配方法解一元二次方程同步检测
九年级数学《名校课堂》同步测试题(1)
九年级数学《一元二次方程的解法》同步练习(3)姓名:得分:2.2.1配方法第1课时根据平方根的意义解一元二次方程知识点1一元二次方程的根的定义1.关于x的一元二次方程x2+x+a-1=0的一个根是0,则实数a的值为( ) A.-1 B.0 C.1 D.-1或12.若a是方程2x2-x-3=0的一个解,则2a2-a的值为( )A.3 B.-3 C.9 D.-93.下列是方程3x2+x-2=0的解的是( )A.x=-1 B.x=1 C.x=-2 D.x=24.已知m是方程x2-x-1=0的一个根,求代数式5m2-5m+2 004的值.知识点2根据平方根的意义解一元二次方程5.根据平方根的意义解方程(x-2 015)2=1,得方程的根为( )A.2 018 B.2 014或2 016C.2 017或1 D.2 016或06.(江岸区校级模拟)如果x=-3是一元二次方程ax2=c的一个根,那么该方程的另一个根是( ) A.3 B.-3C.0 D.17.若x+1与x-1互为倒数,则实数x为( )A.0 B. 2C.±1 D.± 28.下面解方程的过程中,正确的是( )A.x2=2,解:x= 2 B.2y2=16,解:2y=±4,∴y1=2,y2=-2C.2(x-1)2=8,解:(x-1)2=4,x-1=±4,x-1=±2,∴x1=3,x2=-1D.x2=-2,解:x1=-2,x2=--29.解下列方程:(1)14x2=9;(2)(x-3)2-9=0.中档题10.若关于x的方程x2=m的解是有理数,则实数m不能取下列四个数中的( ) A.1 B.4 C.14 D.1211.(枣庄中考)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( ) A.x1小于-1,x2大于3 B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于312.若分式x2-9x-3的值为零,则x的值为( )A.3 B.-3 C.±3 D.913.刘谦的魔术表演风靡全国,小王也学起了刘谦,利用电脑设计了一个程序:当输入实数对(x,y)时,会得到一个新的实数x2+y-1,例如输入(2,5)时,就会得到实数22+5-1=8.若输入实数对(m,2)时,得到实数3,则m=________.14.已知方程x2+(m-1)x+m-10=0的一个根是3,求m的值及方程的另一个根.15.解下列方程:(1)36-3x2=0;(2)(2x+3)2-25=0;(3)(x-3)2=(2x+1)2.第2课时用配方法解二次项系数为1的一元二次方程基础题知识点1二次三项式的配方1.下列各式是完全平方式的是( )A.x2+x+1 B.x2+2x-1 C.x2+2x+1 D.x2-2x-12.将二次三项式x2+6x+7进行配方,正确的结果是( )A.(x+3)2+2 B.(x-3)2+2 C.(x+3)2-2 D.(x-3)2-23.填空:(1)x2-2x+________=(x-________)2;(2)x2+6x+________=(x+________)2;(3)x2-5x+________=(x-________)2;(4)x2-3mx+________=(x-________)2. 4.完成下列配方过程:(1)x2+2x+4=x2+2x+________-________+4=(x+________)2+________;(2)x2-6x-3=x2-6x+________-________-3=(x-________)2-________;知识点2用配方法解二次项系数为1的一元二次方程5.(呼伦贝尔中考)用配方法解方程x2-2x-5=0时,原方程应变形为( )A.(x+1)2=6 B.(x-1)2=6 C.(x+2)2=9 D.(x-2)2=96.一元二次方程x(x-4)=-4的根是( )A.-2 B.2 C.2或-2 D.-1或27.(吉林中考)若将方程x2+6x=7化为(x+m)2=16,则m=________.8.解下列方程:(1)x2+4x+2=0;(2)x2+6x-7=0;(3)x2-6x-6=0;中档题9.若方程x2+kx+64=0的左边是完全平方式,则k的值是( )A.±8 B.16 C.-16 D.±1610.下列配方有错误的是( )A.x2-2x-70=0化为(x-1)2=71 B.x2+6x+8=0化为(x+3)2=1C.x2-3x-70=0化为(x-32)2=7112D.x2-2x-99=0化为(x-1)2=10011.(宁夏中考)一元二次方程x2-2x-1=0的解是( )A.x1=x2=1 B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2 D.x1=-1+2,x2=-1- 212.已知一元二次方程x2+mx+3=0配方后为(x+n)2=22,那么一元二次方程x2-mx-3=0配方后为( )A.(x+5)2=28 B.(x+5)2=19或(x-5)2=19C.(x-5)2=19 D.(x+5)2=28或(x-5)2=2813.三角形两边的长是3和4,第三边长是方程x2-12x+35=0的根,则该三角形的周长为________.14.用配方法解下列方程:(1)x2-2x-5=0;(2)x2-4x+2=0;(3)x2-22x-3=0;15.用配方法证明:不论x为何值,代数式x2+4x+5的值恒大于零.(3)x2+3x+4=x2+3x+________-________+4 =(x+________)2+________;(4)x2-5x-3=x2-5x+________-________-3 =(x-________)2-________.第3课时 用配方法解二次项系数不为1的一元二次方程知识点 用配方法解二次项系数不为1的一元二次方程1.用配方法解方程2x 2-4x =3时,先把二次项系数化为1,然后方程的两边都应加上( )A .1B .2C .3D .52.将方程3x 2-12x -1=0进行配方,配方正确的是( )A .3(x -2)2=5B .(3x -2)2=13C .(x -2)2=5D .(x -2)2=1333.用配方法解方程2x 2-3=-6x ,正确的解法是( )A .(x +32)2=154,x =-32±152B .(x -32)2=154,x =32±152C .(x +32)2=-154,原方程无解D .(x +32)2=74,x =-32±724.用配方法解下列方程:(1)2x 2-8x +1=0; (2)2x 2-7x +6=0; (3)3x 2+8x -3=0;(4)2x 2+1=3x ; (5)3x 2-2x -4=0; (6)6x +9=2x 2.中档题5.用配方法解下列方程时,配方有错误的是( )A .2m 2+m -1=0化为(m +14)2=916B .2x 2+1=3x 化为(x -34)2=116C .2t 2-3t -2=0化为(t -32)2=2516D .3y 2-4y +1=0化为(y -23)2=196.方程(2x -5)(x +2)=3x -4的根为( )A .3B .-1C .-1或3D .以上均不对7.把方程2x 2+4x -1=0配方后得(x +m)2=k ,则m =________,k =________. 8.已知y 1=5x 2+7x +1,y 2=x 2-9x -15,则当x =________时,y 1=y 2. 9.用配方法解下列方程:(1)2t 2-6t +3=0; (2)23x 2+13x -2=0; (3)2y 2-4y =4;10.若一个三角形的两边长分别为2和3,第三边长是方程2x 2-3x -5=0的一个根,求这个三角形的周长.拔高题11.用配方法说明:不论x 取何值,代数式3x 2+3x 的值,总比代数式x 2+7x -4的值大,并求出当x 为何值时,两代数式的差最小.小专题(三)配方法的应用一、配方法解方程1.解方程:(1)x2-4x-2=0;(2)3x2-6x-1=0.二、利用配方法求未知项2.若代数式9x2+kxy+y2表示一个完全平方式,则k的值为( )A.6 B.±6 C.±12 D.123.若代数式x2-5x+k是完全平方式,则k=________.三、配方法求最值4.求多项式x2+3x-1的最小值.5.求多项式-2x2+4x+3的最大值.四、配方法求代数式的值6.已知x=3+2,y=3-2,求x2-5xy+y2的值.7.已知x+x1=3,求x4+1x4的值.五、配方法比较大小8.求证:不论x为何值,多项式2x2-4x-1的值总比x2-6x-6的值大.六、配方法与非负数9.已知m2+n2+4m-2n+5=0,求3m2+5n2-4的值.10.已知2z-y+|y-4|+4x2+4x+1=0,求x-y+z的值.。
华师大版初中数学九年级上册《22.2 一元二次方程的解法》同步练习卷
华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18 2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15 4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=712897.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2 8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0 11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣315.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣516.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.717.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或1418.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤120.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2 21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠123.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥325.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.1527.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2二.填空题(共11小题)28.方程(x﹣5)2=4的解为.29.一元二次方程(2x+1)2﹣81=0的根是.30.一元二次方程x2+2x﹣6=0的根是.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为.三.解答题(共12小题)39.解方程:(3x+1)2=6440.解方程:2x2+4x﹣1=0(用配方法).41.用公式法解方程:3x2﹣6x+1=2.42.用公式法解方程:2x(x﹣3)=x2﹣1.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=044.用配方法解方程3x2﹣5x﹣2=0.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=046.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=048.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.华师大新版九年级上学期《22.2 一元二次方程的解法》2019年同步练习卷参考答案与试题解析一.选择题(共27小题)1.用配方法解一元二次方程x2﹣8x+2=0,此方程可化为的正确形式是()A.(x﹣4)2=14B.(x﹣4)2=18C.(x+4)2=14D.(x+4)2=18【分析】移项,配方,即可得出选项.【解答】解:x2﹣8x+2=0,x2﹣8x=﹣2,x2﹣8x+16=﹣2+16,(x﹣4)2=14,故选:A.【点评】本题考查了解一元二次方程,能够正确配方是解此题的关键.2.用配方法解下列方程时,配方有错误的是()A.x2+8x+9=0化为(x+4)2=25B.x2﹣2x﹣99=0化为(x﹣1)2=100C.2t2﹣7t﹣4=0化为D.3x2﹣4x﹣2=0化为【分析】利用配方法对各选项进行判断.【解答】解:A、x2+8x+9=0化为(x+4)2=7,所以A选项的配方错误;B、x2﹣2x﹣99=0化为(x﹣1)2=100,所以B选项的配方正确;C、2t2﹣7t﹣4=0先化为t2﹣t=2,再化为,所以C选项的配方正确;D、3x2﹣4x﹣2=0先化为x2﹣x=,再化为(x﹣)2=,所以D选项的配方正确.故选:A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.3.一元二次方程﹣x2+8x+1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x﹣4)2=17D.(x﹣4)2=15【分析】移项,系数化成1,再配方,即可得出选项.【解答】解:﹣x2+8x+1=0,﹣x2+8x=﹣1,x2﹣8x=1,x2﹣8x+16=1+16,(x﹣4)2=17,故选:C.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键.4.用配方法解一元二次方程2x2﹣6x+1=0时,此方程配方后可化为()A.(x﹣)2=B.2(x﹣)2=C.(x﹣)2=D.2(x﹣)2=【分析】先移项,再将二次项系数化为1后,继而两边配上一次项系数一半的平方,写成完全平方式即可得.【解答】解:∵2x2﹣6x+1=0,∴2x2﹣6x=﹣1,则x2﹣3x=﹣,∴x2﹣3x+=﹣+,即(x﹣)2=,故选:A.【点评】本题主要考查解一元二次方程﹣配方法,解题的关键是掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.5.一元二次方程y2﹣y﹣=0配方后可化为()A.(y+)2=1B.(y﹣)2=1C.(y+)2=D.(y﹣)2=【分析】根据配方法即可求出答案.【解答】解:y2﹣y﹣=0y2﹣y=y2﹣y+=1(y﹣)2=1故选:B.【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.6.在《九章算术》“勾股”章里有求方程x2+34x﹣71000=0的正根才能解答的题目,以上方程用配方法变形正确的是()A.(x+17)2=70711B.(x+17)2=71289C.(x﹣17)2=70711D.