高一数学必修一课件1.3.1单调性与最大(小)值

合集下载

1.3.1 单调性与最大(小)值—第一课时单调性

1.3.1 单调性与最大(小)值—第一课时单调性

练习:
利用刚才 的方法描 述一下左 侧四个函 数图象的 “上升” “下降” 的 情况.
思考
如何利用函数解析式f(x)=x2描述“随着x的增大, 相应的f(x)反而随着减小.”“随着x的增大,相应的 f(x)也随着增大.”? 有同学认为可以这样描述:在区间(0,+∞)上, x1<x2时, 有f(x1)<f(x2).他并且画出了如下示意图,你认为他的 说法对吗?
练习:
例1 下图是定义在区间[-5,5]的函数y=f(x),根据图象说出函数 的单调区间,以及在每一单调区间上,它是增函数还是减函数?
解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5].其中 y=f(x)在区间[-5,-2) ,[1,3)上是减函数,在区间[-2,1), [3,5]上是 增函数.
第一课时:单调性 :
教学目标:
知识教学目标: 知识教学目标: 1.理解函数的单调性概念 理解函数的单调性概念. 理解函数的单调性概念 2.会判定函数的单调性 会判定函数的单调性. 会判定函数的单调性 能力训练目标: 能力训练目标: 1.培养学生利用数学概念进行判断、推理的能力 培养学生利用数学概念进行判断、 培养学生利用数学概念进行判断 推理的能力. 2.加强化归转化能力的训练 加强化归转化能力的训练. 加强化归转化能力的训练 情感渗透目标: 情感渗透目标: 1.通过新概念的引进过程培养学生探索问题、发现规 通过新概念的引进过程培养学生探索问题、 通过新概念的引进过程培养学生探索问题 归纳概括的能力. 律、归纳概括的能力 2.培养学生辨证思维、求异思维等能力 培养学生辨证思维、 培养学生辨证思维 求异思维等能力.
例2:物理学中的波意耳定律p=k/V(k为正常数)告述我们,对于一定 量的气体,当其体积V减小时,压强p将增大.试用函数的单调性证明之. 证明: 1 2 1.设(自变量); 2.比(函数值); 3.判(函数值大小关系); 4.结(论) 3 4

人教版高中数学必修1(A版) 1.3.1 函数的基本性质-单调性与最值 PPT课件

人教版高中数学必修1(A版) 1.3.1 函数的基本性质-单调性与最值 PPT课件
回到目录
课后思考:函数y=f(x)在区间D上具有 单调性,那么在区间D的子区间(即区 间D的子集)上是否具有相同的单调 性?
回到目录
回到目录
二、自主学习
自学辅导教材50页§1.3.1 时间20分钟 (完成所有探究与练习) 集中全部精力!提升自学能力!
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1
O
x
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1 O
x
回到目录
三、教师点拨 y
yx
2
f (x1 )
x1 O
x
回到目录
yx
2
f (x1 )
O
x1
x
函数f(x)=x2在区间[0,+∞)上,随着x的增大,相应 的f(x)值也随着增大 在区间(-∞,0)上,随着x的增大,相应的f(x) 值反而随着减小.
回到目录
三、教师点拨
如何利用函数解析式y=f(x)描述 “随着x的增大,相应的f(x)随着 减小”,“随着x的增大,相应的f (x)也随着增大”?
标题
§1.3.1函数的基本性质—单调性
§1.3.1函数的基本性质——单调性
一、问题情景 二、自主学习 三、教师点拨 四、课堂小结
本课结束
一、问题情景
大家是否记得这样精彩的瞬间:烟花在绽放 的刹那、高台跳水运动员纵身起跳至入水的 一瞬、陨星划过长空坠落的时刻,上述场景 多么美丽壮观啊!让我们闭上眼睛想一想: 烟花绽放后的轨迹、运动员跳入水中的过程 的身影、陨星坠落的弧线,这些曲线有的上 升、有的下降,这与我们研究的函数的单调 性有关.
自变量的值x x2 , 当x1 x 2时,都有f x1 f x2 1,

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1
(1)令 x 为年产量,y 表示利润,求 y=f(x)的表达式; (2)当年产量为何值时,工厂的利润最大?其最大值是多 少?
第三十四页,共48页。
(3)求解:选择合适的数学方法求解函数. (4)评价:对结果进行验证或评估,对错误加以改正,最后 将结果应用于现实,做出解释或预测. 也可认为分成“设元——列式——求解——作答”四个步
第三十三页,共48页。
3
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场对 此产品的需求量为每年 500 部,已知销售收入的函数为 N(x)= 500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(3)最大(小)值定义中的“存在”是说定义域中至少有一个 实数(shìshù)满足等式,也就是说y=f(x)的图象与直线y=M至 少有一个交点.
第十一页,共48页。
2.最值 定义 函数的__最__大__值__和__最__小_值___统称为函数的最值 几何 函数y=f(x)的最值是图象_最__高__点___或_最__低__点___的 意义 纵坐标 说明 函数的最值是在整个定义域内的性质
第二十三页,共48页。
②由①知,f(x)在(0,+∞)上是增函数,所以若函数 f(x)的 定义域与值域都是[12,2],则ff122==122,,
即1a1a--212==122,, 解得 a=25.
第二十四页,共48页。
规律总结:1.利用单调性求最值 的一般步骤
(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论 (1)如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间 [a,b]的左、右端点(duān diǎn)处分别取得最小(大)值和最大 (小)值. (2)如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上 是减函数,则函数f(x)在区间(a,c)上有最大值f(b). (3)如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上 是增函数,则函数f(x)在区间(a,c)上有最小值f(b).

