材料力学8(弯曲应力)

合集下载

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

材料力学——弯曲应力

材料力学——弯曲应力

公式推导
线应变的变化规律 与纤维到中性层的距离成正比。
从横截面上看: 点离开中性轴越远,该点的线应变越大。
2、物理关系
当σ<σP时 虎克定律
E
E
y
y
弯曲正应力的分布规律 a、与点到中性轴的距离成正比; 沿截面高度 线性分布; b、沿截面宽度 均匀分布; c、正弯矩作用下, 上压下拉; d、危险点的位置, 离开中性轴最远处.
M max ymax IZ
x
67.5 103 90 103 5.832 105
104.17MPa
6、已知E=200GPa,C 截面的曲率半径ρ q=60KN/m A FAY B 1m C 3m FBY
M C 60kN m
I z 5.832 105 m 4
M EI
4 103 88 103 46.1MPa 6 7.64 10
9KN
4KN
C截面应力计算
A FA
M 1m
C 1m
B
1m FB
C截面应力分布 应用公式
t ,max
My Iz
2.5KNm
2.5 103 88 103 28.8MPa 6 7.64 10
Fb Fa
C截面: max M C Fb3 62.5 160 32 46.4MPa d W 3
zC
2
0.13
32
(5)结论 轮轴满足强度条件
一简支梁受力如图所示。已知 [ ] 12MPa ,空心圆截面 的内外径之比 一倍,比值不变,则载荷 q 可增加到多大? q=0.5KN/m A B
反映了截面的几何形状、尺寸对强度的影响
最大弯曲正应力计算公式

工程力学(材料力学)8 弯曲变形与静不定梁

工程力学(材料力学)8 弯曲变形与静不定梁

B
ql4 RBl3 0
8EI 3EI
q 约束反力为
B
RB
3 8
ql
RB
用变形比较法求解静不定梁的一般步骤:
(1)选择基本静定系,确定多余约束及反力。 (2)比较基本静定系与静不定梁在多余处的变形、确定 变形协调条件。 (3)计算各自的变形,利用叠加法列出补充方程。 (4)由平衡方程和补充方程求出多余反力,其后内力、 强度、刚度的计算与静定梁完全相同。
教学重点
• 梁弯曲变形的基本概念; • 挠曲线的近似微分方程; • 积分法和叠加法计算梁的变形; • 梁的刚度条件。
教学难点
• 挠曲线近似微分方程的推导过程; • 积分法和叠加法计算梁的变形; • 变形比较法求解静不定梁。
第一节 弯曲变形的基本概念
齿轮传动轴的弯曲变形
轧钢机(或压延机)的弯曲变形
例13-4 用叠加法求图示梁的 yC、A、B ,EI=常量。
M
P
解 运用叠加法
A
C
l/2
l/2
A
=
q
5ql4 Pl3 ml2
B
yC
384EI
48EI
16EI
A
ql3 24EI
Pl 2
16EI
ml 3EI
B
B
ql3 24EI
Pl2 16EI
ml 3EI
M
+
q
A
+
BA
B
二、梁的刚度条件
y max y,
A
max
A ql3
B
24EI
RA
q
A
θB
l
B θB RB
在梁跨中点 l /2 处有 最大挠度值

