山东省实验中学2016届高三数学下学期第一次模拟考试试题理
2024届山东省实验中学高三下学期一模考试历史试题含答案
山东省实验中学2024届高三第一次模拟考试一、选择题:本题共15小题,每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.图1是长江下游地区史前玉器主要出土地点分布示意图。
该图可以用来说明,长江下游地区A.呈现多元一体的发展特点B.玉器制作进入了萌芽和发展期C.成为中华文化的中心区域D.已出现了疆域较大的早期国家Z.武帝即位后,鉴于市面上因流通“半两”“四铢”“榆荚”等币量不一的货币给社会经济带来的不良影响,收回封国的铸币权,并严禁民间私铸。
汉武帝元鼎四年(公元前113年),铸造新的五铢钱,“”五铢钱的铸造A.降低了铸造货币的成本B.加强了君主的专制统治C.增加了政府的财政收入D.抑制了民间贸易的发展3.《新唐书·杨炎传》记载规定“户无主客,以见(现)居为薄:人无丁中,以贫富为差”。
北宋建隆二年(961年),宋政府将全国版图内的州县民籍划分为五等,规定“天下闰年造五等版籍,有五等丁口籍,此五等户皆为主户”,“或以税钱贯百,或以地之顷亩,或以家之积财,或以田之受种”。
这体现了A.土地兼并问题得以缓解B.人口瞒报现象的改善C.征赋方式发生重大调整D.户籍管理的日趋科学4.南浔镇是湖丝的主要集散地,兴起于南宋,到明代中后期日趋兴旺,成为“烟火万家”“舟航辐镂”的巨镇。
每当新丝上市,“商贾骈集,贸丝者群趋”,既有“乡农卖丝争赴市”,也有“客商大贾来行商”,“一日贸易数万金……”。
这可用于说明A.江南资本主义萌芽的出现B.商帮的兴起和发展C.农产品商品化程度的提高D.经济型市镇的繁荣5.清代初年,一些学者自觉不自觉地由中学西学相通相合的看法,转向“西学中源”说,即认为西学出于中国,中国文化是西方文化之源。
“西学中源”说A.反映了学术思想上的天朝上国观念B.体现了中国传统科技的发达和进步C.开启了古代中国思想近代化的潮流D.导致中国逐渐落后于世界发展进程6.《天演论》出版后,“物竞天择”“适者生存”等名词很快成了报纸文章的热语,风行全国谭嗣同在看到有关进化论的文章后,向人推荐“好极、好极”:革命党人也承认:“自严氏:书出,而物竞天择之理,厘然当于人心,中国民气为之一变。
山东省实验中学2024届高三下学期2月调研考试数学试卷含答案解析
山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.123.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.17C.55D.2554.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24- B.3- C.3D.85.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.497.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z= D.2320240z z z z ++++= 10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为411.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积263PMN S =△,则点P 的轨迹长度为___________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,12AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e x g x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.山东省实验中学2024届高三调研考试数学试题2024.2说明:本试卷满分150分.试题答案请用2B 铅笔和0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设{}{}21,4,2,1,A x B x ==,若B A ⊆,则x =()A.0B.0或2C.0或2- D.2或2-【答案】C 【解析】【分析】根据B A ⊆,可得24x =或22x x =,结合集合元素性质分别求解即可.【详解】由B A ⊆得24x =或22x x =,即0x =或2x =或2x =-,当0x =时,{}{}1,4,0,1,0A B ==,符合题意;当2x =时,{}{}1,4,4,1,4A B ==,不符合元素的互异性,舍去;当2x =-时,{}{}1,4,4,1,4A B =-=,符合题意;综上,0x =或2x =-.