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

高一数学人教版必修1课件:1.3 1.第一课时 函数的单调性

x),所以
x-2<1-x,解得
3 x<2
②.
由①②得 1≤x<32. [答案] 1,32
[类题通法] 1.上题易忽视函数的定义域为[-1,1],直接利用单调性得 到不等式 x-2<1-x,从而得出 x<32的错误答案. 2.解决此类问题的关键是利用单调性“脱去”函数符号 “f”,从而转化为熟悉的不等式.若函数 y=f(x)在区间 D 上是增 函数,则对任意 x1,x2∈D,且 f(x1)<f(x2),有 x1<x2;若函数 y =f(x)在区间 D 上是减函数,则对任意 x1,x2∈D,且 f(x1)<f(x2), 有 x1>x2.需要注意的是,不要忘记函数的定义域.
由图象可知函数在(-∞,a]和[a,+∞ )上分别单调,因此 要使函数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x)在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区 间[1,2]上单调递减),从而 a∈(-∞,1]∪[2,+∞).
[类题通法] “函数的单调区间为 I”与“函数在区间 I 上单调”的区别 单调区间是一个整体概念,说函数的单调递减区间是 I,指 的是函数递减的最大范围为区间 I.而函数在某一区间上单调,则 指此区间是相应单调区间的子区间.所以我们在解决函数的单调 性问题时,一定要仔细读题,明确条件含义.
由函数的单调性求参数的取值范围 [例 3] (1)已知 y=f(x)在定义域(-1,1)上是减函数,且 f(1 -a)<f(2a-1),则 a 的取值范围是________. (2)已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a 的取值范围.
(1)[解析]由题意可知--11<<12-a-a<1<1,1

必修1课件1.3.1-1单调性与最大(小)值 (一)

必修1课件1.3.1-1单调性与最大(小)值 (一)
图3
f ( x2 ) x2
f ( x1 ) x1
f ( x2 ) x2
x
x
图4
思考:仿照增函数的定义说出减函数的定义.
1.增函数与减函数 定义:对于函数y=f(x)的定义域I内某个区间上的任 意两个自变量的值x1,x2, ⑴若当x1<x2时,都有f(x1)<f(x2),则说在这个区间上 是增函数; ⑵若当x1<x2时,都有f(x1)>f(x2),则说在这个区间上 是减函数. y y
∴ g ( x1 ) g ( x2 ) 且 g ( x1 ), g ( x2 ) (m, n) ∵ y f (u ) 在 (m, n) 上是增函数, ∴ f [ g( x1 )] f [ g( x2 )] 所以复合函数 y
f ( g ( x)) 在区间 ( a, b)
上是增函数
证明:②设 x1 , x2 (a, b) ,且 x1 ∵u
§1.3.1-1单调性与最大(小)值 (一)
问题提出
德国有一位著名的心理学家艾宾浩斯,对人类 的记忆牢固程度进行了有关研究.他经过测试,得到 了以下一些数据:
时间间 隔 t 记忆量y (百分比) 8-9 1天 刚记忆 20分 60分 完毕 钟后 钟后 小时后 后 100 58.2 44.2 35.8 2天 后 6天 一个 后 月后
x 1 x 1
2 0且 x 1 x 1 0
2 1 2 2
又 x 1 x | x | x
2 2
x 1 x即x x 1 0
2 2
2 x1 x12 1 0, x2 x2 1 0
2 1 2 2
x 1 x 1
( x2 x1 )

【高中数学必修一】1.3.1 单调性与最大(小)值-高一数学人教版(必修1)(解析版)

【高中数学必修一】1.3.1 单调性与最大(小)值-高一数学人教版(必修1)(解析版)