材料力学常用公式

材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。

常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。

下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。

2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。

3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。

4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。

其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。

5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。

6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。

7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。

8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。

工程力学第8章梁的弯曲应力与强度计算

工程力学第8章梁的弯曲应力与强度计算
弯曲应力是指由于外力矩作用,使梁 发生弯曲变形时,在梁的横截面上产 生的应力。
弯曲应力的大小与外力矩、截面尺寸 和材料性质等因素有关。
弯曲应力的产生原因
当梁受到外力矩作用时,梁的横截面上的内力分布不均匀, 产生弯曲应力。
弯曲应力的产生与梁的弯曲变形有关,是梁在受到外力矩作 用时,抵抗弯曲变形的能力的表现。
弯曲应力的分类
正弯曲应力
当梁受到外力矩作用时,在横截面上产生的正应 力称为正弯曲应力。
剪切弯曲应力
当梁受到外力矩作用时,在横截面上产生的剪切 应力称为剪切弯曲应力。
扭曲弯曲应力
当梁受到外力矩作用时,在横截面上产生的扭曲 应力称为扭曲弯曲应力。
03
梁的弯曲应力计算
纯弯曲梁的正应力计算
01
公式:$sigma = frac{M}{I}$
方向的力,梁的宽度是截面的几何尺寸。
弯曲正应力和剪切应力的关系源自公式$sigma + tau = frac{M}{I} + frac{V}{b}$
描述
该公式表示弯曲正应力与剪切应力之间的关系,两者共同作用在梁上,决定了梁的强度和刚度。
04
梁的强度计算
强度计算的依据
梁的弯曲应力
01
梁在弯曲时,其内部的应力分布情况是决定其强度的关键因素。
机械零件
在机械零件设计中,如起 重机的吊臂、汽车的车身 等,梁的强度计算是保证 其正常工作的基础。
05
梁的弯曲应力与强度的关系
弯曲应力对强度的影响
弯曲应力是梁在受到垂直于轴线的力时产生的应力,它会 导致梁发生弯曲变形。弯曲应力的大小和分布与梁的跨度 、截面形状和材料等因素有关。
弯曲应力对梁的强度有显著影响。当弯曲应力过大时,梁 可能会发生断裂或过度变形,导致其承载能力下降。因此 ,在进行梁的设计和强度计算时,必须考虑弯曲应力的影 响。

弯曲应力—纯弯曲时的正应力(材料力学)

弯曲应力—纯弯曲时的正应力(材料力学)

§5-2 正应力计算公式
3、物理关系
σ Eε
M
?
所以 σ E y
z
O
x
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴的距离成正比。待解决问题中性轴的位置?
中性层的曲率半径
§5-2 正应力计算公式
4、静力关系
横截面上内力系为垂直于横截面的空 间平行力系,这一力系简化得到三个内力分 M 量。
y t max
M
z
y
σtmax
σ cmax My cmax Iz
§5-2 正应力计算公式
二、横力弯曲时梁横截面上的正应力
实际工程中的梁,其横截面上大多同时存在着弯矩和剪力,为横 力弯曲。但根据实验和进一步的理论研究可知,剪力的存在对正应力 分布规律的影响很小。因此对横力弯曲的情况,前面推导的正应力公 式也适用。
(2)最大正应力发生在横截面上离中性轴最远的点处。
σ max M y max Iz
引用记号
Wz
Iz ymax
—抗弯截面系数
则公式改写为
σ max
M Wz
§5-2 正应力计算公式
对于中性轴为对称轴的横截面
矩形截面
Wz
Iz h/2
bh3 / 12 h/2
bh2 6
实心圆截面
Wz
Iz d /2
πd 4 / 64 d /2
推论:必有一层变形前后长度不变的纤维—中性层
⊥ 中性轴 横截面对称轴
中性层
中性轴
横截面对称轴
§5-2 正应力计算公式
2、变形几何关系
d
dx
图(a)
O’
b’ z

弯曲应力-材料力学

弯曲应力-材料力学

弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
另外,根据不同的弯曲形式和受力情 况,还可以采用其他计算公式来求解 弯曲应力,如均布载荷下的简支梁、 集中载荷下的悬臂梁等。
弯曲应力的计算方法
根据材料力学的基本原理,弯曲应力 的计算公式为:σ=M/Wz,其中σ为 弯曲应力,M为弯曲力矩,Wz为截面 对中性轴的抗弯截面系数。
弯曲应力可能导致材料发生弯曲变形,影响结构的稳定性和精度。
弯曲应力对材料刚度的影响
弯曲应力对材料的刚度有影响,材料的刚度随着弯曲应力的增大而 减小。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。
弯曲应力
材料的韧性和强度都会影响其弯曲应力的大小和分布。韧性好的材料能够更好地分散和 吸收弯曲应力,而高强度的材料则能够承受更大的弯曲应力而不发生断裂。
材料韧性、强度与弯曲应力的关系
韧性
是指材料在受到外力作用时吸收能量的能力。韧性好的材料能够吸收更多的能量,从而 减少因弯曲应力而产生的脆性断裂。
强度
剪切应力的分布
剪切应力在材料截面的边缘最大,向中性轴方向 逐渐减小。
3
剪切应力和弯曲应力的关系
剪切应力和弯曲应力共同作用,影响梁的承载能 力和稳定性,在设计时需要考虑两者的相互作用。
弯曲应力与剪切应力的关系
1 2
剪切应力在弯曲应力中的作用
在弯曲过程中,剪切应力会在材料截面的边缘产 生,它与弯曲应力相互作用,影响梁的承载能力 和稳定性。