故选:C .2.若22nx ⎫⎪⎭展开式中只有第6项的二项式系数最大,则n =()A.9B.10C.11D.12【答案】B 【解析】【分析】利用二项式系数的性质直接求解即可.【详解】因为22nx ⎫+⎪⎭的展开式中只有第6项的二项式系数最大,所以展开式一共有11项,即10n =.故选:B3.已知向量()()1,3,2,2a b ==,则cos ,a b a b +-= ()A.117B.1717C.D.【答案】B 【解析】【分析】根据向量的坐标运算即可求解.【详解】因为()()1,3,2,2a b ==,所以()()3,5,1,1a b a b +=-=-,所以()()·cos ,17a b a b a b a b a b a b+-+-==+-.故选:B.4.等差数列{}n a 的首项为1,公差不为0,若236,,a a a 成等比数列,则{}n a 前6项的和为()A.24-B.3- C.3D.8【答案】A【解析】【分析】设等差数列{}n a 的公差()0d d ≠,由236,,a a a 成等比数列求出d ,代入6S 可得答案.【详解】设等差数列{}n a 的公差()0d d ≠,∵等差数列{}n a 的首项为1,236,,a a a 成等比数列,∴2326a a a =⋅,∴()()()211125+=++a d a d a d ,且11a =,0d ≠,解得2d =-,∴{}n a 前6项的和为61656566122422()⨯⨯=+=⨯+-=-S a d .故选:A.5.要得到函数cos 2y x =的图象,只需将函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象沿x 轴A.向左平移12π个单位 B.向左平移6π个单位C.向右平移6π个单位 D.向右平移12π个单位【答案】A 【解析】【分析】先用诱导公式把正弦型函数化为余弦型函数,然后根据图象的平移变换的解析式的特征变化,得到答案.【详解】sin 2sin 2cos 2cos[2(326612y x x x x πππππ⎛⎫⎛⎫⎛⎫=+=+-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因此该函数图象向左平移12π个单位,得到函数cos 2y x =的图象,故本题选A.【点睛】本题考查了已知变化前后的函数解析式,求变换过程的问题,考查了余弦函数图象变换特点.6.在三棱锥-P ABC 中,点M,N 分别在棱PC,PB 上,且13PM PC =,23PN PB =,则三棱锥P AMN -和三棱锥-P ABC 的体积之比为()A.19B.29C.13D.49【答案】B 【解析】【分析】分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.先证NN '⊥平面PAC ,则可得到//BB NN '',再证//MM CC ''.由三角形相似得到13MM CC ''=,'2'3NN BB =,再由P AMN N PAMP ABC B PACV V V V ----=即可求出体积比.【详解】如图,分别过,M C 作,MM PA CC PA ''⊥⊥,垂足分别为,M C ''.过B 作BB '⊥平面PAC ,垂足为B ',连接PB ',过N 作NN PB ''⊥,垂足为N '.因为BB '⊥平面PAC ,BB '⊂平面PBB ',所以平面PBB '⊥平面PAC .又因为平面PBB ' 平面PAC PB '=,NN PB ''⊥,NN '⊂平面PBB ',所以NN '⊥平面PAC ,且//BB NN ''.在PCC '△中,因为,MM PA CC PA ''⊥⊥,所以//MM CC '',所以13PM MM PC CC '==',在PBB '△中,因为//BB NN '',所以23PN NN PB BB '==',所以11123231119332PAM P AMN N PAMP ABC B PACPAC PA MM NN S NN V V V V S BB PA CC BB ----⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭====⎛⎫'''⋅⋅⋅⋅ ⎪⎝⎭.故选:B7.为研究某池塘中水生植物的覆盖水塘面积x (单位:2dm )与水生植物的株数y (单位:株)之间的相关关系,收集了4组数据,用模型e (0)kx y c c =>去拟合x 与y 的关系,设ln ,z y x =与z 的数据如表格所示:得到x 与z 的线性回归方程2ˆˆ 1.z x a=+,则c =()x3467z22.54.57A.-2B.