第一章 集合与函数概念1.3.1 单调性与最大(小)值一、选择题1.集合{x |x ≤–1}用区间形式表示正确的是A .(–∞,–1]B .(–∞,–1)C .[–1,+∞)D .(–1,+∞)【答案】A【解析】集合{x |x ≤–1}用区间表示为(–∞,–1],故选A . 2.区间(–3,2]用集合表示为A .{–2,–1,0,1,2}B .{x |–3<x <2}C .{x |–3<x ≤2}D .{x |–3≤x ≤2}【答案】C【解析】由开区间闭区间的概念,可得区间(–3,2]可表示为{x |–3<x ≤2},故选C . 3.设集合A ={x |–4<x <3},B ={x |x ≤2},则A ∩B =A .(–4,3)B .(–4,2]C .(–∞,2]D .(–∞,3)【答案】B【解析】∵集合A ={x |–4<x <3},B ={x |x ≤2},∴A ∩B ={x |–4<x ≤2},故选B . 4.函数f (x )=1xx-的单调增区间是 A .(–∞,1)B .(1,+∞)C .(–∞,1),(1,+∞)D .(–∞,–1),(1,+∞)【答案】C 【解析】()()111111x f x xx --+==-+--,∴f (x )的图象是由y =1x-的图象沿x 轴向右平移1个单位,然后沿y 轴向下平移一个单位得到,而y =1x-的单调增区间为(–∞,0),(0,+∞),∴f (x )的单调增区间是(–∞,1),(1,+∞).故选C .5.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)【答案】B6.函数254y x x =-+A .52⎡⎫+∞⎪⎢⎣⎭,B .542⎡⎫⎪⎢⎣⎭,C .[4,+∞)D .[)5142⎡⎫+∞⎪⎢⎣⎭,,,【答案】C【解析】令x 2–5x +4≥0,解得x ≥4或x ≤1,而函数y =x 2–5x +4的对称轴是x =52,由复合函数同增异减的原则,可得函数254y x x =-+[4,+∞),故选C . 7.f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f [8(x –2)]的解集是A .(0,+∞)B .(0,2)C .(2,+∞)D .(2,167) 【答案】D【解析】由f (x )是定义在(0,+∞)上的增函数,得()()82082x x x x ⎧>⎪->⎨⎪>-⎩,解得2<x <167,故选D .8.已知y =ax +1,在[1,2]上的最大值与最小值的差为2,则实数a 的值是A .2B .–2C .2,–2D .0【答案】C【解析】①当a =0时,y =ax +1=1,不符合题意;②当a >0时,y =ax +1在[1,2]上递增,则(2a +1)–(a +1)=2,解得a =2;③当a <0时,y =ax +1在[1,2]上递减,则(a +1)–(2a +1)=2,解得a =–2.综上,得a =±2,故选C .9.函数y =(k +2)x +1在实数集上是减函数,则k 的范围是A .k ≥–2B .k ≤–2C .k >–2D .k <–2【答案】D【解析】要使函数y =(k +2)x +1在实数集上是减函数,则k +2<0,∴k <–2,故选D . 二、填空题10.函数f (x )=–x 2+2(a –1)x +2在(–∞,4)上为增函数,则a 的范围是__________.【答案】a ≥511.已知f (x )在R 上是增函数,且f (2)=0,则使f (x –2)>0成立的x 的取值范围是__________.【答案】(4,+∞)【解析】∵f (x )在R 上是增函数,且f (2)=0,要使f (x –2)>0,则有x –2>2,即x >4,成立的x 的取值范围是(4,+∞),故答案为:(4,+∞).12.已知函数y =f (x )是R 上的增函数,且f (m +3)≤f (5),则实数m 的取值范围是__________.【答案】(–∞,2]【解析】由题意,得m +3≤5,解得m ≤2,故答案为:(–∞,2].13.已知y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),则a 的取值范围是__________.【答案】(–∞,23) 【解析】因为y =f (x )在定义域R 上是减函数,且f (1–a )<f (2a –1),所以1–a >2a –1,解得a <23.所以a 的取值范围是(–∞,23).故答案为:(–∞,23). 14.已知函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,则实数a 的取值范围是__________. 【答案】12⎛⎤-∞ ⎥⎝⎦,【解析】∵函数f (x )=246222x x x ax x -<⎧⎨-≥⎩,,是R 上的增函数,∴24486a a ≤⎧⎨-≥-⎩,∴a ≤12,故答案为:12⎛⎤-∞ ⎥⎝⎦,. 三、解答题15.用单调性定义证明函数f (x )=21x x +-在(1,+∞)上单调递减. 【解析】任取x 1、x 2,且1<x 1<x 2≤+∞, 则f (x 1)–f (x 2)=121221121222233–11(1)(1)x x x x x x x x x x +++-=----. ∵1<x 1<x 2<+∞,∴x 1–1>0,x 2–1>0,x 1x 2>0,x 2–x 1>0, ∴f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2).∴f (x )=在(1,+∞)上是单调减函数. 16.若函数f (x )=1axx +在(2,+∞)上为增函数,求实数a 的取值范围. 【解析】f (x )=1ax x +=a –1ax +由于函数f (x )在(2,+∞)上为增函数,所以a >0, 故所求的a 的范围为(0,+∞).17.函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数,求a .【解析】∵函数f (x )=x 2–ax +b 在(–∞,1)上是减函数,在(1,+∞)上是增函数 ∴函数f (x )=x 2–ax +b 的对称轴为x =2a=1, 解得a =2.18.已知f (x )的定义域为(0,+∞),且在其定义域内为增函数,满足f (xy )=f (x )+f (y ),f (2)=1,试解不等式f (x )+f (x –2)<3.【解析】∵f (xy )=f (x )+f (y ),f (2)=1, ∴f (2×2)=f (2)+f (2)=2, f (2×4)=f (2)+f (4)=3, 由f (x )+f (x –2)<3,又f(x)的定义域为(0,+∞),得()()2820f x x fxx⎧⎡⎤-<⎣⎦⎪⎪>⎨⎪->⎪⎩,又在其上为增函数所以()2820x xxx⎧-<⎪>⎨⎪->⎩解得,2<x<4.所以不等式f(x)+f(x–2)<3的解集为{x|2<x<4}.19.已知函数()28f x x x=-.(1)求函数f(x)的单调区间;(2)求函数f(x)的最值.(2)由8x–x2=0求得x=0,或x=8,所以,当x=0,或x=8时,f min(x)=0;当x=4时,u max=16,这时()max 164f x==.。