材料力学教案-弯曲应力

材料力学教案-弯曲应力

(2)最大正应力发生在横截面上离中性轴最远的点处.
σmax M ymax Iz
引用记号 W Iz —抗弯截面系数 ymax
则公式改写为
σmax
M W
(Stresses in Beams)
(1)当中性轴为对称轴时
实心圆截面 W Iz πd 4 / 64 πd 3 d / 2 d / 2 32
且梁横截面的中性轴一般也不是对称轴,所以梁的
σtmax σcmax(两者有时并不发生在同一横截面上)
要求分别不超过材料的许用拉应力和许用压应力
σtmax [σt] σcmax [σc ]
(Stresses in Beams)
例题1 螺栓压板夹紧装置如图所示.已知板长3a=150mm,压板
材料的弯曲许用应力[]=140MP.试计算压板传给工件的最大允

1M
EIz
代入
σE y
得到纯弯曲时横截面上正应力的计算公式:
σ My Iz
M为梁横截面上的弯矩;
y为梁横截面上任意一点到中性轴的距离;
Iz为梁横截面对中性轴的惯性矩.
(Stresses in Beams)
讨论
(1)应用公式时,一般将 My 以绝对值代入. 根据梁变形的情
况直接判断 的正负号. 以中性轴为界,梁变形后凸出边的应 力为拉应力( 为正号).凹入边的应力为压应力( 为负号);
应力分布规律:
?
y
直梁纯弯曲时横截面上任意一点的正应力,与它到中性轴
的距离成正比.
待解决问题
? 中性轴的位置
中性层的曲率半径
(Stresses in Beams) 四、静力关系 (Static relationship)

材料力学第8章应力状态分析

材料力学第8章应力状态分析

页 退出
材料力学
出版社 理工分社
图8.1
页 退出
材料力学
出版社 理工分社
由以上分析可见,杆内各点应力的大小和方向不仅与该点所处位置有关,而 且还与过该点的截面方位有关。过一点所有截面上应力的集合,称为该点的 应力状态。为了解决构件在复杂受力情况下的强度问题,必须了解构件中的 危险点哪一截面的正应力最大,哪一截面的切应力最大,为此有必要研究一 点处各截面应力的变化规律,这就是一点的应力状态分析。一点的应力状态 通常用单元体来描述。
页 退出
材料力学
出版社 理工分社
对于构件中的某一点,当3个主应力全都不为零时,该点的应力状态称为三 向(或空间)应力状态,当有一个主应力为零时,称为二向(或平面)应力 状态,当有两个主应力为零时,称为单向应力状态。三向和二向应力状态又 称为复杂应力状态,单向应力状态则称为简单应力状态。 工程中经常遇到二向应力状态的问题,下面主要对二向应力状态进行分析研 究。

确定E点,E点横纵坐标
代表y截面上的正应力σy应力和切应力 y。由于 x和 y的数值相等,
,因此直线DE与坐标轴σ的交点C的横坐标为(σx+σy)/2,即C为应力
圆的圆心。于是,以C为圆心、
为半径画圆,即得所求应力圆,如
图8.6(b)所示。
页 退出
材料力学
出版社 理工分社
图8.6
页 退出
材料力学
页 退出
材料力学
出版社 理工分社
图8.1(b)为依附着杆件横截面所截取单元体(图8.1(c)为其平面图形 式),而图8.1(d)为依附着45°斜截面所截取的单元体。由于杆件轴向拉 伸时,横截面上只有正应力,且与杆件轴向平行的截面没有应力,因此,图 8.1(b)中的单元体只在左右两个面上有正应力作用。对于图8.1(d)中的 单元体,根据拉压杆斜截面应力分析(2.3节)可知,其4个面上既有正应力 又有切应力。

