2020八年级数学下册第四章因式分解第10课时提公因式法重点练北师大
初中数学北师大版八年级下册第4章《因式分解》单元测试卷(带答案)
北师大版八年级下册第4 章《因式分解》单元测试卷满分: 100 分姓名: ___________班级: ___________学号: ___________成绩: ____________一.选择题(共 8 小题,满分 24 分)1.多项式 ① x 2 +8y 2, ② x 2 ﹣ 4y 2, ③ ﹣ x 2+1, ④ ﹣ x 2﹣ y 2中能用平方差公式分解因式的有( )A .①②B .②③C . ③④D . ①④2.下列各式从左到右的变形,是因式分解的是( )A .m (a+b )= ma+mbB . ma+mb+1= m ( a+b )+1C .(a+3)(a ﹣ 2)= a 2+a ﹣ 6D . x 2﹣ 1=( x+1)( x ﹣ 1)3.分解因式 a 4﹣ 2a 2b 2+b 4的结果是( )A .a 2( a 2﹣ 2b 2) +b 4B .( a ﹣ b )2C .(a ﹣ b )4D .( a+b ) 2( a ﹣ b )24.若△ ABC 的三边长为a ,b ,c 满足 a 2+b 2+c 2+50 = 6a+8b+10c ,则△ ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .钝角三角形 5.若 x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),那么 a+b 的值为() A .﹣1B .1C .﹣ 2D . 22的值()6. a 是有理数,则多项式﹣ a +a ﹣ A .一定是正数B .一定是负数C .不可能是正数D .不可能是负数 7.(﹣ 2)100+(﹣ 2) 101的结果是()A .2100B .﹣ 2100C .﹣ 2D . 2 8.已知 a ﹣ b = 5,且 c ﹣ b = 10,则 a 2+b 2+c 2﹣ ab ﹣ bc ﹣ ac 等于() A .105B .100C . 75D . 50二.填空题(共 8 小题,满分 24 分)9.分解因式: 32.a +2a +a =10.如图中的四边形均为矩形,根据图形,写出一个正确的等式 .11.在实数范围内分解因式 : x 5﹣ 4x =.12.如果代数式 x 2+mx+9=( ax+b ) 2,那么 m 的值为.13.若 3x 2﹣mx+n 进行因式分解的结果为( 3x+2)( x ﹣ 1),则 mn =.14.若长方形的长为 a ,宽为 b ,周长为 16,面积为22的值为 .15,则 a b+ab 15.已知 a 2+a ﹣ 3= 0,则 a 3+3 a 2﹣a+4 的值为.16.化简: a+1+a ( a+1) +a (a+1) 2 + +a ( a+1)99=.三.解答题(共 6 小题,满分 52 分)17.因式分解:( 1)﹣ 2ax 2+8ay 2;( 2) 4m 2﹣ n 2+6n ﹣ 9.18.利用因式分解计算: 22 ﹣315 2.999 +999+68519.若已知 x+y = 3, xy =1,试求( 1)(x ﹣ y ) 2的值( 2) x 3 y+xy 3 的值.20.观察下面的分解因式过程,说说你发现了什么.例:把多项式 am+an+bm+bn 分解因式解法 1: am+an+bm+bn =( am+an )+(bm+bn )= a ( m+n )+b (m+n )=( m+n )(a+b )解法 2: am+an+bm+bn =( am+bm )+( an+bn )= m ( a+b ) +n ( a+b )=( a+b )(m+n )根据你的发现,把下面的多项式分解因式:( 1)mx ﹣ my+nx ﹣ ny ;( 2) 2a+4b ﹣ 3ma ﹣ 6mb .21.因式分解与整式乘法是方向相反的变形.∵( x+4)( x+2)= x 2+6 x+8∴ x 2+6x+8=( x+4)( x+2)由此可见 x 2+6x+8 是可以因式分解成( x+4)( x+2)的,爱研究问题的小明同学经过认真思考,找到了 x 2+6x+8 的因式分解方法如下:x 2+6x+8 = x 2+6x+32﹣ 32+8 =( x+3) 2﹣ 1=( x+3+1 )( x+3﹣ 1)=( x+4)( x+2)根据你对以上内容的理解,解答下列问题:( 1)小明同学在对 2 进行因式分解的过程中,在2 的后面加 2,其目的是构 x +6x+8 x +6x 3成完全平方式,请在下面两个多项式的后面分别加上适当的数,使这成为完全平方式,并将添加后的多项式写成平方的形式.① x 2+4x+ =( )2;② x 2﹣ 8x+=()2( 2)请模仿小明的方法,尝试对多项式x 2+10x ﹣ 24 进行因式分解.22.材料阅读:若一个整数能表示成 2 2a +b ( a 、 b 是正整数)的形式,则称这个数为“完美数”.例如:因为 13=32+22,所以 13 是“完美数” ;22 2 222也是“完美数”.再如:因为 a +2ab+2b =( a+b ) +b ( a 、b 是正整数),所以 a +2ab+2 b( 1)请你写出一个大于 20 小于 30 的“完美数” ,并判断 53 是否为“完美数” ;( 2)试判断( x 2+9y 2)(? 4y 2+x 2)(x 、 y 是正整数)是否为“完美数” ,并说明理由.参考答案一.选择题1.【解答】解: ② x 2﹣ 4y 2, ③ ﹣ x 2+1 能用平方差公式分解因式,故选: B .2.【解答】解: A 、是多项式乘法,不是因式分解,错误;B 、右边不是整式的积的形式,实际上本题不能分解,错误;C 、是多项式乘法,不是因式分解,错误;D 、是平方差公式,分解正确.故选: D .3.【解答】解: a 4﹣ 2a 2b 2+b 4,=( a 2﹣b 2) 2,=( a+b ) 2( a ﹣b ) 2.故选: D .4.【解答】解:已知等式整理得:( a 2﹣ 6a+9) +( b 2﹣8b+16) +(c 2﹣ 10c+25)= 0,即( a222﹣ 3) +( b ﹣ 4) +( c ﹣ 5) = 0,∴ a ﹣ 3= 0, b ﹣4= 0, c ﹣5= 0,解得: a = 3, b = 4, c = 5,∵ 32+42=52,∴△ ABC 为直角三角形,故选: B .5.【解答】解: ( x ﹣ 2)( x+b )= x 2+(﹣ 2+b ) x ﹣ 2b ,∵ x 2﹣ ax ﹣ 1 可以分解为( x ﹣2)( x+b ),∴﹣ a =﹣ 2+b ,﹣ 2b =﹣ 1,∴ a = , b = ,∴ a+b =2,故选: D .6.【解答】解:∵﹣ a 2+a ﹣ =﹣( a ﹣ ) 2,∴多项式﹣ a 2+a ﹣ 的值不可能是正数.故选: C .7.【解答】解: (﹣ 2) 100101 100 100+(﹣ 2) =(﹣ 2) ×( 1﹣ 2)=﹣ 2 .故选: B .8.【解答】解:∵ a ﹣ b = 5,c ﹣b = 10∴ a ﹣ c =﹣ 5a 2+b 2+c 2﹣ab ﹣ bc ﹣ ac = [( a ﹣ b )2+( b ﹣ c )2+( a ﹣ c )2]= × [52+(﹣ 10)2+(﹣ 5)2]=75故选: C . 二.填空题9.【解答】解: a 3+2a 2+a = a ( a 2+2a+1 ) = a ( a+1) 2,故答案为: a ( a+1)210.【解答】解:由题意可得: am+bm+cm = m ( a+b+c ). 故答案为: am+bm+cm =m (a+b+c ).11.【解答】解:原式= x ( x 4﹣ 4)= x ( x 2+2)(x 2﹣ 2)= x (x 2+2)( x+ )( x ﹣ ),故答案为: x ( x 2+2)( x+ )( x ﹣ )12.【解答】解:已知等式整理得:x 2+mx+9=( ax+b ) 2,可得 m =± 2× 3× 1,则 m =± 6.故答案为:± 6.213.【解答】解:∵( 3x+2 )( x ﹣1)= 3x ﹣x ﹣2,∴ 3x 2﹣ mx+n =3x 2﹣ x ﹣ 2,∴ m = 1, n =﹣ 2,∴ mn =﹣ 2,故答案为:﹣ 2.14.【解答】解:由题意得: a+b = 8, ab = 15,则原式= ab ( a+b )= 120,故答案为: 12015.【解答】解:∵ a 2+a ﹣ 3= 0,∴ a 2= 3﹣ a ,∴ a 3= a?a 2= a ( 3﹣ a )= 3a ﹣ a 2= 3a ﹣( 3﹣ a )= 4a ﹣3,32∴ a +3a ﹣ a+4= 4a ﹣ 3+3( 3﹣ a )﹣ a+4= 10.故答案为 10.16.【解答】解:原式=( a+1) [1+ a+a ( a+1) +a ( a+1) 2+ +a ( a+1 )98]=( a+1) 2[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )97]=( a+1) 3[1+ a+a (a+1) +a (a+1) 2+ +a ( a+1 )96]==( a+1) 100.100故答案为:( a+1) .2217.【解答】解: ( 1)原式=﹣ 2a ( x ﹣4y )( 2)原式= 4m 2﹣( n 2﹣ 6n+9)= 4m 2﹣( n ﹣3)2=( 2m+n ﹣3)( 2m ﹣ n+3 ).18.【解答】解: 9992+999+685 2﹣ 3152= 999×( 999+1) +( 685﹣ 315)×( 685+315)= 999× 1000+370× 1000= 999000+370000= 1369000.19.【解答】解: ( 1)∵ x+y = 3,xy = 1;∴( x ﹣y ) 2=( x+y )2﹣ 4xy = 9﹣ 4= 5;( 2)∵ x+y = 3, xy = 1,∴ x 3y+xy 3= xy[( x+y ) 2﹣ 2xy] = 9﹣2= 7.20.【解答】解( 1)原式= m ( x ﹣ y )+n ( x ﹣ y )=( x ﹣y )( m+n );( 2)原式= 2(a+2 b )﹣ 3m (a+2b )=( a+2b )( 2﹣3m ).21.【解答】解: ( 1) ① x 2+4x+22=( x+2) 2;故答案为: 22, x+2;② x 2﹣ 8x+16=( x ﹣ 4) 2故答案为: 42, x ﹣ 4;( 2) x 2+10x ﹣ 24= x 2+10x+52﹣ 52﹣ 24=( x+5) 2﹣ 49=( x+12)( x ﹣ 2).2 222.【解答】解: ( 1) 25= 4 +3,∵ 53=49+4 = 72+22,∴ 53 是“完美数” ;( 2)(x 2+9y 2)(? 4y 2+x 2)是“完美数” ,22 2 2 2 2 4 4 2 2 2 2 4 4 2 2 2 2 2理由:∵( x +9 y )(? 4y +x )= 4x y +36y +x +9x y = 13x y +36y +x =( 6y +x ) +x y ,∴( x 2+9y 2)(? 4y 2+x 2)是“完美数” .。
北师大版数学八年级下册第四章因式分解 测试题附答案
B.m2-2mn+n2=(m-n)2
C.x2y-xy2=xy(x-y)
D.x2-y2=(x-y)(x+y)
3.如果多项式4a2-(b-c)2=M(2a-b+c),那么M表示的多项式应为( )
A.2a-b+cB.2a-b-c
C.2a+b-cD.2a+b+c
4.若a2+8ab+m2是一个完全平方式,则m应是( )
故选:B.
【点睛】
本题考查了因式分解的应用,三角形中三边之间的关系.(a+c-b)[a-(b+c)]是一个正数与负数的积,所以小于0.
9.3(a-b)(a+b)
【解析】
【分析】
原式提取3,再利用平方差公式分解即可.
【详解】
原式=3(a2-b2)=3(a+b)(a-b),
故答案为:3(a-b)(a+b)
(2)已知x2+2y2-2xy+6y+9=0,求xy的值;
(3)已知△ABC的三边长a,b,c都是正整数,且满足2a2+b2-4a-6b+11=0,求△ABC的周长.
18.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)请用两种不同的方法求图②中阴影部分的面积(直接用含m,n的代数式表示).
【详解】
A、a3-a= a(a+1)(a-1),故错误;
B、m2-2mn+n2=(m-n)2,正确;
C、x2y-xy2=xy(x-y),正确;
D、x2-y2=(x-y)(x+y),正确.