(x﹣17)2=71289【分析】移项后两边配上一次项系数一半的平方即可得.【解答】解:x2+34x﹣71000=0x2+34x=71000x2+34x+172=71000+172(x+17)2=71289故选:B.【点评】题考查了解一元二次方程﹣配方法,利用此方法解方程时,首先将方程常数项移动方程右边,二次项系数化为1,然后方程左右两边都加上一次项系数一半的平方,方程左边化为完全平方式,右边合并为一个非负常数,开方转化为两个一元一次方程来求解.7.解一元二次方程4x2﹣8x﹣1=0,配方后正确的是()A.(2x﹣2)2=0B.4(x﹣1)2=5C.(2x﹣2)2=﹣3D.4(x﹣1)2=2【分析】先把二次项系数化为1,再把常数项移到方程的右边,进行把方程两边加上一次项系数一半的平方,然后把方程左边利用完全平方公式写成平方的形式即可.【解答】解:4x2﹣8x﹣1=0,4x2﹣8x=1,4(x2﹣2x+1)=5,4(x﹣1)2=5.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.8.用配方法解方程2x2+3x﹣1=0,则方程可变形为()A.(3x+1)2=1B.C.D.【分析】先把常数项移到方程右侧,两边除以2,然后方程两边加上,再把方程左边写成完全平方的形式即可.【解答】解:x2+x=,x2+x+=+,(x+)2=.故选:B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.9.利用配方法解方程2x2﹣x﹣2=0时,应先将其变形为()A.B.C.D.【分析】将方程常数项移到右边,方程左右两边同时除以2,然后方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,变形后即可得到正确答案.【解答】解:2x2﹣x﹣2=0,移项得:2x2﹣x=2,左右两边同时除以2得:x2﹣x=1,配方得:x2﹣x+=1+,即(x﹣)2=,故选:B.【点评】考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.x=是下列哪个一元二次方程的根()A.3x2+5x+1=0B.3x2﹣5x+1=0C.3x2﹣5x﹣1=0D.3x2+5x﹣1=0【分析】用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值;②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.【解答】解:A.3x2+5x+1=0中,x=,不合题意;B.3x2﹣5x+1=0中,x=,不合题意;C.3x2﹣5x﹣1=0中,x=,不合题意;D.3x2+5x﹣1=0中,x=,符合题意;故选:D.【点评】本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法.11.一元二次方程x2+x﹣1=0的根是()A.x=1﹣B.x=C.x=﹣1+D.x=【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况.【解答】解:∵△=12﹣4×(﹣1)=5>0,∴方程有两个不相等的两个实数根,即x=.故选:D.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.12.用公式解方程﹣3x2+5x﹣1=0,正确的是()A.x=B.x=C.x=D.x=【分析】求出b2﹣4ac的值,再代入公式求出即可.【解答】解:﹣3x2+5x﹣1=0,b2﹣4ac=52﹣4×(﹣3)×(﹣1)=13,x==,故选:C.【点评】本题考查了解一元二次方程的应用,能正确利用公式解一元二次方程是解此题的关键.13.利用求根公式求的根时,a,b,c的值分别是()A.5,,6B.5,6,C.5,﹣6,D.5,﹣6,﹣【分析】根据一元二次方程的定义来解答:二次项系数是a、一次项系数是b、常数项是c.【解答】解:由原方程,得5x2﹣6x,根据一元二次方程的定义,知二次项系数a=5,一次项系数b=﹣6,常数项c=;故选:C.【点评】本题是一道易错题,学生在作答时往往把一次项系数﹣6误认为6,所以,在解答时要注意这一点.14.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程﹣4x2+3=5x,下列叙述正确的是()A.a=﹣4,b=5,c=3B.a=﹣4,b=﹣5,c=3C.a=4,b=5,c=3D.a=4,b=﹣5,c=﹣3【分析】用公式法求一元二次方程时,首先要把方程化为一般形式.【解答】解:∵﹣4x2+3=5x∴﹣4x2﹣5x+3=0,或4x2+5x﹣3=0∴a=﹣4,b=﹣5,c=3或a=4,b=5,c=﹣3.故选:B.【点评】此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形式.15.一元二次方程x(x﹣5)=0的解是()A.0B.5C.0和5D.0和﹣5【分析】利用因式分解法求解可得.【解答】解:∵x(x﹣5)=0,∴x=0或x﹣5=0,解得:x1=0,x2=5,故选:C.【点评】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.16.三角形的两边长分别为3和6,第三边的长是方程x2﹣10x+21=0的一个根,则该三角形第三边的长是()A.6B.3或7C.3D.7【分析】把方程的左边利用十字相乘法分解因式,根据两数之积为0,两因式至少有一个为0,转化为两个一元一次方程,分别求出两方程的解即可得到原方程的解,进而得到三角形的第三边长.【解答】解:方程x2﹣10x+21=0可化为:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∴三角形的第三边长为3或6,当第三边长为3时,由3+3=6,得到三边不能构成三角形,舍去;所以第三边长为7,故选:D.【点评】此题考查了运用因式分解法解一元二次方程,以及三角形的三边关系,运用因式分解的方法解一元二次方程的前提必须是方程坐标利用因式分解的方法把和的形式化为积的形式,右边为0,此方法的理论依据为ab=0,得到a=0或b=0,三角形的三边关系为:三角形的两边之和大于第三边,两边之差小于第三边,利用此性质把求出的方程的解x=3舍去.17.一个等腰三角形的底边长是5,腰长是一元二次方程x2﹣6x+8=0的一个根,则此三角形的周长是()A.12B.13C.14D.12或14【分析】先求出方程的解,再得出三角形的三边长,最后求出即可.【解答】解:解方程x2﹣6x+8=0得:x=4或2,当三角形的三边为5,2,2时,2+2+<5,不符合三角形三边关系定理,此时不能组成三角形;当三角形的三边为5,4,4时,符合三角形三边关系定理,此时三角形的周长为5+4+4=13,故选:B.【点评】本题考查了解一元二次方程和等腰三角形的性质,三角形的三边关系定理等知识点,能求出符合的所有情况是解此题的关键.18.若等腰三角形的两边分别是一元二次方程x2﹣7x+12=0的两根,则等腰三角形的周长为()A.10B.11C.10或11D.以上都不对【分析】先利用因式分解的方法解方程得到x1=3,x2=4,根据题意讨论:当腰为3,底边为4时;当腰为4,底边为3时,然后分别计算出等腰三角形的周长.【解答】解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,∴x﹣3=0或x﹣4=0,∴x1=3,x2=4,当腰为3,底边为4时,等腰三角形的周长为3+3+4=10;当腰为4,底边为3时,等腰三角形的周长为3+4+4=11.故选:C.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.19.一元二次方程x2﹣2x+m=0没有实数根,则m应满足的条件是()A.m<1B.m>1C.m=1D.m≤1【分析】根据方程的系数结合根的判别式△<0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围.【解答】解:∵一元二次方程x2﹣2x+m=0没有实数根,∴△=(﹣2)2﹣4×1×m<0,∴m>1.故选:B.【点评】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.20.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.21.若关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,则k的取值范围是()A.k<且k≠﹣2B.k C.k≤且k≠﹣2D.k【分析】根据一元二次方程的定义和根的判别式得出k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,求出即可.【解答】解:∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴k+2≠0且△=(﹣3)2﹣4(k+2)•1≥0,解得:k且k≠﹣2,故选:C.【点评】本题考查了一元二次方程的定义和根的判别式,能得出关于k的不等式是解此题的关键.22.关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实根,则k的取值范围是()A.k<B.k<且k≠1C.0≤k≤D.k≠1【分析】根据一元二次方程的定义和△的意义得到k﹣1≠0且△>0,即(﹣2)2﹣4(k﹣1)×3>0,然后解不等式即可得到k的取值范围.【解答】解:∵关于x的一元二次方程(k﹣1)x2﹣2x+3=0有两个不相等的实数根,∴k﹣1≠0,即k≠1,△=(﹣2)2﹣4(k﹣1)×3=﹣12k+16,∵方程有两个不相等的实数解,∴△>0,∴﹣12k+16>0,∴k<,∴k的取值范围是k<且k≠1.故选:B.【点评】此题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了一元二次方程的定义23.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.24.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<3B.m>3C.m≤3D.m≥3【分析】根据关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根可得△=(﹣2)2﹣4m>0,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4m>0,∴m<3,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.25.若α,β是一元二次方程3x2+2x﹣9=0的两根,则+的值是()A.B.﹣C.﹣D.【分析】根据根与系数的关系可得出α+β=﹣、αβ=﹣3,将其代入+=中即可求出结论.【解答】解:∵α、β是一元二次方程3x2+2x﹣9=0的两根,∴α+β=﹣,αβ=﹣3,∴+====﹣.故选:C.【点评】本题考查了根与系数的关系,牢记两根之和等于﹣、两根之积等于是解题的关键.26.若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A.﹣13B.12C.14D.15【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=,αβ=﹣,然后利用整体代入的方法计算.【解答】解:∵α为2x2﹣5x﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x2﹣5x﹣1=0的两个实数根,∴α+β=,αβ=﹣,∴2α2+3αβ+5β=5×+3×(﹣)+1=12.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程解的定义.27.已知一元二次方程x2﹣2x﹣1=0的两根分别为x1,x2,则+的值为()A.2B.﹣1C.D.﹣2【分析】根据根与系数的关系得到x1+x2=2,x1x2=﹣1,利用通分得到+=,然后利用整体代入的方法计算【解答】解:根据题意得x1+x2=2,x1x2=﹣1,所以+===﹣2.故选:D.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.二.填空题(共11小题)28.方程(x﹣5)2=4的解为x1=7,x2=3.【分析】方程两边开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣5)2=4,开方得:x﹣5=±2,解得:x1=7,x2=3,故答案为x1=7,x2=3.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.29.一元二次方程(2x+1)2﹣81=0的根是x1=4;x2=﹣5.【分析】先变形为(2x+1)2=81,再两边开方得到2x+1=±9,然后解两个一次方程即可.【解答】解:(2x+1)2=81,2x+1=±9,所以x1=4,x2=﹣5.故答案为x1=4,x2=﹣5.【点评】本题考查了解一元二次方程﹣直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.30.一元二次方程x2+2x﹣6=0的根是x1=,x2=﹣3.【分析】找出a,b,c的值,代入求根公式即可求出解.【解答】解:这里a=1,b=2,c=﹣6,∵△=8+24=32,∴x=,即x1=,x2=﹣3.故答案为:x1=,x2=﹣3.【点评】此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解本题的关键.31.已知x1,x2是方程2x2﹣3x﹣1=0的两根,则x12+x22=.【分析】找出一元二次方程的系数a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后利用完全平方公式变形后,将求出的两根之和与两根之积代入,即可求出所求式子的值.【解答】解:∵x1、x2是方程2x2﹣3x﹣1=0的两根,∴x1+x2=.x1x2=﹣,∴x12+x22=,故答案为:【点评】此题考查了一元二次方程根与系数的关系,对所求的代数式进行正确的变形是解决本题的关键.32.已知关于x的一元二次方程x2﹣4x+m﹣1=0的实数根x1,x2,满足3x1x2﹣x1﹣x2>2,则m的取值范围是3<m≤5.【分析】根据根的判别式△>0、根与系数的关系列出关于m的不等式组,通过解该不等式组,求得m的取值范围.【解答】解:依题意得:,解得3<m≤5.故答案是:3<m≤5.【点评】本题考查了一元二次方程的根的判别式的应用,解此题的关键是得出关于m的不等式,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)①当b2﹣4ac>0时,一元二次方程有两个不相等的实数根,②当b2﹣4ac=0时,一元二次方程有两个相等的实数根,③当b2﹣4ac<0时,一元二次方程没有实数根.33.