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

材料力学第8章-弯曲剪应力分析与弯曲中心的概念

TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
1. 基于弯曲正应力的分析结果——承认纯弯 正应力公式在横向弯曲时依然成立。
Mzy
Iz
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
前提
2. 因为薄壁截面杆的内壁和外壁都没有力作 用,应用剪应力互等定理,横截面上的剪应力作 用线必然沿着横截面周边的切线方向。
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
TSINGHUA UNIVERSITY
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
梁弯曲时横截面上的剪应力分析 实心截面梁的弯曲剪应力公式 薄壁截面梁的弯曲中心 结论与讨论
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
薄壁杆件弯曲时为什么会发生扭转现象? 外力的作用线通过哪一点就不会发生扭转? 这一点的位置怎样确定?
第8章 弯曲剪应力分析与弯曲中心的概念
薄壁截面梁的弯曲中心
通过考察微段的局部平衡确定剪应力流的方向
TSINGHUA UNIVERSITY
横向弯曲时,梁的横截面上不仅有弯矩,而 且还有剪力。与剪力相对应的,梁的横截面上将 有剪应力。
分析弯曲剪应力的方法有别于分析弯曲正应 力的方法。
TSINGHUA UNIVERSITY
第8章 弯曲剪应力分析与弯曲中心的概念
弯曲剪应力以及弯曲中心的概念
分析模型-开口薄壁截面梁

材料力学弯曲应力

材料力学弯曲应力

材料力学弯曲应力材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而弯曲应力是材料在受到弯曲载荷时所产生的应力。

弯曲应力的研究对于工程结构设计和材料选用具有重要意义。

本文将从弯曲应力的概念、计算公式、影响因素等方面进行详细介绍。

弯曲应力是指在材料受到弯曲载荷作用下,横截面上的应力分布情况。

在弯曲过程中,材料上部受到压应力,下部受到拉应力,而中性面则不受应力影响。

根据梁的理论,弯曲应力与弯矩、截面形状以及材料性质有关。

在工程实践中,我们通常使用梁的弯曲应力公式来计算弯曲应力的大小。

梁的弯曲应力公式可以表示为:\[ \sigma = \frac{M \cdot c}{I} \]其中,σ为弯曲应力,M为弯矩,c为截面中性轴到受拉或受压纤维的距离,I为截面的惯性矩。

从公式中可以看出,弯曲应力与弯矩成正比,与截面形状和材料性质有关,截面越大,惯性矩越大,弯曲应力越小。

影响弯曲应力的因素有很多,主要包括载荷大小、截面形状、材料性质等。

首先是载荷大小,当外力作用在梁上时,产生的弯矩大小将直接影响弯曲应力的大小。

其次是截面形状,截面形状不同将导致截面惯性矩不同,进而影响弯曲应力的大小。

最后是材料性质,材料的弹性模量、屈服强度等参数也会对弯曲应力产生影响。

在工程实践中,我们需要根据具体的工程要求和材料性质来选择合适的截面形状和材料类型,以使得结构在受到弯曲载荷时能够满足强度和刚度的要求。

同时,还需要合理设计结构,减小弯曲应力集中的区域,避免出现应力集中而导致的破坏。

综上所述,弯曲应力是材料在受到弯曲载荷时产生的应力,其大小与弯矩、截面形状和材料性质有关。

在工程实践中,我们需要根据具体的工程要求和材料性质来计算和分析弯曲应力,以保证结构的安全可靠。

同时,合理设计结构和选择合适的材料也是降低弯曲应力的重要手段。

希望本文对于弯曲应力的理解和应用能够有所帮助。

材料力学 第八章

材料力学 第八章

边界条件: x 0
xL
y1 0
y2 0
L
Fb 2 x C1 2L
x连Βιβλιοθήκη 条件:xay1 y2
Fb 3 x C1 x D1 6L
Fb 2 F x ( x a ) 2 C2 2L 2
1 2
Fb 2 C1 ( L b 2 ) C2 , 6L
yC , B
1、载荷分解
q
ql
ql2
2查表:单独载荷作用下
q
5ql yC1 384EI
yC 2
B2
4
ql3 B1 , 24EI
yC1
ql
B1
(ql)l 3 48EI
(ql) l 2 ql3 , 16EI 16EI
yC2
ql2
B2
yC 3
3ql 4 48EI
图所示。试求 ( x), y( x)