故选:A.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3.C
2020春北师大版八下数学第4章因式分解同步练习及答案
2020春北师大版八下数学第4章因式分解同步练习及答案4.1因式分解一、选择题1. 下列各式从左到右的变形是分解因式的是( ).A .a (a -b )=a 2-ab ;B .a 2-2a +1=a (a -2)+1C .x 2-x =x (x -1);D .x 2-y y 1=(x +y 1)(x -y1) 2.把下列各式分解因式正确的是( )A .x y 2-x 2y =x (y 2-xy );B .9xyz -6 x 2y 2=3xyz (3-2xy )C .3 a 2x -6bx +3x =3x (a 2-2b );D .21x y 2+21x 2y =21xy (x +y ) 3.(-2)2001+(-2)2002等于( )A .-22001B .-22002C .22001D .-24.-6x n -3x 2n 分解因式正确的是( )A .3(-2x n -x 2n )B .-3x n (2-x n )C .-3(2x n +x 2n )D .-3x n (x n +2)二、填空题5.分解因式与整式乘法的关系是__________.6.计算93-92-8×92的结果是__________.7.如果a +b =10,ab =21,则a 2b +ab 2的值为_________.三、解答题:8.连一连:9x 2-4y 2 a (a +1)24a 2-8ab +4 b 2 -3a (a +2)-3 a 2-6a 4(a -b )2a 3+2 a 2+a (3x +2y )(3x -2y )9.利用简便方法计算:(1)23×2.718+59×2.718+18×2.718;(2)57.6×1. 6+57.6×18.4+57.6×(-20)10.32020-4×32019+10×32018能被7整除吗?试说明理由.参考答案:1.C 2.D 3.C 4.D 5.互逆的过程6.0 7.210 8.略9.(1)原式=2.718×(23+59+18)=271.8(2)原式=57.6×(1.6+18.4-20)=010.能.因为原式=32018(32-4×3+10)=32018×7,显然它能被7整除.4.2提公因式法一、选择题1.下列各式公因式是a的是()A. ax+ay+5 B.3ma-6ma2C.4a2+10ab D.a2-2a+ma2.-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy3.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b);B.2(7a-8b)2 ;C.8(7a-8b)(b-a);D.-2(7a-8b)4.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)5.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)6.观察下列各式: ①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2+y2。
北师大版八年级下册 第4章 因式分解 单元练习卷 含解析
第4章因式分解一.选择题(共5小题)1.若多项式x2+bx+c因式分解后的一个因式是(x+1),则b﹣c的值是()A.﹣1 B.1 C.0 D.﹣22.把多项式a2﹣4a分解因式的正确结果是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2)2﹣43.下列式子中,属于2x3+x2﹣13x+6的因式是()A.x+2 B.x﹣3 C.2x﹣1 D.2x+14.下多项式中,在实数范围内能分解因式的是()A.x2﹣x+1 B.x2﹣2x+2 C.x2﹣3x+3 D.x2﹣5x+5.5.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于()A.﹣1 B.﹣1或﹣11 C.1 D.1或11二.填空题(共5小题)6.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.7.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.8.已知x2﹣2x﹣1=0,则3x2﹣6x=;则2x3﹣7x2+4x﹣2019=.9.定义一种运算:〈a,b〉=ab+2a+3b,例如:〈﹣2,1〉=﹣2﹣4+3=﹣3.则〈a,b〉+6要进行因式分解的结果为;如果x,y都是整数,且〈x,y〉=1,那么x+y的值为.10.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x =9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).三.解答题(共7小题)11.把下列各式因式分解:(1)8x2yz﹣4xy(2)(x2+4)2﹣16x2.12.因为x2+2x﹣3=(x+3)(x﹣1),这说明多项式x2+2x﹣3有一个因式为x﹣1,我们把x=1代入此多项式发现x=1能使多项式x2+2x﹣3的值为0.利用上述阅读材料求解:(1)若x﹣3是多项式x2+kx+12的一个因式,求k的值;(2)若(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式,试求m,n的值.(3)在(2)的条件下,把多项式x3+mx2+12x+n因式分解.13.先阅读材料,再回答问题:分解因式:(a﹣b)2﹣2(a﹣b)+1解:设a﹣b=M,则原式=M2﹣2M+1=(M﹣1)2再将a﹣b=M还原,得到:原式=(a﹣b﹣1)2上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:(x+y)(x+y﹣4)+4(2)若a为正整数,则(a﹣1)(a﹣2)(a﹣3)(a﹣4)+1为整数的平方,试说明理由.14.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x ﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.15.阅读题:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣1﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此方法是抓住二次项和一次项的特点,然后加一项,使这三项为完全平方式,我们称这种方法为配方法.此题为用配方法分解因式.请体会配方法的特点,然后用配方法解决下列问题:在实数范围内分解因式:4a2+4a﹣1.16.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解:x3﹣1.因为x3﹣1为三次多项式,若能因式分解,则可以分解成一个一次多顶式和一个二次多项式的乘积.故我们可以猜想x3﹣1可以分解成(x﹣1)(x2+ax+b),展开等式右边得:x3+(a﹣1)x2+(b﹣a)x﹣b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a ﹣1=0,b﹣a=0,﹣b=﹣1可以求出a=1,b=1.所以x3﹣1=(x﹣1)(x2+x+1).(1)若x取任意值,等式x2+2x+3=x2+(3﹣a)x+s恒成立,则a=;(2)已知多项式x3+2x+3有因式x+1,请用待定系数法求出该多项式的另一因式;(3)请判断多项式x4+x2+1是否能分解成的两个整系数二次多项式的乘积,并说明理由.17.如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小矩形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为;(2)若每块小矩形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.参考答案与试题解析一.选择题(共5小题)1.【分析】根据多项式x2+bx+c因式分解后的一个因式是(x+1),即可得到当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,即可得到b﹣c的值.【解答】解:∵多项式x2+bx+c因式分解后的一个因式是(x+1),∴当x+1=0,即x=﹣1时,x2+bx+c=0,即1﹣b+c=0,∴b﹣c=1,故选:B.2.【分析】根据提公因式法的分解方法分解即可.【解答】解:a2﹣4a=a(a﹣4).故选:A.3.【分析】将2x3+x2﹣13x+6利用分组分解法分解因式,注意首先拆项可得:2x3+x2﹣10x ﹣3x+6,然后将前三项作为一组,后两项作为一组分解即可求得答案.【解答】解:∵2x3+x2﹣13x+6=2x3+x2﹣10x﹣3x+6=x(2x2+x﹣10)﹣3(x﹣2)=x(2x+5)(x﹣2)﹣3(x﹣2)=(x﹣2)(2x2+5x﹣3)=(x﹣2)(2x﹣1)(x+3),∴2x3+x2﹣13x+6的因式是:(x﹣2),(2x﹣1),(x+3).故选:C.4.【分析】求出各项中根的判别式的值,根的判别式的值大于等于0即为在实数范围内能分解因式.【解答】解:A、∵a=1,b=﹣1,c=1,∴△=1﹣4=﹣3<0,本选项不合题意;B、∵a=1,b=﹣2,c=2,∴△=4﹣8=﹣4<0,本选项不合题意;C、∵a=1,b=﹣3,c=3,∴△=9﹣12=﹣3<0,本选项不合题意;D、∵a=1,b=﹣5,c=5,∴△=25﹣20=5>0,本选项符合题意;故选:D.5.【分析】根据因式分解的分组分解法即可求解.【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.二.填空题(共5小题)6.【分析】设另一个因式为x+a,(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,根据题意得出﹣m=﹣3+a,n=﹣3a,求出m、n后代入即可.【解答】解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.7.【分析】根据十字相乘法的分解方法和特点可知:﹣p=1﹣2,q=1×(﹣2),即可求得p、q的值,代入求值即可.【解答】解:由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.故答案为:9.8.【分析】根据因式分解的提公因式法分解因式,利用整体代入的方法即可求得第一个空的解;分解第二个因式后把﹣7x写成﹣4x﹣3x再重新组合,进行提公因式,最后整体代入即可求得第二个空的解.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x2﹣4x=2,∴3x2﹣6x=3(x2﹣2x)=3.2x3﹣7x2+4x﹣2019=x(2x2﹣7x)+4x﹣2019=x(2x2﹣4x﹣3x)+4x﹣2019=x(2﹣3x)+4x﹣2019=2x﹣3x2+4x﹣2019=﹣3x2+6x﹣2019=﹣3(x2﹣2x)﹣2019=﹣3×1﹣2019=﹣2022.故答案为:3,﹣2022.9.【分析】由已知可得〈a,b〉+6=ab+2a+3b+6,再分组分解;由〈x,y〉=xy+2x+3y=1,将式子变形为xy+2x+3y+6=7,进行分组分解得到(x+2)(y+3)=7,再由x,y都是整数,分别得到+2=1,y+3=7或x+2=﹣1,y+3=﹣7,即可求解.【解答】解:〈a,b〉+6=ab+2a+3b+6=a(b+2)+3(b+2);〈x,y〉=xy+2x+3y=1,∵xy+2x+3y+6=7,∴(x+2)(y+3)=7,∵x,y都是整数,∴x+2=1,y+3=7或x+2=﹣1,y+3=﹣7,∴x=﹣1,y=4或x=﹣3,y=﹣10,∴x+y=3或x+y=﹣13;故答案为(b+2)(a+3);3或﹣13.10.【分析】9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是10、40、20的任意组合即可.【解答】解:9x3﹣xy2=x(9x2﹣y2)=x(3x+y)(3x﹣y),当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.三.解答题(共7小题)11.【分析】(1)直接提取公因式4xy,进而分解因式得出答案;(2)直接利用平方差公式分解因式,进而结合完全平方公式分解因式得出答案.【解答】解:(1)8x2yz﹣4xy=4xy(2xz﹣1);(2)(x2+4)2﹣16x2=(x2+4﹣4x)(x2+4+4x)=(x﹣2)2(x+2)2.12.【分析】(1)由已知条件可知,当x=3时,x2+kx+12=0,将x的值代入即可求得(2)由题意可知,x=3和x=4时,x3+mx2+12x+n=0,由此得二元一次方程组,从而可求得m和n的值;(3)将(2)中m和n的值代入x3+mx2+12x+n,提取公因式x,则由题意知(x﹣3)和(x﹣4)也是所给多项式的因式,从而问题得解.【解答】解:(1)∵x﹣3是多项式x2+kx+12的一个因式∴x=3时,x2+kx+12=0∴9+3k+12=0∴3k=﹣21∴k=﹣7∴k的值为﹣7.(2)(x﹣3)和(x﹣4)是多项式x3+mx2+12x+n的两个因式∴x=3和x=4时,x3+mx2+12x+n=0∴解得∴m、n的值分别为﹣7和0.(3)∵m=﹣7,n=0,∴x3+mx2+12x+n可化为:x3﹣7x2+12x∴x3﹣7x2+12x=x(x2﹣7x+12)=x(x﹣3)(x﹣4)13.【分析】(1)设M=x+y,据此原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,再将M=x+y代回即可得;(2)由原式变形为(a2﹣5a+4)(a2﹣5a+6)+1,令N=a2﹣5a+4,据此可得原式N(N+2)+1=N2+2N+1=(N+1)2,根据a为正整数可作出判断.【解答】解:(1)设M=x+y,则原式=M(M﹣4)+4=M2﹣4M+4=(M﹣2)2,将M=x+y代入还原可得原式=(x+y﹣2)2;(2)原式=(a﹣1)(a﹣4)(a﹣2)(a﹣3)+1=(a2﹣5a+4)(a2﹣5a+6)+1令N=a2﹣5a+4,∵a为正整数,∴N=(a﹣1)(a﹣4)=a2﹣5a+4也是整数,则原式=N(N+2)+1=N2+2N+1=(N+1)2,∵N为整数,∴原式=(N+1)2即为整数的平方.14.【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c 的关系,判断三角形形状即可.【解答】解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形或等边三角形.15.【分析】首先将原式配方,进而利用平方差公式分解因式即可.【解答】解:4a2+4a﹣1=(2a+1)2﹣2=(2a+1﹣)(2a+1+).16.【分析】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘以多项式即可求得结论.【解答】解:(1)根据待定系数法原理,得3﹣a=2,a=1.故答案为1.(2)设另一个因式为(x2+ax+b),(x+1)(x2+ax+b)=x3+ax2+bx+x2+ax+b=x3+(a+1)x2+(a+b)x+b∴a+1=0 a=﹣1 b=3∴多项式的另一因式为x2﹣x+3.答:多项式的另一因式x2﹣x+3.(3)多项式x4+x2+1能分解成两个整系数二次多项式的乘积.理由如下:设多项式x4+x2+1能分解成①(x2+1)(x2+ax+b)或②(x+1)(x3+ax2+bx+c)或(x2+x+1)(x2+ax+1),①(x2+1)(x2+ax+b)=x4+ax3+bx2+ax+b=x4+ax3+(b+1)x2+ax+b∴a=o b+1=1 b=1由b+1=1得b=0≠1②(x+1)(x3+ax2+bx+c),=x4+ax3+bx2+cx+x3+ax2+bx+c=x4+(a+1)x3+(b+a)x2+(b+c)x+c∴a+1=0 b+a=1 b+c=0 c=1解得a=﹣1,b=2,c=1,又b+c=0,b=﹣1≠2.③(x2+x+1)(x2+ax+1)=x4+(a+1)x3+(a+2)x2+(a+1)x+1∴a+1=0,a+2=1,解得a=﹣1.即x4+x2+1=(x2+x+1)(x2﹣x+1)∴x4+x2+1能分解成两个整系数二次三项式的乘积却不能分解成两个整系数二次二项式与二次三项式的乘积.答:多项式x4+x2+1能分解成两个整系数二次三项式的乘积.17.【分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)根据正方形的面积得出正方形的边长,再利用每块小矩形的面积为10厘米2,得出等式求出m+n,进一步得到图中所有裁剪线(虚线部分)长之和即可.【解答】解:(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为:(m+2n)(2m+n);(2)依题意得,2m2+2n2=58,mn=10,∴m2+n2=29,∵(m+n)2=m2+2mn+n2,∴(m+n)2=29+20=49,∵m+n>0,∴m+n=7,∴.图中所有裁剪线(虚线部分)长之和为6m+6n=6(m+n)=42cm.。
《第4章因式分解》期末复习能力提升训练(附答案)2020-2021学年八年级数学北师大版下册
2021年北师大版八年级数学下册《第4章因式分解》期末复习能力提升训练(附答案)一.因式分解的意义1.下列各式分解因式结果是(a﹣2)(b+3)的是()A.﹣6+2b﹣3a+ab B.﹣6﹣2b+3a+abC.ab﹣3b+2a﹣6D.ab﹣2a+3b﹣62.若多项式x2﹣ax﹣1可分解为(x﹣2)(x+b),则a+b的值为()A.2B.1C.﹣2D.﹣1 3.已知关于x的三次三项式2x3+3x﹣k有一个因式是2x﹣5,则另一个因式为.4.若多项式x2﹣mx+n(m、n是常数)分解因式后,有一个因式是x﹣3,则3m﹣n的值为.5.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).6.多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.7.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴.解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(2x﹣5),求另一个因式以及k的值.8.已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.9.已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.二.公因式10.对多项式24ab2﹣32a2bc进行因式分解时提出的公因式是.11.2x3y2与12x4y的公因式是.12.多项式m(m﹣3)+2(3﹣m),m2﹣4m+4,m4﹣16中,它们的公因式是.三.提公因式法因式分解13.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=.14.已知a﹣b=3,ab=﹣2,则a2b﹣ab2的值为.15.分解因式:2m(m﹣n)2﹣8m2(n﹣m)四.运用公式法因式分解16.下列各式:①﹣x2﹣y2;②﹣a2b2+1;③a2+ab+b2;④﹣x2+2xy﹣y2;⑤﹣mn+m2n2,可以用公式法分解因式的有()A.2个B.3个C.4个D.5个17.请仔细阅读下面某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程,然后回答问题:解:令x2﹣4x+2=y,则:原式=y(y+4)+4(第一步)=y2+4y+4(第二步)=(y+2)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的;A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)另外一名同学发现第四步因式分解的结果不彻底,请你直接写出因式分解的最后结果;(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.18.已知,求下列各式的值:(1)x2+2xy+y2(2)x2﹣y2.五.提公因式法与公式法的综合运用19.因式分解:4a3﹣16a=.20.因式分解:(1)﹣3ma2+12ma﹣12m;(2)n2(m﹣2)+4(2﹣m).21.分解因式:(1)8a3b2+12ab3c;(2)(2x+y)2﹣(x+2y)2.六.分组分解法因式分解22.分解因式:2x2+7xy﹣15y2﹣3x+11y﹣2=.23.