-1C.2e -D.1e -【答案】C 【解析】【分析】根据已知条件,求得5,4x z ==,进而代入回归方程可求得ˆ2a=-,从而得出ˆ 1.22zx =-,联立ln z y =,即可求得本题答案.【详解】由已知可得,346754x +++==,2 2.5 4.5744z +++==,所以,有ˆ4 1.25a =⨯+,解得ˆ2a =-,所以,ˆ 1.22zx =-,由ln z y =,得ln 1.22y x =-,所以, 1.222 1.2e e e x x y --==⋅,则2e c -=.故选:C .8.双曲线2222:1(0,0)x y M a b a b-=>>的左、右顶点分别为,A B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当9mn mn+取到最小值时,双曲线离心率为()A.3B.4C.D.2【答案】D【解析】【分析】由题意9mn mn+利用均值定理可得3mn =,再利用双曲线的几何性质求解即可.【详解】设(,0),(,0),(,),(,)A a B a C x y D x y --,则ACy m k x a ==+,BD y n k x a -==-,所以222y mn x a-=-,将曲线方程22222x a y a b -=代入得22b mn a=-,又由均值定理得996mn mn mn mn +=+≥,当且仅当9mn mn =,即223bmn a==时等号成立,所以离心率2e ==,故选:D.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,结合222b a c =-转化为,a c 的齐次式,然后等式(不等式)两边分别除以a 或2a 转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数z 满足210z z ++=,则()A.1i 22z =-+ B.1z =C.2z z = D.2320240z z z z ++++= 【答案】BC【解析】【分析】设()i ,z a b a b =+∈R ,代入题干方程求解判断A ,求复数的模判断B ,根据复数乘方运算及共轭复数的定义判断C ,利用复数的周期性求和判断D.【详解】设()i ,z a b a b =+∈R ,由210z z ++=得()()2i i 10a b a b ++++=,即()()2212i 0a b a ab b -++++=,所以221020a b a ab b ⎧-++=⎨+=⎩,解得1232a b ⎧=-⎪⎪⎨⎪=⎪⎩或1232a b ⎧=-⎪⎪⎨⎪=-⎪⎩,所以1i 22z =-+或122z =--,故选项A 错误;由13i 22z =-+,所以1z ==,由122z =--,所以1z ==,故选项B 正确;当13i 22z =-+时,所以2211i 2222z ⎛⎫=-+=-- ⎪ ⎪⎝⎭,13i 22z =--,所以2z z =,当122z =--时,所以221313i i 2222z ⎛⎫=--=-+ ⎪ ⎪⎝⎭,13i 22z =-+,所以2z z =,故选项C 正确;因为321(1)(1)0z z z z -=-++=,所以31z =,所以()()()2320242345620202021202220232024z z z z z z z z z z z z z z z ++++=+++++++++++ ()()()232201722111z z z z z z z z z z =+++++++++++ ()00011=++++-=- ,故选项D 错误.故选:BC10.过线段()404x y x +=≤≤上一点P 作圆22:4O x y +=的两条切线,切点分别为,A B ,直线AB 与,x y 轴分别交于点,M N ,则()A.点O 恒在以线段AB 为直径的圆上B.四边形PAOB 面积的最小值为4C.AB 的最小值为D.OM ON +的最小值为4【答案】BCD 【解析】【分析】设(),4P a a -,则可求AB 的方程为(4)40ax a y +--=.结合,,,O A P B 四点共圆可判断A 的正误,求出OP 的最小值后可判断B 的正误,求出AB 所过的定点后可判断C 的正误,结合AB 的方程可求OM ON +,利用二次函数的性质可求其最小值,故可判断D 的正误.【详解】设(),4P a a -,因为AB 与,x y 轴均相交,故04a <<,连接,OA OB ,设线段:4(04)l x y x +=<<,则,,,O A P B 四点共圆,且此圆以OP 为直径,而以OP 为直径的圆的方程为:()()40x x a y y a -+-+=,整理得到:22(4)0x y ax a y +---=,故AB 的方程为:4(4)0ax a y ---=,整理得到:(4)40ax a y +--=.