A 。
Fa L
FAy
FBy
1、求支座反力
FAy
Fb , L
FBy
2、分段列出梁的弯矩方程 AC段 (0 x a)
Fb M 1 ( x) FA x x, L
BC段 (a x L)
Fb M 2 ( x) x F ( x a), L

1 y
y '' ( x )
'2
( x)

3
2
M ( x) EI z
y ( x) ( x) 0
'
1 y ' 2 ( x) 1
故得挠曲线近似微分方程:
M ( x) y' ' EI

弯曲应力

弯曲应力

第六章 弯曲应力1 基本概念及知识要点1.1 基本概念纯弯曲、横力弯曲、弯曲正应力、惯性矩、抗弯截面系数、弯曲刚度、弯曲切应力(剪应力)。

应熟练理解和掌握这些基本概念。

1.2 平面弯曲工程实际中的梁,大多数是具有一个纵向对称面的等截面直梁。

外载荷作用在梁的纵向对称面内,并垂直于梁的轴线,梁弯曲时轴线将在对称平面内弯曲成平面曲线,这种弯曲叫平面弯曲。

当梁横截面上既有弯矩又有剪力时,梁的弯曲是横力弯曲(或剪切弯曲);梁横截面上只有弯矩而没有剪力时,梁的弯曲是纯弯曲。

1.3 弯曲正应力梁在纯弯曲时的正应力是综合运用变形几何关系、物理关系和静力平衡关系推导出来的,推导弯曲正应力公式的方法,与推导轴向拉压正应力公式和扭转切应力公式的方法相同。

弯曲正应力公式zI My=σ 式中M 为所研究截面的弯矩;z I 分为截面图形对中性轴的惯性矩;y 为所求应力点到中性轴的距离。

计算时,M 和y 均用代数值代入,由此得到所求点的应力符号,同样也可根据梁的变形情况来确定。

梁弯曲正应力公式适用材料处于线弹性范围内的纯弯曲梁,可推广到横力弯曲以及小曲率杆的弯曲中。

1.4 弯曲切应力弯曲切应力公式的推导不是按照变形几何关系、物理关系、平衡关系三方面进行的,而是根据分析对弯曲切应力的分布规律作出假定——平行于剪力F s 且沿截面厚度均匀分布,然后利用平衡关系直接导出矩形截面切应力公式*zzF S bI τ=s 式中,F s 为截面上的剪力;z I 为整个截面对中性轴的惯性矩;b 为所求切应力处横截面的宽度;*z S 为截面上距中性轴为y 的横线任一侧部分面积对中性轴的静矩。

1.5 弯曲强度条件1 正应力强度条件弯曲正应力是影响梁强度的主要因素,对梁(等截面梁)的强度计算主要是满足正应力强度条件][maxmax σσ≤=zW M 式中m axy I W zz =称为横截面的抗弯截面系数。

对于塑性材料,其抗拉和抗压能力相等,通常将梁设计为与中性轴对称的形状,强度条件为][maxmax σσ≤=zW M 对于脆性材料,其抗压能力远超过抗拉能力。

弯曲应力-材料力学

弯曲应力-材料力学
已知:弯矩M、横截面的惯性矩Iz、许用应力[]。求:判断不等号。
max
Mymax Iz
工程力学 Engineering Mechanics
典型例题
例1 图示矩形截面梁,梁上载荷q=100kN/m,梁跨度l=6m,截面尺寸:
b=400mm,h=600mm,材料许用应力[]=100MPa,试判断该梁是否安全。
弹性力学精确分析表明,当跨度l与横截面高度h之比l/h>5(细长梁)时, 纯弯曲正应力公式对于横力弯曲近似成立。
横力弯曲最大正应力
max
M max ymax Iz
弯曲正应力适用范围 细长梁的纯弯曲或横力弯曲 横截面惯性积Iyz=0 弹性变形阶段
工程力学 Engineering Mechanics
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
My Iz
惯性矩
Iz
1 12
50 903
3.0375106 mm4
弯矩
M 10kN.m
典型例题
例1 求图示矩形截面梁指定截面上对应点的正内力。
10kN
1
A
YA
2m
2m YB
B 2m
20 b
90
c
z
a
50
解:(3)求解正应力
M max
1 8
ql 2
1 8
q
62
q
533.3kN/m
练习1
受均布载荷作用的简支梁如图,求 ① 1-1截面上1、2两点的正应力; ② 1-1截面上的最大正应力; ③ 全梁的最大正应力; ④ 已知E=200GPa,求1-1截面的曲率半径。