把下列多项式因式分解(要写出必要的过程):(1)﹣x2y+6xy﹣9y;(2)9(x+2y)2﹣4(x﹣y)2;(3)1﹣x2﹣y2+2xy.24.因式分解:(1)6x2﹣13x+5(2)1﹣x2+2xy﹣y225.甲、乙两个同学分解因式x2+ax+b时,甲看错了b,分解结果为(x+2)(x+4);乙看错了a,分解结果为(x+1)(x+9),求a+b的值.七.十字相乘法等因式分解26.你会对多项式(x2+5x+2)(x2+5x+3)﹣12分解因式吗?对结构较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),能使复杂的问题简单化、明朗化.从换元的个数看,有一元代换、二元代换等.对于(x2+5x+2)(x2+5x+3)﹣12.解法一:设x2+5x=y,则原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法二:设x2+5x+2=y,则原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).解法三:设x2+2=m,5x=n,则原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).按照上面介绍的方法对下列多项式分解因式:(1)(x2+x﹣4)(x2+x+3)+10;(2)(x+1)(x+2)(x+3)(x+6)+x2;(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.八.实数范围内分解因式27.下列关于x的二次三项式中(m表示实数),在实数范围内一定能分解因式的是()A.x2﹣2x+2B.2x2﹣mx+1C.x2﹣2x+m D.x2﹣mx﹣1九.因式分解的应用28.已知x2+x=1,那么x4+2x3﹣x2﹣2x+2020的值为()A.2019B.2020C.2021D.202229.已知x2﹣3x+1=0,则=.30.若a+b﹣2=0,则代数式a2﹣b2+4b的值等于.参考答案一.因式分解的意义1.解:(a﹣2)(b+3)=﹣6﹣2b+3a+ab.故选:B.2.解:∵(x﹣2)(x+b)=x2+bx﹣2x﹣2b=x2+(b﹣2)x﹣2b=x2﹣ax﹣1,∴b﹣2=﹣a,﹣2b=﹣1,∴b=0.5,a=1.5,∴a+b=2.故选:A.3.解:设另一个因式为x2+ax+b,则2x3+3x﹣k=(2x﹣5)(x2+ax+b)=2x3+(2a﹣5)x2+(2b﹣5a)x﹣5b,所以,解得:a=2.5,b=,即另一个因式为x2+2.5x+,故答案为:x2+2.5x+.4.解:设另一个因式为x+a,则(x+a)(x﹣3)=x2+(﹣3+a)x﹣3a,∴﹣m=﹣3+a,n=﹣3a,∴m=3﹣a∴3m﹣n=3(3﹣a)﹣(﹣3a)=9﹣3a+3a=9,故答案为:9.5.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.6.解:x2+mx+6因式分解得(x﹣2)(x+n),得x2+mx+6=(x﹣2)(x+n),(x﹣2)(x+n)=x2+(n﹣2)x﹣2n,x2+mx+6=x2+(n﹣2)x﹣2n,﹣2n=6,m=n﹣2.解得n=﹣3,m=﹣5,故答案为:﹣5.7.解:设另一个因式为(x+a),得(1分)2x2+3x﹣k=(2x﹣5)(x+a)(2分)则2x2+3x﹣k=2x2+(2a﹣5)x﹣5a(4分)∴(6分)解得:a=4,k=20(8分)故另一个因式为(x+4),k的值为20(9分)8.解:设另一个因式为x+a,则(x+3)(x+a)=x2+(3+a)x+3a,∵x2﹣4x+m=(x+3)(x+a),∴3+a=﹣4,3a=m,∴a=﹣7,m=﹣21,即另一个因式为x﹣7,m=﹣21.9.解:设另一个因式为2x2+mx﹣,∴(x﹣3)(2x2+mx﹣)=2x3﹣5x2﹣6x+k,2x3+mx2﹣x﹣6x2﹣3mx+k=2x3﹣5x2﹣6x+k,2x3+(m﹣6)x2﹣(+3m)x+k=2x3﹣5x2﹣6x+k,∴,解得:,∴另一个因式为:2x2+x﹣3.二.公因式10.解:24ab2﹣32a2bc进行因式分解时提出的公因式是8ab,故答案为:8ab.11.解:∵2x3y2=2x3y•y,12x4y=2x3y•6x,∴2x3y2与12x4y的公因式是2x3y,故答案为:2x3y.12.解:m(m﹣3)+2(3﹣m)=m(m﹣3)﹣2(m﹣3)=(m﹣3)(m﹣2);m2﹣4m+4=(m﹣2)2;m4﹣16=m4﹣24=(m2+4)(m2﹣4)=(m2+4)(m+2)(m﹣2).各项都含有m﹣2,因此它们的公因式是m﹣2.三.提公因式法因式分解13.解:原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98]=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97]=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96]=…=(a+1)100.故答案为:(a+1)100.14.解:a2b﹣ab2=ab(a﹣b)=﹣2×3=﹣6,故答案为:﹣6.15.解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n).四.运用公式法因式分解16.解:①﹣x2﹣y2=﹣(x2+y2),因此①不能用公式法分解因式;②﹣a2b2+1=1﹣(ab)2=(1+ab)(1﹣ab),因此②能用公式法分解因式;③a2+ab+b2不符合完全平方公式的结果特征,因此③不能用公式法分解因式;④﹣x2+2xy﹣y2=﹣(x2﹣2xy+y2)=﹣(x﹣y)2,因此④能用公式法分解因式;⑤﹣mn+m2n2=(﹣mn)2,因此⑤能用公式法分解因式;综上所述,能用公式法分解因式的有②④⑤,故选:B.17.解:(1)运用了C,两数和的完全平方公式;故答案为:C;(2)x2﹣4x+4还可以分解,分解不彻底;(x2﹣4x+4)2=(x﹣2)4.故答案为:(x﹣2)4.(3)设x2﹣2x=y.(x2﹣2x)(x2﹣2x+2)+1,=y(y+2)+1,=y2+2y+1,=(y+1)2,=(x2﹣2x+1)2,=(x﹣1)4.18.解:x+y=2,xy=()2﹣()2=4,x﹣y=2(1)x2+2xy+y2=(x+y)2=(2)2=24;(2)x2﹣y2=(x+y)(x﹣y)=2×2=8.五.提公因式法与公式法的综合运用19.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)20.解:(1)原式=﹣3m(a2﹣4a+4)=﹣3m(a﹣2)2;(2)原式=(m﹣2)(n2﹣4)=(m﹣2)(n+2)(n﹣2).21.解:(1)8a3b2+12ab3c=4ab2(2a2+3bc);(2)(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).六.分组分解法因式分解22.解:∵2x2+7xy﹣15y2=(x+5y)(2x﹣3y),∴可设2x2+7xy﹣15y2﹣3x+11y﹣2=(x+5y+a)(2x﹣3y+b),a、b为待定系数,∴2a+b=﹣3,5b﹣3a=11,ab=﹣2,解得a=﹣2,b=1,∴原式=(x+5y﹣2)(2x﹣3y+1).故答案为:(x+5y﹣2)(2x﹣3y+1).23.解:(1)﹣x2y+6xy﹣9y=﹣y(x2﹣6x+9)=﹣y(x﹣3)2;(2)9(x+2y)2﹣4(x﹣y)2;=[3(x+2y)+2(x﹣y)][3(x+2y)﹣2(x﹣y)]=(5x+4y)(x+8y);(3)1﹣x2﹣y2+2xy=1﹣(x2+y2﹣2xy)=1﹣(x﹣y)2=[1+(x﹣y)][1﹣(x﹣y)]=(1+x﹣y)(1﹣x+y).24.解:(1)原式=(2x﹣1)(3x﹣5);(2)原式=1﹣(x2﹣2xy+y2)=1﹣(x﹣y)2=(1+x﹣y)(1﹣x+y);25.解:∵甲看错了b,所以a正确,∵(x+2)(x+4)=x2+6x+8,∴a=6,∵因为乙看错了a,所以b正确∵(x+1)(x+9)=x2+10x+9,∴b=9,∴a+b=6+9=15.七.十字相乘法因式分解26.解:(1)设x2+x=y,则原式=(y﹣4)(y+3)+10=y2﹣y﹣2=(y﹣2)(y+1)=(x2+x﹣2)(x2+x+1)=(x+2)(x﹣1)(x2+x+1);(2)设x2+6=m,原式=(x2+6+7x)(x2+6+5x)+x2=(m+7x)(m+5x)+x2=m2+12xm+35x2+x2=m2+12xm+36x2=(m+6x)2=(x2+6x+6)2;(3)设x+y=m,xy=n(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2=(m﹣2n)(m﹣2)+(n﹣1)2=m2﹣2m﹣2mn+4n+n2﹣2n+1=m2﹣2m﹣2mn+n2+2n+1=m2﹣2m(1+n)+(n+1)2=(m﹣n﹣1)2=(x+y﹣xy﹣1)2=(y﹣1)2(1﹣x)2八.实数范围内分解因式27.解:选项A,x2﹣2x+2=0,△=4﹣4×2=﹣4<0,方程没有实数根,即x2﹣2x+2在数范围内不能分解因式;选项B,2x2﹣mx+1=0,△=m2﹣8的值有可能小于0,即2x2﹣mx+1在数范围内不一定能分解因式;选项C,x2﹣2x+m=0,△=4﹣4m的值有可能小于0,即x2﹣2x+m在数范围内不一定能分解因式;选项D,x2﹣mx﹣1=0,△=m2+4>0,方程有两个不相等的实数根,即x2﹣mx﹣1在数范围内一定能分解因式.故选:D.九.因式分解的应用28.解:∵x2+x=1,∴x4+2x3﹣x2﹣2x+2020=x4+x3+x3﹣x2﹣2x+2020=x2(x2+x)+x3﹣x2﹣2x+2020=x2+x3﹣x2﹣2x+2020=x(x2+x)﹣x2﹣2x+2020=x﹣x2﹣2x+2020=﹣x2﹣x+2020=﹣(x2+x)+2020=﹣1+2020=2019.故选:A.29.解:∵x2﹣3x+1=0,∴x+=3,∴===,故答案为.30.解:∵a+b﹣2=0,∴a+b=2.∴a2﹣b2+4b=(a+b)(a﹣b)+4b=2(a﹣b)+4b =2a﹣2b+4b=2a+2b=2(a+b)=2×2=4.故答案为4.。
2020年北师大版八年级下数学第4章《因式分解》练习题及答案 (19)
2020年北师大版八年级下数学第4章《因式分解》练习题19.若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32﹣22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y 是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.
(1)判断:9是“明礼崇德数”(填“是”或“不是”);
(2)已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由;
(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.
解:(1)∵9=52﹣42,
∴9是“明礼崇德数”,
故答案为是;
(2)∵N是“明礼崇德数”,
∵x>y+1,
∴x+2>y+3,
∴N=x2﹣y2+4x﹣6y+4﹣9=(x+2)2﹣(y+3)2,
∵N=x2﹣y2+4x﹣6y+k=(x+2)2﹣(y+3)2,
∴k=﹣5;
(3)设百位数字是x,则个位数字是x+7,
∴x=1或x=2,
当x=1时,这个三位数是178,
∴m=178=2×89,
此时m不是“明礼崇德数”;
当x=2时,这个三位数是279,
∴m=279=3×93=9×31,
∴m=482﹣452=202﹣112,
∴48与45是m的平方差分解;21与11是m的平方差分解.。
北师大版八年级下数学第四章《因式分解》单元测试(含答案)
第四章因式分解一、选择题1.下列因式分解结果正确的是()A. x2+3x+2=x(x+3)+2B. 4x2﹣9=(4x+3)(4x﹣3)C. x2﹣5x+6=(x﹣2)(x﹣3)D. a2﹣2a+1=(a+1)22.下列从左到右的变形,是因式分解的是()A. (x+3)(x-2)=x2+x-6B. ax-ay-1=a(x-y)-1C. 8a2b3=2a2•4b3D. x2-4=(x+2)(x-2)3.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形4.把多项式x2﹣x分解因式,得到的因式是()A. 只有xB. x2和xC. x2和﹣xD. x和x﹣15.计算:22014﹣(﹣2)2015的结果是()A. B. C. ﹣ D. 3×6.下列多项式能因式分解的是()A. B. C. D.7.下列从左边到右边的变形,属于因式分解的是()A. (x+1)(x﹣1)=x2﹣1B. x2﹣2x+1=x(x﹣2)+1C. x2﹣4y2=(x﹣2y)2D. 2x2+4x+2=2(x+1)28.在实数范围内分解因式x5﹣64x正确的是()A. x(x4﹣64)B. x(x2+8)(x2﹣8)C. x(x2+8)(x+2)(x﹣2)D. x(x+2)3(x﹣2)9.分解因式得正确结果为()A. a2b(a2﹣6a+9)B. a2b(a﹣3)(a+3)C. b(a2﹣3)2D. a2b(a﹣3)210.若多项式x4+mx3+nx﹣16含有因式(x﹣2)和(x﹣1),则mn的值是()A. 100B. 0C. -100D. 50二、填空题11.分解因式:a3﹣ab2=________.12.分解因式:m2﹣16=________.13.分解因式x2-8x+16=________14. 分解因式:x2﹣9= ________.15.分解因式:a2﹣16=________.16.已知一个长方形的面积是a2﹣b2(a>b),其中长边为a+b,则短边长是________ .17.分解因式:x2y﹣4xy+4y=________.18. 分解因式:9x3﹣18x2+9x=________19.已知a=2,x+2y=3,则3ax+6ay=________20.分解因式:9a﹣a3=________ .三、解答题21.因式分解:(1)2x(a﹣b)+3y(b﹣a)(2)x(x2﹣xy)﹣(4x2﹣4xy)22.化简求值:当a=2005时,求﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005的值.23.阅读材料:分解因式:x2+2x﹣3解:原式=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)此种方法抓住了二次项和一次项的特点,然后加一项,使这三项成为完全平方式,我们把这种分解因式的方法叫配方法.请仔细体会配方法的特点,然后尝试用配方法解决下列问题:(1)分解因式x2﹣2x﹣3=________;a2﹣4ab﹣5b2=________;(2)无论m取何值,代数式m2+6m+13总有一个最小值,请你尝试用配方法求出它的最小值;(3)观察下面这个形式优美的等式:a2+b2+c2﹣ab﹣bc﹣ca= [(a﹣b)2+(b﹣c)2+(c﹣a)2]该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.请你说明这个等式的正确性.参考答案一、选择题C D D D D C D C D C二、填空题11.a(a+b)(a﹣b)12.(m+4)(m-4)13.(x-4)214.(x+3)(x﹣3)15.(a+4)(a﹣4)16.解:(a2﹣b2)÷(a+b)=(a+b)(a﹣b)÷(a+b)=a﹣b.故答案为a﹣b.17.y(x﹣2)218.9x(x﹣1)219.1820.a(3+a)(3﹣a)三、解答题21.解:(1)原式=2x(a﹣b)﹣3y(a﹣b)=(a﹣b)(2x﹣3y);(2)原式=x2(x﹣y)﹣4x(x﹣y)=x(x﹣y)(x﹣4).22.解:﹣3a2(a2﹣2a﹣3)+3a(a3﹣2a2﹣3a)+2005=﹣3a2(a2﹣2a﹣3)+3a2(a2﹣2a﹣3)+2005=2005.23.(1)(x﹣3)(x+1);(a+b)(a﹣5b)(2)解:m2+6m+13=m2+6m+9+4=(m+3)2+4,因为(m+3)2≥0,所以代数式m2+6m+13的最小值是4(3)解:a2+b2+c2﹣ab﹣bc﹣ca,= (2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),= (a2﹣2b+b2+b2﹣2bc+c2+c2﹣2ca+a2),= [(a﹣b)2+(b﹣c)2+(c﹣a)2]。
北师大八年级下册第四章《因式分解》单元测试题含答案解析
第四章《因式分解》检测题一.选择题(共12小题)1.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣252.多项式4x2﹣4与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)23.把多项式(x+1)(x﹣1)﹣(1﹣x)提取公因式(x﹣1)后,余下的部分是()A.(x+1) B.(x﹣1) C.x D.(x+2)4.下列多项式的分解因式,正确的是()A.12xyz﹣9x2y2=3xyz(4﹣3xyz)B.3a2y﹣3ay+6y=3y(a2﹣a+2)C.﹣x2+xy﹣xz=﹣x(x2+y﹣z) D.a2b+5ab﹣b=b(a2+5a)5.若ab=﹣3,a﹣2b=5,则a2b﹣2ab2的值是()A.﹣15 B.15 C.2 D.﹣86.计算(﹣2)+2等于()A.2B.﹣2 C.﹣2 D.27.下列因式分解正确的是()A.x2﹣4=(x+4)(x﹣4)B.x2+2x+1=x(x+2)+1C.3mx﹣6my=3m(x﹣6y)D.2x+4=2(x+2)8.分解因式a2b﹣b3结果正确的是()A.b(a+b)(a﹣b) B.b(a﹣b)2 C.b(a2﹣b2)D.b(a+b)2 9.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2 B.a(x+2)2 C.a(x﹣4)2 D.a(x+2)(x﹣2)10.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2﹣4,乙与丙相乘为x2+15x﹣34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x﹣19 C.2x+15 D.2x﹣1511.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2 C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣412.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()A.是0 B.总是奇数C.总是偶数 D.可能是奇数也可能是偶数二.填空题(共6小题)13.给出六个多项式:①x2+y2;②﹣x2+y2;③x2+2xy+y2;④x4﹣1;⑤x(x+1)﹣2(x+1);⑥m2﹣mn+n2.其中,能够分解因式的是(填上序号).14.如图中的四边形均为矩形,根据图形,写出一个正确的等式.15.若a=49,b=109,则ab﹣9a的值为.16.在实数范围内分解因式:x5﹣4x=.17.设a=8582﹣1,b=8562+1713,c=14292﹣11422,则数a,b,c 按从小到大的顺序排列,结果是<<.18.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc﹣2b2,则△ABC是三角形.三.解答题(共10小题)19.把下列各式分解因式:(1)2m(m﹣n)2﹣8m2(n﹣m)(2)﹣8a2b+12ab2﹣4a3b3.(3)(x﹣1)(x﹣3)+1.(4)(x2+4)2﹣16x2.(5) x2+y2+2xy﹣1.(6)(x2y2+3)(x2y2﹣7)+37(实数范围内).20.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.21.先化简,再求值:(1)已知a+b=2,ab=2,求a3b+2a2b2+ab3的值.(2)求(2x﹣y)(2x+y)﹣(2y+x)(2y﹣x)的值,其中x=2,y=1.22.先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b比较系数得,解得,∴解法二:设2x3﹣x2+m=A•(2x+1)(A为整式)由于上式为恒等式,为方便计算了取,2×=0,故.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.23.老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为1;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.24.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.