对于A ,若O 在以线段AB 为直径的圆上,则90AOB ∠=︒,由,,,O A P B 四点共圆可得90APB ∠=︒,而90∠=∠=︒PAO PBO ,2AO BO ==,故四边形OAPB 为正方形,故OP =,但P 为动点且OP 长度变化,故O 不恒在以线段AB 为直径的圆上,故A 错误.对于B ,四边形PAOB 面积为122S OA AP =⨯⨯⨯=而PO ≥=,当且仅当OP ⊥l 即()2,2P 时等号成立,故S 的最小值为4,故B 成立.对于C ,因为AB 的方程为:(4)40ax a y +--=,整理得到:()440a x y y -+-=,令0440x y y -=⎧⎨-=⎩得11x y =⎧⎨=⎩,故AB 过定点()1,1Q ,设O 到AB 的距离为d ,则d OQ ≤=故AB =≥,当且仅当d =OQ AB ⊥时等号成立,故AB 的最小值为,故C 成立.对于D ,由AB 的方程为(4)40ax a y +--=可得44,0,0,4M N a a ⎛⎫⎛⎫⎪ ⎪-⎝⎭⎝⎭,故()24416,04424OM ON a a a a +=+=<<---+,而20(2)44a <--+≤,故4OM ON +≥,当且仅当2a =等号成立,故OM ON +的最小值为4,故D 成立.故选:BCD .11.已知函数())ln1f x x =+,则()A.()f x 在其定义域上是单调递减函数B.()y f x =的图象关于()0,1对称C.()f x 的值域是()0,∞+D.当0x >时,()()f x f x mx --≥恒成立,则m 的最大值为1-【答案】ACD 【解析】【分析】选项A ,先求原函数的导函数,再判断其导函数的符号即可;选项B ,取譬如“点(1,(1))f --和点(1,(1))f ”的特殊值判断即可;选项C ,||x x >=≥,11x +>,进而判断即可;选线D ,先构造函数()()()F x f x f x mx =---,将不等式的恒成立问题转化为函数的最值,即可判断.【详解】已知函数())ln 1f x x =+,||x x >=≥0x ->,故函数()f x 的定义域为R ,对于选项A ,函数()f x 的导函数为:()f x '=,0x ->,得()0f x '<,所以()f x 在其定义域上是单调递减函数,选项A 正确;对于选项B ,取特值:(1)ln f =(1)2)f -=+,且(1)(1)ln 2ln(22)ln(222)1222f f +-++==≠,即函数图象上存在点(1,(1))f --和点(1,(1))f 不关于()0,1对称,选项B 错误;对于选项C 0x ->11x -+>,得())ln1ln10f x x =-+>=,当x →+∞111x -+=+→,当x →-∞1x -+→+∞,同时()f x 在其定义域上是单调递减函数,故()f x 的值域是()0,∞+选项C 正确;对于选项D ,定义()()()F x f x f x mx =---,0x >,则))()ln1ln1F x x x mx =-+-++-,)()ln 1ln1F x x mx ⎛⎫=-++-⎪⎭,)()ln ln1F x x mx ⎛⎫=-+-,故)()lnF x x mx =-+-,其导函数()F x m m'==-,若,()0x ∈+∞,()()f x f x mx --≥恒成立,即函数()0F x ≥恒成立,由于(0)0F =,则(0)0F '≥在()0,x ∈+∞上恒成立,即(0)10F m '=--≥,得1m ≤-,当1m =-时,)()lnG x x x =-++,,()0x ∈+∞()1G x '=+,由于,()0x ∈+∞,则1>1<,()10G x '=+>,所以函数()G x 在区间(0,)+∞上单调递增,且(0)ln100G =-+=,则,()0x ∈+∞时,()0G x >恒成立,同时,()0x ∈+∞,由于1m ≤-,mx x -≥则))()lnln()0F x x mx x x G x =--≥-++=>,显然()0F x >恒成立,,()0x ∈+∞时,()()f x f x mx --≥恒成立,则m 的最大值为1-正确;选项D 正确;故选:ACD.【点睛】关键点点睛:本题D 选项的关键是转化为(0)0F '≥在()0,x ∈+∞上恒成立,从而得到1m ≤-,最后验证得到1m =-时符合题意即可.三、填空题:本题共3小题,每小题5分,共15分.12.已知随机变量X 服从二项分布B~(n,p),若E (X)=30,D (X)=20,则P=__________.【答案】13【解析】【详解】试题分析:直接利用二项分布的期望与方差列出方程求解即可.解:随机变量X 服从二项分布B (n ,p ),若E (X )=30,D (X )=20,可得np=30,npq=20,q=,则p=,故答案为.