正方形组成的集合是矩形组成集合的子集,∴C⊆B.59.(2012•湖北•文T1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1B.2C.3D.4【答案】D【解析】A={1,2},B={1,2,3,4}.又∵A⊆C⊆B,∴C={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4},故选D.60.(2011•全国•文1)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有( )A.2个B.4个C.6个D.8个【答案】B【解析】P=M∩N={1,3},∴P的子集有22=4个.61.(2011•辽宁•理T2)已知M,N为集合I的非空真子集,且M,N不相等,若N∩(∁I M)=⌀,则M∪N=( )A.MB.NC.ID.⌀【答案】A【解析】作出满足条件的韦恩(Venn)图,易知M∪N=M.62.(2011•广东•理T8)设S是整数集Z的非空子集,如果∀a,b∈S,有ab∈S,则称S关于数的乘法是封闭的.若T,V是Z的两个不相交的非空子集,T∪V=Z,且∀a,b,c∈T,有abc∈T;∀x,y,z∈V,有xyz∈V,则下列结论恒成立的是( )A.T,V中至少有一个关于乘法是封闭的B.T,V中至多有一个关于乘法是封闭的C.T,V中有且只有一个关于乘法是封闭的D.T,V中每一个关于乘法都是封闭的【答案】A【解析】令T=N,V=∁Z N,则T对乘法封闭,而V对乘法不封闭排除D.令T={-1,0,1},V=∁Z T,则T,V都对乘法封闭,排除B,C.故选A.63.(2011•福建•文T12)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是( )A.1B.2C.3D.4【答案】C【解析】对于①:2 011=5×402+1,∴2 011∈[1].对于②:-3=5×(-1)+2,∴-3∈[2],故②不正确;对于③:∵任意一个整数z被5除,所得余数共分为五类,∴Z=[0]∪[1]∪[2]∪[3]∪[4],故③正确;对于④:若整数a,b 属于同一类,则a=5n1+k,b=5n2+k,∴a-b=5n1+k-5n2-k=5(n1-n2)=5n,∴a-b∈[0],若a-b∈[0],则a-b=5n,即a=b+5n,故a与b被5除的余数为同一个数,∴a与b属于同一类,所以“整数a,b属于同一类”的充要条件是“a-b∈[0]”,故④正确.∴正确结论的个数是3.64.(2011•福建•理T1)i是虚数单位,若集合S={-1,0,1},则( )A.i∈SB.i2∈SC.i3∈SD.2i∈S【答案】B【解析】∵i2=-1,而集合S={-1,0,1},∴i2∈S.65.(2010•浙江•理T1)设P={x|x<4},Q={x|x2<4},则( )A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P【答案】B【解析】P={x|x<4},Q={x|-2<x<2},∴Q⊆P.66.(2010•天津•理T9)设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,则实数a,b必满足( )A.|a+b|≤3B.|a+b|≥3C.|a-b|≤3D.|a-b|≥3【答案】D【解析】A={x|a-1<x<a+1,x∈R},B={x|x>b+2或x<b-2,x∈R}.若A⊆B,则需满足a+1≤b-2或a-1≥b+2,即a-b≤-3或a-b≥3,∴|a-b|≥3.67.(2010•全国•T1)已知集合A={x||x|≤2,x∈R},B={x|√x≤4,x∈Z},则A∩B等于( )A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【答案】D【解析】∵A={x|-2≤x≤2},B={0,1,2,3,…,16},∴A∩B={0,1,2}.68.(2018•江苏•T1)已知集合A={0,1,2,8},B={-1,1,6,8},那么A∩B= .【答案】{1,8}【解析】由题设和交集的定义可知,A∩B={1,8}.69.(2017•江苏•T1)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.【答案】1【解析】由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.70.(2013•湖南,文T15)对于E={a1,a2,…,a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2,…,x100,其中x i1=x i2=…=x ik=1,其余项均为0.例如:子集{a2,a3}的“特征数列”为0,1,1,0,0, 0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”p1,p2,…,p100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.【答案】(1)2 (2)17【解析】(1){a1,a3,a5}的特征数列为1,0,1,0,1,0,…,0,∴前3项和为2.(2)根据题意知,P的特征数列为1,0,1,0,1,0,…,则P={a1,a3,a5,…,a99}有50个元素,Q的特征数列为1,0,0,1,0,0,1,…,则Q={a1,a4,a7,a10,…,a100}有34个元素,=17个.∴P∩Q={a1,a7,a13,…,a97},共有1+97-1671.(2013•江苏•T4)集合{-1,0,1}共有个子集.【答案】8【解析】由于集合{-1,0,1}有3个元素,故其子集个数为23=8.72.(2012•天津•文T9,)集合A= {x∈R||x-2|≤5}中的最小整数为.【答案】-3【解析】∵|x-2|≤5,∴-3≤x≤7,∴最小整数为-3.73.(2018•北京•理T20)设n为正整数,集合A={α|α=(t1,t2,…,t n),t k∈{0,1},k=1,2,…,n}.对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…,y n),记M(α,β)=1[(x1+y1-|x1-y1|)+(x2+y2-|x2-y2|)+…+(x n+y n-|x n-y n|)].2(1)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(2)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(3)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0.写出一个集合B,使其元素个数最多,并说明理由.【答案】(1)2 1 (2)4 (3)n+1【解析】(1)M(α,α)=1[(1+1-|1-1|)+(1+1-|1-1|)+(0+0-|0-0|)]=2;2[(1+0-|1-0|)+(1+1-|1-1|)+(0+1-|0-1|)]=1.M(α,β)=12(x m+y m-|x m-y m|)=1;(2)当x m,y m同为1时,12(x m+y m-|x m-y m|)=0;当x m,y m中只有一个1或者两个都是0时,12当α,β相同时,∀α=(x1,x2,x3,x4)∈B,M(α,α)=x1+x2+x3+x4为奇数,则x k(k=1,2,3,4)中有一个1或者三个1,即为以下8种:形式1:(1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1);形式2:(1,1,1,0) (1,1,0,1) (1,0,1,1) (0,1,1,1);当α,β不同时,M(α,β)是偶数,则α,β同为1的位置有4个或2个或0个;形式1中的元素不能和形式2的三个元素同时共存;形式2中的元素不能和形式1的三个元素同时共存;如果B中元素全是形式1,当α,β不同时,M(α,β)=0满足条件;如果B中元素全是形式2,当α,β不同时,M(α,β)=2满足条件.所以B中元素至多为4个.(3)B中元素个数最多为n+1,构造如下:对于γk=(z k1,z k2,…,z kn)∈B(k=1,2,3,…,n),z kk=1,其他位置全为0;γn+1=(0,0,0,…,0),可以验证M(γi,γj)=0(i,j=1,2,…,n+1)且i≠j,下面证明:当B中元素个数大于等于n+2时,总存在α,β∈B,M(α,β)≠0.设γk=(z k1,z k2,z k3,…,z kn)∈B,k=1,2,3,…,n+1,…,m(m≥n+2);S k=z k1+z k2+…+z kn(k=1,2,3,…,n),可以得到:S1+S2+…+S m≥0+1×n+2=n+2;设C k=z1k+z2k+…+z mk(k=1,2,3,…,n),可以得到:C1+C2+…+C n=S1+S2+…+S m≥n+2,所以存在C t≥2,t∈{1,2,3,…,n},即存在α,β∈B(α≠β),使得α,β在同一个位置同为1,即M(α,β)≥1≠0,矛盾. 所以,B中元素个数最多为n+1.。