参考答案与解析一.选择题1.【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.【分析】分别将多项式4x2﹣4与多项式x2﹣2x+1进行因式分解,再寻找他们的公因式.解:∵4x2﹣4=4(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式4x2﹣4与多项式x2﹣2x+1的公因式是(x﹣1).故选:A.3.【分析】原式变形后,提取公因式即可得到所求结果.解:原式=(x+1)(x﹣1)+(x﹣1)=(x﹣1)(x+2),则余下的部分是(x+2),故选D4.【分析】A选项中提取公因式3xy;B选项提公因式3y;C选项提公因式﹣x,注意符号的变化;D提公因式b.解:A、12xyz﹣9x2y2=3xy(4z﹣3xy),故此选项错误;B、3a2y﹣3ay+6y=3y(a2﹣a+2),故此选项正确;C、﹣x2+xy﹣xz=﹣x(x﹣y+z),故此选项错误;D、a2b+5ab﹣b=b(a2+5a﹣1),故此选项错误;故选:B.5.【分析】直接将原式提取公因式ab,进而分解因式得出答案.解:∵ab=﹣3,a﹣2b=5,a2b﹣2ab2=ab(a﹣2b)=﹣3×5=﹣15.故选:A.6.【分析】直接提取公因式法分解因式求出答案.解:(﹣2)+2=﹣2+2=2×(﹣2+1)=﹣2.故选:C.7.【分析】A、原式利用平方差公式分解得到结果,即可做出判断;B、原式利用完全平方公式分解得到结果,即可做出判断;C、原式提取公因式得到结果,即可做出判断;D、原式提取公因式得到结果,即可做出判断.解:A、原式=(x+2)(x﹣2),错误;B、原式=(x+1)2,错误;C、原式=3m(x﹣2y),错误;D、原式=2(x+2),正确,故选D8.【分析】直接提取公因式b,进而利用平方差公式分解因式得出答案.解:a2b﹣b3=b(a2﹣b2)=b(a+b)(a﹣b).故选:A.9.【分析】先提取公因式a,再利用完全平方公式分解即可.解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.10.【分析】根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.解:∵x2﹣4=(x+2)(x﹣2),x2+15x﹣34=(x+17)(x﹣2),∴乙为x﹣2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.11.【分析】各项利用平方差公式及完全平方公式判断即可.解:A、原式不能分解;B、原式=(x+y)2﹣2=(x+y+)(x+y﹣);C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4);D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2),故选A12.【分析】根据题意,可以利用分类讨论的数学思想探索式子 [1﹣(﹣1)n](n2﹣1)计算的结果等于什么,从而可以得到哪个选项是正确的.解:当n是偶数时,[1﹣(﹣1)n](n2﹣1)= [1﹣1](n2﹣1)=0,当n是奇数时,[1﹣(﹣1)n](n2﹣1)=×(1+1)(n+1)(n﹣1)=,设n=2k﹣1(k为整数),则==k(k﹣1),∵0或k(k﹣1)(k为整数)都是偶数,故选C.二.填空题13.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解:①x2+y2不能因式分解,故①错误;②﹣x2+y2利用平方差公式,故②正确;③x2+2xy+y2完全平方公式,故③正确;④x4﹣1平方差公式,故④正确;⑤x(x+1)﹣2(x+1)提公因式,故⑤正确;⑥m2﹣mn+n2完全平方公式,故⑥正确;故答案为:②③④⑤⑥.14.【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).15.【分析】原式提取公因式a后,将a与b的值代入计算即可求出值.解:当a=49,b=109时,原式=a(b﹣9)=49×100=4900,故答案为:4900.16.【分析】原式提取x,再利用平方差公式分解即可.解:原式=x(x4﹣4)=x(x2+2)(x2﹣2)=x(x2+2)(x+)(x﹣),故答案为:x(x2+2)(x+)(x﹣)17.【分析】运用平方差公式和完全平方公式进行变形,把其中一个因数化为857,再比较另一个因数,另一个因数大的这个数就大.解:∵a=8582﹣1=(858+1)(858﹣1)=857×859,b=8562+1713=8562+856×2+1=(856+1)2=8572,c=14292﹣11422=(1429+1142)(1429﹣1142)=2571×287=857×3×287=857×861,∴b<a<c,故答案为:b、a、c.18.【分析】先把原式化为完全平方的形式再求解.解:∵原式=a2+c2﹣2ab﹣2bc+2b2=0,a2+b2﹣2ab+c2﹣2bc+b2=0,即(a﹣b)2+(b﹣c)2=0,∴a﹣b=0且b﹣c=0,即a=b且b=c,∴a=b=c.故△ABC是等边三角形.故答案为:等边.三.解答题19.(1)【分析】直接提取公因式2m(m﹣n),进而分解因式得出答案;解:2m(m﹣n)2﹣8m2(n﹣m)=2m(m﹣n)[(m﹣n)+4m]=2m(m﹣n)(5m﹣n);(2)【分析】直接提取公因式﹣4ab,进而分解因式得出答案.解:﹣8a2b+12ab2﹣4a3b3=﹣4ab(2a﹣3b+a2b2).(3)【分析】首先利用多项式乘法计算出(x﹣1)(x﹣3)=x2﹣4x+3,再加上1后变形成x2﹣4x+4,然后再利用完全平方公式进行分解即可.解:原式=x2﹣4x+3+1,=x2﹣4x+4,=(x﹣2)2.(4)【分析】利用公式法因式分解.解:(x2+4)2﹣16x2,=(x2+4+4x)(x2+4﹣4x)=(x+2)2•(x﹣2)2.(5)【分析】将前三项组合,利用完全平方公式分解因式,进而结合平方差公式分解因式得出即可.解:x2+y2+2xy﹣1=(x+y)2﹣1=(x+y﹣1)(x+y+1).(6)【分析】将x2y2看作一个整体,然后进行因式分解.解:(x2y2+3)(x2y2﹣7)+37=(x2y2)2﹣4x2y2+16=(x2y24)2=(xy+2)2(xy﹣2)2.20.【分析】已知等式左边利用完全平方公式变形,利用非负数的性质求出x与y的值,代入原式计算即可得到结果.解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.21.【分析】(1)根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案;(2)根据平方差公式,可化简整式,根据代数式求值,可得答案.解:(1)原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=2×22=8;(2)原式=4x2﹣y2﹣(4y2﹣x2)=5x2﹣5y2,当x=2,y=1时,原式=5×22﹣5×12=15.22.【分析】设x4+mx3+nx﹣16=A(x﹣1)(x﹣2),对x进行两次赋值,可得出两个关于m、n的方程,联立求解可得出m、n的值.解:设x4+mx3+nx﹣16=A(x﹣1)(x﹣2)(A为整式),取x=1,得1+m+n﹣16=0①,取x=2,得16+8m+2n﹣16=0②,由①、②解得m=﹣5,n=20.23.【分析】根据分组法、提公因式法分解因式分解,可得答案.解:x3﹣x2﹣x+1=x2(x﹣1)﹣(x﹣1)=(x﹣1)2(x+1)4x3﹣4x2﹣x+1=4x2(x﹣1)﹣(x﹣1)=(x﹣1)(2x+1)(2x﹣1)24.【分析】(1)根据分解因式的过程直接得出答案;(2)该同学因式分解的结果不彻底,进而再次分解因式得出即可;(3)将(x2﹣2x)看作整体进而分解因式即可.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C;(2)该同学因式分解的结果不彻底,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x﹣2)4(3)(x2﹣2x)(x2﹣2x+2)+1=(x2﹣2x)2+2(x2﹣2x)+1=(x2﹣2x+1)2=(x﹣1)4.。
北师大版初中数学八年级下册知识讲解,巩固练习(教学资料,补习资料):第四章 因式分解(提高)
第四章 因式分解(提高)提公因式法(提高)【学习目标】1. 了解因式分解的意义,以及它与整式乘法的关系;2. 能确定多项式各项的公因式,会用提公因式法将多项式分解因式. 【要点梳理】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.要点诠释:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.要点二、公因式多项式的各项中都含有相同的因式,那么这个相同的因式就叫做公因式. 要点诠释:(1)公因式必须是每一项中都含有的因式.(2)公因式可以是一个数,也可以是一个字母,还可以是一个多项式. (3)公因式的确定分为数字系数和字母两部分:①公因式的系数是各项系数的最大公约数.②字母是各项中相同的字母,指数取各字母指数最低的.要点三、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法. 要点诠释:(1)提公因式法分解因式实际上是逆用乘法分配律,即.(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.【典型例题】类型一、因式分解的概念1、下列由左到右的变形,哪些是因式分解?哪些不是?请说明理由.m m(1);(2); (3);(4); (5).【思路点拨】根据因式分解的定义是将多项式形式变成几个整式的积的形式,从对象和结果两方面去判断. 【答案与解析】解:因为(1)(2)的右边都不是积的形式,所以它们都不是因式分解;(4)的左边不是多项式而是一个单项式,(5)中的、都不是整式,所以(4)(5)也不是因式分解, 只有(3)的左边是多项式,右边是整式的积的形式,所以只有(3)是因式分解. 【总结升华】因式分解是将多项式变成积的形式,所以等式的左边必须是多项式,将单项式拆成几个单项式乘积的形式不能称为因式分解.等式的右边必须是整式因式积的形式. 举一反三:【变式】下列变形是因式分解的是 ( )A. B.C. D.【答案】B ;类型二、提公因式法分解因式2、(2019春•山亭区期中)把下列各式分解因式:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )(2)﹣8a 2b +12ab 2﹣4a 3b 3. 【思路点拨】(1)直接提取公因式2m (m ﹣n ),进而分解因式得出答案; (2)直接提取公因式﹣4ab ,进而分解因式得出答案. 【答案与解析】解:(1)2m (m ﹣n )2﹣8m 2(n ﹣m )=2m (m ﹣n )[(m ﹣n )+4m ] =2m (m ﹣n )(5m ﹣n );()a x y ax ay +=+2221(2)(1)(1)x xy y x x y y y ++-=+++-24(2)(2)ax a a x x -=+-221122ab a b =222112a a a a ⎛⎫++=+ ⎪⎝⎭21a 1a243(2)(2)3a a a a a -+=-++2244(2)x x x ++=+11(1)x x x+=+2(1)(1)1x x x +-=-(2)﹣8a 2b +12ab 2﹣4a 3b 3=﹣4ab (2a ﹣3b +a 2b 2).【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 举一反三:【变式】(2019春•濉溪县期末)下列分解因式结果正确的是( ) A.a b+7ab ﹣b=b (a +7a ) B.3x y ﹣3xy+6y=3y (x ﹣x ﹣2) C.8xyz ﹣6x y =2xyz (4﹣3xy ) D.﹣2a +4ab ﹣6ac=﹣2a (a ﹣2b+3c ) 【答案】D.解:A 、原式=b (a +7a+1),错误;B 、原式=3y (x ﹣x+2),错误;C 、原式=2xy (4z ﹣3xy ),错误;D 、原式=﹣2a (a ﹣2b+3c ),正确. 故选D .类型三、提公因式法分解因式的应用3、若、、为的三边长,且,则按边分类,应是什么三角形? 【答案与解析】解:∵∴当时,等式成立,当时,原式变为,得出, ∴∴是等腰三角形.【总结升华】将原式分解因式,就可以得出三边之间的关系,从而判定三角形的类型. 4、对任意自然数(>0),是30的倍数,请你判定一下这个说法的正确性,并说说理由. 【答案与解析】 解:∵为大于0的自然数,∴为偶数,15×为30的倍数, 即是30的倍数.222222222a b c ABC ∆()()()()a b b a b a a c a b a c -+-=-+-ABC ∆()()()()a b b a b a a c a b a c -+-=-+-()()()()a b b a a b a c a b c a ---=---()()()()a b b a c a a b --=--a b =a b ≠a b a c -=-b c =a b b c ==或ABC ∆n n 422n n +-()44422222221152n n n n n n +-=⨯-=-=⨯n 2n2n422n n +-【总结升华】判断是否为30的倍数,只需要把分解因式,看分解后有没有能够整除30的因式. 举一反三: 【变式】说明能被7整除.【答案】 解:所以能被7整除.5、(2019春•湘潭县期末)已知xy=﹣3,满足x+y=2,求代数式x y+xy 的值. 【思路点拨】将原式提取公因式xy ,进而将已知代入求出结果即可. 【答案与解析】解:∵xy=—3,x+y=2,∴x y+xy =xy (x+y )=﹣3×2=﹣6.【总结升华】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键. 【巩固练习】 一.选择题1. (2019春•北京期末)把多项式2x 3y ﹣x 2y 2﹣6x 2y 分解因式时,应提取的公因式为( )A .x 2yB .xy 2C .2x 3yD .6x 2y2. 观察下列各式:①;②;③;④;⑤;⑥.其中可以用提公因式法分解因式的有()A .①②⑤B .②④⑤C .②④⑥D .①②⑤⑥ 3. 下列各式中,运用提取公因式分解因式正确的是( )A. B.C. D.4. 分解因式的结果是( )A. B.C. D.422n n +-422n n +-200199198343103-⨯+⨯200199198343103-⨯+⨯()198219833431073=-⨯+=⨯200199198343103-⨯+⨯2222abx adx -2226x y xy +328421m m m -++3223a a b ab b ++-()()()22256p q x y x p q p q +-+++()()()24ax y x y b y x +--+()()()()22222a x a a x -+-=-+()32222x x x x x x ++=+()()()2x x y y x y x y ---=-()2313x x x x --=--2322212n n n x x x +++-+()22nx xx -+()2322n x x x -+()2122n xx x +-+()322n x x x -+5. (2019秋•西城区校级期中)把﹣6x y ﹣3x y ﹣8x y 因式分解时,应提取公因式( ) A.﹣3x y B.-2x yC.x yD.﹣x y6. 计算的结果是( )A. B.-1 C. D.-2二.填空题7. 把下列各式因式分解:(1)__________.(2)_________________.8. 在空白处填出适当的式子: (1);(2)9. 因式分解:______________.10. (2019•黔南州)若ab=2,a ﹣b=﹣1,则代数式a 2b ﹣ab 2的值等于___________. 11. .12. (2019春•深圳校级期中)若m ﹣n=3,mn=﹣2,则2m 2n ﹣2mn 2+1的值为_____________.三.解答题 13.已知:,求的值. 14. (2019春•北京校级月考)先阅读第(1)题的解答过程,然后再解第(2)题.(1)已知多项式2x 3﹣x 2+m 有一个因式是2x+1,求m 的值.解法一:设2x 3﹣x 2+m=(2x+1)(x 2+ax+b ),则:2x 3﹣x 2+m=2x 3+(2a+1)x 2+(a+2b )x+b比较系数得,解得,∴解法二:设2x 3﹣x 2+m=A•(2x+1)(A 为整式) 由于上式为恒等式,为方便计算了取,32222322222222()2011201022+-2010220102-2168a b ab --=()()2232xx y x y x ---=()()()()111x y y x --=-+()()238423279ab b c a bc +=+()()()x b c a y b c a a b c +--+----=2011201222_________________-=213x x +=43261510x x x ++2×=0,故 .(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.15. 先分解因式(1)、(2)、(3),再解答后面问题; (1)1++(1+); (2)1++(1+)+;(3)1++(1+)++ 问题:.先探索上述分解因式的规律,然后写出:1++(1+)+++…+分解因式的结果是_______________..请按上述方法分解因式:1++(1+)+++…+(为正整数). 【答案与解析】 一.选择题1. 【答案】A ;【解析】2x 3y ﹣x 2y 2﹣6x 2y=x 2y (2x ﹣y ﹣6). 2. 【答案】D【解析】①;②;⑤;⑥.所以可以用提公因式法分解因式的有①②⑤⑥.3. 【答案】C ;【解析】;.4. 【答案】C ;5. 【答案】D .【解析】解:﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3=﹣x 2y 2(6x+3+8y ),因此﹣6x 3y 2﹣3x 2y 2﹣8x 2y 3的公因式是﹣x 2y 2. 故选D .6. 【答案】C ; 【解析】.二.填空题7. 【答案】(1);(2)a a a a a a a ()21a +a a a a ()21a +a ()31a +a a a a a ()21a +a ()31a +()20121a +b a a a a ()21a +a ()31a +()1na +n ()abx adx axb d -=-()222623x y xy xy x y +=+()()()()()222225656p q x y xp q p q p q x y x p q ⎡⎤+-+++=+-++⎣⎦()()()()()2244ax y x y b y x x y a x y b ⎡⎤+--+=+--⎣⎦()()()()22222a x a a x -+-=--()322221x x x x x x ++=++()()()()2011201020102010201020102010222222222+-=+-⨯-=+-⨯=-()821ab a -+()()221xx y x --【解析】.8. 【答案】(1);(2); 【解析】. 9. 【答案】;【解析】 .10.【答案】-2;【解析】∵ab=2,a ﹣b=﹣1,∴a 2b ﹣ab 2=ab (a ﹣b )=2×(﹣1)=﹣2. 11.【答案】;【解析】.12.【答案】-11;【解析】解:∵2m 2n ﹣2mn 2+1=2mn (m ﹣n )+1将m ﹣n=3,mn=﹣2代入得: 原式=2mn (m ﹣n )+1 =2×(﹣2)×3+1 =﹣11.故答案为:﹣11.三.解答题 13.【解析】解:14.【解析】()()()()()()22222323221xx y x y x x x y x x y x x y x ---=---=--1y -2427b ()()()()()()111111y x x y y x y y -+=-+-=---()()1x y bc a -++-()()()x b c a y b c a a b c +--+----()()()x b c a y b c a b c a =+--+-++-()()1x y b c a =-++-20112-()201120122011201120112011222222122-=-⨯=-=-43261510x x x ++()()()43322222222226699691169333331313x x x x x x x x x x x x x x x x x x x =++++=++++=⨯+⨯+=+=+=⨯=解:设x 4+mx 3+nx ﹣16=A (x ﹣1)(x ﹣2)(A 为整式),取x=1,得1+m+n ﹣16=0①, 取x=2,得16+8m+2n ﹣16=0②, 由①、②解得m=﹣5,n=20. 