已知x1,x2是一元二次方程x2﹣2x﹣1=0的两实数根,则的值是6.【分析】根据根与系数的关系及一元二次方程的解可得出x1+x2=2、x1x2=﹣1、=2x1+1、=2x2+1,将其代入=中即可得出结论.【解答】解:∵x1、x2是一元二次方程x2﹣2x﹣1=0的两实数根,∴x1+x2=2,x1x2=﹣1,=2x1+1,=2x2+1,∴=+====6.故答案为:6.【点评】本题考查了根与系数的关系以及一元二次方程的解,将代数式变形为是解题的关键.34.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.35.已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由两根关系,得根x1+x2=5,x1•x2=a,解方程得到x1+x2=5,即x1﹣x2=2,即可得到结论.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.36.设α、β是方程(x+1)(x﹣4)=﹣5的两实数根,则=47.【分析】根据α、β是方程(x+1)(x﹣4)=﹣5的两实数根,得到α+β=3,αβ=1,根据完全平方公式得到α4+β4=47,于是得到结论.【解答】解:方程(x+1)(x﹣4)=﹣5可化为x2﹣3x+1=0,∵α、β是方程(x+1)(x﹣4)=﹣5的两实数根,∴α+β=3,αβ=1,∴α2+β2=(α+β)2﹣2αβ=7,α4+β4=(α2+β2)2﹣2α2•β2=47,∴==47,故答案为:47.【点评】本题考查了根与系数的关系,难度较大,关键是根据已知条件对进行变形.37.设一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,则x1+x2(x22﹣3x2)=3.【分析】由题意可知x22﹣3x2=1,代入原式得到x1+x2,根据根与系数关系即可解决问题.【解答】解:∵一元二次方程x2﹣3x﹣1=0的两根分别是x1,x2,∴x12﹣3x1﹣1=0,x22﹣3x2﹣1=0,x1+x2=3,∴x22﹣3x2=1,∴x1+x2(x22﹣3x2)=x1+x2=3,故答案为3.【点评】本题考查根与系数关系、一元二次方程根的定义,解题的关键是灵活运用根与系数的关系定理,属于中考常考题型.38.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x12+x22=4,则m的值为﹣1或﹣3.【分析】利用根与系数的关系可以得到代数式,再把所求代数式利用完全平方公式变形,结合前面的等式即可求解.【解答】解:∵这个方程的两个实数根为x1、x2,∴x1+x2=﹣(m+3),x1•x2=m+1,而x12+x22=4,∴(x1+x2)2﹣2x1•x2=4,∴(m+3)2﹣2m﹣2=4,∴m2+6m+9﹣2m﹣6=0,m2+4m+3=0,∴m=﹣1或﹣3,故答案为:﹣1或﹣3【点评】本题主要考查一元二次方程根的判别式和根与系数的关系的应用,关键是利用根与系数的关系和完全平方公式将代数式变形分析.三.解答题(共12小题)39.解方程:(3x+1)2=64【分析】利用直接开平方法解方程得出答案.【解答】解:(3x+1)2=64,则:(3x+1)2=256,故3x+1=±16,解得:x1=﹣,x2=5.【点评】此题主要考查了直接开平方法解方程,正确开平方是解题关键.40.解方程:2x2+4x﹣1=0(用配方法).【分析】先把方程的二次项系数化为1,再利用完全平方公式变形为(x+1)2=,然后利用直接开平方法求解.【解答】解:x2+2x﹣=0,x2+2x+1=+1,(x+1)2=x+1=±,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.41.用公式法解方程:3x2﹣6x+1=2.【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程.【解答】解:3x2﹣6x﹣1=0,△=(﹣6)2﹣4×3×(﹣1)=48,x===,所以x1=,x2=.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.42.用公式法解方程:2x(x﹣3)=x2﹣1.【分析】先把方程化为一般式,然后利用求根公式解方程.【解答】解:方程整理为x2﹣6x+1=0,△=(﹣6)2﹣4×1=32,x==3±2,所以x1=3+2,x2=3﹣2.【点评】本题考查了解一元二次方程﹣公式法:用求根公式解一元二次方程的方法是公式法.43.(1)计算:﹣32﹣(π﹣3.14)0+(tan30°)﹣1﹣2+(2)解方程:2x2﹣4x﹣1=0【分析】(1)根据特殊角的三角函数值、零指数幂、二次根式、负指数幂的性质化简,二次根式的混合运算,然后根据实数运算法则进行计算即可得出结果.(2)根据配方法求解即可.【解答】解:(1)原式=﹣9﹣1+()﹣1﹣++1=﹣9+;(2)2x2﹣4x﹣1=0,x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±∴x1=1+,x2=1﹣.【点评】本题考查的是解一元二次方程,实数的运算,熟知二次根式的运算、数的开方及乘方法则、负整数指数幂的运算法则特殊角的三角函数值是解答此题的关键.44.用配方法解方程3x2﹣5x﹣2=0.【分析】移项,系数化成1,配方,开方,即可得出两个一元一次方程,求出方程的解即可.【解答】解:3x2﹣5x﹣2=0,3x2﹣5x=2,x2﹣x=,x2﹣x+()2=+()2,(x﹣)2=,x﹣=±,x1=﹣,x2=2.【点评】本题考查了解一元二次方程,能正确配方是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法等.45.(1)计算:(﹣2018)0+|3﹣tan60°|﹣(﹣)﹣2+(2)解方程:x2+4x﹣2=0【分析】(1)先计算乘方、取绝对值符号、计算负整数指数幂、化简二次根式,再计算加减可得;(2)把常数项2移项后,应该在左右两边同时加上一次项系数4的一半的平方,写成完全平方式,再开方可得.【解答】解:(1)原式=1+3﹣﹣4+3=2;(2)∵x2+4x﹣2=0,∴x2+4x=2,则x2+4x+4=2+4,即(x+2)2=6,∴x+2=±,∴x=﹣2±,即x1=﹣2+、x2=﹣2﹣.【点评】本题考查了配方法解方程和实数的混合运算.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.46.(1)解方程x2+4x﹣2=0(2)计算tan30°tan60°﹣sin260°+cos245°【分析】(1)根据一元二次方程的解法即可求出答案.(2)根据特殊角锐角三角函数的值即可求出答案.【解答】解:(1)x2+4x+4=6(x+2)2=6x=﹣2±(2)原式=×﹣+=1=【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.47.(1)计算:(﹣)(+)﹣2(2)解方程x2﹣4x+5=0【分析】(1)先算乘方和开方,再算乘法,最后算加减即可;(2)先求出b2﹣4ac的值,再判断即可.【解答】解:(1)原式=5﹣3﹣4+1=﹣1;(2)x2﹣4x+5=0,b2﹣4ac=(﹣4)2﹣4×1×5=﹣1<0,所以此方程无解.【点评】本题考查了解一元二次方程、零指数幂、平方差公式、二次根式的混合运算,能求出每一部分的值是解(1)的关键,能熟记公式是解(2)的关键.48.(1)计算:(5﹣)÷×(2)解方程:x2+3=2x.【分析】(1)先把二次根式化为最简二次根式.再把括号内合并后进行二次根式的乘除运算;(2)先把方程化为一般式,然后利用配方法解方程.【解答】解:(1)运算=(10﹣3)÷×=7÷×=7=14;(2)x2﹣2x+()2=0,(x﹣)2=0,x﹣=0,所以x1=x2=.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了二次根式的混合运算.49.已知:关于x的一元二次方程x2﹣(2m+2)x+m2﹣3=0(1)若此方程有实根,求m的取值范围;(2)在(1)的条件下,且m取最小的整数,求此时方程的两个根.【分析】(1)根据方程有实根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)得到m的最小整数,可得方程为x2+2x+1=0,再解一元二次方程即可.【解答】解:(1)∵一元二次方程x2﹣4(2m+2)x+m2﹣3=0有实根,∴△=(2m+2)2﹣4(m2﹣3)=8m+16≥0,∴m≥﹣2;(2)m满足条件的最小值为m=﹣2,此时方程为x2+2x+1=0,解得x1=x2=﹣1.【点评】考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0时方程有两个不相等的实数根;(2)△=0时方程有两个相等的实数根;(3)△<0时方程没有实数根.50.已知关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0.(1)求证:方程总有两个实数根;(2)若方程有一个根是负数,求m的取值范围.【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m的取值范围.【解答】(1)证明:∵关于x的一元二次方程x2﹣(m+1)x+3m﹣6=0,∴△=[﹣(m+1)]2﹣4(3m﹣6)=m2﹣10m+25=(m﹣5)2≥0,∴方程总有两个实数根;(2)解:由求根公式可求得x=3或x=m﹣2,若方程有一个根为负数,则m﹣2<0,解得m<2.综上可知,若方程有一个根是负数,m的取值范围为m<2.【点评】本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是。
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案
人教版九年级数学上册《21.2解一元二次方程》练习题-附参考答案一、选择题1.用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( ) A .(x −34)2=1716 B .(x −34)2=12 C .(x −34)2=134D .(x −34)2=1142.一元二次方程(x −22)2=0的根为( ). A .x 1=x 2=22B .x 1=x 2=−22C .x 1=0,x 2=22D .x 1=−223.关于一元二次方程x 2+kx −9=0(k 为常数)的根的情况,下列说法正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .不能确定根的情况4.若关于 的一元二次方程 有两个不相等的实数根,则实数 的取值范围是( )A . 且B .C .且D .5.若关于 的一元二次方程 有一根为0,则的的值为( )A .2B .-1C .2或-1D .1或-26.已知a ,b 是一元二次方程x 2+3x −2=0的两根,则a 2+5a +2b 的值是( ) A .-5B .-4C .1D .07.三角形两边长分别是8和6,第三边长是一元二次方程x 2−16x +60=0一个实数根,则该三角形的面积是( ) A .24B .48C .24或8√5D .8√5 8.已知一元二次方程x 2+2x +6=10x +2的两实数根分别为x 1,x 2,则x 1+x 2x 1x 2的值为( ) A .-2 B .2C .12D .−12二、填空题9.若用配方法解方程x 2+4x +1=0时,将其配方为(x +b)2=c 的形式,则c = . 10.若实数a ,b 满足a −2ab +2ab 2+4=0,则a 的取值范围是 . 11.已知(a 2+b 2)2−a 2−b 2−6=0,求a 2+b 2的值为 .12.关于x 的一元二次方程x 2+2x-a =0的一个根是2,则另一个根是 .13.设x1,x2是方程2x2+6x−1=0的两根,则x1+x2+x1x2的值是.三、解答题14.解方程:(1)x2−4x+3=0;(2)3x2−5x+1=0.15.已知x=√5−1,求代数式x2+2x−3的值.16.关于的一元二次方程有两个实数根,求实数的取值范围.17.已知关于的一元二次方程(1)若方程的一个根为,求的值及另一个根;(2)若该方程根的判别式的值等于,求的值.18.若关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)设方程的两根分别是、且满足,求的值.参考答案1.A2.A3.A4.A5.A6.B7.C8.B9.310.−8≤a<011.312.-413.−7214.(1)解:∵x2−4x+3=0∴(x−3)(x−1)=0∴x−3=0或x−1=0∴x1=3,x2=1.(2)解:∵3x2−5x+1=0∴a=3,b=−5,c=1∴Δ=25−12=13>0∴x=5±√136∴x1=5+√136,x2=5−√136.15.解:当x=√5−1时x2+2x−3=x2+2x+1−1−3=(x+1)2−4=(√5−1+1)2−4=5-4=1.16.解:∵∴且,即.解得:且.17.(1)解:设方程的另一根是x2.∵一元二次方程mx2﹣(m+2)x+2=0的一个根为3∴x=3是原方程的解∴9m﹣(m+2)×3+2=0解得m= ;又由韦达定理,得3×x2=∴x2=1,即原方程的另一根是1(2)解:∵△=(m+2)2﹣4×m×2=1∴m=1,m=3.18.(1)解:∵关于x的方程有两个不相等的实数根∴即解得:;(2)解:设方程的两根分别是∴又∵∴∴∴解得:. 经检验,都符合原分式方程的根∵,∴。
苏科版九年级数学上册1-2一元二次方程的解法 同步练习题【含答案】
两边开平方,得 .
所以 , .
19.(1) x1=5, x2=﹣15;(2) x1=3+ ,x2=﹣2+
(1)(x+2)2+6(x+2)﹣91=0;
设y=x+2,则原方程可变形为:
y2+6y﹣91=0,
解得:y1=7,y2=﹣13,
当y1=7时,x+2=7,
x1=5;
当y2=﹣13时,x+2=﹣13,
A.x=2B.x=0C.x1=﹣2,x2=0D.x1=2,x2=0
二、填空题
9.若 ,则代数式 的值为_____
10.已知x为实数,且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x=.
11.等腰△ABC中,AC=8,AB、BC的长是关于x的方程x2﹣9x+m=0的两根,则m的值是.
12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根x1和x2,且x12﹣2x1+2x2=x1x2,则k的值是.
1.2一元二次方程的解法
一、单选题
1.用配方法解方程 时,应在方程两边同时加上( )
A.3B.9C.6D.36
2.已知 ,则 的值是()
A.3或 B. 或2C.3D.