《红对勾》2015-2016学年人教版高中数学必修一课件第1章1.3.1.1单调性与最大(小)值

《红对勾》2015-2016学年人教版高中数学必修一课件第1章1.3.1.1单调性与最大(小)值

通法提炼 函数单调性的判断或证明是最基本的题型,最基本的 方法是定义法,整个过程可分为五个步骤: 第一步:取值.即设x1,x2是该区间内的任意两个值, 且x1<x2. 第二步:作差.准确作出差值fx1-fx2[或fx2-fx1].
第三步:变形.通过因式分解、配方、分子分母有理 化等方法,向有利于判断差的符号的方向变形.
第一章
集合与函数的概念
1.3 函数的基本性质
1.3.1 单调性与最大(小)值
第1课时 函数的单调性
预习篇 课堂篇 提高篇
巩固篇 课时作业
学习目标 1.记住函数的单调性及其几何意义,会证明简单函数
的单调性; 2.会用函数的单调性解答有关问题; 3.记住常见函数的单调性.
重点难点 重点:函数的单调性定义及其应用;常见函数的单调性
【正解】 (1)因为函数f(x)的单调递减区间是(-∞, 4],且函数f(x)图象的对称轴为直线x=1-a,所以有1-a= 4,即a=-3.故应填-3.
(2)因为函数f(x)在区间(-∞,4]上单调递减,且函数 f(x)图象的对称轴为直线x=1-a,所以1-a≥4,即a≤-3. 故应填(-∞,-3].
(3)如果一个函数有多个单调增(减)区间,这些增(减)区 间应该用逗号隔开(即“局部”)或用“和”来表示,而不能用并 集的符号“∪”连接(并完之后就成了“整体”).例如,f(x)=1x 的单调减区间可以写成(0,+∞),(-∞,0),或者写成(0, +∞)和(-∞,0),但不能写成(-∞,0)∪(0,+∞).
第四步:确定fx1-fx2[或fx2-fx1]的符号.当符号 不能直接确定时,可通过分类讨论、等价转化,然后作 差,作商等思路进行.
第五步:判断.根据定义作出结论. 以上五个步骤可以简记为“取值——作函数f(x)=x+1x在(0,1)上是减函数.

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

k≠0)与一次函数(y= kx+b,k≠0)
k<0

R
反比例函数 (y=kx,k≠0)
k>0

k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)

二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.

高中数学人教A版必修1课件:1.3函数的基本性质

高中数学人教A版必修1课件:1.3函数的基本性质
②“对于…”,“任意…”,“都有…”,“ 对于”即两个自变量x1,x2,必须取自给定的 区间;“任意”即不能用特殊值代替;“都有 ”即只要x1<x2,就必须有f(x1)<f(x2)或f(x1)> f(x2).
(2)函数单调性的刻画: ①图形刻画,对于给定区间上的函数y=f(x), 它的图象若从左向右连续上升(下降),则称函 数在该区间上是单调递增(减)的; ②定性刻画,对于给定区间上的函数y=f(x), 若函数值随自变量的增大而增大(减小),则称 函数在该区间上是单调递增(减)的.
间应是定义域的子集.
2.画出函数 f(x)=-x2+2|x|+3 的 图象,并指出函数的单调区间.
解析: y=-x2+2|x|+3 -x2+2x+3=-x-12+4
=-x2-2x+3=-x+12+4 函数图象如图所示:
x≥0 x<0 .
函数在(-∞,-1],[0,1]上是增函数, 函数在[-1,0],[1,+∞)上是减函数. ∴函数的单调增区间是(-∞,-1]和[0,1], 单调减区间是[-1,0]和[1,+∞).
[0,1]
4.求证:函数 y=x-1 1在区间(1,+∞)上为单 调减函数.
证明: 设 1<x1<x2,
y1-y2=x1-1 1-x2-1 1 =x1-x21-xx21-1 ∵1<x1<x2 ∴x1-1>0,x2-1>0,x2-x1>0 ∴x1-x21-xx21-1>0. 即 y1>y2,
∴函数 y=x-1 1在区间(1,+∞)上为单调减函数.
解析: ∵f(x)在R上递减,且3<5,
∴f(3)>f(5).故选C.
答案: C
3.如图所示,函数y= f(x)的单调递增区间有 ________,递减区间有 ________.