点评:本题考查离散型随机变量的分布列的期望以及方差的求法,考查计算能力.13.已知抛物线22(0)y px p =>的焦点F 为椭圆22143x y +=的右焦点,直线l 过点F 交抛物线于,A B 两点,且8AB =.直线12,l l 分别过点,A B 且均与x 轴平行,在直线12,l l 上分别取点,M N (,M N 均在点,A B 的右侧),ABN ∠和BAM ∠的角平分线相交于点P ,则PAB 的面积为__________.【答案】【解析】【分析】当直线l 的斜率不存在时,写出直线l 的方程,求出||4AB =,不合题意;当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立抛物线的方程,由12||8AB x x p =+=+,求出k ,根据锐角三角函数表达边长,再进一步求出PAB 的面积.【详解】由22143x y +=的右焦点为()1,0,所以抛物线的焦点为(1,0)F ,故12p=,则2p =,因此抛物线24y x =,当直线l 的斜率不存在时,直线l 的方程为1x =,代入抛物线的方程,得2y =±,所以(1,2)A ,(1,2)B -,所以||4AB =,不合题意,当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,1(A x ,1)y ,2(B x ,2)y ,联立2(1)4y k x y x =-⎧⎨=⎩,得2222(24)0k x k x k -++=,所以212224k x x k ++=,所以221212222444||2822p p k k AB x x x x p k k ++=+++=++=+==,所以1k =±,由对称性不妨设1k =,则45AFx ∠=︒,因为ABN ∠和BAM ∠的平分线相交于点P ,//AM BN ,所以PA PB ⊥,45ABN ∠=︒,22.5ABP ∠=︒,所以在Rt ABP 中,sin 22.58sin 22.5AP AB =︒=︒,cos 22.58cos 22.5BP AB =︒=︒,所以18sin 22.58cos 22.52ABP S =⋅︒⋅︒ 32sin 22.58cos 22.516sin 45=︒︒=︒=,故答案为:14.已知正方体1111ABCD A B C D -的棱长为,M N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积3PMN S =△,则点P 的轨迹长度为___________.【答案】263π【解析】【分析】由题意求出P 到MN 的距离,又易证1BD ⊥面1AB C ,进而得到P 点在1AB C V 所在平面的轨迹是以263为半径的圆,因为1AB C V 3<,所以该圆一部分位于三角形外,作出图形即可求解.【详解】因为正方体的棱长为16BD =,所以123BD MN ==,设P 到MN 的距离为d ,由1||2PMN S d MN ==263d =,11A D ⊥平面11ABB A ,1AB ⊂平面11ABB A ,∴111A D AB ⊥,又11AB A B ⊥,1111A D A B A = ,∴1AB ⊥平面11A D B ,11BD AB ∴⊥,同理可证1BD AC ⊥,又1AB AC A = ,1BD ∴⊥面1AB C ,P ∴点在1AB C V 所在平面的轨迹是以263为半径的圆,1AB C V内切圆的半径为123=,∴该圆一部分位于三角形外,如图有22226(2)()3x +=,解得63x =,∴6HOB π∠=,∴圆在三角形内的圆弧为圆周长的一半,∴1262622l π=⋅⋅,故答案为:263π.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,圆O 的半径为2,直线AM 与圆O 相切于点,4A AM =,圆O 上的点P 从点A 处逆时针转动到最高点B 处,记(],0,πAOP θθ∠=∈.(1)当2π3θ=时,求APM △的面积;(2)试确定θ的值,使得APM △的面积等于AOP 的面积的2倍.【答案】(1)6(2)π2θ=【解析】【分析】(1)过点P 作PQ AM ⊥,利用圆的性质求得PQ ,代入面积公式直接求解即可;(2)设AOP 的面积为1,S APM 的面积为2S ,结合三角形面积公式建立方程,利用辅助角公式化简求解即可.【小问1详解】过点P 作PQ AM ⊥交AM 于点Q ,如图:因为圆O 的半径为2,由题意π2π22sin 22cos 22cos 323PQ θθ⎛⎫=+-=-=-= ⎪⎝⎭,又4AM =,所以APM △的面积为14362⨯⨯=.