3. 的根是()
A. B. 或 C. D. 或
4.如果关于x的方程 只有一个实数根,那么方程 的根的情况是()
A.没有实数根B.有两个不相等的实数根
x= ,
x1= ,x2= ;
(4)(x+1)2=2x+2,
(x+1)2﹣2(x+1)=0,
湘教版九年级数学上册第2章《一元二次方程》检测题及答案
第2章检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分)1.将一元二次方程2x 2=1-3x 化成一般形式后,一次项系数和常数项分别为( C )A .-3x ,1B .3x ,-1C .3,-1D .2,-12.用配方法解关于x 的一元二次方程x 2-2x -3=0,配方后的方程可以是( A )A .(x -1)2=4B .(x +1)2=4C .(x -1)2=16D .(x +1)2=163.(云南)一元二次方程x 2-x -2=0的解是( D )A .x 1=1,x 2=2B .x 1=1,x 2=-2C .x 1=-1,x 2=-2D .x 1=-1,x 2=24.已知关于x 的方程x 2-kx -6=0的一个根为x =3,则实数k 的值为( A )A .1B .-1C .2D .-25.某工厂今年元月份的产值是50万元,3月份的产值达到了72万元.若求2、3月份的产值平均增长率,设这两个月月平均增长率为x ,依题意可列方程( B )A .72(x +1)2=50B .50(x +1)2=72C .50(x -1)2=72D .72(x -1)2=506.若关于x 的一元二次方程(k -1)x 2+2x -2=0有两个不相等实数根,则k 的取值范围是( C )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 7.在Rt △ABC 中,其中两边的长恰好是方程x 2-14x +48=0的两个根,则这个直角三角形的斜边长是( D )A .10B .48C .36D .10或88.一边靠6 m 长的墙,其他三边用长为13 m 的篱笆围成的长方形鸡栅栏的面积为20 m 2,则这个长方形鸡栅栏的长和宽分别为( B )A .长8 m ,宽2.5 mB .长5 m ,宽4 mC .长10 m ,宽2 mD .长8 m ,宽2.5 m 或长5 m ,宽4 m9.(仙桃)已知m ,n 是方程x 2-x -1=0的两实数根,则1m +1n的值为( A ) A .-1 B .-12 C.12D .1 10.已知a ,b ,c 是△ABC 三条边的长,那么方程cx 2+(a +b )x +c 4=0的根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .无法确定二、填空题(本大题共8个小题,每小题3分,共24分)11.一元二次方程x 2=16的解是__x =±4__.12.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为__2__.13.若代数式x 2-8x +12的值是21,则x 的值是__9或-1__.14.已知关于x 的一元二次方程x 2+bx +b -1=0有两个相等的实数根,则b 的值是__2__.15.(宿迁)一块矩形菜地的面积是120 m 2,如果它的长减少2 m ,那么菜地就变成正方形,则原菜地的长是__12__m.16.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),若计划安排21场比赛,则应邀请__7__个球队参加比赛.17.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是__1__.18.已知关于x 的一元二次方程x 2+(2k +1)x +k 2-2=0的两根为x 1和x 2,且(x 1-2)(x 1-x 2)=0,则k 的值是__-2或-94__. 点拨:若x 1-2=0,则x 1=2,代入方程解得k =-2;若x 2-x 2=0,则Δ=0,解得k =-94三、解答题(66分)19.(8分)用适当的方法解下列方程:(1)2x 2+7x -4=0;解:x 1=12,x 2=-4(2)(x -3)2+2x (x -3)=0.解:x 1=1,x 2=320.(7分)已知关于x 的方程2x 2-kx +1=0的一个解与方程2x +11-x=4的解相同,求k 的值.解:2x +11-x =4得x =12,经检验x =12是原方程的解,x =12是2x 2-k 为何值,方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根. 证明:Δ=(m -2)2-4(m 2-3)=(m -3)2+7>0,∴方程x 2+(m -2)x +m 2-3=0总有两个不相等的实数根22.(10分)(南充)已知关于x的一元二次方程x2-22的最大整数值;(2)在(1)的条件下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.解:(1)根据题意知Δ=(-22)2-4m>0,解得m<2,∴m的最大整数值为1(2)m =1时,方程为x2-22x+1=0,∴x1+x2=22,x1x2=1,∴x12+x22-x1x2=(x1+x2)2-3x1x2=8-3=523.(10分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?解:(1)设月增长率为x,则150(1+x)2=216,解得x1=20%或x2=-220%(舍去),即:月增长率为20%(2)二月份销售150×(1+20%)=180(辆),(2800-2300)×(150+180+216)=273000(元),该经销商1至3月共盈利273000元24.(12分)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米.(1)当x为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解:(1)根据题意知x(16-x)=60,解得x1=6,x2=10,当x=6或10时,面积为60平方米(2)假设能,则有x(16-x)=70,整理得x2-16x+70=0,Δ=-24<0,∴方程没有实数根,即不能围成面积为70平方米的养鸡场25.(12分)(株洲)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c 分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.解:(1)根据题意有a+c-2b+a-c=0,即a=b,∴△ABC为等腰三角形(2)根据题意有Δ=(2b)2-4(a+c)(a-c)=4b2-4a2+4c2=0,∴b2+c2=a2,∴△ABC为直角三角形。
最新北师版九年级初三数学上册《用配方法求解一元二次方程》试卷
2.2.1用配方法解一元二次方程同步训练一、选择题1.用配方法解方程x2+10x+9=0,配方后可得()A. (x+5)2=16B. (x+5)2=1C. (x+10)2=91D. (x+10)2=1092.一元二次方程x2﹣2x﹣1=0的解是()A. x1=x2=1B. x1=1+ ,x2=﹣1﹣C. x1=1+ ,x2=1﹣D. x1=﹣1+ ,x2=﹣1﹣3.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A. (x+1)2=6B. (x﹣1)2=6C. (x+2)2=9D. (x﹣2)2=94.一元二次方程x2﹣8x﹣1=0配方后可变形为()A. (x+4)2=17B. (x+4)2=15C. (x﹣4)2=17D. (x﹣4)2=155.用配方法解方程-4x+3=0,下列配方正确的是()A.=1B.=1C.=7D.=46.二次三项式-4x+7配方的结果是()A.+7B.+3C.+3D.-17.用配方法把一元二次方程+6x+1=0,配成=q的形式,其结果是()A.=8B.=1C.=10D.=48.对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数D.负数9.若将方程x2+6x=7化为(x+m)2=16,则m=________.10.一元二次方程x2+3﹣2 x=0的解是________.11.如果一个三角形的三边均满足方程,则此三角形的面积是________12.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣________)2=________.13.若将方程x2-8x=7化为(x-m)2=n,则m=________.14.将变形为,则m+n=________15.解方程:x2﹣6x﹣4=0.(1)x2﹣6x﹣4=0 (2)x2-2x-3=0(3)x2+6x=1 (4)x2-4x+1=0(5)x2﹣2x=4 (6)x2+4x﹣2=0(7)(8)2x2﹣3x﹣3=018.如果a、b为实数,满足+b2-12b+36=0,求ab的值.答案解析部分一、2018-2019学年数学北师大版九年级上册2.2.1用配方法解一元二次方程同步训练<p align=left > 一 、选择题</p>1.【答案】A【考点】配方法解一元二次方程【解析】【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故答案为:A.【分析】配方法的一般步骤:1、把常数项移到方程的右边;2、把二次项系数化为1;3、在方程的左右两边同时加上一次项系数一半的平方。
_1.2一元二次方程的解法(配方法)同步练习 2021—2022学年苏科版数学九年级上册
12.A
【解析】x2-2x+3,
=x2-2x+1+2,
=(x-1)2+2,
因为一个数的平方大于等于零,
所以原式≥2,
故选A.
13.-1 4
【解析】∵x2−3=2x,
∴x2−2x=3,
则x2−2x+1=3+1,即(x−1)2=4,
∴m=−1、n=4,
故答案为−1、4.
14.
【解析】解:∵x2+px+q=0(p2-4q≥0).
故答案为3.
25. , ,
【解析】解:
∴ ,
26.(1) , ;(2) ,
【解析】(1)
, ;
(2)
, .
27.(1) ;(2)原方程无实数根;(3) ;(4) ;(5) ;(6) .
【解析】(1)
配方,得 ,
.
(2)
移项,得 .
配方,得 .
,
原方程无实数根.
(3)
移项,得 .
配方,得 ,
.
(4)
移项,得 .
A. B. C. D.
10.若一元二次方程式x2﹣2x﹣3599=0的两根为a、b,且a>b,则2a﹣b的值为( )
A.﹣57B.63C.179D.181
11.已知一元二次方程 配方后为 ,那么一元二次方程 配方后为()
A. B. 或
C. D. 或
12.对于任意实数 ,多项式 的值是一个()
A.正数B.负数C.非负数D.不能确定
(1)小明的解答过程是从第______步开始出错的,其错误原因是__________;
(2)请写出此题正确的解答过程.
30.用配方法解方程,补全解答过程.
北师大版九年级数学上学期 用配方法求解一元二次方程同步试卷含答案解析
九年级数学上册同步测试:2.2 用配方法求解一元二次方程一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥23.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣44.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=196.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=157.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+98.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=99.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.510.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=10912.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.4014.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=215.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3二、填空题(共7小题)16.方程x2=2的解是.17.一元二次方程x2+3﹣2x=0的解是.18.若将方程=.19.将=.20.方程x2﹣2x﹣2=0的解是.21.方程x2﹣2﹣4,则=.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)25.解方程:(2x﹣1)2=x(3x+2)﹣7.26.解方程(1)x2﹣2x﹣1=0(2)=.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是.用配方法解方程:x2﹣2x﹣24=0.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.29.解方程:x2﹣4x+1=0.30.用配方法解关于x的一元二次方程ax2+bx+c=0.北师大版九年级数学上册同步测试:2.2 用配方法求解一元二次方程参考答案与试题解析一、选择题(共15小题)1.已知b<0,关于x的一元二次方程(x﹣1)2=b的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根D.有两个实数根【考点】解一元二次方程-直接开平方法.【分析】根据直接开平方法可得x﹣1=±,被开方数应该是非负数,故没有实数根.【解答】解:∵(x﹣1)2=b中b<0,∴没有实数根,故选:C.【点评】此题主要考查了解一元二次方程﹣直接开平方法,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.2.已知关于=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2【考点】解一元二次方程-直接开平方法.【分析】首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.【解答】解;(,∵一元二次方程(≥0,故选:B.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4 B.x﹣6=4 C.x+6=4 D.x+6=﹣4【考点】解一元二次方程-直接开平方法.【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.【点评】本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.4.用配方法解方程x2﹣2x﹣1=0时,配方后得的方程为()A.(x+1)2=0 B.(x﹣1)2=0 C.(x+1)2=2 D.(x﹣1)2=2【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣1移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣1=0的常数项移到等号的右边,得到x2﹣2x=1,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=1+1配方得(x﹣1)2=2.故选D.【点评】考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是()A.(x﹣6)2=﹣4+36 B.(x﹣6)2=4+36 C.(x﹣3)2=﹣4+9 D.(x﹣3)2=4+9【考点】解一元二次方程-配方法.【分析】根据配方法,可得方程的解.【解答】解:x2﹣6x﹣4=0,移项,得x2﹣6x=4,配方,得(x﹣3)2=4+9.故选:D.【点评】本题考查了解一元一次方程,利用配方法解一元一次方程:移项、二次项系数化为1,配方,开方.8.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.9.若一元二次方程式a(x﹣b)2=7的两根为±,其中a、b为两数,则a+b之值为何?()A.B.C.3 D.5【考点】解一元二次方程-直接开平方法.【分析】首先同时除以a得:(x﹣b)2=,再两边直接开平方可得:x﹣b=±,然后把﹣b移到右边,再根据方程的两根可得a、b的值,进而算出a+b的值.【解答】解:a(x﹣b)2=7,两边同时除以a得:(x﹣b)2=,两边直接开平方可得:x﹣b=±,则x=±+b,∵两根为±,∴a=4,b=,∴a+b=4=,故选:B.【点评】此题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.10.一元二次方程x2﹣2x﹣1=0的解是()A.x1=x2=1 B.x1=1+,x2=﹣1﹣C.x1=1+,x2=1﹣D.x1=﹣1+,x2=﹣1﹣【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,开方即可求出值.【解答】解:方程x2﹣2x﹣1=0,变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,解得:x1=1+,x2=1﹣.故选:C.