15.【解析】解:(1)原式=;(2)原式=;(3)原式=.结果为:,.原式= = ==……=平方差公式(提高) 知识讲解【学习目标】1. 能运用平方差公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和平方差公式把多项式分解因式; 3.发展综合运用知识的能力和逆向思维的习惯. 【要点梳理】要点一、公式法——平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:要点诠释:(1)逆用乘法公式将特殊的多项式分解因式.(2)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.()()()2111a a a ++=+()()()()()()31111111a a a a a a a a ++++=+++=+⎡⎤⎣⎦()()()21111a a a a a a ⎡⎤++++++⎣⎦()()()1111a a a a a =+++++⎡⎤⎣⎦()()()2111a a a =+++()41a =+a ()20131a +b ()()()1111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()21111......1n a a a a a a a -⎡⎤++++++++⎣⎦()()()33111......1n a a a a a a -⎡⎤+++++++⎣⎦()()()()111111n n a a a a -++++=+()()22a b a b a b -=+-(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式; (2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式; (2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止. 【典型例题】类型一、公式法——平方差公式1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解.【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:a b a b 2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-(1); (2)(3); (4);【答案】解:(1)原式(2)原式= = (3)原式 (4)原式2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4). 【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】(2019•杭州模拟)先化简,再求值:(2a+3b )2﹣(2a ﹣3b )2,其中a=.【答案】解:原式=(2a+3b+2a ﹣3b )(2a+3b ﹣2a+3b )=4a×6b=24ab ,当a=,即ab=时,()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x yx x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-原式=24ab=4.类型二、平方差公式的应用3、(2019春•新化县期末)在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x4﹣y4=(x﹣y)(x+y)(x2+y2),当x=9,y=9时,x﹣y=0,x+y=18,x2+y2=162,则密码018162.对于多项式4x3﹣xy2,取x=10,y=10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x3﹣xy2进行因式分解,得到4x3﹣xy2=x(2x+y)(2x﹣y),然后把x=10,y=10代入,分别计算出2x+y=及2x﹣y的值,从而得出密码.【答案与解析】解:原式=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10,2x+y=30,2x﹣y=10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.4、(2019春•成武县期末)阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣. 【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.【巩固练习】一.选择题1.(2019•百色)分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22. (2019春•东平县校级期末)下列多项式相乘,不能用平方差公式的是( )A.(﹣2y ﹣x )(x+2y )B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y+x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C. D. 4. 下列各式,其中因式分解正确的是( )①;② ③④A.1个B.2个C.3个D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( )A .61,63B .61,65C .63,65D .63,676. 乘积应等于( ) ()()2292323a b a b a b -+=+-()()5422228199a ab a a b a b -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭A .B .C .D . 二.填空题 7. ; . 8. 若,将分解因式为__________. 9. 分解因式:_________. 10. 若,则是_________.11. (2019春•深圳期末)若A=(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 .12.(2019•烟台)已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 . 三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)14.(2019秋•蓟县期末)已知(2a+2b+3)(2a+2b ﹣3)=72,求a+b 的值.15.设,,……,(为大于0的自然数) (1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】一.选择题1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】; ; 5121211202311_________m m a a +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422n x x x x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a ba b a a b a b a b -=+-=++-. 4. 【答案】C ;【解析】①②③正确. .5. 【答案】C ; 【解析】6. 【答案】C ;【解析】 二.填空题7. 【答案】;【解析】.8. 【答案】;【解析】. 9. 【答案】;【解析】原式=. 10.【答案】4;【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1,()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212*********=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭111111111111......11112233991010314253108119 (223344991010)1111121020⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m a a a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x ++-=+-=-=(24﹣1)(24+1)(28+1)+1,=(28﹣1)(28+1)+1,=216﹣1+1,=216因为216的末位数字是6,所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y=﹣2,x +y=2, ∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4.三.解答题13.【解析】解:(1)-1998×2000 = (2)(3)14.【解析】解:已知等式变形得:[2(a+b )+3][2(a+b )﹣3]=72,即4(a+b )2﹣9=72,整理得:(a+b )2=,开方得:a+b=±.15.【解析】解:(1)又为非零的自然数,∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数.(2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256. 为一个完全平方数的2倍时,为完全平方数.21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (215050)=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a完全平方公式(提高)【学习目标】1. 能运用完全平方公式把简单的多项式进行因式分解.2. 会综合运用提公因式法和公式法把多项式分解因式;3.发展综合运用知识的能力和逆向思维的习惯.【要点梳理】要点一、公式法——完全平方公式两个数的平方和加上(减去)这两个数的积的2倍,等于这两个数的和(差)的平方. 即,. 形如,的式子叫做完全平方式. 要点诠释:(1)逆用乘法公式将特殊的三项式分解因式;(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)完全平方公式有两个,二者不能互相代替,注意二者的使用条件.(4)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点二、因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解(以后会学到). 要点三、因式分解注意事项(1)因式分解的对象是多项式;(2)最终把多项式化成乘积形式;(3)结果要彻底,即分解到不能再分解为止.【典型例题】类型一、公式法——完全平方公式1、分解因式:(1); (2);(3); (4).【答案与解析】解:(1).(2).(3)()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b 22363ax axy ay -+-42242a a b b -+2222216(4)x y x y -+4224816a a b b -+222223633(2)3()ax axy ay a x xy y a x y -+-=--+=--42242222222()[()()]()()a a b b a b a b a b a b a b -+=-=+-=+-2222216(4)x y x y -+.(4).【总结升华】(1)提公因式法是因式分解的首选法.多项式中各项若有公因式,一定要先提公因式,常用思路是:①提公因式法;②运用公式法.(2)因式分解要分解到每一个因式不能再分解为止.举一反三:【变式】分解因式:(1).(2).【答案】解:(1)原式 .(2)原式 .2、(2019•大庆)已知a+b=3,ab=2,求代数式a 3b+2a 2b 2+ab 3.【思路点拨】先提公因式ab ,再根据完全平方公式进行二次分解,然后带入数据进行计算即可得解.【答案与解析】解:a 3b+2a 2b 2+ab 3= ab (a 2+2ab+b 2)= ab (a+b )2将a+b=3,ab=2代入得,ab (a+b )2=2×32=18.故代数式a 3b+2a 2b 2+ab 3的值是18.【总结升华】在因式分解中要注意整体思想的应用,对于式子较复杂的题目不要轻易去括号. 举一反三:【变式】若,是整数,求证:是一个完全平方数.【答案】解:22222222(4)(4)(44)(44)xy x y xy x y xy x y =-+=++--22222(2)[(44)](2)(2)x y x xy y x y x y =+--+=-+-4224222222816(4)[(2)(2)](2)(2)a a b b a b a b a b a b a b -+=-=+-=+-224()12()()9()x a x a x b x b ++++++22224()4()()x y x y x y +--+-22[2()]22()3()[3()]x a x a x b x b =++⋅+⋅+++22[2()3()](523)x a x b x a b =+++=++22[2()]22()()()x y x y x y x y =+-⋅+⋅-+-22[2()()](3)x y x y x y =+--=+x y ()()()()4234x y x y x y x y y +++++()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令∴上式即 类型二、配方法分解因式3、用配方法来解决一部分二次三项式因式分解的问题,如:那该添什么项就可以配成完全平方公式呢?我们先考虑二次项系数为1的情况:如添上什么就可以成为完全平方式? 因此添加的项应为一次项系数的一半的平方.那么二次项系数不是1的呢?当然是转化为二次项系数为1了.分解因式:.【思路点拨】提出二次项的系数3,转化为二次项系数为1来解决.【答案与解析】解:如 2254x xy y u ++=2422222(2)()(55)u u y y u y x xy y ++=+=++()()()()4222234(55)x y x y x y x y y x xy y +++++=++()()()()()()222282118191313 24x x x x x x x x x --=-+--=--=-+--=+-2x bx +2222()2222b b b x bx x x x ⎛⎫⎛⎫++=+⋅⋅+=+ ⎪ ⎪⎝⎭⎝⎭2352x x +-2252352333x x x x ⎛⎫+-=+- ⎪⎝⎭222555233663x x ⎡⎤⎛⎫⎛⎫=++--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦25493636x ⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦2257366x ⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦575736666x x ⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭()1323x x ⎛⎫=+- ⎪⎝⎭【总结升华】配方法,二次项系数为1的时候,添加的项应为一次项系数的一半的平方. 二次项系数不是1的时候,转化为二次项系数为1来解决.类型三、完全平方公式的应用4、(2019春•娄底期末)先仔细阅读材料,再尝试解决问题:完全平方公式x 2±2xy+y 2=(x±y)2及(x±y)2的值恒为非负数的特点在数学学习中有着广泛的应用,比如探求多项式2x 2+12x ﹣4的最大(小)值时,我们可以这样处理:解:原式=2(x 2+6x ﹣2)=2(x 2+6x+9﹣9﹣2)=2[(x+3)2﹣11]=2(x+3)2﹣22因为无论x 取什么数,都有(x+3)2的值为非负数所以(x+3)2的最小值为0,此时x=﹣3进而2(x+3)2﹣22的最小值是2×0﹣22=﹣22所以当x=﹣3时,原多项式的最小值是﹣22.解决问题:请根据上面的解题思路,探求多项式3x 2﹣6x+12的最小值是多少,并写出对应的x 的取值.【答案与解析】解:原式=3(x 2﹣2x+4)=3(x 2﹣2x+1﹣1+4)=3(x ﹣1)2+9,∵无论x 取什么数,都有(x ﹣1)2的值为非负数,∴(x ﹣1)2的最小值为0,此时x=1,∴3(x ﹣1)2+9的最小值为:3×0+9=9,则当x=1时,原多项式的最小值是9.【总结升华】此题考查了完全平方公式,非负数的性质,以及配方法的应用,熟练掌握完全平方公式是解本题的关键.举一反三:【变式1】若△ABC 的三边长分别为、、,且满足, 求证:.【答案】解:所以a b c 222166100a b c ab bc --++=2a c b +=22216610a b c ab bc --++()()()22222269251035a ab b b bc c a b b c =++--+=+--()()22350a b b c +--=()()2235a b b c +=-所以所以因为△ABC 的三边长分别为、、,,所以,矛盾,舍去.所以.【变式2】(2019春•萧山区期中)若(2019﹣x )(2019﹣x )=2019,则(2019﹣x )2+(2019﹣x )2= .【答案】4032.解:∵(2019﹣x )(2019﹣x )=2019,∴[(2019﹣x )﹣(2019﹣x )]2=(2019﹣x )2+(2019﹣x )2﹣2(2019﹣x )(2019﹣x )=4,则(2019﹣x )2+(2019﹣x )2=4+2×2019=4032. 【巩固练习】一.选择题1. 若是完全平方式,则的值为( )A .-5B .7C .-1D .7或-12.(2019•富顺县校级模拟)下列各式中,不能用完全平方公式分解的个数为( ) ①x 2﹣10x +25;②4a 2+4a ﹣1;③x 2﹣2x ﹣1;④;⑤.A .1个B .2个C .3个D .4个3. 如果是一个完全平方公式,那么是( ) A. B. C. D.4. (2019•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a 2+b 2+c2﹣ab ﹣bc ﹣ac 的值为( )A . 0B . 1C . 2D . 35. 若,则的值为( )A.12B.6C.3D.06. 若为任意实数时,二次三项式的值都不小于0,则常数满足的条件是( )A. B. C. D.二.填空题7.(2019•赤峰)分解因式:4x 2﹣4xy +y 2= .8. 因式分解:=_____________. 9. 因式分解: =_____________.10. 若,=_____________.3(5)a b b c +=±-28a c b b c a +==-或a b c c a b -<8b c a b =-<2a c b +=22(3)16x m x +-+m 24a ab m --m 2116b 2116b -218b 218b -3a b +=222426a ab b ++-x 26x x c -+c 0c ≥9c ≥0c >9c >()222224m nm n +-2221x x y ++-224250x y x y +-++=x y +11. 当取__________时,多项式有最小值_____________.12.(2019•宁波模拟)如果实数x 、y 满足2x 2﹣6xy+9y 2﹣4x+4=0,那么= .三.解答题13.若,,求的值.14.(2019春•怀集县期末)已知a+=,求下列各式的值: (1)(a+)2;(2)(a ﹣)2;(3)a ﹣.15. 若三角形的三边长是,且满足,试判断三角形的形状.小明是这样做的:解:∵,∴.即∵,∴.∴该三角形是等边三角形.仿照小明的解法解答问题:已知: 为三角形的三条边,且,试判断三角形的形状.【答案与解析】一.选择题1. 【答案】D ;【解析】由题意,=±4,.2. 【答案】C ;【解析】② ③ ⑤ 不能用完全平方公式分解.3. 【答案】B ;【解析】,所以,选B. 4. 【答案】D ;【解析】解:由题意可知a ﹣b=﹣1,b ﹣c=﹣1,a ﹣c=﹣2,所求式=(2a 2+2b 2+2c 2﹣2ab ﹣2bc ﹣2ca ),=[(a 2﹣2ab+b 2)+(b 2﹣2bc+c 2)+(a 2﹣2ac+c 2)],=[(a ﹣b )2+(b ﹣c )2+(a ﹣c )2],x 2610x x ++44225a b a b ++=2ab =22a b +a b c 、、2222220a b c ab bc ++--=2222220a b c ab bc ++--=2222(2)(2)0a ab b c bc b -++-+=()()220a b b c -+-=()()220,0a b b c -≥-≥,a b b c a b c ====即a b c 、、2220a b c ab bc ac ++---=3m -71m =-或222211142222a ab m a a b b a b ⎛⎫⎛⎫--=-⋅⋅+=- ⎪ ⎪⎝⎭⎝⎭2144m b -==[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D .5. 