【小问2详解】连接AP ,设AOP 的面积为1,S APM 的面积为2S ,又1122sin 2sin 2S θθ=⨯⨯⨯=,()()211421cos 41cos 22S AM PQ θθ=⋅=⨯⨯⨯-=-,由题意212S S =,所以()41cos 4sin θθ-=,即sin cos 1θθ+=,所以π2sin 42θ⎛⎫+= ⎪⎝⎭,因为()0,πθ∈,所以ππ5π,444θ⎛⎫+∈ ⎪⎝⎭,所以π3π44θ+=,所以π2θ=,所以当π2θ=时,使得APM △的面积等于AOP 的面积的2倍.16.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,122AA AC CB AB ===.(1)证明:1//BC 平面1A CD ;(2)求二面角1D A C E --的正弦值.【答案】(Ⅰ)见解析(Ⅱ)63【解析】【分析】(Ⅰ)利用三角形中位线定理可得1//DF BC ,由线面平行的判定定理可得结果;(Ⅱ)由122AA AC CB AB ===,可设:AB=2a ,可得AC BC ⊥,以点C 为坐标原点,分别以直线1,,CA CB CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图,利用向量垂直数量积为零列方程分别求出平面1A CD 的法向量、平面1A CE 的一个法向量,再由空间向量夹角余弦公式可得结果.【详解】(Ⅰ)如图,连结1AC ,交1AC 于点F ,连结DF ,因为D 是AB 的中点,所以在1ABC 中,DF 是中位线,所以1DF / / BC ,因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD ;(Ⅱ)因为2AC CB AB ==,所以90ACB ︒∠=,即ACBC ⊥,则以C 为坐标原点,分别以1,,CA CB CC为,,x y z 轴的正方向,建立如图所示的空间直角坐标系,设1AA =AC=CB=2,则1(0,0,0),(1,1,0),(0,2,1),(2,0,2)C D E A ,则1(1,1,0),(0,2,1),(2,0,2)CD CE CA ===,设()111,,m x y z =r是平面1DA C 的一个法向量,则,即11110220x y x z +=⎧⎨+=⎩,取11x =,则111,1=-=-y z ,则(1,1,1)n =--同理可得平面1EA C 的一个法向量,则(2,1,2)n =-,所以,3cos ,3m n 〈〉=,所以sin ,3m n 〈〉=,即二面角D AC E --的正弦值为.63【点睛】本题主要考查线面平行的判定定理、利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.17.盒中有大小颜色相同的6个乒乓球,其中4个未使用过(称之为新球),2个使用过(称之为旧球).每局比赛从盒中随机取2个球作为比赛用球,比赛结束后放回盒中.使用过的球即成为旧球.(1)求一局比赛后盒中恰有3个新球的概率;(2)设两局比赛后盒中新球的个数为X ,求X 的分布列及数学期望.【答案】(1)815(2)分布列见解析,169【解析】【分析】(1)根据超几何分布概率公式求解即可;(2)根据超几何分布概率公式求得分布列,进而求得数学期望即可.【小问1详解】由题意可知当比赛使用1个新球,1个旧球时,盒中恰有3个新球,使用一局比赛后盒中恰有3个新球的概率112642C C 8C 15P ==.【小问2详解】由题意可知X 的可能取值为0,1,2,3,4,()22422266C C 60C C 225P X ==⋅=,()22111134424222226666C C C C C C 721+C C C C 225P X ==⋅⋅=,()1122112233444224222222666666C C C C C C C C 1142++C C C C C C 225P X ==⋅⋅⋅=,()22111132424222226666C C C C C C 323+C C C C 225P X ==⋅⋅=,()22222266C C 14C C 225P X ==⋅=,所以X 的分布列为X01234P622572225114225322251225()67211432116012342252252252252259E X =⨯+⨯+⨯+⨯+⨯=.18.已知函数()()21ln ,,2f x x a x a f x =∈'-R 是()f x 的导函数,()e xg x x =.(1)求()f x 的单调区间;(2)若()f x 有唯一零点.①求实数a 的取值范围;②当0a >时,证明:()()4g x f x >'+.