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.用配方法解方程x2+10x+9=0,配方后可得()A.(x+5)2=16 B.(x+5)2=1 C.(x+10)2=91 D.(x+10)2=109【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项,利用完全平方公式化简得到结果即可.【解答】解:方程x2+10x+9=0,整理得:x2+10x=﹣9,配方得:x2+10x+25=16,即(x+5)2=16,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.12.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A.(x+)2= B.(x+)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【专题】转化思想.【分析】先移项,把二次项系数化成1,再配方,最后根据完全平方公式得出即可.【解答】解:ax2+bx+c=0,ax2+bx=﹣c,x2+x=﹣,x2+x+()2=﹣+()2,(x+)2=,故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.13.若一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,则3a+b之值为何?()A.22 B.28 C.34 D.40【考点】解一元二次方程-配方法.【分析】配方得出(2x+3)2=1156,推出2x+3=34,2x+3=﹣34,求出x的值,求出a、b的值,代入3a+b求出即可.【解答】解:4x2+12x﹣1147=0,移项得:4x2+12x=1147,4x2+12x+9=1147+9,即(2x+3)2=1156,2x+3=34,2x+3=﹣34,解得:x=,x=﹣,∵一元二次方程式4x2+12x﹣1147=0的两根为a、b,且a>b,∴a=,b=﹣,∴3a+b=3×+(﹣)=28,故选B.【点评】本题考查了有理数的混合运算和解一元二次方程的应用,能求出a、b的值是解此题的关键,主要培养学生解一元二次方程的能力,题型较好,难度适中.14.关于≠0)的解是x1=﹣3,(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】利用直接开平方法得方程m(x+h)2+k=0的解x=﹣h±,则﹣h﹣=﹣3,﹣h+=2,再解方程m(x+h﹣3)2+k=0得x=3﹣h±,所以x1=0,(,h,k均为常数,m ≠0)得x=﹣h±,而关于≠0)的解是x1=﹣3,x2=2,所以﹣h﹣=﹣3,﹣h+=2,方程m(x+h﹣3)2+k=0的解为x=3﹣h±,所以x1=3﹣3=0,x2=3+2=5.故选:B.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.15.x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,下列说法正确的是()A.x1小于﹣1,x2大于3 B.x1小于﹣2,x2大于3C.x1,x2在﹣1和3之间D.x1,x2都小于3【考点】解一元二次方程-直接开平方法;估算无理数的大小.【专题】计算题.【分析】利用直接开平方法解方程得出两根进而估计无理数的大小得出答案.【解答】解:∵x1、x2是一元二次方程3(x﹣1)2=15的两个解,且x1<x2,∴(x﹣1)2=5,∴x﹣1=±,∴x2=1+>3,x1=1﹣<﹣1,故选:A.【点评】此题主要考查了直接开平方法解方程以及估计无理数的大小,求出两根是解题关键.二、填空题(共7小题)16.方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.17.一元二次方程x2+3﹣2x=0的解是x1=x2=.【考点】解一元二次方程-配方法.【分析】先分解因式,即可得出完全平方式,求出方程的解即可.【解答】解:x2+3﹣2x=0(x﹣)2=0∴x1=x2=.故答案为:x1=x2=.【点评】此题考查了解一元二次方程,熟练掌握求根的方法是解本题的关键.18.若将方程=3.【考点】解一元二次方程-配方法.【分析】此题实际上是利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:在方程x2+6x=7的两边同时加上一次项系数的一半的平方,得x2+6x+32=7+32,配方,得(=3.故答案为:3.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.19.将=3.【考点】配方法的应用.【专题】计算题.【分析】原式配方得到结果,即可求出m的值.【解答】解:x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6=(=3,故答案为:3【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.20.方程x2﹣2x﹣2=0的解是x1=+1,x2=﹣+1.【考点】解一元二次方程-配方法.【分析】首先把常数﹣2移到等号右边,再两边同时加上一次项系数一半的平方,把左边配成完全平方公式,再开方,解方程即可.【解答】解:x2﹣2x﹣2=0,移项得:x2﹣2x=2,配方得:x2﹣2x+1=2+1,(x﹣1)2=3,两边直接开平方得:x﹣1=,则x1=+1,x2=﹣+1.故答案为:x1=+1,x2=﹣+1.【点评】此题主要考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.方程x2﹣2x﹣1=0的解是x1=1+,x2=1﹣.【考点】解一元二次方程-配方法.【分析】首先把常数项2移项后,然后在左右两边同时加上一次项系数﹣2的一半的平方,然后开方即可求得答案.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,∴x2﹣2x+1=2,∴(x﹣1)2=2,∴x=1±,∴原方程的解为:x1=1+,x2=1﹣.故答案为:x1=1+,x2=1﹣.【点评】此题考查了配方法解一元二次方程.解题时注意配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.22.若一元二次方程a+1与2m﹣4,则=4.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法得到x=±,得到方程的两个根互为相反数,所以m+1+2m﹣4=0,解得m=1,则方程的两个根分别是2与﹣2,则有=2,然后两边平方得到=4.【解答】解:∵x2=,∴x=±,∴方程的两个根互为相反数,∴m+1+2m﹣4=0,解得m=1,∴一元二次方程ax2=b的两个根分别是2与﹣2,∴=2,∴=4.故答案为:4.【点评】本题考查了解一元二次方程﹣直接开平方法:形如)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(n=±.三、解答题(共8小题)23.解方程:x2﹣6x﹣4=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.【点评】本题考查了用配方法解一元二次方程,用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.24.有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【考点】解一元二次方程-配方法.【专题】阅读型.【分析】(1)移项要变号;(2)移项后配方,开方,即可得出两个方程,求出方程的解即可.【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.【点评】本题考查了解一元二次方程的应用,解此题的关键是能正确配方,题目比较好,难度适中.25.解方程:(2x﹣1)2=x(3x+2)﹣7.【考点】解一元二次方程-配方法.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.26.解方程(1)x2﹣2x﹣1=0(2)=.【考点】解一元二次方程-配方法;解分式方程.【专题】计算题.【分析】(1)方程常数项移到右边,两边加上1,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)移项得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,开方得:x﹣1=±,则x1=1+,x2=1﹣;(2)去分母得:4x﹣2=3x,解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解一元二次方程﹣配方法,以及解分式方程,利用配方法解方程时,首先将二次项系数化为1,常数项移到右边,然后两边加上一次项系数以一半的平方,左边化为完全平方式,右边合并,开方转化为两个一元一次方程来求解.27.嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:由于a≠0,方程ax2+bx+c=0变形为:x2+x=﹣,…第一步x2+x+()2=﹣+()2,…第二步(x+)2=,…第三步x+=(b2﹣4ac>0),…第四步x=,…第五步嘉淇的解法从第四步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是x=.用配方法解方程:x2﹣2x﹣24=0.【考点】解一元二次方程-配方法.【专题】阅读型.【分析】第四步,开方时出错;把常数项24移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:在第四步中,开方应该是x+=±.所以求根公式为:x=.故答案是:四;x=;用配方法解方程:x2﹣2x﹣24=0解:移项,得x2﹣2x=24,配方,得x2﹣2x+1=24+1,即(x﹣1)2=25,开方得x﹣1=±5,∴x1=6,x2=﹣4.【点评】本题考查了解一元二次方程﹣﹣配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.28.(1)解方程:x2﹣2x=1;(2)解不等式组:.【考点】解一元二次方程-配方法;解一元一次不等式组.【专题】计算题.【分析】(1)方程两边都加上1,配成完全平方的形式,然后求解即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)x2﹣2x+1=2,(x﹣1)2=2,所以,x1=1+,x2=1﹣;(2),解不等式①得,x≥﹣2,解不等式②得,x<,所以,不等式组的解集是﹣2≤x<.【点评】(1)考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.(2)主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).29.解方程:x2﹣4x+1=0.【考点】解一元二次方程-配方法.【专题】计算题;配方法.【分析】移项后配方得到x2﹣4x+4=﹣1+4,推出(x﹣2)2=3,开方得出方程x﹣2=±,求出方程的解即可.【解答】解:移项得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开方得:x﹣2=±,∴原方程的解是:x1=2+,x2=2﹣.【点评】本题考查了用配方法解一元二次方程、解一元一次方程的应用,关键是配方得出(x﹣2)2=3,题目比较好,难度适中.30.用配方法解关于x的一元二次方程ax2+bx+c=0.【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵关于x的方程ax2+bx+c=0是一元二次方程,∴a≠0.∴由原方程,得x2+x=﹣,等式的两边都加上,得x2+x+=﹣+,配方,得(x+)2=﹣,当b2﹣4ac>0时,开方,得:x+=±,解得x1=,x2=,当b2﹣4ac=0时,解得:x1=x2=﹣;当b2﹣4ac<0时,原方程无实数根.【点评】本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.。
《2.2用配方法解一元二次方程》同步练习含答案解析
《2.2 用配方法解一元二次方程》一、选择题1.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=232.将代数式x2+6x﹣3化为(x+p)2+q的形式,正确的是()A.(x+3)2+6 B.(x﹣3)2+6 C.(x+3)2﹣12 D.(x﹣3)2﹣123.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣14.用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()A.(x﹣2)2=3 B.2(x﹣2)2=3 C.2(x﹣1)2=1 D.5.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定6.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30 B.﹣20 C.﹣5 D.07.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=18.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=49.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=1910.对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数 D.负数二、填空题11.将二次三项式x2+4x+5化成(x+p)2+q的形式应为.12.若x2﹣4x+5=(x﹣2)2+m,则m= .13.若a为实数,则代数式的最小值为.14.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣)2= .15.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m﹣n)2016= .16.设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为.17.若实数a,b满足a+b2=1,则a2+b2的最小值是.18.将x2+6x+4进行配方变形后,可得该多项式的最小值为.19.将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab= .20.若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a= .三、解答题21.解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.22.“a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x )2+ ;所以当x= 时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为.(2)比较代数式x2﹣1与2x﹣3的大小.23.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.24.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?《2.2 用配方法解一元二次方程》参考答案与试题解析一、选择题1.用配方法解方程x2﹣4x﹣7=0时,原方程应变形为()A.(x﹣2)2=11 B.(x+2)2=11 C.(x﹣4)2=23 D.(x+4)2=23【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上4变形得到结果即可.【解答】解:方程x2﹣4x﹣7=0,变形得:x2﹣4x=7,配方得:x2﹣4x+4=11,即(x﹣2)2=11,故选A【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.2.将代数式x2+6x﹣3化为(x+p)2+q的形式,正确的是()A.(x+3)2+6 B.(x﹣3)2+6 C.(x+3)2﹣12 D.(x﹣3)2﹣12【考点】配方法的应用.【分析】利用配方法的一般步骤把原式变形即可.【解答】解:x2+6x﹣3=x2+6x+9﹣12=(x+3)2﹣12,故选:C.【点评】本题考查的是配方法的应用,配方法的理论依据是公式a2±2ab+b2=(a±b)2,配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方.3.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x +2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣1【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+1=0,变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,故选A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.用配方法解方程2x2﹣4x+1=0时,配方后所得的方程为()A.