人教版高中数学必修一1.3.1__单调性与最大(小)值_第2课时__函数的最大值、最小值ppt课件

人教版高中数学必修一1.3.1__单调性与最大(小)值_第2课时__函数的最大值、最小值ppt课件

15
3.求函数 f ( x)在区x间2[-1,3]上的最大值和最小值.
【提示】根据二次函数的性质,函数在区间[-1,0]上是减函数,在区间(0,3] 上是增函数,最小值一定在x=0时取得,最大值就是区间的两个端点的函数 值中最大的. 【答案】最大值是9,最小值是0.
对基本的函数如一次函数、二次函数、反比例函数等,今后可以不加证明 地使用他们的单调性求函数最值
在科学上进步而道义上落后的人,不是前进,而是 后退.
——亚里士多德
22
ห้องสมุดไป่ตู้
19
1.函数的最值是函数的基本性质之一,函数的最值是函数在其定义域上的整体 性质. 2.根据函数的单调性确定函数最值时,如果是一般的函数要证明这个函数的单 调性,若是基本的函数可以直接使用函数的单调性. 3.含有字母系数的函数,在求其最值时要注意分情况讨论,画出函数的图象有 利于问题的解决.
20
谢谢观看!
13
求函数 f (x) 在区3x间[-1,3]的最大值和最小值。
【提示】证明函数在区间[-1,3]上是增函数. 【答案】最大值是9,最小值是-3.
14
1. 函数f(x)=x2+4ax+2在区间(-∞,6]内递减,则a的取值范围是(
)
(A)a≥3
D
(C)a≥-3
(B)a≤3 (D)a≤-3
2.已知函数f(x)=4x2-mx+1在(-∞,-2]上递减,在[-2, +∞)上递增,则f(x)在[1,2]上的值域为____________. [21,49]
17
5.求函数 f (x) x2在区2间ax[0,4]上的最小值.
【提示】二次函数的对称轴x=a是函数单调区间的分界 点.根据二次函数的对称轴和区间[0,4]的关系,分

必修1课件1.3.1-2单调性与最大(小)值 (二)

必修1课件1.3.1-2单调性与最大(小)值 (二)

思考3:设函数f(x)=1-x2,则 f ( x ) 2 成立吗? f(x)的最大值是2吗?为什么?
f ( x) 思考4:怎样定义函数f(x)的最大值?用什么符号 表示?
一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值
理论迁移
2 例2.求函数 y 在区间[2,6]上的最大值和 x 1 最小值.
解:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则
2 2 f ( x1 ) f ( x2 ) x1 1 x2 1 2[( x2 1) ( x1 1)] 2( x2 x1 ) ( x2 1)( x1 1) ( x2 1)( x1 1)
记作:
f ( x )max M
思考5:函数的最大值是函数值域中的一个元素吗? 如果函数y=f(x)的值域是(a,b),则函数y=f(x)存在 最大值吗? 思考6:函数 f ( x ) 2 x 1, x (1, ) 有最大值吗?为什么?
思考:仿照函数最大值的定义,怎样定义函数y=f(x) 的最小值?
§1.3.1-2单调性与最大(小)值 (二)
问题提出
1.确定函数的单调性有哪些手段和方法? 2.函数图象上升与下降反映了函数的单调性, 如果函数的图象存在最高点或最低点,它又 反映了函数的什么性质?
知识探究(一)
观察下列两个函数的图象: y M x o x0 o
y M
x0 图2
x
图1
思考1:这两个函数图象有何共同特征? 函数图象上最高点的纵坐标叫什么名称? 思考2:设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何?

人教版高中数学必修1(A版) 1.3.1函数的单调性 PPT课件

人教版高中数学必修1(A版) 1.3.1函数的单调性 PPT课件
V2 V1 k V1V2 由V1 ,V2 (0, ), 得VV 1 2 0;
第二步:作差 第三步:变形
由V1 V2 , 得V2 V1 0. 又k 0, 于是p(V1 ) p(V2 ) 0

第四步:判断 p(V1) p(V2 ) k 所以,函数p ,V (0, )是减函数. V 第五步 :结论 也就是说,当体积V 减小时, 压强p增大 .
怎么办呢?
回答几个问 题吧!
k 1. p (k是常数)是函数吗 ? V k 2.你能画出p (k是常数)的图象吗? V k 3.能过图象观察函数p (k是常数)是否 V 具有单调性 ? 你能作出猜想吗 ? 4.如果具有单调性, 你能用单调性的定义加以证明吗?
证明 : 根据函数单调性的定义, 设V1,V2是定义域(0, )上的任意两个实数, 且V1 V2 , 则 k k 第一步:设值 p(V1 ) p(V2 ) V1 V2
思考: 类比上面的结论, 对于函数y x , 我们能得到怎样的结论呢?
2
函数y x 是增函数?减函数?
2
y
函数y x2在区间(0, )上是增函数! 函数y x 在区间(,0]上是减函数!
2
f ( x)
O O
x
y x2
结合下面的函数的图象, 你能给增函数
下一个严格的定义吗?
当x1 0时, y1 0;
3
所以, f ( x) x 3x是减函数!
当x1 0时, y1 0;
当x2 2时, y2 2; 由此可以推断 : 当x增大时, y随之增大.
3
显然0 2,0 2.
所以, f ( x) x 3x是增函数!