【答案】A ;【解析】原式=. 6. 【答案】B ;【解析】,由题意得,,所以.二.填空题 7. 【答案】(2x ﹣y )2 【解析】4x 2﹣4xy +y 2=(2x )2﹣2×2x •y +y 2=(2x ﹣y )2.8. 【答案】; 【解析】.9. 【答案】【解析】. 10.【答案】1;【解析】,所以,. 11.【答案】-3,1;【解析】,当时有最小值1. 12.【答案】.【解析】解:可把条件变成(x 2﹣6xy+9y 2)+(x 2﹣4x+4)=0,即(x ﹣3y )2+(x ﹣2)2=0,因为x ,y 均是实数,∴x﹣3y=0,x ﹣2=0,∴x=2,y=,∴==.故答案为. 三.解答题13.【解析】解:将代入 ()222623612a b +-=⨯-=()()22639x x c x c -+=-+-90c -≥9c ≥()()22m n m n +-()()()()()22222222222422m n m n m n mn m n mn m n m n +-=+++-=+-()()11x y x y +++-()()()222221111x x y x y x y x y ++-=+-=+++-()()2222425210x y x y x y +-++=-++=2,1x y ==-1x y +=()2261031x x x ++=++3x =-44224422222a b a b a b a b a b ++=++-()22222a b a b =+-2ab =()222225a b a b +-=∵≥0,∴=3.14.【解析】解:(1)把a+=代入得:(a+)2=()2=10; (2)∵(a+)2=a 2++2=10,∴a 2+=8,∴(a ﹣)2=a 2+﹣2•a•=8﹣2=6;(3)a ﹣=±=±.15.【解析】 解:∵∴∴∴,该三角形是等边三角形.十字相乘法及分组分解法(提高)【学习目标】1. 熟练掌握首项系数为1的形如型的二次三项式的因式分解.()()2222222259a b a b +-=+=22a b +22a b +2222222220a b c ab bc ac ++---=()()()2222222220a ab bb bc c a ac c -++-++-+=()()()2220a b b c a c -+-+-=000a b b c a c -=⎧⎪-=⎨⎪-=⎩a b c ==pq x q p x +++)(22. 基础较好的同学可进一步掌握首项系数非1的简单的整系数二次三项式的因式分解.3. 对于再学有余力的学生可进一步掌握分数系数;实数系数;字母系数的二次三项式的因式分解.(但应控制好难度)4. 掌握好简单的分组分解法.【要点梳理】要点一、十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则要点诠释:(1)在对分解因式时,要先从常数项的正、负入手,若,则同号(若,则异号),然后依据一次项系数的正负再确定的符号(2)若中的为整数时,要先将分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于,直到凑对为止.要点二、首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.要点诠释:(1)分解思路为“看两端,凑中间”(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上.要点三、分组分解法对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点诠释:分组分解法分解因式常用的思路有:2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2x bx c ++c 0c >p q 、0c <p q 、b p q 、2x bx c ++b c 、c b 2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++a要点四、添、拆项法把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形.添、拆项法分解因式需要一定的技巧性,在仔细观察题目后可先尝试进行添、拆项,在反复尝试中熟练掌握技巧和方法.【典型例题】类型一、十字相乘法1、分解因式:【答案与解析】解:原式=【总结升华】将视作常数,就以为主元十字相乘可解决.举一反三:【变式】分解因式:【答案】解:原式2、分解因式:【思路点拨】该题可以先将看作一个整体进行十字相乘法分解,接着再套用一次十字相乘.【答案与解析】解:因为22(1)(6136)x a x a a++--+()()()212332x a x a a++---()()()()23322332x a x ax a x a=--+-⎡⎤⎡⎤⎣⎦⎣⎦=-++-a x23345xy y x y++--2(34)35(35)(1)y x y x y x y=+-+-=+-+()2a a-所以:原式=[-2][ -12] ==【总结升华】十字相乘法对于二次三项式的分解因式十分方便,大家一定要熟练掌握. 举一反三:【变式】分解因式:;【答案】解:原式3、分解下列因式(1) (2)【答案与解析】解:(1)令, 则原式(2)令, 原式【总结升华】此两道小题结构都非常有特点,欲分解都必须先拆开,再仔细观察每个式子中都存在大量相同的因式→整体性想法.整体性思路又称换元法,这与我们生活中搬家有些类似,要先将一些碎东西找包,会省许多事. 类型二、分组分解法4、分解因式:【思路点拨】对完全平方公式熟悉的同学,一看见该式,首先想到的肯定是式子中前三项恰好构成,第4、5项→.()()()22221214a a a a a a ----=--22(2)(12)a a a a ----()()()()1234a a a a +-+-222(3)2(3)8x x x x ----()()223432x x x x =---+()()()()4112x x x x =-+--22(1)(2)12x x x x ++++-22(33)(34)8x x x x +-++-21x x t ++=222(1)1212(4)(3)(5)(2)t t t t t t x x x x =+-=+-=+-=+++-2(2)(1)(5)x x x x =+-++23x x m +=2(3)(4)820(5)(4)m m m m m m =-+-=+-=+-222(35)(34)(4)(1)(35)x x x x x x x x =+++-=+-++222332x xy y x y -++-+2()x y -3()x y -【答案与解析】解:原式【总结升华】①熟记公式在复杂背景下识别公式架构很重要;②我们前面练习中无论公式、配方、十字相乘一般都只涉及单一字母,其实代数式学习是一个结构的学习,其中任一个字母均可被一个复杂代数式来替代,故有时要有一些整体性认识的想法.举一反三:【变式1】分解因式:(1)(2)(3)【答案】解:(1)原式;(2)原式;(3)原式.【变式2】(2019秋•昌江区校级期末)分解因式:.【答案】解:= ==.类型三、拆项或添项分解因式5、(2019春•吉州区期末)阅读理解:对于二次三项式x 2+2ax+a 2可以直接用公式法分解为(x+a )2的形式,但对于二次三项式x 2+2ax ﹣8a 2,就不能直接用公式法了.我们可以在二次三项式x 2+2ax ﹣8a 2中先加上一项a 2,使其成为完全平方式,再减去a 2这项,使整个式子的值不变,于是又:x 2+2ax ﹣8a 2=x 2+2ax ﹣8a 2+a 2﹣a 2=(x 2+2ax+a 2)﹣8a 2﹣a 2=(x+a )2﹣9a 2=[(x+a )+3a][(x+a )﹣3]2()3()2x y x y =-+-+(1)(2)x y x y =-+-+22a b ac bc -++225533a b a b --+23345xy y x y ++--()()()()()a b a b c a b a b a b c =+-++=+-+()()()()()()()225353553a b a b a b a b a b a b a b =---=+---=-+-233453(1)(1)(5)(1)(35)xy x y y x y y y y x y =++--=+++-=++-2242244241a b c ab ac bc ++--+-2242244241a b c ab ac bc ++--+-()()()2222444241a b ab ac bcc +-+-++-()()()()222222211b a c b a c c -+-++-()()222121b a c b a c -++-+-=(x+4a )(x ﹣2a )像这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请认真阅读以上的添(拆)项法,并用上述方法将二次三项式:x 2+2ax ﹣3a 2分解因式.(2)直接填空:请用上述的添项法将方程的x 2﹣4xy+3y 2=0化为(x ﹣ )•(x ﹣ )=0并直接写出y 与x 的关系式.(满足xy≠0,且x≠y)(3)先化简﹣﹣,再利用(2)中y 与x 的关系式求值.【答案与解析】解:(1)x 2+2ax ﹣3a2 =x 2+2ax+a 2﹣4a2 =(x+a )2﹣4a2 =(x+a+2a )(x+a ﹣2a )=(x+3a )(x ﹣a );(2)x 2﹣4xy+3y2 =x 2﹣4xy+4y 2﹣y2 =(x ﹣2y )2﹣y2 =(x ﹣2y+y )(x ﹣2y ﹣y )=(x ﹣y )(x ﹣3y );x=y 或x=3y ;故答案为:y ;3y(3)原式===﹣, 若x=y ,原式=﹣2;若x=3y ,原式=﹣. 【总结升华】此题考查了因式分解﹣添(拆)项法,正确地添(拆)项是解本题的关键.【巩固练习】一.选择题1. (2019秋·惠民县期末)如果多项式能因式分解为,那么下列结论正确的是 ( ).A.=6B.=1C.=-2D.=32. 若,且,则的值为( ). A.5 B.-6 C.-5 D.63. 将因式分解的结果是( ).2322mx nx --()()32x x p ++m n p mnp ()2230x a b x ab x x +++=--b a <b ()()256x y x y +-+-A. B.C. D.4.(滨湖区校级期中)把多项式1+a+b+ab 分解因式的结果是( )A .(a ﹣1)(b ﹣1)B .(a+1)(b+1)C .(a+1)(b ﹣1)D .(a ﹣1)(b+1)5. 对运用分组分解法分解因式,分组正确的是( )A. B.C. D.6.如果有一个因式为,那么的值是( )A. -9B.9C.-1D.1二.填空题7.(2019•黄冈模拟)分解因式: .8. 分解因式:= .9.分解因式的结果是__________.10. 如果代数式有一因式,则的值为_________. 11.若有因式,则另外的因式是_________.12. 分解因式:(1);(2)三.解答题13. 已知,, 求的值.14. 分解下列因式:(1)(2)(3)(4) 15.(2019•巴南区一模)先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.()()23x y x y +++-()()23x y x y +-++()()61x y x y +-++()()61x y x y +++-224293x x y y +--22(42)(93)x x y y ++--22(49)(23)x y x y -+-22(43)(29)x y x y -+-22(423)9x x y y +--3233x x x m +-+()3x +m 2242y xy x --+=224202536a ab b -+-5321x x x -+-a 3223a a b ab b --+()a b -3)32(2-+-+k x k kx mn m x m n x -+-+22)2(0x y +=31x y +=2231213x xy y ++()()128222+---a a a a 32344xy xy x y x y -++42222459x y x y y --43226a a a +-如:ax+by+bx+ay=(ax+bx )+(ay+by )=x (a+b )+y (a+b )=(a+b )(x+y )2xy+y 2﹣1+x 2=x 2+2xy+y 2﹣1=(x+y )2﹣1=(x+y+1)(x+y ﹣1)(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 2+2x ﹣3=x 2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 2﹣b 2+a ﹣b ;(2)分解因式:x 2﹣6x ﹣7;(3)分解因式:a 2+4ab ﹣5b 2. 【答案与解析】一.选择题1. 【答案】B ;【解析】, ∴,解得.2. 【答案】B ;【解析】,由,所以. 3. 【答案】C ;【解析】把看成一个整体,分解.4. 【答案】B ;【解析】解:1+a+b+ab=(1+a )+b (1+a )=(1+a )(1+b ).故选:B .5. 【答案】B ;【解析】A 各组经过提取公因式后,组与组之间无公因式可提取,所以分组不合理.B 第一组可用平方差公式分解得,与第二组有公因式可提取,所以分组合理,C 与D 各组均无公因式,也不符合公式,所以无法继续进行下去,分组不合理.6. 【答案】A ;【解析】由题意当时,代数式为零,解得.二.填空题()()()223233222x x p x p x p mx nx ++=+++=--22,32p p n =-+=-1n =()()23065x x x x --=-+b a <6b =-()x y +()()()()25661x y x y x y x y +-+-=+-++()()2323x y x y +-23x y-3x =-9m =-7. 【答案】. 【解析】解:===.8. 【答案】; 【解析】原式9. 【答案】;【解析】原式.10.【答案】16;【解析】由题意当时,代数式等于0,解得. 11.【答案】; 【解析】.12.【答案】;; 【解析】;.三.解答题13.【解析】解:由,解得 所以,原式.14.【解析】解:(1)原式;()()22x y x y -+--2242y xy x --+()2224y xy x -+-()24x y --()()22x y x y -+--()()256256a b a b -+--()224202536a ab b=-+-()()()22256256256a b a b a b =--=-+--()()()22111x x x x +--+()()()()()()()23222321111111x xx x x x x x x =-+-=-+=+--+4x =16a =()()a b a b -+()()322322a a b ab b aa b b a b --+=---()()2a b a b =-+()()31kx k x +-+()()x m x m n --+()()2(23)331kx k x k kx k x +-+-=+-+()()()()22(2)x n m x m mn x m x m n x m x m n +-+-=---=--+⎡⎤⎣⎦()()22231213334x xy y x y x y y ++=+++0x y +=31x y +=12y =21301412⎛⎫=⨯⨯+⨯= ⎪⎝⎭()()()()()()22261223a a a a a a a a =----=+-+-。
因式分解 北师大版数学八年级下册期末复习
(选做题)1.观察下列各式:3²-1²=8×1, 5²-3²=8×2,7²-5²=8×3,……,探索以上式子的规律, 试写出第n个等式,并运用所学的数学知识说明你所写 式子的正确性.
解:规律:(2n+1)²-(2n-1)²=8n 验证: (2n+1)²-(2n-1)²
1、整式乘法与分解因式的概念易混 2、分解因式要彻底
3.(x 5)(x 3)是多项式x2 px 15分解因式的结果, 则5. p的值是 8 .
6.多项式 a(a x)(x b) ab(a x)(b x) 的公因式是( B )
A.-a B. a(a x)(x b) C. a(a x) D. a(x a)
7.若 mx 2 kx 9 (2x 3)2 ,则m,k的值分别是( C )
=3a(a+2b)
(2)原式=[(x²-5)+1]² (3)原式=(x²+y²)²-4(x²+y²)+4
=(x²-4)²
=[(x²+y²)-2]²
=[(x+2)(x-2)]²
=(x²+y²-2)²
=(x+2)²(x-2)²
2.已知:a,b,c是△ABC的三边长,且满足
a2b a2c b3 b2c 0 ,试判断三角形的形状.
2.下列各式中:①x2﹣6x+9; ②25a2+10a﹣1; ③x2﹣4x+4; ④a2+a+ .其中能用完全平方公式
因式分解的个数为( C )
A.1
B.2
C.3
D.4
3.因式分解(1)a²-4a-b²+4=_(_a_-_2_+_b_)_(_a_-_2_-_b)
北师大版初二数学下册数学八年级下北师大第四章因式分解
6.(x+y+z)²-(x-y-z)²=(x+y+z+x-y-z)(x+y+z-x+y+z) =2x(2y+2z)
7.4xy²-4x²y-y³=y(4xy-4x²-y²)
8.x²-6x+8=(x-2)(x-4)
1.把下列各式分解因式. (1) 5a²-20b²; (2) p²(a-1)+p(1-a)²; (3)a²(x-y) + 9b²(y-x); (4)(a²-4)²+6(a²-4)+9 .
1. b²- 2b-8=b (b-2 ) – 8; 2. 2x3 4x 2 2x =2x(x²+2x); 3.x(x+y)(x-y)-x(x+y)²=x(x+y)(x-y-x-y); 4.p4 - 1=(p²+1)(p²-1); 5.mn(m-n)-m(n-m)²=mn(m-n)+m(m-n)²
提公因式法 运用公式法
平方差公式 a2 b2 (a b)(a b)
完全平方公式 a2 2ab b2 (a b)2
如果把乘法公式反过来,那 么就可以用来把某些多项式 分解因式,这种分解因式的 方法叫做运用公式法。
下列各式的因式分解是否正确?如果不正确, 应怎样改正?你能从中得到什么启示?
2.你能把下列各式分解因式吗?
(1)x²-y²-2y-1 (2) m²-4mn+3n²
解:(1)原式=x²-(y²+2y+1 ) =x²-(y+1) ² =(x+y+1)(x-y-1)
(2)原式= m²-4mn+4n²-n² =(m-2n) ²-n² =(m-2n+n)(m-2n-n) =(m-n)(m-3n)
北师版八年级下册数学第4章 因式分解 直接提公因式法
感悟新知
是;4 两项都有x,y,且x的最低次数是1,y的
知1-练
最低27次数是2,所以公因式是 4 xy2 .
(3)观察发现三项都含有x-y,2且7 x-y的最低次数是2,所以
公
因式是(x-y)2.
(4)此多项式的第一项是“-”号,应将“-”提取变为-
(27a2b3-36a3b2-9a2b).多项式27a2b3-36a3b2-9a2b各项
感悟新知
5. 下列多项式因式分解正确的是( B ) A.8abx-12a2x2=4abx(2-3ax) B.-6x3+6x2-12x=-6x(x2-x+2) C.4x2-6xy+2x=2x(2x-3y) D.-3a2y+9ay-6y=-3y(a2+3a-2)
知2-练
感悟新知
6. 已知x2-2x-3=0,则2x2-4x的值 为( )
感悟新知
知识点 1 公因式
知1-讲
多项式ab+bc各项都含有相同的因式吗?多项式 3x2+x呢?多项式mb2+nb-b呢?尝试将这几个多 项 式分别写成几个因式的乘积,并与同伴交流.
感悟新知
公因式的定义: 一个多项式各项都含有的相同因式,叫做这个 多项式各项的公因式.
知1-讲
感悟新知
特别解读:
系数的最大公约数是9;各项都有a,b,且a的最低次数是2,b
的最低次数是1,所以这个多项式各项的公因式是-9a2b.
感悟新知
归纳
知1-讲
找准公因式要“五看”,即:一看系数:若各项系数都是整 数,应提取各项的系数的最大公约数;二看字母:公因式的 字母是各项相同的字母;三看字母的次数:各相同字母的指 数取次数最低的;四看整体:如果多项式中含有相同的多项 式,应将其看作整体,不要拆开;五看首项符号,若多项式 中首项是“-”,一般情况下公因式符号为负.