(x﹣2)2=3 B.2(x﹣2)2=3 C.2(x﹣1)2=1 D.【考点】解一元二次方程-配方法.【专题】计算题.【分析】利用配方法得到(x﹣1)2=,然后对各选项进行判断.【解答】解:x2﹣2x=﹣,x2﹣2x+1=﹣+1,所以(x﹣1)2=.故选C.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.5.已知M=a﹣1,N=a2﹣a(a为任意实数),则M、N的大小关系为()A.M<N B.M=N C.M>N D.不能确定【考点】配方法的应用;非负数的性质:偶次方.【分析】将M与N代入N﹣M中,利用完全平方公式变形后,根据完全平方式恒大于等于0得到差为正数,即可判断出大小.【解答】解:∵M=a﹣1,N=a2﹣a(a为任意实数),∴,∴N>M,即M<N.故选A【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.6.将代数式x2﹣10x+5配方后,发现它的最小值为()A.﹣30 B.﹣20 C.﹣5 D.0【考点】解一元二次方程-配方法.【专题】计算题;一次方程(组)及应用.【分析】原式利用完全平方公式配方后,确定出最小值即可.【解答】解:x2﹣10x+5=x2﹣10x+25﹣20=(x﹣5)2﹣20,当x=5时,代数式的最小值为﹣20,故选B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.7.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1【考点】解一元二次方程-配方法.【分析】移项后配方,再根据完全平方公式求出即可.【解答】解:x2+4x﹣5=0,x2+4x=5,x2+4x+22=5+22,(x+2)2=9,故选:A.【点评】本题考查了解一元二次方程的应用,关键是能正确配方.8.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14 B.(x﹣3)2=4 C.(x+3)2=14 D.(x+3)2=4【考点】解一元二次方程-配方法.【分析】先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.【解答】解:x2﹣6x﹣5=0,x2﹣6x=5,x2﹣6x+9=5+9,(x﹣3)2=14,故选:A.【点评】本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.9.用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】把方程两边加上7,然后把方程左边写成完全平方式即可.【解答】解:x2+4x=3,x2+4x+4=7,(x+2)2=7.故选B.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.10.对于代数式﹣x2+4x﹣5,通过配方能说明它的值一定是()A.非正数B.非负数C.正数 D.负数【考点】解一元二次方程-配方法.【分析】直接利用配方法将原式变形,进而利用偶次方的性质得出答案.【解答】解:﹣x2+4x﹣5=﹣(x2﹣4x)﹣5=﹣(x﹣2)2﹣1,∵﹣(x﹣2)2≤0,∴﹣(x﹣2)2﹣1<0,故选:D.【点评】此题主要考查了配方法的应用,正确应用配方法是解题关键.二、填空题11.(2016•荆州)将二次三项式x2+4x+5化成(x+p)2+q的形式应为(x+2)2+1 .【考点】配方法的应用.【分析】直接利用完全平方公式将原式进行配方得出答案.【解答】解:x2+4x+5=x2+4x+4+1=(x+2)2+1.故答案为:(x+2)2+1.【点评】此题主要考查了配方法的应用,正确应用完全平方公式是解题关键.12.若x2﹣4x+5=(x﹣2)2+m,则m= 1 .【考点】配方法的应用.【专题】计算题;整式.【分析】已知等式左边配方得到结果,即可确定出m的值.【解答】解:已知等式变形得:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1=(x﹣2)2+m,则m=1,故答案为:1【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.13.若a为实数,则代数式的最小值为 3 .【考点】配方法的应用;非负数的性质:偶次方;二次根式的性质与化简.【分析】把被开方数用配方法整理,根据非负数的意义求二次根式的最小值.【解答】解:∵ ==≥3,∴代数式的最小值为3,故答案为:3.【点评】本题考查二次函数的性质的应用,配方求代数式最值的方法.14.用配方法解方程3x2﹣6x+1=0,则方程可变形为(x﹣ 1 )2= .【考点】解一元二次方程-配方法.【专题】计算题;一次方程(组)及应用.【分析】方程常数项移到右边,二次项系数化为1,两边加上一次项系数一半的平方,配方得到结果,即可作出判断.【解答】解:方程整理得:x2﹣2x=﹣,配方得:x2﹣2x+1=,即(x﹣1)2=,故答案为:1;【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.15.已知方程x2+4x+n=0可以配方成(x+m)2=3,则(m﹣n)2016= 1 .【考点】解一元二次方程-配方法.【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【解答】解:由(x+m)2=3,得:x2+2mx+m2﹣3=0,∴2m=4,m2﹣3=n,∴m=2,n=1,∴(m﹣n)2016=1,故答案为1.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.16.设x,y为实数,代数式5x2+4y2﹣8xy+2x+4的最小值为 3 .【考点】配方法的应用;代数式求值.【专题】配方法.【分析】题中有﹣8xy,2x应为完全平方式子的第二项,把所给代数式整理为两个完全平方式子与一个常数的和,最小值应为那个常数.【解答】解:原式=(x2+2x+1)+(4x2﹣8xy+4y2)=4(x﹣y)2+(x+1)2+3,∵4(x﹣y)2和(x+1)2的最小值是0,即原式=0+0+3=3,∴5x2+4y2﹣8xy+2x+4的最小值为3.故答案为:3.【点评】考查配方法的应用;根据﹣8xy,2x把所给代数式整理为两个完全平方式子的和是解决本题的关键.17.若实数a,b满足a+b2=1,则a2+b2的最小值是.【考点】配方法的应用;非负数的性质:偶次方.【分析】由a+b2=1,得出b2=1﹣a,代入得到a2+b2=a2+1﹣a,利用配方法即可求解.【解答】解:∵a+b2=1,∴b2=1﹣a,∴a2+b2=a2+1﹣a=(a﹣)2+≥,∴当a=时,a2+b2有最小值.故答案为.【点评】本题考查了配方法的应用,非负数的性质,将b2=1﹣a代入得到a2+b2=a2+1﹣a是解题的关键.18.(2016春•石景山区期末)将x2+6x+4进行配方变形后,可得该多项式的最小值为﹣5 .【考点】解一元二次方程-配方法.【分析】将x2+6x+4利用配方法转化为(x+3)2﹣5,然后根据(x+3)2≥0可得多项式x2+6x+4的最小值.【解答】解:∵x2+6x+4=(x+3)2﹣5,∴当x=﹣3时,多项式x2+6x+4取得最小值﹣5;故答案为﹣5.【点评】本题考查了配方法的应用.解答该题时,利用了配方法求多项式或二次函数的最值是常用方法.19.将一元二次方程x2﹣6x+5=0化成(x﹣a)2=b的形式,则ab= 12 .【考点】解一元二次方程-配方法.【分析】先移项,再配方,变形后求出a、b的值,即可得出答案.【解答】解:x2﹣6x+5=0,x2﹣6x=﹣5,x2﹣6x+9=﹣5+9,(x﹣3)2=4,所以a=3,b=4,ab=12,故答案为:12.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.20.若代数式x2﹣6x+b可化为(x﹣a)2﹣3,则b﹣a= 3 .【考点】配方法的应用.【专题】计算题.【分析】代数式配方得到结果,确定出a与b的值,即可求出b﹣a的值.【解答】解:根据题意得:x2﹣6x+b=(x2﹣6x+9)+b﹣9=(x﹣3)2+b﹣9=(x﹣a)2﹣3,可得a=3,b﹣9=﹣3,解得:a=3,b=6,则b﹣a=3.故答案为:3.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.三、解答题21.解方程:(1)x2+4x﹣1=0.(2)x2﹣2x=4.【考点】解一元二次方程-配方法.【分析】(1)利用配方法即可解决.(2)利用配方法即可解决.【解答】解:(1)∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4 ∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.(2)配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】本题考查一元二次方程的解法,记住配方法的解题步骤是解题的关键,属于中考常考题型.22.“a2=0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式,例如:x2+4x+5=x2+4x+4+1=(x+2)2+1,∵(x+2)2≥0,(x+2)2+1≥1,∴x2+4x+5≥1.试利用“配方法”解决下列问题:(1)填空:因为x2﹣4x+6=(x ﹣2 )2+ 2 ;所以当x= 2 时,代数式x2﹣4x+6有最小(填“大”或“小”)值,这个最值为 2 .(2)比较代数式x2﹣1与2x﹣3的大小.【考点】配方法的应用;解一元二次方程-配方法.【分析】(1)把原式利用平方法化为完全平方算与一个常数的和的形式,利用偶次方的非负性解答;(2)利用求差法和配方法解答即可.【解答】解:(1)x2﹣4x+6=(x﹣2)2+2,所以当x=2时,代数式x2﹣4x+6有最小值,这个最值为2,故答案为:﹣2;2;2;小;2;(2)x2﹣1﹣(2x﹣3)=x2﹣2x+2;=(x﹣1)2+1>0,则x2﹣1>2x﹣3.【点评】本题考查的是配方法的应用,掌握配方法的一般步骤是解题的关键,注意偶次方的非负性的应用.23.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知a2+6ab+10b2+2b+1=0,求a﹣b的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足2a2+b2﹣4a﹣6b+11=0,求△ABC的周长;(3)已知x+y=2,xy﹣z2﹣4z=5,求xyz的值.【考点】配方法的应用;非负数的性质:偶次方.【分析】(1)利用配方法把原式变形,根据非负数的性质解答即可;(2)利用配方法把原式变形,根据非负数的性质和三角形三边关系解答即可;(3)利用配方法把原式变形,根据非负数的性质解答即可.【解答】解:(1)∵a2+6ab+10b2+2b+1=0,∴a2+6ab+9b2+b2+2b+1=0,∴(a+3b)2+(b+1)2=0,∴a+3b=0,b+1=0,解得b=﹣1,a=3,则a﹣b=4;(2)∵2a2+b2﹣4a﹣6b+11=0,∴2a2﹣4a++2+b2﹣6b+9=0,∴2(a﹣1)2+(b﹣3)2=0,则a﹣1=0,b﹣3=0,解得,a=1,b=3,由三角形三边关系可知,三角形三边分别为1、3、3,∴△ABC的周长为1+3+3=7;(2)∵x+y=2,∴y=2﹣x,则x(2﹣x)﹣z2﹣4z=5,∴x2﹣2x+1+z2+4z+4=0,∴(x﹣1)2+(z+2)2=0,则x﹣1=0,z+2=0,解得x=1,y=1,z=﹣2,∴xyz=2.【点评】本题考查的是配方法的应用和三角形三边关系,灵活运用完全平方公式、掌握三角形三边关系是解题的关键.24.先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?【考点】配方法的应用;非负数的性质:偶次方.【专题】计算题.【分析】(1)多项式配方后,根据完全平方式恒大于等于0,即可求出最小值;(2)多项式配方后,根据完全平方式恒大于等于0,即可求出最大值;(3)根据题意列出关系式,配方后根据完全平方式恒大于等于0,即可求出最大值以及x的值即可.【解答】解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50=﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.【点评】此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.。
同步练习 《用配方法求解一元二次方程》
2.2 用配方法求解一元二次方程一、填空题1.方程x 2=16的根是x 1=__________,x 2=__________.2.若x 2=225,则x 1=__________,x 2=__________.3.若x 2-2x=0,则x 1=__________,x 2=__________.4.若(x -2)2=0,则x 1=__________,x 2=__________.5.若9x 2-25=0,则x 1=__________,x 2=__________.6.若-2x 2+8=0,则x 1=__________,x 2=__________.7.若x 2+4=0,则此方程解的情况是____________.8.若2x 2-7=0,则此方程的解的情况是__________.9.若5x 2=0,则方程解为____________.10.由7,9两题总结方程ax 2+c=0(a ≠0)的解的情况是:当ac >0时_______________;当ac=0时__________;当ac <0时__________________.二、选择题1.方程5x 2+75=0的根是 A.5 B.-5 C.±5D.无实根2.方程3x 2-1=0的解是A.x=±31B.x=±3C.x=±33D.x=±33.方程4x 2-0.3=0的解是 A.075.0=xB.30201-=x C.27.01=x 27.02-=xD.302011=x 302012-=x 4.方程27252-x =0的解是A.x=57B.x=±57C.x=±535D.x=±57 5.已知方程ax 2+c=0(a ≠0)有实数根,则a 与c 的关系是A.c=0B.c=0或a 、c 异号C.c=0或a 、c 同号D.c 是a 的整数倍6.关于x 的方程(x+m)2=n,下列说法正确的是 A.有两个解x=±nB.当n ≥0时,有两个解x=±n -mC.当n ≥0时,有两个解x=±m nD.当n ≤0时,方程无实根 7.方程(x -2)2=(2x+3)2的根是A.x 1=-31,x 2=-5B.x 1=-5,x 2=-5C.x 1=31,x 2=5D.x 1=5,x 2=-5三、解方程1. x 2=02. 3x 2=33. 2x 2=64. x 2+2x=05.21(2x+1)2=36.(x+1)2-144=0四、解答题1.将下列各方程写成(x+m)2=n 的形式 (1)x 2-2x+1=0 (2)x 2+8x+4=0 (3)x 2-x+6=02.将下列方程两边同时乘以或除以适当的数,然后再写成(x+m)2=n 的形式 (1)2x 2+3x -2=0(2)41x 2+x -2=03.用配方法解下列方程(1)x 2+5x -1=0 (2)2x 2-4x -1=0(3)41x 2-6x+3=04.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?5.两个正方形,小正方形的边长比大正方形的边长的一半多4 cm ,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.6.一瓶100克的纯农药,倒出一定数量后加等量的水搅匀,然后再倒出相同数量的混合液,这时瓶内所剩的混合液中还有纯农药36克,问第一次倒出的纯农药为多少克?第二次倒出的混合液中纯农药多少克?7.如图4,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?图4参考答案一、1.4 -4 2.15 -15 3.0 2 4.2 25.35 35 6.2 -2 7.无实数根 8.x 1=214,x 2=-2149.x 1=x 2=010.方程无实根 方程有两个相等实根为x 1=x 2=0 方程有两个不等的实根 二、1.D 2.C 3.D 4.C 5.B 6.B 7.A 三、解:1.x 2=0,x=0,∴x 1=x 2=0 2.3x 2=3 x 2=1, x=±1, ∴x 1=1,x 2=-1 3.2x 2=6, x 2=3, x=±3∴x 1=3,x 2=-3 4.x 2+2x=0 x(x+2)=0 x=0或x+2=0 x=0或x=-2 ∴x 1=0,x 2=-25.21(2x+1)2=3 (2x+1)2=62x+1=±6∴2x+1=6或2x+1=-6∴x=21(6-1)或x=21(-6-1)∴x 1=21(6-1),x 2=21(-6-1)6.(x+1)2-144=0 (x+1)2=144 x+1=±12∴x+1=12或x+1=-12 ∴x=11或x=-13 ∴x 1=11,x 2=-13.四、1.(1)解:(x -1)2=0 (2)解:x 2+8x=-4 x 2+8x+16=12 (x+4)2=12 (3)解:x 2-x=-6x 2-x+41=-543(x -21)2=-5432.(1)解:x 2+23x -1=0x 2+23x=1x 2+23x+169=1169(x+43)2=1625(2)解:x 2+4x -8=0 x 2+4x=8 x 2+4x+4=12 (x+2)2=123.(1)解:x 2+5x=1x 2+5x+429425=(x+25)2=429∴x+25=±229∴x 1=2529,2529--=-x (2)解:x 2-2x -21=0x 2-2x=21x 2-2x+1=23(x -1)2=23x -1=±26 ∴x 1=226+,x 2=226+- (3)解:x 2-24x+12=0 x 2-24x=-12 x 2-24x+144=132 (x -12)2=132 x -12=±233∴x 1=233+12,x 2=-233+12 (4) 15元 (5) 16 cm 12 cm (6).x 1=40 x 2=24 (7).1或5。