高一数学必修一单调性与最大(小)值课件PPT

高一数学必修一单调性与最大(小)值课件PPT
上,你同意这个说法吗?
2.你曾经做过哪些努力,来让自己的教 学活动 显得对 学生有 意义?
3.在下面的教学活动中,你觉得哪种教 学方式 对学生 来说更 有意义
A.在课堂上,让学生在给定的句子里用下划线标记 出其中的名词 B.在课堂上,让学生自由造句,但不许在句子中出现 名词。 C.在课堂上,教师给学生讲解牛顿运动定律。
答:烟花冲出后1.5s是它爆 裂的最佳时刻,距地面的 高度约为29m。
➢复习回顾
P32-5、设 f(x) 是定义在区间[-6,11]上的函数。如果 f(x)
在区间[-6,-2]上递减,在区间[-2,11]上递增,画出 f(x)
的一个大致的图象,从图象上可以发现 f(-2) 是函数
f(x)的一个
.
y
2、函数的最值是“全局性质”
3、若函数的最大值和最小值存在,则都是唯一的,但取
最值时的自变量可以有多个。有些函数不一定有最值, 有最值的不一定同时有最大值最小值。
4、求单调函数在闭区间上的最值,关键是先判断函数的 单调性。
1.3.1 单调性与最大(小)值 (第3课时)
➢复习回顾
1、增函数/减函数:
I.在课堂上,让学生利用概率论(和天气有关的)来规 划哪几个月的哪几周适合班级出游
03
现在,请写出四到五条你在当前教学中的实际经验。 写出五条你曾在课堂中使用过的教学方法,并努
力将其改进得更加有意义。之后,将这五条教学法全 体教师一起分享。
谢谢观看
顶点的横坐标就是烟花爆裂的最 佳时刻, 纵坐标就是这时距地面的高度。
解:由二次函数的知识,
ht 4.9t 2 14.7t 18 4.9(t 1.5)2 116.1
4
由图象可得:当t 14.7 1.5时,函数有最大值为 2 (4.9)

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

高中数学必修一课件 第一章集合与函数概念 1.3.1.1 函数的单调性

[规律方法] 1.本题逆用函数单调性,将函数值的不等关系,转 化为与之等价的代数不等式组,但一定注意定义域.
2.设x1,x2∈D,且x1<x2: (1)f(x1)<f(x2)⇔f(x)在D上是增函数; (2)f(x1)>f(x2)⇔f(x)在D上是减函数.
【活学活用 3】 已知函数 f(x)的定义域为[-2,2],且 f(x)在区 间[-2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 解 ∵f(x)在[-2,2]上是增函数,且 f(1-m)<f(m),
类型二 求函数的单调区间 【例 2】 画出函数 y=-x2+2|x|+1 的图象并写出函数的单调 区间. [ 思 路 探 索 ] 去绝对值 → 化为分段函数 → 作图象 → 求单调区间
解 y=--xx22+-22xx++11,,xx≥<00,, 即 y=- -xx- +1122+ +22, ,xx≥ <00,. 函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1], 单调减区间为[-1,0],[1,+∞).
高一数学必修一
第一章 集合与函数概念 1.3 函数的基本性质
1.3.1 单调性与最大(小)值 第1课时 函数的单调性
【课标要求】 1.理解函数的单调性的概念. 2.掌握判断函数单调性的一般方法. 【核心扫描】 1.单调性的概念.(重点、难点) 2.判断函数的单调性及函数单调性的应用.(重点)
新知导学 1.定义域为I的函数f(x)的增减性
探究点3 若函数f(x)在定义域内的两个区间A、B上都是减(增) 函数,你能认为f(x)在区间A∪B上是减(增)函数吗? 提示 不能.如f(x)=在(-∞,0)上是减函数,在(0,+∞)上 也是减函数,但不能说它在定义域(-∞,0)∪(0,+∞)上是 减函数,如取x1=-1<1=x2,有f(-1)=-1<1=f(1),不 满足减函数.