材料力学- 弯曲应力)

材料力学- 弯曲应力)

z
h
y
m
A1 m'
b
O
B1
A
'
dx
y m
B n
窄高矩形截面梁横截面上弯曲切应力分布的假设:
(1) 横截面上各点处的切应力均与侧边平行;
(2) 横截面上距中性轴等远各点处的切应力大小相等。
m' z
h y
n' m n
根据切应力互等定理

x推得: (1) ' 沿截面宽度方向均匀分 布;
A1
z y1 A1 O B1 d F A
x
dA * FN1 m'
S
B
而横截面上纵向力的大小为
n y m dx
F
* N2
F
* N1
My1 M *1 d A * dA A A Iz Iz
M * A* y1 d A I z S z
面积AA1mm' 对中性轴 z的静矩
F
* N2
* * d F S FN2 FN1
n y m dx
* FN2
dM * d FS Sz Iz
要确定与之对应的水平切应力‘ 还需要补充条件。
矩形截面梁对称弯曲时横截面上切应力的分布规律
m' n' n (1) 由于梁的侧面为 =0的 自由表面,根据切应力互 等定理,横截面两侧边处 x 的切应力必与侧边平行; (2) 对称轴y处的切应力必沿 y轴方向,即平行于侧边; (3)横截面两侧边处的切应 力值大小相等,对于狭长 矩形截面则沿截面宽度其 值变化不会大。
Wz
1 4
Ⅱ .纯弯曲理论的推广 横力弯曲时: 1、由于切应力的存在梁的横截面发生翘曲; 2、横向力还使各纵向线之间发生挤压。 平面假设和纵向线之间无挤压的假设实际上都 不再成立。