21.2.1解一元二次方程之配方法 同步练习(含答案)
21.2.1 解一元二次方程(配方法)一、单选题(共10小题)1.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 2.用配方法解方程2310x x ++=,经过配方,得到( )3.不论x ,y 取何实数,代数式x 2﹣4x+y 2+13总是( )A .非负数B .正数C .负数D .非正数4.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A .x 2﹣2x =5B .x 2+4x =5C .2x 2﹣4x =5D .4x 2+4x =55.把方程x 2﹣12x +33=0化成(x +m )2=n 的形式,则式子m +n 的值是( )A .9B .﹣9C .﹣3D .36.用配方法解方程2620x x ++=,配方正确的是( )A .2(3)9x +=B .2(3)9x -=C .2(3)6x +=D .2(3)7x +=7.一同学将方程2430x x --=化成了2()x m n +=的形式,则m 、n 的值应为( ) A .m=2.n=7 B .m=﹣2,n=7 C .m=﹣2,n=1 D .m=2,n=﹣78.对一元二次方程 x 2﹣ax =3 进行配方时,两边同时加上( )9.方程x 2-2x -5=0的左边配成一个完全平方后,所得的方程是( )A .2 (1)6 x +=B .(x -1)2=6C .(x+2)2=9D . 2(2)9x -= 10.用配方法解下列方程时,配方错误的是 ( )二、填空题(共5小题)11.把关于x 的方程x 2-2x+2=0配方成为a (x -2)2+b (x -2)+c=0的形式,得________. 12.将x 2+6x+3配方成(x+m )2+n 的形式,则n=______.13.已知方程x 2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为_____. 14.规定:a ⊗b =(a +b )b ,如:2⊗3=(2+3)×3=15,若2⊗x =3,则x =_______.15.方程(x+1)(x -3)=-4的解为______.三、解答题(共2小题)16.用配方法求一元二次方程()()23616x x +-=的实数根.17.解方程:267x x +=-参考答案一、单选题(共10小题)1.(2019·江苏中考真题)用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 【答案】D【解析】先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】2890x x ++=, 289x x +=-,2228494x x ++=-+,所以()247x +=,故选D.【点评】本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键. 2.(2019·昆山市第二中学初二期末)用配方法解方程2310x x ++=,经过配方,得到() A .2313()24x +=B .235()24x +=C .2(3)1x +=D .2(3)8x +=【答案】B【解析】按照配方法的步骤,先把常数项移到右侧,然后在两边同时加上一次项系数一半的平方,配方即可.【详解】x 2+3x+1=0,x 2+3x=-1, x 2+3x+232⎛⎫ ⎪⎝⎭=-1+232⎛⎫ ⎪⎝⎭,235x 24⎛⎫+= ⎪⎝⎭, 故选B.【点评】本题考查了解一元二次方程——配方法,熟练掌握配方法的步骤以及要求是解题的关键. 3.(2018·陕西西安音乐学院附中初三期中)不论x ,y 取何实数,代数式x 2﹣4x+y 2+13总是( )A.非负数B.正数C.负数D.非正数【答案】B【解析】利用配方法把原式化为平方和的形式,根据偶次方的非负性解答.【详解】解:x2﹣4x+y2+13=x2﹣4x+4+y2+9=(x﹣2)2+y2+9,∵(x﹣2)2≥0,y2≥0,∴(x﹣2)2+y2+9>0,即不论x,y取何实数,代数式x2﹣4x+y2+13总是正数,故选:B.【点评】本题考查了配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.4.用配方法解下列方程,其中应在方程左右两边同时加上4的是()A.x2﹣2x=5B.x2+4x=5C.2x2﹣4x=5D.4x2+4x=5【答案】B【解析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2-2x= 52,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= 54,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方14;故本选项错误;故选B.【点评】本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.把方程x 2﹣12x +33=0化成(x +m )2=n 的形式,则式子m +n 的值是( )A .9B .﹣9C .﹣3D .3【答案】C【解析】方程移项变形后,配方得到结果,即可确定出m 与n 的值.从而得出答案.【详解】∵x 2﹣12x +33=0,∴x 2﹣12x =﹣33,则x 2﹣12x +36=﹣33+36,即(x ﹣6)2=3,∴m =﹣6,n =3,∴m +n =﹣6+3=﹣3,故选:C .【点评】考查一元二次方程的解法,解题的关键是灵活运用所学知识解决问题,学会用适当的方法解一元二次方程.6.(2018·湖南广益实验中学初二期中)用配方法解方程2620x x ++=,配方正确的是( ) A .2(3)9x +=B .2(3)9x -=C .2(3)6x +=D .2(3)7x +=【答案】D【解析】按照配方法解一元二次方程的方法和步骤,先移项,再在方程两边都加上一次项系数的一半的平方(二次项系数为1),整理化简即得答案.【详解】解:方程2620x x ++=即为262x x +=-,在方程的两边都加上9,得26929x x ++=-+,即2(3)7x +=.故选D.【点评】本题主要考查配方法解一元二次方程,掌握配方法解一元二次方程的的方法和步骤是解此题的关键.7.(2018·江门市第二中学初二期末)一同学将方程2430x x --=化成了2()x m n +=的形式,则m 、n 的值应为( )A .m=2.n=7B .m=﹣2,n=7C .m=﹣2,n=1D .m=2,n=﹣7【答案】B【解析】先把(x+m )2=n 展开,化为一元二次方程的一般形式,再分别使其与方程x 2-4x -3=0的一次项系数、二次项系数及常数项分别相等即可.【详解】解:∵(x+m )2=n 可化为:x 2+2mx+m 2-n=0,∴2243m m n =-⎧⎨-=-⎩,解得:27m n =-⎧⎨=⎩ 故选:B .【点评】此题比较简单,解答此题的关键是将一元二次方程化为一般形式,再根据题意列出方程组即可. 8.对一元二次方程 x 2﹣ax =3 进行配方时,两边同时加上( )A .22a B .24a C .2a D .a 2【答案】B 【解析】方程两边都加上一次项系数一半的平方即可.【详解】解:23x ax -=,222322a a x ax ⎛⎫⎛⎫-+=+ ⎪ ⎪⎝⎭⎝⎭,22324a a x ⎛⎫-=+ ⎪⎝⎭,故选:B . 【点评】考查了解一元二次方程,能正确配方是解此题的关键.9.(2019·河南省实验中学初二期末)方程x 2-2x -5=0的左边配成一个完全平方后,所得的方程是( ) A .2(1)6 x += B .(x -1)2=6 C .(x+2)2=9D . 2(2)9x -=【答案】B【解析】把常数项-5移项后,应该在左右两边同时加上一次项系数-2的一半的平方.【详解】解:把方程x 2-2x -5=0的常数项移到等号的右边,得到x 2-2x=5,方程两边同时加上一次项系数一半的平方,得到x 2-2x+(-1)2=5+(-1)2,配方得(x -1)2=6.故选:B .【点评】本题考查配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.用配方法解下列方程时,配方错误的是( )A.2x2-7x-4=0化为(x-74)2=8116B.2t2-4t+2=0化为(t-1)2=0C.4y2+4y-1=0化为(y+12)2=12D.13x2-x-4=0化为(x-32)2=594【答案】D【解析】根据配方法解一元二次方程即可进行求解.【详解】A. 2x2-7x-4=0化为(x-74)2=8116,正确;B. 2t2-4t+2=0化为(t-1)2=0,正确;C. 4y2+4y-1=0化为(y+12)2=12,正确;D. 13x2-x-4=0化为(x-32)2=574,故错误;故选D.【点评】此题主要考查配方法,解题的关键是熟知配方法进行求解.二、填空题(共5小题)11.(2019·南京市金陵中学河西分校初一期中)把关于x的方程x2-2x+2=0配方成为a(x-2)2+b(x-2)+c=0的形式,得________.【答案】(x-2)2+2(x-2)+2=0.【解析】此题把x-2看作整体,用配方法可化为(x-2)2+2(x-2)+2=0,即可.【详解】∵x2-2x+2=x2-4x+4+2x-4+2=(x-2)2+2(x-2)+2,∴方程x2-2x+2=0配方成为a(x-2)2+b(x-2)+c=0的形式为,(x-2)2+2(x-2)+2=0,故答案为(x-2)2+2(x-2)+2=0.【点评】本题考查了用配方法解一元二次方程,还考查了一个很重要的思想,整体思想.12.(2018·江苏省泗洪县新星城南学校初三期中)将x2+6x+3配方成(x+m)2+n的形式,则n=______.【答案】-6【解析】根据配方法即可求出答案.【详解】原式=(x2+6x)+3=(x2+6x+9-9)+3=(x+3)2-6,∴n=-6故答案为:-6【点评】本题考查配方法的应用,解题的关键是熟练运用配方法,本题属于基础题型.13.(2019·重庆市江津中学校初三期中)已知方程x2﹣10x+24=0的两个根是一个等腰三角形的两边长,则这个等腰三角形的周长为_____.【答案】14或16.【解析】先解方程的两根,再由三角形的三边关系定理确定三角形的周长.【详解】配方得,x2−10x+25−25+24=0,解得x=6或4,∵方程x2−10x+24=0的两个根是一个等腰三角形的两边长,∴这个等腰三角形的周长为14或16.【点评】本题考查了一元二次方程的解法以及实际应用,掌握解一元二次方程法方法是解题的关键.14.(2018·湖南中考真题)规定:a⊗b=(a+b)b,如:2⊗3=(2+3)×3=15,若2⊗x=3,则x=________.【答案】1或-3【解析】根据a⊗b=(a+b)b,列出关于x的方程(2+x)x=3,解方程即可.【详解】依题意得:(2+x)x=3,整理,得x2+2x=3,所以(x+1)2=4,所以x+1=±2,所以x=1或x=-3.故答案是:1或-3.【点评】用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.15.(2019·蚌埠铁路中学初二期中)方程(x+1)(x -3)=-4的解为______.【答案】x 1=x 2=1【解析】首先将已知的方程变形可得2210x x -+=,对其进行因式分解可得()210,x -=求解即可.【详解】(x+1)(x -3)=-4 2234,x x --=-移项得:2210x x -+=即()210,x -= ∴x 1=x 2=1,故答案为:x 1=x 2=1【点评】本题是一道关于解一元二次方程的题目,解答本题的关键是熟练掌握因式分解法解一元二次方程;三、解答题(共2小题)16.(2019·内蒙古中考真题)用配方法求一元二次方程()()23616x x +-=的实数根.【答案】194x =294x +=. 【解析】首先把方程化为一般形式为2x 2-9x -34=0,然后变形为29x x 172﹣=,然后利用配方法解方程. 【详解】原方程化为一般形式为22x 9x 340﹣﹣=, 29x x 172﹣=, 298181x x 1721616-++=, 29353x 416-()=,9x 44-±=,所以12x x ,.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.(2019·黑龙江中考真题)解方程:267x x +=-【答案】13x =-23x =-【解析】方程两边都加上9,配成完全平方式,再两边开方即可得.【详解】解:267x x +=-,∴26979x x ++=-+,即()232x +=,则3x += ∴3x =-±即13x =-23x =-【点评】本题主要考查一元二次方程的解法,必须熟练的计算,这是中考的必考题.。
课时检测:04-第二章2用配方法求解一元二次方程第2课时
第2课时用配方法解二次项系数不为1的一元二次方程测试时间:25分钟一、选择题1.把方程2x2-3x-2=0配方成(x+m)2=n的形式,则m,n的值分别是( )A.m=-,n=B.m=-,n=C.m=-,n=D.m=-,n=答案 A 将方程整理得x2-x=1,配方得x2-x+=,即-=,则m=-,n=,故选A.2.用配方法解一元二次方程2x2-6x+1=0,则方程配方后可化为( )A.-=B.2-=C.-=D.2-=答案 A ∵2x2-6x+1=0,∴2x2-6x=-1,则x2-3x=-,∴x2-3x+=-+,即-=,故选A.3.(2017天津六十三中模拟)用配方法解下列方程时,配方有误的是( )A.x2-2x-99=0化为(x-1)2=100B.x2+8x+9=0化为(x+4)2=25C.2t2-7t-4=0化为-=D.3x2-4x-2=0化为-=答案 B A.∵x2-2x-99=0,∴x2-2x=99,∴x2-2x+1=99+1,∴(x-1)2=100,故A选项配方正确.B.∵x2+8x+9=0,∴x2+8x=-9,∴x2+8x+16=-9+16,∴(x+4)2=7,故B选项配方错误.C.∵2t2-7t-4=0,∴2t2-7t=4,∴t2-t=2,∴t2-t+=2+,∴-=,故C选项配方正确.D.∵3x2-4x-2=0,∴3x2-4x=2,∴x2-x=,∴x2-x+=+,∴-=.故D选项配方正确.故选B.二、填空题4.方程4x2-4x+1=0的解为.1解析∵4x2-4x+1=0,∴(2x-1)2=0,则2x-1=0,解得x1=x2=,故答案为x1=x2=.5.把一元二次方程2x2-x-1=0配方成a(x-h)2+k=0的形式(a,h,k均为常数),则h和k的值分别为.答案,-解析2x2-x-1=0,2-=0,2---=0,2--=0.∴h=,k=-.故答案是,-.6.若方程2x2+8x-32=0能配方成(x+p)2+q=0的形式,则直线y=px+q不经过的象限是.答案第二象限解析整理,得x2+4x=16,配方,得x2+4x+4=20,即(x+2)2-20=0,所以p=2,q=-20,则直线解析式为y=2x-20,此直线经过第一、三、四象限,不经过第二象限.故答案为第二象限.7.用配方法解方程2x2-4x-1=0.①方程两边同时除以2,得;②移项,得;③配方,得;④方程两边开平方,得;⑤解得x1= ,x2= .答案①x2-2x-=0 ②x2-2x=③(x-1)2=④x-1=±⑤1+;1-8.用配方法解方程2x2-3x-5=0,配方后可得方程为.2解析移项,得2x2-3x=5,把二次项系数化为1,得x2-x=,方程两边同时加上一次项系数一半的平方,得x2-x+-=+-, ∴-=.三、解答题9.用配方法解下列方程:(1)3x2-1=4x;(2)2x2-4x+1=0;(3)3x2-6x+1=0;(4)3x2-5x-2=0.解析(1)由原方程得3x2-4x=1,3-=1,3--=1,3--=1,3-=,-=,x-=±,∴x1=,x2=.(2)由原方程得x2-2x=-,34配方,得x 2-2x+1=,即(x-1)2=,直接开平方,得x-1=± ,∴x 1=1- ,x 2=1+. (3)移项,得3x 2-6x=-1,即x 2-2x=-,配方,得(x-1)2=,直接开平方,得x-1=±, ∴x 1=1- ,x 2=1+. (4)3x 2-5x-2=0, 3x 2-5x=2, x 2- x=,x2- x+ - = + - , - =, x-=±, ∴x 1=- ,x 2=2.10.如图,已知矩形ABCD 的周长为16,四个正方形的面积和为68,求矩形ABCD 的面积.解析 设矩形的长AB 为x,则宽AD 为(8-x),由题意得 2x 2+2(8-x)2=68, 2x 2+2(64-16x+x 2)=68,2x2+128-32x+2x2=68,∴4x2-32x=-60,∴x2-8x=-15,∴x2-8x+16=-15+16,即(x-4)2=1,∴x-4=±1,∴x1=5,x2=3.所以矩形ABCD的长和宽分别等于5和3,所以矩形ABCD的面积是15.5。