《1.3.1单调性与最大(小)值》课件 必修1

《1.3.1单调性与最大(小)值》课件 必修1

类型一 函数单调性的判断与证明 9 【例1】 求证:y=x+ (0<x≤3)为减函数. x
证明:任取 x1,x2∈(0,3]且 x1<x2(即 x2-x1>0), 9(x1-x2) 9 9 则 f(x2)-f(x1)=x2+ -(x1+ )=x2-x1+ x2 x1 x1x2 x1x2-9 9 =(x2-x1)(1- )=(x2-x1)· . x1x2 x1x2 ∵x2-x1>0,x1x2>0,0<x1<x2≤3, ∴x1x2<9,有 x1x2-9<0, ∴f(x2)-f(x1)<0,故 f(x)在(0,3]上为减函数.
)
A.[-4,4]
B.[-4,-3]∪[1,4] C.[-3,1] D.[-3,4] 答案:C
3.函数f(x)在R上是减函数,则有
(
)
A.f(3)<f(5)
C.f(3)>f(5) ∴f(3)>f(5). 答案:C
B.f(3)≤f(5)
D.f(3)≥f(5)
解析:∵函数f(x)在R上是减函数,3<5,
类型二 求函数的单调区间 【例2】 求函数f(x)=-2 9-4x2的单调区间.
解:设9-4x2=t(t≥0), 3 3 2 由9-4x ≥0,得- ≤x≤ . 2 2 3 当- ≤x≤0时,随着x增大,t增大; 2 3 当0<x≤ 时,随着x增大,t减小. 2 又函数y=-2 t在[0,+∞)上是减函数, 3 2 所以,f(x)=-2 9-4x 在[- ,0]上是减函数,在 2 3 (0, ]上是增函数. 2 3 即函数f(x)的单调减区间为[- ,0],单调增区间为 2 3 (0, ]. 2
求下列函数的单调区间: 1 2 (1)y= -x +2x;(2)y= . x+1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
1是此函数的最大值
ƒ(0)=1
1
1、对任意的 x R都有ƒ(x)≤1. 2、存在0,使得ƒ(0)=1.
O
知识要 点
M是函数y= f (x)的最大值(maximum value):
一般地,设函数y= f (x)的定义域为I,如果存在 实数M满足: (1)对于任意的x ∈I,都有f (x) ≤M; (2)存在 x ,使得 f(x0 ) = M . I 0
3.证明:任取 x1 , x2 R,且 x1 < x 2 ,因为
f(x1 ) - f(x2 ) = 2(x2 - x1 ) > 0

f(x1 ) > f(x 2 )
所以f(x)=-2x+1在R上是减函数. 4.最小值.
-5
y
图象在区间I逐渐上升 区间I内随着x的增大,y也增大
f(x2)
f(x1) O
M
N

对区间I内
x1,x2 ,
有f(x1)<f(x2)
I x 1
当x1<x2时,
x2
x
y
图象在区间I逐渐上升 区间I内随着x的增大,y也增大
f(x2)
f(x1) O
M
N

对区间I内 任意 x1,x2 ,
I x 1
当x1<x2时,
于是

f(x1 ) - f(x2 ) > 0
f(x1 ) > f(x2 )
所以,此函数在区间[3,5]的两个端点上分别取得 最大值与最小值即在x=3时取得最大值是1,在
x=5时取得最小值为0.5.
课堂小结
1、单调函数的图象特征;
2、函数单调性的定义; 3、证明函数单调性的步骤; 4、函数的最值: 最大值
函数单调性的概念:
1.增函数
一般地,设函数 y=f(x) 的定义域为 I ,如果对 于定义域 I 内的某个区间 D内的任意两个自变量 x1 ,
x2 ,当 x1<x2 时,都有 f(x1)<f(x2) ,那么就说 f(x) 在
区间D上是增函数,如图1 .
一般地,设函数y=f(x)的定义域为I,如果对于 定义域I内的某个区间D内的任意两个自变量x1,x2 ,
思 考 思 考
函数的最大值是函数值域中的一个元素吗?