4.2 提公因式法 北师大版数学八年级下册同步练习(含解析)
第四章 因式分解2 提公因式法基础过关全练知识点1 公因式1.下列各个多项式的各项中,有公因式的是( )A.x 2-9y 2B.x 2-3x +5C.a 3+b 3D.a 3b -ab 2+ab2.(2021河北邢台威县期末)将12m 2n +6mn 用提公因式法分解因式,应提取的公因式是( )A.6mB.m 2nC.6mnD.12mn3.(2022重庆沙坪坝期中)把多项式x 2y 5-xy n z 因式分解时,提取的公因式是xy 5,则n 的值可能为( )A.6B.4C.3D.2知识点2 提公因式法分解因式4.(2022辽宁葫芦岛兴城期末)多项式m 2-4m 分解因式的结果是 ( )A.m (m -4)B.(m +2)(m -2)C.m (m +2)(m -2)D.(m -2)25.(2020陕西西安碑林月考)如果多项式15abc +15ab 2-a 2bc 各项的一个因式是15ab ,那么另一个因式是 ( )A.c -b +5acB.c +b -5acC.15acD.-15ac 6.(2022河北石家庄二模)计算(-2)2 021+(-2)2 022的结果是 ( )A.22 021B.-2C.-22 021D.-17.下列各式成立的是()A.-x-y=-(x-y)B.y-x=x-yC.(x-y)2=(y-x)2D.(x-y)3=(y-x)38.(2022陕西西安碑林期中)把5(a-b)+m(b-a)提公因式后,一个因式是(a-b),则另一个因式是()A.5-mB.5+mC.m-5D.-m-59.(2022山东潍坊潍城一模)将多项式(a-1)2-a+1因式分解,结果正确的是() A.a-1 B.(a-1)(a-2)C.(a-1)2D.(a+1)(a-1)10.【新独家原创】村委会计划在半山腰打一口井,既能方便植树造林改变环境,也能方便居民用水,他们计划造一个长方形水槽便于存水,如图,长和宽分别为a、b的长方形水槽的周长为68,面积为280,则a2b+ab2的值为.11.若9a2(x-y)+3a(x-y)2=m(3a+x-y),则m=.12.因式分解:4(x-y)3-6(y-x)2=.13.把下列各式因式分解:(1)-18m2n+27mn2-9mn;(2)2x m y n+1-4x m+1y n-1;(3)6a(a-b)2-3(a-b);(4)a(x-2)(x+2)-a(2-x)2;(5)3(m-n)3-6m(n-m)2.能力提升全练14.(2022四川眉山中考,13,)分解因式:2x2-8x=.15.(2022山西省实验中学期中,21,)分解因式:6m-3m2=.16.(2022重庆南开中学期中,14,)若mn=3,n-m=2,则mn2-m2n=.17.(2022辽宁本溪期中,13,)计算:4.3×202.2+7.6×202.2-1.9×202.2=.18.(2022辽宁本溪期中,21,)因式分解:(1)-24x3+12x2-28x;(2)6(m-n)3-12(m-n)2.19.(2022江西萍乡湘东期中,15,)因式分解:(1)a(m-n)+b(n-m);(2)(a-3)2+2a-6.素养探究全练20.【应用意识】阅读理解:把多项式am+an+bm+bn分解因式.解法一:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).解法二:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b).(1)分解因式:m2x-3m+mnx-3n;(2)已知a,b,c为△ABC的三边长,且a3-a2b+5ac-5bc=0,试判断△ABC的形状.答案全解全析基础过关全练1.D D 选项中,各项的公因式是ab.2.C 12m 2n +6mn 中,各项的公因式是6mn.故选C .3.A 把多项式x 2y 5-xy n z 因式分解时,提取的公因式是xy 5,则n ≥5,故选A .4.A m 2-4m =m (m -4),故选A .5.B 15abc +15ab 2-a 2bc =15ab (c +b -5ac ), 故另一个因式为c +b -5ac.故选B.6.A (-2)2 021+(-2)2 022=(-2)2 021×(1-2)=22 021.故选A .7.C -(x -y )=-x +y ,故A 不成立;y -x =-(x -y ),故B 不成立;(x -y )2=[-(y -x )]2=(y -x )2,故C 成立;(x -y )3=[-(y -x )]3=-(y -x )3,故D 不成立.故选C .8.A 原式=5(a -b )-m (a -b )=(a -b )(5-m ),∴另一个因式是5-m ,故选A .9.B (a -1)2-a +1=(a -1)2-(a -1)=(a -1)(a -1-1)=(a -1)(a -2).故选B .10.答案 9 520解析 由已知得2(a +b )=68,ab =280,∴a +b =34,∴a 2b +ab 2=ab (a +b )=280×34=9 520.11.答案3a(x-y)解析∵9a2(x-y)+3a(x-y)2=3a(x-y)(3a+x-y)=m(3a+x-y),∴m=3a(x-y).12.答案2(x-y)2(2x-2y-3)解析4(x-y)3-6(y-x)2=4(x-y)3-6(x-y)2=2(x-y)2(2x-2y-3).13.解析(1)-18m2n+27mn2-9mn=-9mn(2m-3n+1).(2)2x m y n+1-4x m+1y n-1=2x m y n-1(y2-2x).(3)6a(a-b)2-3(a-b)=3(a-b)[2a(a-b)-1]=3(a-b)(2a2-2ab-1).(4)a(x-2)(x+2)-a(2-x)2=a(x-2)(x+2)-a(x-2)2=a(x-2)[(x+2)-(x-2)]=4a(x-2).(5)3(m-n)3-6m(n-m)2=3(m-n)3-6m(m-n)2=3(m-n)2(m-n-2m)=3(m-n)2(-m-n)=-3(m-n)2(m+n).能力提升全练14.答案2x(x-4)解析直接提取公因式2x.15.答案3m(2-m)解析6m-3m2=3m(2-m).16.答案 6解析∵mn=3,n-m=2,∴mn2-m2n=mn(n-m)=3×2=6.17.答案 2 022解析4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2 022.18.解析(1)原式=-4x(6x2-3x+7).(2)原式=6(m-n)2(m-n-2).19.解析(1)原式=a(m-n)-b(m-n)=(a-b)(m-n).(2)原式=(a-3)2+2(a-3)=(a-3)(a-3+2)=(a-3)(a-1).素养探究全练20.解析(1)原式=m(mx-3)+n(mx-3)=(mx-3)(m+n).(2)∵a3-a2b+5ac-5bc=0,∴a2(a-b)+5c(a-b)=0,∴(a-b)(a2+5c)=0,∵a,b,c为△ABC的三边长,∴a2+5c≠0,∴a-b=0,∴a=b,∴△ABC是等腰三角形.。
新北师大版八年级数学下册第四章《因式分解》单元复习题含答案解析 (13)
(共25题)一、选择题(共10题)1.将多项式ax2−4ax+4a分解因式,下列结果中正确的是( )A.a(x−2)2B.a(x+2)2C.a(x−4)2D.a(x+2)(x−2)2.已知∣a∣=5,b2=16,且ab<0,那么a−b的值为( )A.1B.9C.1或−1D.±93.在数学活动课上,同学们利用如图的程序进行计算,发现无论x取任何正整数,结果都会进入循环.下面选项一定不是该循环的是A.4,2,1B.2,1,4C.1,4,2D.2,4,14.若xy>0,则∣x∣x +∣y∣∣y+1的值为( )A.−2B.3或−2C.3D.−1或35.若a,b互为相反数,c,d互为倒数,∣m∣=2,则代数式m2−3cd+a+bm的值为( ) A.−1B.1C.−7D.1或−76.按如图所示的运算程序,能使输出结果的值为11的是( )A.x=3,y=1B.x=2,y=2C.x=2,y=3D.x=0,y=1.5 7.已知x−2y=−3,则3(x−2y)2−5(x−2y)+6=( ).A.−6B.48C.−36D.188.对于正整数n,我们定义一种“运算”:①当n为奇数时,结果为n+1;②当n为偶数时,结果12n,并且运算重复进行.例如,取n=9,则若n=12,则第2019次运算的结果是( )A.2018B.2017C.2D.19.下列从左到右的变形,是因式分解的是( )A.(x−1)(x=2)=(x+2)(x−1)B.m2−1=(m+1)(m−1)C.x2+1=x(x+1x)D.a(a−b)(b+1)=(a2−ab)(b+1)10.下列多项式中,分解因式不正确的是( )A.a2+2ab=a(a+2b)B.a2−b2=(a+b)(a−b)C.a2+b2=(a+b)2D.4a2+4ab+b2=(2a+b)2二、填空题(共7题)11.计算(1−1112)(1−1122)(1−1132)⋯(1−1212)=.12.如果代数式3a+b的值为−4,那么代数式2(a+b)−4(2a+b)的值为.13.若多项式100x2+M能用平方差公式分解因式,则M代表的整式为.(写出一个即可)14.分解因式:x3+(2a+1)x2+(a2+2a−1)x+(a2−1)=.15.已知:xb+c−a =yc+a−b=za+b−c,则(b−c)x+(c−a)y+(a−b)z的值为.16.分解因式:x4+x2−2ax−a2+1=.17.分解因式:3y2−12=.三、解答题(共8题)18.已知关于x的代数式ax+b(a≠0),设代数式的值为y.(1) 如表中列出了当 x 分别取 −1,0,1,2 时对应的 y 值,则 a 的值为 ,b 的值为 .x⋯−1012⋯y⋯852−1⋯(2) 当 x 分别取 x 1,x 2 时,代数式的值分别记为 y 1,y 2.①若 x 1=m ,x 2=n 且 m −n =−1,y 1 比 y 2 大 5,求 a 的值; ②若 x 1=k ,x 2=k −1,比较 y 1 与 y 2 的大小.19. 假设图中由四个相邻点围成的正方形面积是一个单位面积,如何计算图 ① 点阵中多边形的面积?你可以把多边形分成若干小正方形和三角形,分别计算面积后相加,这是一个不错的办法.或者你可能想到通过剪拼的方法来计算,这个想法也很好.奥地利数学家皮克(Georg Pick ,1859∼1943)发现了一个计算点阵中多边形面积的公式:S =a +12b −1,其中 a 表示多边形内部的点数,b 表示多边形边界上的点数,S 表示多边形的面积.如图 ①,a =3,b =10,所以多边形面积 S =3+12×10−1=7(单位面积).这个结果与你算出的结果相同吗?请你在图 ② 的点阵中画一个多边形,并利用皮克公式计算它的面积.20. 为方便市民出行,甲、乙两家公司推出专车服务,运价收费如下:设行驶路程 x km 时,用含 x 的代数式表示乙公司的运价.(1) 当 3<x ≤6 时,则费用表示为 元;当 x >6 时,则费用表示为 元. (2) 当行驶路程 10 km 时,对于乘客来说,哪个专车更合算,为什么? (3) 当行驶路程 x km 时,对于乘客来说,哪个专车更合算,为什么?21. 因式分解:2x −8x 3.22.一个三位自然数abc(百位上的数字为a,十位上的数字为b,个位上的数字为c).若满足a+c=b,则称这个三位数为“和悦数”,并规定F(abc)=ac.如231,因为它的百位上的数字2与个位上的数字1之和等于十位上的数字3.所以231是“和悦数”,所以F(231)=2×1=2.(1) 请任意写出两个“和悦数”,并猜想任意一个“和悦数”是否是11的倍数,请说明理由;(2) 已知有两个十位上的数字相同的“和悦数”m,n(m>n),若F(m)−F(n)=5,求m−n的值.23.如图,是一个计算装置示意图,A,B是数据输入口,C是计算输出口,计算过程是由A,B分别输入自然数m和n,经计算后得自然数k由C输出,此种计算装置完成的计算满足以下三个性质:(1)若A,B分别输入1,则输出结果为1;(2)若A输入任何固定的自然数不变,B输入的自然数增大1,则输出结果比原来增大2;(3)若B输入任何固定的自然数不变,A输入的自然数增大1,则输出结果为原来的2倍.求:(1) 若A输入1,B输入4,此时的输出结果.(2) 若B输入1,A输入5,此时的输出结果.24.若一个正整数x能表示成a2−b2(a,b是正整数,且a>b)的形式,则称这个数为“明礼崇德数”,a与b是x的一个平方差分解.例如:因为5=32−22,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:M=x2+2xy=x2+2xy+y2−y2=(x+y)2−y2(x,y是正整数),所以M也是“明礼崇德数”,(x+y)与y是M的一个平方差分解.(1) 判断:9“明礼崇德数”(填“是”或“不是”).(2) 已知N=x2−y2+4x−6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.(3) 对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m既是“七喜数”,又是“明礼崇德数”,请求出m的所有平方差分解.25. 请回答问题:(1) 在实数范围内分解下列因式,将结果直接写在横线上:x 2−10x +25= . 19x 2+23x +1= .x 2−2√2x +2= .(2) 观察上述三个多项式的系数,有 (−10)2=4×1×25,(23)2=4×19×1,(2√2)2=4×1×2,于是猜测:若多项式 ax 2+bx +c (a >0) 是完全平方式,那么系数 a ,b ,c 之间一定存在某种关系.请你用数学式子表示这一猜想 .(3) 若多项式 x 2−2ax +c 和 x 2+2cx +a 都是完全平方式,利用(2)中的规律求 ac 的值.答案一、选择题(共10题) 1. 【答案】A【解析】ax 2−4ax +4a=a (x 2−4x +4)=a (x −2)2.【知识点】完全平方式、提公因式法2. 【答案】D【解析】 ∵∣a∣=5,b 2=16, ∴a =±5,b =±4, ∵ab <0,∴a =5,b =−4 或 a =−5,b =4, 则 a −b =9 或 −9, 故选:D .【知识点】绝对值的性质、简单的代数式求值3. 【答案】D【解析】如图的程序按照 4,2,1,4,2,1,⋯⋯ 循环. 【知识点】简单的代数式求值4. 【答案】D【解析】 ∵xy >0,∴x >0,y >0 或 x <0,y <0.①当 x >0,y >0 时,原式=1+1+1=3; ②当 x <0,y <0 时,原式=−1+−1+1=−1. 【知识点】简单的代数式求值5. 【答案】B【解析】 ∵a ,b 互为相反数,c ,d 互为倒数,∣m ∣=2, ∴a +b =0,cd =1,m =±2, ∴m 2−3cd +a+b m=4−3+0=1.【知识点】简单的代数式求值6. 【答案】A【解析】A 、把 x =3,y =1 代入运算程序中得:输出结果为 9+2=11,符合题意; B 、把 x =2,y =2 代入运算程序中得:4−4=0,不符合题意; C 、把 x =2,y =3,代入运算程序中得:4−6=−2,不符合题意; D 、把 x =0,y =1.5 代入运算程序得:0−3=−3,不符合题意.【知识点】简单的代数式求值7. 【答案】B【解析】考察整体代入,x−2y=−3,则3(x−2y)2−5(x−2y)+6=3×(−3)2−5×(−3)+ 6=27+15+6=48.【知识点】简单的代数式求值8. 【答案】D【解析】当n=12时,第一次运算结果为:6,第二次运算结果为:3,第三次运算结果为:4,第四次运算结果为:2,第五次运算结果为:1,第六次运算结果为:2,发现:当运算次数大于三次时,第奇数次运算结果为1,第偶数次结果为2.所以第2019次运算结果为:1.【知识点】简单的代数式求值9. 【答案】B【解析】A.是乘法交换律,故A错误;B.把一个多项式转化成几个整式积的形式,故B正确;C.没把一个多项式转化成几个整式积的形式,故C错误;D.整式的乘法,故D错误.【知识点】因式分解的定义10. 【答案】C【解析】A.原式=a(a+2b),不符合题意;B,原式=(a+b)(a−b),不符合题意;C.原式不能分解,符合题意;D.原式=(2a+b)2,不符合题意.【知识点】完全平方式二、填空题(共7题)11. 【答案】2021【解析】原式=(1+111)(1−111)(1+112)(1−112)⋯(1+121)(1−121)=1011×1112×⋯×2021×1211×1312×⋯×2221=1021×2211=20.【知识点】平方差12. 【答案】8【解析】2(a+b)−4(2a+b)=2a+2b−8a−4b=−6a−2b=−(6a+2b)=−2(3a+b),∵3a+b=−4,整体代入后,得2(a+b)−4(2a+b)=−2×(−4)=8.【知识点】整式的加减运算、简单的代数式求值13. 【答案】−1(答案不唯一)【解析】答案不唯一,当M=−1时,100x2+M=100x2−1=(10x)2−12=(10x+1)(10x−1).【知识点】平方差14. 【答案】(x+1)(x+a+1)(x+a−1)【知识点】分组分解法15. 【答案】0【解析】设xb+c−a =yc+a−b=za+b−c=m,则x=(b+c−a)m,y=(c+a−b)m,z=(a+b−c)m,(b−c)x+(c−a)y+(a−b)z=(b−c)(b+c−a)m+(c−a)(c+a−b)m+(a−b)(a+b−c)m=(b2−c2+c2−a2+a2−b2)m+(ac−ab−bc+ab−ac+bc)m=0【知识点】简单的代数式求值16. 【答案】(x2+x+a+1)(x2−x−a+1)【知识点】分组分解法17. 【答案】3(y+2)(y−2)【解析】3y2−12=3(y2−4)=3(y+2)(y−2).【知识点】平方差三、解答题(共8题) 18. 【答案】(1) −3;5(2) ① ∵x 1=m ,x 2=n ,∴y 1=ax 1+b =am +b ,y 2=ax 2+b =an +b , ∵y 1 比 y 2 大 5,∴y 1−y 2=am −an =a (m −n )=5, ∴a =5m−n,∵m −n =−1, ∴a =−5;② ∵x 1=k ,x 2=k −1,∴y 1=−3k +5,y 2=−3(k −1)+5, ∴y 1−y 2=−3<0, ∴y 1<y 2. 【解析】(1) 当 x =−1 时,y =8; 当 x =0 时,y =5, ∴{−a +b =8,b =5.解得:{a =−3,b =5.【知识点】简单的代数式求值、二元一次方程组的应用19. 【答案】略【知识点】简单的代数式求值20. 【答案】(1) (1.6x +2.2);(2.2x −1.4)(2) 当行驶路程 10 km 时,甲公司的运价为:6+2.1(10−3)=20.7(元); 乙公司的运价为:2.2×10−1.4=20.6(元); ∵20.7>20.6,∴ 当行驶路程 10 km 时,对于乘客来说,乙公司的专车更合算. (3) ①当 x ≤3 时,对于乘客来说,显然甲公司的专车更合算.②当 3<x ≤6 时,甲公司的运价为:6+2.1(x −3)=2.1x −0.3(元),乙公司的运价为 (1.6x +2.2) 元.如果 2.1x −0.3=1.6x +2.2,那么 x =5.即当 3<x <5 时,对于乘客来说,甲公司的专车更合算; 当 x =5 时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x≤6时,对于乘客来说,乙公司的专车更合算;②当x>6时,甲公司的运价为:6+2.1(x−3)=2.1x−0.3(元),乙公司的运价为(2.2x−1.4)元.如果2.1x−0.3=2.2x−1.4,那么x=11.