《材料力学》课件8-2两相互垂直平面内的弯曲

《材料力学》课件8-2两相互垂直平面内的弯曲

弯曲变形的分布
弯曲变形的分布规律
两相互垂直平面内的弯曲变形分布规律与受力情况、材料性质和结构特点等因 素有关。通过分析这些因素,可以确定变形在两个相互垂直平面内的分布情况 。
变形分布对结构性能的影响
弯曲变形的分布情况直接影响到结构的承载能力和稳定性。因此,在设计过程 中,需要充分考虑变形分布的影响,以优化结构性能。
THANKS
感谢观看
案例三:机械零件的弯曲分析
总结词
机械零件的弯曲分析是机械工程中常见的分析类型,主 要关注的是零件在不同工况下的变形和应力分布。
详细描述
在机械零件设计中,两相互垂直平面内的弯曲分析是评 估零件性能的重要手段。通过弯曲分析,可以优化零件 的结构设计,提高零件的刚度和强度,降低应力集中和 疲劳失效的风险,从而提高机械设备的可靠性和稳定性 。
弯曲强度的分布
弯曲强度的分布规律
在两相互垂直平面内的弯曲中,弯曲强度在截面上呈线性分布,即离中性轴越远,弯曲 强度越大。
弯曲强度分布的影响因素
弯曲强度分布受到多种因素的影响,如截面形状、材料性质、弯矩大小等。例如,对于 矩形截面,其弯曲强度分布与弯矩的分布密切相关。
弯曲强度的应用
结构设计中的应用
案例二:建筑结构的弯曲分析
要点一
总结词
要点二
详细描述
建筑结构的弯曲分析主要关注的是在不同载荷和环境因素 下结构的稳定性。
建筑结构的弯曲分析需要考虑的因素包括结构形式、材料 特性、支撑条件、外部载荷等。通过弯曲分析,可以预测 建筑在不同工况下的变形和应力分布,从而优化建筑设计 ,提高建筑的稳定性和安全性。
03
两相互垂直平面内的弯曲的应力 分析
弯曲应力的计算
弯曲应力的计算公式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
只与截面形状、尺寸有关 抗弯截面模量
对剪切(横力)弯曲: 矩形:
h b
圆形:
z
D
空心圆截面:
外径为D,内径为d, d
D
WZ
IZ ymax
64
D4 d4 D
D3 1 4
32
2
例题:图示一空心矩形截面悬臂梁受均布荷载作用。已知梁跨 l=1.2m,均布荷载集度q=20kN/m,横截面尺寸为H=12cm, B=6cm,h=8cm,b=3cm。试求此梁外壁和内壁最大正应力。
(1)平面假设:变形前为平面的横截面,变形后仍为平面,但转动了一角度。 (2)单向受力假设:杆件的纵截面(与杆轴平行的截面)上无正应力。
2.中性轴Z:
中性层与横截面的交线,平面弯曲时中性轴过形心且与对称轴垂直。
3.正应力计算公式:
中性层
4.正应力分布规律:沿截面高度呈线性分布。
二、弯曲切应力 横力弯曲,FQ、M同时存在,s、 t 同时存在。由于
h 2
14.4 106 736 104
810 受集中荷载F=5kN的简支梁,由18号槽钢制成, 已知梁跨l=2m,试求此梁最大拉应力和最大压应力。
解:(1)作弯矩图,求最大弯矩
M max
Fl 4
52 4
2.5kN m
(2)由型钢表查截面的惯性矩及有关尺寸
IZ 111cm4
六、综合计算题(每题12分)
23.矩形截面外伸梁如题23图所示。已知材料的容许应力 [σ]=30MPa, P=58kN,q=10kN/m ,试校核梁 的正应力强度。
解:(1)作内力图
Mmax 58kN m
(2)校核梁的强度
s max
M max WZ
6M max bh2
40MPa s
∴ 不安全
M max WZ
s
P106 s WZ 140102103
P 14.28kN
P 14.28kN
弯曲正应力强度计算
三、计算题(每小题5分)
6、两端铰支座的圆管简支梁,它的内径与外径之比为
d 1 D2
,许用应力为〔σ〕=140MPa,受均布荷载作用,试用正应力
强度条件计算管内、外直径d、D。
解:(1)求最大弯矩
(3)切应力分布规律
t max
3FQ 2bh
3FQ 2A
FQ
t
t tmax
t FQ
bh
t max
4FQ 3A
4FQ
3R 2
t max
2FQ A
弯曲应力问题
一、填空题(每空1分)
11.矩形截面梁受集中力P作用,在图示各点中,最大拉应 力在____4____点,最大压应力在_____2___点,最大切应力 在_____1___点。
A. Mmax=9kN·m, σmax=45.8MPa B. Mmax=4.5kN·m, σmax=45.8MPa C. Mmax=9kN·m, σmax=91.67MPa D. Mmax=18kN·m, σmax=183.3MPa
弯曲正应力计算
三、计算题(每小题5分)
6、简支梁受集中力P=20kN作用,梁截面形状,尺寸如图,它 的轴惯性矩为IZ=7.6×106mm4,试求此梁最大拉应力。 解:(1)作弯矩图,
A. 4∶1 B. 12∶1 C. 8∶1 D. 2∶1
三、弯曲梁的强度计算 1、弯曲梁的正应力强度计算 (1)正应力强度条件
h
b
对于脆性材料 [s+ ]< [s- ],为节约材料,以达到充分 利用,常设计成上下不对称截面 强度条件:
(2)正应力强度计算
