【新人教版 八年级数学上册】12.2第3课时“角边角”“角角边”习题课件
合集下载
12.2.3三角形全等的判定——角边角、角角边(课件)八年级数学上册(人教版)
∠A =∠A(公共角), AC = AB(已知), ∠C =∠B (已知),
∴ △ACD≌△ABE(ASA). ∴ AD = AE.
A
D
E
B
C
6.如图,AB⊥BC,AD⊥DC,垂足分别为点B,点D,∠1=∠2.
求证:AB=AD.
证明:∵AB⊥BC,AD⊥DC, ∴∠ABC=∠ADC=90°.
A
∵在△ABC和△ADC中,∠1=∠2,∠ABC=∠ADC,
在△ABC 和△ DEF 中,
∠A= ∠D, AB = DE, ∠B = ∠E,
∴△ABC≌△DEF (ASA).
C
A
B
F
D
E
在△ABC 和△ DEF 中,
∠A = ∠D, AB = DE, ∠B = ∠E,
∴△ABC ≌△DEF (ASA).
C
A
B
F
D
E
如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB, 试说明:△ADE≌△CFE.
外作直线 l,AM⊥l 于点 M,BN⊥l 于点 N.
(1)试说明:MN=AM+BN; 解:∵∠ACB=90°,∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,
∴∠BCN+∠CBN=90°,∴∠ACM=∠CBN. ∠AMC=∠CNB,
在△ACM 和△CBN 中, ∠ACM=∠CBN, AC=CB,
(4)两角一边.
两角一边分为哪几种情况?
一种情况是边夹在
两角的中间 ,形成
两角夹一边
01
角-边-角
角-角-边
另一种情况是边不 夹在两角的中间 ,
0 2 形成两角一对边
∴ △ACD≌△ABE(ASA). ∴ AD = AE.
A
D
E
B
C
6.如图,AB⊥BC,AD⊥DC,垂足分别为点B,点D,∠1=∠2.
求证:AB=AD.
证明:∵AB⊥BC,AD⊥DC, ∴∠ABC=∠ADC=90°.
A
∵在△ABC和△ADC中,∠1=∠2,∠ABC=∠ADC,
在△ABC 和△ DEF 中,
∠A= ∠D, AB = DE, ∠B = ∠E,
∴△ABC≌△DEF (ASA).
C
A
B
F
D
E
在△ABC 和△ DEF 中,
∠A = ∠D, AB = DE, ∠B = ∠E,
∴△ABC ≌△DEF (ASA).
C
A
B
F
D
E
如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB, 试说明:△ADE≌△CFE.
外作直线 l,AM⊥l 于点 M,BN⊥l 于点 N.
(1)试说明:MN=AM+BN; 解:∵∠ACB=90°,∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,
∴∠BCN+∠CBN=90°,∴∠ACM=∠CBN. ∠AMC=∠CNB,
在△ACM 和△CBN 中, ∠ACM=∠CBN, AC=CB,
(4)两角一边.
两角一边分为哪几种情况?
一种情况是边夹在
两角的中间 ,形成
两角夹一边
01
角-边-角
角-角-边
另一种情况是边不 夹在两角的中间 ,
0 2 形成两角一对边
人教版八年级上数学(获奖课件) 12.2 第3课时 “角边角”、“角角边”
△ABE≌△DBC,小明给出了下面四个答案:
①AE=CD,②∠A=∠D,③∠1=∠2,④∠E=∠C,
其中正确的是
(B)
A.①②
B.①③
C.①②③④
D.①②③
随堂练习
2.如图,已知∠1=∠2,要判定△ABC≌△ADE,还需
加上条件
( C)
A.AB=AD,AC=AE
B.AB=AD,BC=DE
C.AC=AE,BC=DE
D.以上都不对
随堂练习
3.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在 AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时 针方向旋转90°后得CE,连接EF. (1)求证:△BCD≌△FCE; (2)若EF∥CD,求∠BDC的度数. 解:(1)由旋转得CD=CE,∠DCE=90°, 再证∠BCD=∠FCE, 进而证△BCD≌△FCE.
(2)由EF∥CD,得∠E=180°-∠DCE=90°, ∴由(1)得∠BDC=∠E=90°.
课堂小结 内容
有两角及夹边对应相等的两个 三角形全等(简写成 “ASA”)
边角边 应 用 角角边
为证明线段和角相等提供了新的证法
注意
注意“角角边”、“角边角” 中两角与边的区别
C
A
B
E
D
C
C′
A
B
作法:
A′
B′
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,A'D,
B'E相交于点C'.