人教版初中数学九年级上册同步测试 第21章 一元二次方程(共17页)
第二十一章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若x x m -m+-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3)542=-x (4)2122=+x x A .1个B .2个C .3个D .4个 8.在方程:3x 2-5x =0,,5312+=+x x7x 2-6xy +y 2=0,322,052222--=+++xx x x ax =0,3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13..25)1(412=+x14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程x x x +=-2232化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______. 17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,,01=+xx ,5)3(21,42122=+=-+x x x 其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关C .与a 的值有关D .与a 的符号有关 20.如果21=x 是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ). A .5±B .±1C .±2D .2±21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ).A .k k +B .k k -C .k k -±D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24..063)4(22=--x25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确 28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1.+-x x 82_________=(x -__________)2. 2.x x 232-+_________=(x -_________)2. 3.+-px x 2_________=(x -_________)2.4.x abx -2+_________=(x -_________)2. 5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______. 二、选择题 7.用配方法解方程01322=--x x 应该先变形为( ). A .98)31(2=-xB .98)31(2-=-x C .910)31(2=-xD .0)32(2=-x8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2 B .x 1=-10,x 2=8 C .x 1=10,x 2=-8 D .x 1=-4,x 2=29.用公式法解一元二次方程x x 2412=-,正确的应是( ). A .252±-=xB .252±=x C .251±=x D .231±=x 10.方程mx 2-4x +1=0(m <0)的根是( ).A .41 B .m m-±42 C .mm-±422D .mm m -±42 三、解答题(用配方法解一元二次方程)11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0.14..03232=--x x五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3.16.5x 2+4x =1.综合、运用、诊断一、填空题17.将方程x x x 32332-=++化为标准形式是______________________,其中a =____ __,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或6 20.4x 2+49y 2配成完全平方式应加上( ).A .14xyB .-14xyC .±28xyD .0 21.关于x 的一元二次方程ax a x 32222=+的两根应为( ).A .22a±-B .a 2,a 22C .422a± D .a 2±三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程)24.2x -1=-2x 2.25.x x 32132=+26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为∆=b 2-4ac , (1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7 B .25 C .±5 D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数 B .负数 C .非负数 D .零 7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0 B .9x 2=4(3x -1) C .x 2+7x +15=0D .02322=--x x8.方程03322=++x x 有( ).A .有两个不等实根B .有两个相等的有理根C .无实根D .有两个相等的无理根 三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程02)1(2=++-mx m x 都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .242ac b b -±- B .ac b 42-C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ).A .k <1B .k <-1C .k ≥1D .k >1 14.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .21或32- 15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .23<m B .23<m 且m ≠1 C .23≤m 且m ≠1 D .23>m16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c为边长的三角形是( ). A .锐角三角形 B .钝角三角形 C .直角三角形 D .任意三角形 二、解答题17.已知方程mx 2+mx +5=m 有相等的两实根,求方程的解.18.求证:不论k 取任何值,方程(k 2+1)x 2-2kx +(k 2+4)=0都没有实根.19.如果关于x 的一元二次方程2x (ax -4)-x 2+6=0没有实数根,求a 的最小整数值.20.已知方程x 2+2x -m +1=0没有实根,求证:方程x 2+mx =1-2m 一定有两个不相等的实根.拓广、探究、思考21.若a ,b ,c ,d 都是实数,且ab =2(c +d ),求证:关于x 的方程x 2+ax +c =0,x 2+bx +d =0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______ 2.(2x -7)(x +2)=0.______ 3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5..03222=-x x ______ 6..)21()21(2x x -=+______7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=b D .x 1=-a ,x 2=-b 10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,.1,3221==∴x x 三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2).12..32x x =*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18.0222=-x x .______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,2 21.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程0)43)(21()43(2=--+-x x x 的较小的根为( ).A .43-B .21C .85D .43 三、用因式分解法解下列关于x 的方程23..2152x x =- 24.4(x +3)2-(x -2)2=0.25..04222=-+-b a ax x26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2 B .x 1=x 2=2 C .x =4 D .x 1=x 2=46.5.27.0512=+x 的根是( ).A .x =3B .x =±3C .x =±9D .3±=x7.072=-x x 的根是( ). A .77=x B .77,021==x x C .x 1=0,72=xD .7=x8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1 D .x =1或x =2 三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0. 12.2a 2x 2-5ax +2=0.(a ≠0)四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式1872+--x x x 的值是0,则x =______.21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ).A .都是x =0B .有一个相同,x =0C .都不相同D .以上都不正确 23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ).A .b ax a b x 2,221==B .b ax a b x ==21,C .0,2221=+=x abb a xD .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26..02322=+-x x 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求yx yx +-的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________.32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为,24,221aac b b x x -±-=请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______.(2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______.(4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值: ①;1121x x + ②;2221x x + ③|x 1-x 2|; ④;221221x x x x + ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
22.2 配方法解一元二次方程 过关检测A卷
+—
l 6
D.
2 2 什
。
方程 204 = _ . 0的解 是 ( 9
A. 7 0. B. . 一07
) .
D. 0. ± 7
C. ±7
方程 缸 8 0的解为 ( +=
A. 1 2 =2, =一2
) .
B X- /2.2一 /2 . 1、 X- 、 -x 1 =
.
— —
根 为一 . m 的值 应 为( 1则
B. 一1 C.1
) .
1
关 于 的 方程 ( 1x- = )24 0的一个 根 为 2 ,
则另 一个根 为
一
A. 一1 1.
D. 一
2
小球 以 1 / 5m s的速 度 竖 直 向上 弹 出 , 它 时 , 球 小
.
— —
1 . 配 方法 解方程 X- 2 0 0用 2缸+ = .下 列配 方 正 确 的是 ( ) .
B (+ ) 2 . 2 = D. 2 6 (一 ) =
A. 2 2 (一 ) = C (一 ) 一 . 2 2 =
方 程 = 6 19的解 是
1 . 于 的 一 元 二 次 方 程 2 x + 0有 关 1 m 2 m=
维普资讯
- 。 . I
,
' I
.
酗 元
|
程
) .
D. 4 1 B. 4 C. 4 -1
豢 _ _
9 将 一 元 二次 方程 x- x 5 0化 成 (+ )= . 26 一 = 口2b
、
填 空题
—
1
把 下列各 式配 成 完全 平 方式 :
第二十一章 一元二次方程 单元同步密卷训练-2020-2021学年人教版九年级数学上册
一元二次方程 单元同步密卷训练九年级数学人教版(上)一、选择题1. 用配方法解一元二次方程x 2-6x -10=0时,下列变形正确的是( )A .(x +3)2=1B .(x -3)2=1C .(x +3)2=19D .(x -3)2=192. 若关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,则a 的值是( )A .2B .-2C .0D .不等于2的任意实数3. 若方程(x -5)2=19的两根为a 和b ,且a >b ,则下列结论中正确的是( )A .a 是19的算术平方根B .b 是19的平方根C .a -5是19的算术平方根D .b +5是19的平方根4. 用配方法解方程x 2-2x-5=0,原方程应变为( )A .(x+1)2=6B 。
(x+2)2=9C 。
(x-1)2=6D 。
(x-2)2=9。
5. 某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干、小分支的总数是91.设每个支干长出x 个分支,则可列方程为( )A .x 2+x+1=91B .(x+1)2=91C .x 2+x =91D .x 2+1=916. 已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是【 】A . 1B .﹣1C .0D .无法确定7. 已知0x =是关于x 的一元二次方程22(1)440m x mx m +++-=的一个解,则m 的值是( )(A )1 (B )-1 (C )0或1 (D )0或-18. 随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止至2021年底某市汽车拥有量为16.9万辆.已知2019年底该市汽车拥有量为10万辆.设2019年底至2021年底该市汽车拥有量的年平均增长率为x.根据题意列方程得( )A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1-x)2=16.9D.10(1-2x)=16.99.已知1是关于x 的一元二次方程(m ﹣1)x 2+x+1=0的一个根,则m 的值是( )A.1B.﹣1C.0D.无法确定10. 方程3 x (x-1)=5(x-1)的根为( )A. x =53B.x =1C.x 1 =1 x 2 =53D. x 1 =1 x 2 =3511.若关于x 的方程a (x+m )2+b =0的解是x 1=2,x 2=﹣1(a ,m ,b 均为常数,a ≠0),则方程a (﹣x ﹣m+1)2+b =0的解是( )A .x 1=1,x 2=﹣2B .x 1=1,x 2=0C .x 1=3,x 2=﹣2D .x 1=3,x 2=012.若方程x 2﹣(m+n )x+mn =0(m ≠0)的根是x 1=x 2=m ,则下列结论正确的是( )A .n =0且n 是该方程的根B .n =m 且n 是该方程的根C .n =m 但n 不是该方程的根D .n =0但n 不是该方程的根二、填空题13. 关于x 的方程(m 2﹣4)x 2+(m ﹣2)x ﹣2=0,当m 满足 时,方程为一元二次方程,当m 满足 时,方程为一元一次方程.14. 公元9世纪,阿拉伯数学家花拉子米在他的名著《代数学》中用图解一元二次方程.他把一元二次方程x 2+2x ﹣35=0写成x 2+2x =35的形式,并将方程左边的x 2+2x 看作是由一个正方形(边长为x )和两个同样的矩形(一边长为x ,另一边长为1)构成的矩尺形,它的面积为35,如图所示,于是只要在这个图形上添加一个小正方形,即可得到一个完整的大正方形,这个大正方形的面积可以表示为:x 2+2x+ =35+ ,整理,得(x+1)2=36.因为x 表示边长,所以x = .15. 方程(x-1)(x+2)(x-3)=0的根是_____ ___.16. 菱形的一条对角线长为8,其边长是方程x 2﹣9x+20=0的一个根,则该菱形的面积为 .17. 已知x =-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a =__________.18. 如果21x -2x -8=0,则1x的值是________. 19. 若方程的两根是x 1、x 2,则代数式的值是 。