即当6<x<11时,对于乘客来说,乙公司的专车更合算;当x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;;当x>11时,对于乘客来说,甲公司的专车更合算.综上所述,当x<5或x>1时,对于乘客来说,甲公司的专车更合算;当x=5或x=11时,对于乘客来说,甲、乙两家公司的专车一样合算;当5<x<11时,对于乘客来说,乙公司的专车更合算.【解析】(1) 当3<x≤6时,乙公司的运价为:7+1.6(x−3)=1.6x+2.2(元);当x>6时,乙公司的运价为:7+1.6×3+2.2(x−6)=2.2x−1.4(元).【知识点】简单列代数式、一元一次方程的应用、简单的代数式求值21. 【答案】2x(1+2x)(1−2x).【知识点】提公因式法、平方差22. 【答案】(1) 设三位自然数为abc(1≤a≤9,0<b≤9,0<c≤9的整数),∵三位数abc是“和悦数”,∴b=a+c,取a=2,c=5,则b=7,∴三位数为275,取a=5,c=3,则b=8,∴三位数为583,任意一个“和悦数”是11的倍数,设三位自然数为abc,∵三位数abc是“和悦数”,∴b=a+c,∴三位数为100a+10(a+c)+c=110a+11c=11(10a+c),∵a,c是整数,∴10a+c是整数,∴11(10a+c)能被11整除,即:任意一个“和悦数”是11的倍数.(2) 设两个十位上的数字相同的“和悦数”为m=abc,n=ebd,(a≥e,当a=e时,c>d),则b=a+c=e+d,∴c−d=e−a,c=b−a.d=b−e.∴F(m)=a⋅c=a(b−c),F(n)=e⋅d=e(b−e),∵F(m)−F(n)=5,∴a ⋅(b −a )−e (b −e )=ab −a 2−eb −e 2=(ab −eb )−(a 2−e 2)=b (a −e )−(a +e )(a −e )=(a −e )(b −a −e )=5,∵a ,b ,e 是整数,∴a −e =1 或 a −e =5,∴m −n =(100a +10b +c )−(100e +10b +d )=(110a +11c )−(110e +11d )=110(a −e )+11(c −d )=110(a −e )−11(a −e )=99(a −e )=99 或 495.【知识点】提公因式法、整式的加减运算、平方差23. 【答案】(1) 根据题意得当 A 输入 1,B 输入 4 时,输出结果为 1+(4−1)×2=7.(2) 当 B 输入 1,A 输入 5 时,输出结果为 1×2×2×2×2=16.【知识点】简单的代数式求值、简单列代数式24. 【答案】(1) 是(2) ∵N =x 2−y 2+4x −6y +k ,∴N =(x 2+4x )−(y 2+6y )+k=(x 2+4x +4−4)−(y 2+6y +9−9)+k=(x +2)2−(y +32)−4+9+k =(x +2)2−(y +3)2+5+k,∵x >y +1,∴x +2>y +3,∴ 当 5+k =0 即 k =−5 时,N 是明礼崇德数,∴k =−5.(3) 满足条件的七喜数有 178,279 两个,∵m =a 2−b 2=(a +b )(a −b ) 时 x 是明礼崇德数,①当 m =178 时,m =1×178=2×89,i )当 m =1×178 时,{a +b =178,a −b =1,∴a =1792,b =1772,∵a ,b 均不为整数,∴ 不符合题意舍去,ii )当 m =2×89 时,{a +b =89,a −b =2,解之得 a =912,b =872,∵a ,b 均不为整数,∴ 不符合题意舍去,②当 m =279 时,m =1×279=3×93=9×31,i )当 m =1×279 时,{a +b =279,a −b =1,解之得 a =140,b =139,ii )当 m =3×93 时,{a +b =93,a −b =3,解之得 a =48,b =45,iii )当 m =9×31 时,{a +b =31,a −b =9,解之得 a =20,b =11,综上所述,m 既是“七喜数”又是明礼崇德数的所有平方差分解为 140 和 139,48 和 45,20 和 11.【解析】(1) ∵9=52−42=25−16,∴9 是明礼崇德数.【知识点】完全平方式、平方差、解二元一次方程组25. 【答案】(1) (x −5)2;(13x +1)2;(x −√2)2(2) b 2=4ac(3) 由题意得:{(2a )2=4c,(2c )2=4a,∴{a 2=c,c 2=a.∴a 2c 2=ac ,ac =1 或 0.【解析】(2) 由例子总结规律b2=4ac.【知识点】完全平方式、用代数式表示规律。
2020北师大版八年级数学下册:因式分解专题 用提公因式法(含答案)
【文库独家】1、用提公因式法把多项式进行因式分解【知识精读】如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。
提公因式法是因式分解的最基本也是最常用的方法。
它的理论依据就是乘法分配律。
多项式的公因式的确定方法是:(1)当多项式有相同字母时,取相同字母的最低次幂。
(2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。
下面我们通过例题进一步学习用提公因式法因式分解 【分类解析】1. 把下列各式因式分解 (1)(2)分析:(1)若多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数是正数,在提出“-”号后,多项式的各项都要变号。
解:(2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n 为自然数时,,是在因式分解过程中常用的因式变换。
解:)243)((]2)(2))[(()(2)(2)(222223b b ab a b a a b b a a b a b a a b a ab b a a b a a ++--=+-+--=-+-+-=2. 利用提公因式法简化计算过程 例:计算1368987521136898745613689872681368987123⨯+⨯+⨯+⨯分析:算式中每一项都含有,可以把它看成公因式提取出来,再算出结果。
解:原式)521456268123(1368987+++⨯=3. 在多项式恒等变形中的应用 例:不解方程组,求代数式的值。
分析:不要求解方程组,我们可以把和看成整体,它们的值分别是3和,观察代数式,发现每一项都含有,利用提公因式法把代数式恒等变形,化为含有和的式子,即可求出结果。
解:把和分别为3和带入上式,求得代数式的值是。
4. 在代数证明题中的应用例:证明:对于任意自然数n ,一定是10的倍数。
分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。
北师大版数学八年级下册因式分解强化练习题
北师大版数学八年级下册因式分解强化练习题第四章因式分解期末复题题型一:直接提公因式1、因式分解:xy-y=y(x-1)2、分解因式:x^2+2x=x(x+2)3、分解因式:x^2-4=(x+2)(x-2)4、分解因式:2a^2-4a=2a(a-2)5、因式分解:2x^3-x^2=x^2(2x-1)6、分解因式:ax+ay=a(x+y)7、分解因式:7x^321x^2=7x^2(x-3)8、分解因式:x^23x=x(x+3)题型二:直接用公式平方差公式:a^2b^2(a b)(a b)a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^2完全平方公式:(a+b)^2=a^2+2ab+b^2a-b)^2=a^2-2ab+b^21、分解因式:x^2-25=(x+5)(x-5)2、分解因式:x^2-4=(x+2)(x-2)3、因式分解:a^2+5a=a(a+5)4、分解因式:x^2-4=-1(x+2)(x-2)5、因式分解:2-4y^2=-2(2y+1)(y-1)6、分解因式:4x^2-1=(2x+1)(2x-1)7、分解因式:4x+2x+1=2(2x+1)^28、分解因式:16-8(x-y)+(x-y)=(4-x+y)^2题型三:先提公因式,再套平方差或者完全平方公式。
A:先提后套平方差1、分解因式:2x8=2(x-4)2、因式分解:x^3-x=x(x+1)(x-1)3、分解因式:x^3-4x=x(x^2-4)=(x+2)(x-2)x4、分解因式:2x^2-18=2(x^2-9)=2(x+3)(x-3)5、分解因式:9a-ab^2=a(9-b^2)=a(3+b)(3-b)6、因式分解:a^3-a=a(a^2-1)=a(a+1)(a-1)7、因式分解:x^3-9x=x(x^2-9)=(x+3)(x-3)x8、分解因式:8a^2-2=2(4a^2-1)=2(2a+1)(2a-1)9、因式分解:x^3y^2-x^5=x^3(y^2-x^2)=x^3(y+x)(y-x)B:先提后套完全平方1、分解因式:x^2y2xy y=(x-y)^22、因式分解:x^32x^2y xy^2=x(x-y)^23、因式分解:a^2b+2ab+b=(a+b)^24、分解因式:8xy8xy2y=2y(1-4xy)5、把多项式(m+1)(m-1)+(m-1)提公因式(m-1)后,余下的部分是()A.m+1.B.2m。
北师大版八年级数学下册第四章 因式分解练习题
4D.4x2-4x-1第四章因式分解一、单选题1.下列各式从左到右的变形,是因式分解的是()A.x2-9+6x=(x+3)(x-3)+6x B.(x+5)(x-2)=x2+3x-10C.x2-8x+16=(x-4)2D.6ab=2a g3b2.如果x2+mx-14=(x+2)(x-7),那么m的值为().A.9B.-9C.-5D.53.多项式-6a2b+18a2b3x+24ab2y的公因式是()A.2ab B.-6ab C.-6a2b D.-6ab24.将2x2a-6xab+2x分解因式,下面是四位同学分解的结果:①2x(xa-3ab),①2xa(x-3b+1),①2x(xa-3ab+1),①2x(-xa+3ab-1).其中,正确的是()A.①B.①C.①D.①5.下列各式能用完全平方公式分解因式的是()A.x2+9B.x2-2x+4C.x2-x+16.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56B.60C.62D.88x27.下列多项式能用公式法分解因式的有()①x2﹣2x﹣1;①﹣x+1;①﹣a2﹣b2;①412.因式分解: x ﹣2 x 2 y + xy 2 = __________.﹣a 2+b 2;①x 2﹣4xy+4y 2;①m 2﹣m+1A .1 个B .2 个C .3 个D .4 个8.已知 ab =4,b ﹣a =7,则 a 2b ﹣ab 2 的值是()A .11B .28C .﹣11D .﹣289.小颖用下面四个图形拼成一个大长方形,并据此写出了一个把某多项式因式分解的等式,这个等式是()A . x 2 + 3x + 2 = ( x + 1)(x + 2)B . x 2 - 3x + 2 = ( x - 1)(x - 2)C . ( x + 1)(x + 2) = x 2 + 3x + 2D . x 2 + 3x + 2 = x( x + 3) + 210.若一个正方形的面积为(ɑ+1)(ɑ+2)+14,则该正方形的边长为( )A . a - 2B . a +32C . a + 2D . a +52二、填空题11.若将 3x 2 - mx + n 进行因式分解的结果为 (3x + 2)( x - 1) ,则 mn =_____.313.已知 x 、y 满足{ 2 x + y = 66,则 x 2﹣y 2 的值为______.x + 2 y = -6014.在日常生活中如取款、上网等都需要密码..一种用“因式分解”法产生的密码,方便记()忆.原理是:对于多项式x4-y4,因式分解的结果是(x-y)(x+y)x2+y2,若取x=9,y=9时,则各个因式的值是:x-y=0,x+y=18,x2+y2=162,于是就可以把“018162”作为一个六位数的密码,对于多项式4x3-xy2,取x=11,y=8时,用上述方法产生的密码是______(写出一个即可).三、解答题15.因式分解:(1)4x2-36(2)12ab2c-6ab(3)-2m3+8m2-12m16.对于二次三项式x2+2ax+a2,可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax-3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使x2+2ax-3a2中的前两项与a2构成完全平方式,再减去a2这项,使整个式子的值不变,最后再用平方差公式进步分解.于是x2+2ax-3a2=x2+2ax+a2-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).像上面这样把二次三项式分解因式的方法叫做配方法.请用配方法将下列各式分解因式:(1)x2+4x-12;(2)4x2-12xy+5y2.17.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:①m2﹣2mn+2n2﹣8n+16=0,①(m2﹣2mn+n2)+(n2﹣8n+16)=0①(m﹣n)2+(n﹣4)2=0,①(m﹣n)2=0,(n﹣4)2=0,①n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知①ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求①ABC 的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.18.常用的分解因式的方法有提取公因式法、公式法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了,过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2),这种分解因式的方法叫分组分解法,利用这种方法解决下列问题.(1)分解因式:a2-9-2ab+b2;a2-4bc+4ac-ab=0,判断①ABC的形状(2)①ABC三边a、b、c满足答案1.C2.C3.B4.C5.C6.B7.C8.D9.A10.B11.-212.x(x-y)213.25214.113014或11143015.(1)4(x+3)(x-3),(2)6ab(2bc-1),(3)-2m(m2-4m+6).16.(1)(x+6)(x-2);(2)(2x-y)(2x-5y)17.(1)9;(2)①ABC的最大边c的值可能是6、7、8、9、10;(3)8.18.(1)(a-b+3)(a-b-3);(2)①ABC的形状是等腰三角形。
2020八年级数学下册第四章因式分解第10课时提公因式法重点练北师大版
精品文档,欢迎下载!第四章因式分解专题10 提公因式法1. 下列多项式中,能用提公因式进行分解因式的是( )A.x2−y B.x2+2x C.x2+y2D.x2−xy+y2【答案】B【解析】不能进行因式分解,故不正确;x2+2x=x(x+2),故能用提公因式进行分解因式;不能进行因式分解,故不正确;不能进行因式分解,故不正确.2. 把多项式-x2+x提取公因式-x后,余下的部分是( )A.x B.x-1 C.x+1 D.x2【答案】B【解析】根据因式分解的提公因式,提取公因式-x,可得-x2+x=-x(x-1),所以剩余部分为x-1.3. 把多项式(x-2)2-4x+8分解因式,哪一步开始出现了错误( )解:原式=(x-2)2-(4x-8)…A=(x-2)2-4(x-2)…B=(x-2)(x-2+4)…C=(x-2)(x+2)…D【答案】C【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C步出现错误.4. 计算(-2)100+(-2)99的结果是()A.2 B.−2C.−299D.299【答案】D【解析】原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.5. 若a+b=6,ab=7,则ab2+a2b= ______ .【答案】42【解析】∵a+b=6,ab=7,∴ab2+a2b=ab(a+b)=6×7=42.6. 讨论993-99能被100整除吗?【解析】解析:993-99=99×992-99=99×(992-1)=99×9800=99×98×100其中有一个因数为100,所以993-99能被100整除.7. 计算:(1)17×3.14+61×3.14+22×3.14;)(2)20162-2016×2015. 【解析】解:(1)17×3.14+61×3.14+22×3.14=3.14×(17+61+22)=3.14×100=314(2)20162-2016×2015=2016×(2016-2015)=2016.8. .已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.【解析】解:3a(2a+1)−(2a+1)(2a−1)=6a2+3a−4a2+1=2a2+3a+1∵2a2+3a−6=0∴2a2+3a+1=7∴原式=7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章因式分解
专题10 提公因式法
1. 下列多项式中,能用提公因式进行分解因式的是( )
A.x2−x B.x2+2x C.x2+x2 D.x2−xx+x2
【答案】B
【解析】不能进行因式分解,故不正确;
x2+2x=x(x+2),故能用提公因式进行分解因式;
不能进行因式分解,故不正确;
不能进行因式分解,故不正确.
2. 把多项式-x2+x提取公因式-x后,余下的部分是( )
A. x B. x-1 C. x+1 D. x2
【答案】B
【解析】根据因式分解的提公因式,提取公因式-x,可得-x2+x=-x(x-1),所以剩余部分为x-1.
3. 把多项式(x-2)2-4x+8分解因式,哪一步开始出现了错误( )
解:原式=(x-2)2-(4x-8)…A
=(x-2)2-4(x-2)…B
=(x-2)(x-2+4)…C
=(x-2)(x+2)…D
【答案】C
【解析】根据题意,第一步应是添括号(注意符号变化),解法正确,第二步先对后面因式提公因式4,再提取公因式(x-2)这时出现符号错误,所以从C步出现错误.
4. 计算(-2)100+(-2)99的结果是()
A. 2 B.−2 C.−299 D.299
【答案】D
【解析】原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299.故选D.
5. 若a+b=6,ab=7,则ab2+a2b= ______ .
【答案】42
【解析】∵a+b=6,ab=7,
∴ab2+a2b=ab(a+b)=6×7=42.
6. 讨论993-99能被100整除吗?
【解析】解析:993-99
=99×992-99
=99×(992-1)
=99×9800
=99×98×100
其中有一个因数为100,所以993-99能被100整除.
7. 计算:(1)17×3.14+61×3.14+22×3.14;)(2)20162-2016×2015. 【解析】解:(1)17×3.14+61×3.14+22×3.14
=3.14×(17+61+22)
=3.14×100
=314
(2)20162-2016×2015
=2016×(2016-2015)
=2016.
8. .已知2a2+3a-6=0.求代数式3a(2a+1)-(2a+1)(2a-1)的值.
【解析】解:3x(2x+1)−(2x+1)(2x−1)
=6x2+3x−4x2+1
=2x2+3x+1
∵2x2+3x−6=0
∴2x2+3x+1=7
∴原式=7。