想一想:从中你能发现什么规律?
它们能够重合,我们能得出这两个三角形全等.
人教版八年级数学上册课件 12.2 第3课时 用“ASA”或“AAS‘判定三角形全等
C
C'
A
B A'
B'
课后作业
➢ 从课后习题中选取 ➢ 完成练习册本课时的习题
A.150° B.40°
C.80°
D.90°
综合运用
2. 如图,AB⊥BC,AD⊥DC,垂足分别为B,D, ∠1=∠2. 求证 AB=AD. 【课本P41 练习 第1题】 证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°
在△ABC和△ADC中,
∠B=∠D, ∠1=∠2, AC=AC,
∴△ABC≌△ADC(AAS) ∴AB=AD
A
B A'
B'
∴△ABC ≌△A′B′C′ (AAS)
例题
如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m
经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
求证(1)△BDA≌△AEC;
证明:∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,
∴∠ABD+∠BAD=90°,∵∠BAC=90°
∠BAC=∠BAE+∠CAF,且∠BED=∠BAC,
∴∠ABE=∠CAF.同理∠BAE=∠ACF.
在△ABE和△CAF中,
∠ABE=∠CAF
B GM
AB=CA ∠BAE=∠ACF
A
∴△ABE≌△CAF(ASA)
FD
E
C HN
拓展延伸
②解:EF+CF=BE.理由如下:
∵△ABE≌△CAF,
∴AE=CF,BE=AF.
∠A=∠A(公共角) AB=AC(已知) ∠B=∠C(已知)
例题
如图,点 D 在 AB 上,点 E 在 AC上,AB=AC,∠B =∠C. 求证 AD =AE.
新人教版初中数学八年级上册12.2第3课时“角边角”、“角角边”公开课优质课课件
例4 如图,已知:在△ABC中,∠BAC=90°, AB=AC,直线m经过点A,BD⊥直线m,CE⊥直 线m,垂足分别为点D、E.求证: (1)△BDA≌△AEC; 证明:(1)∵BD⊥m,CE⊥m, ∴∠ADB=∠CEA=90°, ∴∠ABD+∠BAD=90°. ∵AB⊥AC, ∠ADB=∠CEA=90°, ∴∠BAD+∠CAE=90°, ∠ABD=∠CAE, ∠ABD=∠CAE. AB=AC, 在△BDA和△AEC中, ∴△BDA≌△AEC(AAS).
AC=AB(已知),
∠C=∠B (已知 ), ∴ △ACD≌△ABE(ASA), ∴AD=AE.
D
E
B
C
二 用“角角边”判定三角形全等
合作探究
问题:若三角形的两个内角分别是60°和45°,
且45°所对的边为3cm,你能画出这个三角形吗?
60°
45°
思考:
这里的条件与1中的条件有什么相同点与不同点? 你能将它转化为1中的条件吗?
(2)DE=BD+CE. 证明:∵△BDA≌△AEC, ∴BD=AE,AD=CE, ∴DE=DA+AE=BD+CE.
方法总结:利用全等三角形可以解决线段之间的关系,
比如线段的相等关系、和差关系等,解决问题的关键是
运用全等三角形的判定与性质进行线段之间的转化.
当堂练习
1. △ABC和△DEF中,AB=DE,∠B=∠E,要使
60°
75°
归纳总结
两角和其中一角的对边对应相等的两个三角形全等. 简写成“角角边”或“AAS”.
A
在△ABC和△A′B′C′中,
∠A=∠A′(已知),
∠B=∠B′ (已知),
AC=A′C ′(已知),
B
八年级上:12.2.3“角边角”、“角角边”ppt课件
情境引入
如图,小明不慎将一块三角形玻璃打碎为三块, 他是否可以只带其中的一块碎片到商店去,就能配 一块与原来一样的三角形模具吗? 如果可以,带哪
块去合适?
你能说明其中理由吗? 1 2
3
讲授新课
一 三角形全等的判定(“角边角”定理) 问题:如果已知一个三角形的两角及一边,那么有 几种可能的情况呢? 它们能判定两个 三角形全等吗?