如果在函数f(x)定义域内存在x1和 x2,使对 定义域内任意x都有 f(x1 ) f(x) f(x2 ) 成立,由 此你能得到什么结论?如果函数f(x)的最大值是b, 最小值是a,那么函数f(x)的值域是[a,b]吗? 函数f(x)在定义域中既有最大值又有最小值.
(x 2 - 2) - (x1 - 2) x 2 - x1 1 1 f(x1 ) - f(x 2 ) = = = . x1 - 2 x 2 - 2 (x1 - 2)(x 2 - 2) (x1 - 2)(x 2 - 2)
由于 3 x1 x2 5, 得 x2 - x1 > 0,(x1 - 2)(x2 - 2) > 0,
增大 随着 ______. 5 -5 o
f(x)=x
5
-5
问题2
2 f(x) = x 画出 的图像,并观察图像.
(-∞,0] 上,f(x)的值随着x的增大而 1、在区间 ________ 减小 ______. 2 f(x) = x (0,+∞) 上, 2、 在区间 ________ f(x) 的 值 随 着 x 的 增 大 而 5 增大 _____. -5 o 5
探究:函数单调性与函数的最值的关系
(1)若函数y=f (x)在区间[m,n] (m<n)上单调递增,
则函数y=f (x)的最值是什么?
y
f(n)
当x=m时,f (x)有最 小值f (m),当x=n时,f (x) 有最大值f (n).
m
O
n
x
f(m)
(2)若函数y=f(x)在区间[m,n]上单调递减,则函数 y=f(x)的最值是什么?
2 h(t) = -4.9t +14.7t +18的图像。显然, 解:做出பைடு நூலகம்数
函数图像的顶点就是烟花上升的最高点,顶点的横 坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距 地面的高度. 由二次函数的知识,对于函数 h h(t) = -4.9t 2 +14.7t +18 ,我们有
20 15 10 5
14.7 当t = = 1.5 时,函 2 (-4.9) 数有最大值
单调性,区间D叫做y=f(x)的单调区间.
例1 下图是定义在区间[-4,5]上的函数y=f (x),根
据图像说出函数的单调区间,以及在每一单调区
间上,它是增函数还是减函数?
3 2
解:函数y=f(x)的单调区间
o
-4 -3 -2 -1 1 2 3 4 5 -2 -3
有[-4,-2),[-2,-1),[-1, 1),[1,3),[3,5],其中 y=f (x)在区间 [-4,-2), [-1,1), [3,5] 上是增函数,在区间 [-2,-1), [1,3)上是减函 数.
1 2 3
4
o
t
4 (-4.9) 18 -14.72 h= 29 4 (-4.9)
所以,烟花冲出1.5s是它爆裂的最佳时刻,此 时距离地面的高度约为29m.
1 (x [3, 5]) ,求函数的最大 例5 已知函数 f(x) = x-2 值与最小.
分析:由函数的图象可知道,此函数在[3,5]上 递减。所以在区间[3,5]的两个端点上分别取得最大 值与最小值. 解:设 x1 , x 2 是区间[3,5]上的任意两个实数, 且 x1 < x 2,则
M y
观察
M
x
o x0
图1
o
图2
x0
x
思 考
观察这两个函数图象,图中有个最高点, 那么这个最高点的纵坐标叫什么呢?


认真学习 积极思考
思 考
设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何? f(x)< M
例如函数f x = -x2 +1 x∈R
k y = (k 0) x
函数
k >0
k <0
k >0

k <0

单调区间 (-, + ) 单调性 增函数 减函数
减函数
增函数
y = ax2 + bx + c (a 0)
函数
a>0
单调区间

1 即函数 f(x) = - - 1 在区间(0,+∞)上是单调 x 增函数.
探究
1 画出反比例函数 y = 的图象. x 1 这个函数的定义域是什么?
{x∣x≠0}
2 它在定义域I上的单调性怎样?证明你的结 论. y 分两个区间(0,+∞), (∞ ,0)来考虑其单调性. 0 x
下列两个函数的图象: y
y
当x=m时,f (x)有最
f(m)
大值f (m),当x=n时,f(x)
O
m
n
有最小值f (n).
x
f(n)
(3)若函数 f(x) = a(x - l)2 + h(a < 0,m < l < n) 则函 数y=f(x)在区间[m,n]上的最值是什么?
y
f(m)
f(l)
最大值f (l)=h,有最小值f (m), f (n)中较小者.
f(n)
O
m
l
n
x
例4 "菊花"烟花是最壮观的烟花之一.制造时一般是 期望在它达到最高点时爆裂.如果烟花距地面的高度 h米与时间t秒之间的关系为: h t = -4.9t 2 + 14.7t + 18, 那么烟花冲出后什么时候是 它爆裂的最佳时刻?这时距地面的高度是多少
精确到1米 ?
4.函数y = x2 + 4x + 2在区间-3, 5 上的最小
-2 值为
1 2 3 f(x) = x - x + 的值域也是[1,b],求b的值. 2 2 1 2 3 1 2 解:因为 f(x) = x - x + = (x - 1) + 1 2 2 2
所以f(x)在x=1时取得最小值为1,又因为x∈[1,b],
有f(x1)<f(x2)
x2
x
y
图象在区间I逐渐上升 区间I内随着x的增大,y也增大
f(x2)
f(x1) O
M
N
对区间I内 任意 x1,x2 ,
I x 1
都 有f(x1)<f(x2) 当x1<x2时,
x2
x
定 义 那么就说 f (x)在区间I上是单调增函数,I 称为
增区间.
设函数y=f(x)的定义域为D,区间I D. 如果对于区间I上的任意 两个自变量的值x1,x2, 当x1<x2时,都有 f(x1 ) < f(x2 ), f (x)的单调
例2.证明函数f(x)=1/x+x在(1,2)是增函数 思考1.若区间改成(1 ,+∞)结果变吗? 2.若把解析式改成f(x)=a/x+x有什么结 论?
a (2) 函数 y = x + x (a>0) 是一个常用且重要的函 数,其图象如图所示,记住这个函数的图象和性质 会给解题带来方便.
1 练习. 求证函数 f(x) = - - 1 在区间 x 调增函数.
最小值

5、函数的最值的求法
(1)利用二次函数的性质(配方法)求函数的最值;
相关文档
最新文档