三方面强度计算
① 校核强度
s max
M max WZ
弯曲正应力强度计算
三、计算题(每小题5分)
6. 图示工字型简支梁,作用了二个集中力P 。已知工字型
梁的I=712cm4,W=102cm3,梁长l=5m,工字钢的许用应力
〔σ〕=140MPa,试求梁的最大荷载Pmax。
解:(1)作弯矩图
M max
P l 5
PkN m
(2)求Pmax的大小
s max
解:(1)作弯矩图
M max
1 ql 2 8
1 qN m
2
(2)求q的大小
S 5104
S
s E 2.0105 106 5104 1108 Pa
(2)求q的大小
s max
M max WZ
1q
1q
2
D3
32
2
80
3
32 1000
s max s 1108 Pa
q 10048N / m 10kN / m
40、图示悬臂梁,受均布载荷作用,已知:q=10kN/m, a=4m,[σ]=160MPa,试校核该梁的强度。
解:(1)作弯矩图
M max
1 qa2 2
80kN m
(2)校核梁的强度
s max
M max WZ
6M max bh2
120MPa
s max s 160MPa ∴ 安全
弯曲正应力强度计算
s
s
② 设计截面
WZ
M max
s
③ 确定许可荷载 M max WZ s
安全 不安全
例题:矩形截面的简支木梁,梁上作用有均布荷载。已知 l=4m,b=140mm,h=210mm,q=2kN/m,木材的容许应力 [s]=10MPa。试校核梁的强度。
解:(1)作弯矩图,求最大弯矩
M max
工字钢截面: t max
矩形截面: t max
FQ
d 3FQ
IZ
S
* Z
2A
t
圆形截面: t max
4FQ 3A
解:(1)作弯矩图,
求最大弯矩
M ql 2 201.22
max
2
2
14.4kN m
(2)计算截面的惯性矩
IZ
BH 3 12
bh3 12
736cm4
(3)计算应力
s 外max
M max IZ
H 2
14.4 106 736 104
12 10 2
117.4MPa
s内max
M max IZ
M max
1 ql 2 8
40kN m
(2)确定管内、外直径d、D
s max
M max WZ
s
WZ
M max
s
(2)确定管内、外直径d、D
d 1
D2
WZ
D3
32
1 4
M max
s
D 145.9mm
取 D=146mm, 则 d =73mm。
弯曲正应力强度计算
三、计算题(每小题5分)
六、综合计算题(每题12分)
23、一圆形截面木梁受力如图所示,木材的容许应力 [σ]=10MPa,试选择圆木的直径d。
解:(1)作弯矩图
Mmax 3kN m
(2)求直径d
s max
M max WZ
32M max
d 3
s
d 3
32M max
s
145mm
取 d =145mm。
弯曲正应力强度计算
求最大弯矩
Mmax 7.5kN m
(2)计算最大正应力
因危险截面的弯矩为正,故截面下端受 最大拉应力:
s T max
M max IZ
88
7.5 106 7.6 106
88 86.8MPa
弯曲正应力计算
三、计算题(每小题5分)
6.矩形截面外伸梁ABC受移动荷载作用,荷载P从A移动到C 过程中,梁横截面上的最大正应力。
解:(1) 求最大弯矩
当P移至C截面时:
M max 1kN m
(2)计算梁横截面上最大正应力
s max
M max WZ
6 1106 30 1002
20MPa
弯曲正应力计算
一、单项选择题(每小题2分)
14.矩形截面受纯弯曲作用的梁,横截面上的正应力分布 规律是( D )
内容回顾
弯曲正应力 1. 基本假设:
弯曲应力问题
二、单项选择题(每小题1分)
11. 等截面悬臂梁荷载如图示,在C截面左,右1-1与2-2 截面的最大正应力与最大切应力比较的结果是( C )。
A. τ1=τ2,σ1=σ2 B. τ1>τ2,σ1>σ2 C. τ1=τ2,σ1>σ2 D. τ1<τ2,σ1<σ2
弯曲应力问题
二、单项选择题(每小题1分)
s C max
M max IZ
y1
2.5106 111104
1.8410 41.4MPa
弯曲正应力计算
一、填空题(每空1分)
11. 若梁的横截面上的内力只有弯矩作用,则称此梁为 __纯__弯__曲__梁,此时截面上只有____正____应力,而 ____切____应力为零。
二、单项选择题(每小题1分)
解:(1)绘计算简图
型钢表查得:28a号工字钢
q 43.492kg / m
0.4262kN / m
(2)作弯矩图 当吊重移动到梁跨中时,跨中截面弯矩最大。
M max
1 ql 2 8
Gl 4
0.4262 102 8
3010 4
80.33kN m
(3)校核弯曲正应力强度
型钢表查得:28a号工字钢, WZ 508cm3
11. 某一纯弯曲梁的截面上的正应力公式为 s Ey ,其中
( B)
A. σ随E的变化而改变,y、ρ为常数 B. σ随y的变化而改变,E、ρ为常数 C. σ随ρ的变化而改变,E、y为常数 D. σ随E,y,ρ而改变,它们均为变量
相关文档
最新文档