1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。 2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。 3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力! 4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落, 花谢花开,岂不自在,哪里来的尘埃! 5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。 6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。 7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。 8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。 9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。 10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。 11、花开不是为了花落,而是为了开的更加灿烂。 12、随随便便浪费的时间,再也不能赢回来。 13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。 14、当你决定坚持一件事情,全世界都会为你让路。 15、只有在开水里,茶叶才能展开生命浓郁的香气。 15、如果没有人为你遮风挡雨,那就学会自己披荆斩棘,面对一切,用倔强的骄傲,活出无人能及的精彩。 16、成功的秘诀在于永不改变既定的目标。若不给自己设限,则人生中就没有限制你发挥的藩篱。幸福不会遗漏任何人,迟早有一天它会找到你。 17、一个人只要强烈地坚持不懈地追求,他就能达到目的。你在希望中享受到的乐趣,比将来实际享受的乐趣要大得多。 18、无论是对事还是对人,我们只需要做好自己的本分,不与过多人建立亲密的关系,也不要因为关系亲密便掏心掏肺,切莫交浅言深,应适可而止。 19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。 20、没有收拾残局的能力,就别放纵善变的情绪。 16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。 17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。 18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。 19、你相信梦想,梦想才会相信你。有一种落差是,你配不上自己的野心,也辜负了所受的苦难。 20、生活不会按你想要的方式进行,它会给你一段时间,让你孤独、迷茫又沉默忧郁。但如果靠这段时间跟自己独处,多看一本书,去做可以做的事,放下过去的人,等你度过低潮,那些独处的时光必定能照亮你的路,也是这些不堪陪你成熟。所以,现在没那么糟,看似 生活对你的亏欠,其实都是祝愿。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。 11、这个世界其实很公平,你想要比别人强,你就必须去做别人不想做的事,你想要过更好的生活,你就必须去承受更多的困难,承受别人不能承受的压力。 12、逆境给人宝贵的磨炼机会。只有经得起环境考验的人,才能算是真正的强者。自古以来的伟人,大多是抱着不屈不挠的精神,从逆境中挣扎奋斗过来的。 13、不同的人生,有不同的幸福。去发现你所拥有幸运,少抱怨上苍的不公,把握属于自己的幸福。你,我,我们大家都可以经历幸福的人生。 14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。 15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。 16、在路上,我们生命得到了肯定,一路上,我们有失败也有成功,有泪水也有感动,有曲折也有坦途,有机遇也有梦想。一路走来,我们熟悉了陌生的世界,我们熟悉了陌生的面孔,遇人无数,匆匆又匆匆,有些成了我们忘不掉的背影,有些成了我们一生的风景。我笑, 便面如春花,定是能感动人的,任他是谁。 17、努力是一种生活态度,与年龄无关。所以,无论什么时候,千万不可放纵自己,给自己找懒散和拖延的借口,对自己严格一点儿,时间长了,努力便成为一种心理习惯,一种生活方式! 18、自己想要的东西,要么奋力直追,要么干脆放弃。别总是逢人就喋喋不休的表决心或者哀怨不断,做别人茶余饭后的笑点。 19、即使不能像依米花那样画上完美的感叹号,但我们可以歌咏最感人的诗篇;即使不能阻挡暴风雨的肆虐,但我们可以左右自己的心情;即使无法预料失败的打击,但我们可以把它当作成功的一个个驿站。 20、能力配不上野心,是所有烦扰的根源。这个世界是公平的,你要想得到,就得学会付出和坚持。每个人都是通过自己的努力,去决定生活的样子。
八年级数学上册 12.2三角形全等的判定第3课时角边角角角边课件2_6-10
所以AB=A'B'(全等三角形对应边相等),∠ABD=∠A'B'D'(全等三角形
对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上的高也 相等.
AB=AB(已证),
一个人面对着人生的起落,无法淡然处之,还是因为内心有太多的欲望,欲望是人生的漏洞,一不注意,就会把自己拖入深渊。这只海龟,体型大大了,估计也有两百多公斤,是国家二级保护动物,这么宝贵的东西,不能丟弃呵,几个小伙 子站了出来,用身上所带来的绳子,把海龟绑了个结实,连拉带拽的,弄到了海边,准备随船拉回去,送给动物园? 天色逐渐暗了下来,大家卸下来身上背负的重物,开始搭建帐篷。 我有一壶酒,足以慰风尘。
所以△ABD≌△A'B'D'.所以AD=A'D'.
3.如图∠ACB=∠DFE,BC=EF,那么应补充一个条
件
,才能使△ABC≌△DEF (写出一个
即可).
B
AB=DE可以吗? ×
A
AB∥DE
C F
∠B=∠E 或∠A=∠D
(ASA) (AAS)
D
ห้องสมุดไป่ตู้或 AC=DF (SAS)
E
4.已知:如图, AB⊥BC,AD⊥DC,∠1=∠2, 求证:AB=AD.
答:带1去,因为有两角且夹边相等
的两个三角形全等.
1
第3课时“角边角”和“角角边”习题课件
题目:两个三角形中,如果两条边和一个非夹角分别相等,那么这两个三角形是否全等? 解析: 根据SSA全等条件,如果两条边和一个非夹角分别相等,那么这两个三角形不一定全等。
解析:根据SSA全等条件,如果两条边和一个非夹角分别相等,那么这两个三角形不一定全等。
题目:两个三角形中,如果两条边和它们的夹角分别相等,那么这两个三角形是否全等? 解析: 根据SAS全等条件,如果两条边和它们的夹角分别相等,那么这两个三角形全等。
相关定理的拓展学习
角边角定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形全等。
角角边定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形相似。
边边角定理的推广: 在三角形中,如果两 边和一边的对角相等, 则三角形相似。
三角形相似的判定定理: 如果两个三角形的两组 对应边成比例,且夹角 相等,则三角形相似。
掌握常见的解题方 法,如构造辅助线、 利用公共边和公共 角等。
学会分析题目中 的条件,寻找合 适的解题思路。
解题思维训练
掌握基本概念:理解角边角和角角边的定义及判定定理,是解题的基础。 分类讨论:根据不同情况,进行分类讨论,是解题的关键。 综合运用:综合运用相关知识,是解题的核心。 思维拓展:通过解题训练,拓展思维,提高解题能力。
添加副标题
角边角和角角边习题课件
汇报人:
目录
CONTENTS
01 添加目录标题
02 角边角定理及其应 用
03 角角边定理及其应 用
04 习题解答与解析
05 解题思路与技巧
06 习题拓展与延伸
添加章节标题
角边角定理及其应用
定义:角边角定理是指两个三角形 如果有两个角和一边分别相等,则 这两个三角形全等。
解析:根据SSA全等条件,如果两条边和一个非夹角分别相等,那么这两个三角形不一定全等。
题目:两个三角形中,如果两条边和它们的夹角分别相等,那么这两个三角形是否全等? 解析: 根据SAS全等条件,如果两条边和它们的夹角分别相等,那么这两个三角形全等。
相关定理的拓展学习
角边角定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形全等。
角角边定理的推广: 在三角形中,如果 两个角和一边相等, 则三角形相似。
边边角定理的推广: 在三角形中,如果两 边和一边的对角相等, 则三角形相似。
三角形相似的判定定理: 如果两个三角形的两组 对应边成比例,且夹角 相等,则三角形相似。
掌握常见的解题方 法,如构造辅助线、 利用公共边和公共 角等。
学会分析题目中 的条件,寻找合 适的解题思路。
解题思维训练
掌握基本概念:理解角边角和角角边的定义及判定定理,是解题的基础。 分类讨论:根据不同情况,进行分类讨论,是解题的关键。 综合运用:综合运用相关知识,是解题的核心。 思维拓展:通过解题训练,拓展思维,提高解题能力。
添加副标题
角边角和角角边习题课件
汇报人:
目录
CONTENTS
01 添加目录标题
02 角边角定理及其应 用
03 角角边定理及其应 用
04 习题解答与解析
05 解题思路与技巧
06 习题拓展与延伸
添加章节标题
角边角定理及其应用
定义:角边角定理是指两个三角形 如果有两个角和一边分别相等,则 这两个三角形全等。
12.2 第3课时 “角边角”、“角角边”
所以AB=A'B'(全等三角形对应边相等),
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证), AB=AB(已证),
全等三角形对应边上 的高也相等.
答:带1去,因为有两角且夹边
相等的两个三角形全等.
1 2 3
能力提升:已知:如图,△ABC ≌△A′B′C′ ,AD、A′ D′ 分 别是△ABC 和△A′B′C′的高.试说明AD= A′D′ ,并用一句话 说出你的发现.Aຫໍສະໝຸດ A′BDC B
D′ C′
′
A
A′
B
DC B
D′ C′
解:因为△ABC ≌△A′B′C′ , ′
B′
作法:
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,A'D,
B'E相交于点C'.
想一想:从中你能发现什么规律?
知识要点
“角边角”判定方法
文字语言:有两角和它们夹边对应相等的两个三角形全等
(简写成“角边角”或“ASA”).
A
几何语言:
在△ABC和△A′ B′ C′中, ∠A=∠A′ (已知),
A 证明: ∵ AB⊥BC,AD⊥DC,
∴ ∠ B=∠D=90 °.