【答案】(1)答案见解析(2)①(){},0e -∞ ;②证明见解析【解析】【分析】(1)对()f x 求导得到()2x a f x x='-,根据导数与函数单调性间的关系,对a 分类讨论,即可得出结果;(2)①法一:直接对a 进行分类讨论,利用(1)的结果,即可得出结果;法二:分离常量得到21ln 2x a x=,构造函数()2ln xx x ϕ=,将问题转化成函数图象交点个数来解决问题;②构造函数()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,从而将问题转化成证明()()22e 1e 4e 0x x --++>,即可证明结果.【小问1详解】()f x 的定义域为()0,∞+,()2a x af x x x x='-=-,当0a ≤时,()0f x '>恒成立,此时()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,令()0f x '>得x >()0f x '<得0x <<;此时()f x 单调递减区间为(;单调递增区间为)∞+,综上,当0a ≤时,()f x 的单调递增区间是()0,∞+,无单调递减区间,当0a >时,()f x 单调递减区间为(,单调递增区间为)∞+.【小问2详解】①法一;当0a =时,()f x 没有零点,不符合题意;当a<0时,由(1)知函数()f x 在()0,∞+单调递增,因为()()2211ln 122f x x a x x a x =-<--,取0m a =>,则()21((1)(3)02f m a a a a a <+-+-=++<,又()1102f =>,故存在唯一()0,1x m ∈,使得()00f x =,符合题意;当0a >时,由(1)可知,()f x 有唯一零点只需0f =,即ln 022a aa -=,解得e a =,综上,a 的取值范围为(){},0e ∞-⋃.法二:当0a =时,()f x 没有零点,不符合题意;由()0f x =,得到21ln 2x a x =,令()2ln x x x ϕ=,则()312ln xx x ϕ-'=,当(x ∈时,()0x ϕ'>,则()x ϕ在区间(单调递增,当)x ∞∈+时,()0x ϕ'<,则()x ϕ在区间)∞+单调递减,又lim ()0x x ϕ→+∞=,()0lim x x ϕ∞+→=-,所以102a <或1122ea ϕ==,即a<0或e a =,综上,a 的取值范围为(){},0e ∞-⋃.②由①得出e a =,令()1e 2e (0)2xh x x x x ⎛⎫=--> ⎪⎝⎭,则()()1e 2e xh x x '=+-,令()()1e 2e xg x x =+-,则()()2e 0xg x x =+>'恒成立,所以()h x '单调递增,又()10h '=,故当()0,1x ∈时,()0h x '<,则()h x 在区间()0,1上单调递减,当()1,x ∞∈+时,()0h x '>,则()h x 在区间()1,∞+上单调递增;故()()10h x h ≥=,所以()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,要证()()4g x f x >'+,只需证明()1e2e 442x f x x x⎛⎫->+=-⎪'+ ⎝⎭,即证()()22e 1e 4e 0x x --++>,由22229595Δ12e 167e 12e e 16e e 12e 16e 2222⎛⎫=+-=-+-=-+- ⎪⎝⎭95e 12 2.7167.2022⎛⎫<-⨯+-⨯< ⎪⎝⎭,所以()()22e 1e 4e 0x x --++>成立,故不等式得证.【点睛】关键点点晴:本题的关键在于第(2)问中的②,构造函数()1e 2e (0)2x h x x x x ⎛⎫=--> ⎪⎝⎭,通过求导,利用导数与函数单调性间的关系,得到()h x 的最小值,从而得出()1e 2e 2xg x x x ⎛⎫=≥-⎪⎝⎭,通过放缩,将问题转化成证明()()22e 1e 4e 0x x --++>,从而解决问题.19.已知有穷数列12:n A a a a ,,,(3)n ≥中的每一项都是不大于n 的正整数.对于满足1m n ≤≤的整数m ,令集合(){}12k A m k a m k n === ,,,,.记集合()A m 中元素的个数为()s m (约定空集的元素个数为0).(1)若:63253755A ,,,,,,,,求(5)A 及(5)s ;(2)若12111()()()n n s a s a s a +++= ,求证:12,,,n a a a 互不相同;(3)已知12,a a a b ==,若对任意的正整数()i j i j i j n ≠+≤,,都有()i i j A a +∈或()j i j A a +∈,求12n a a a +++ 的值.【答案】(1)(5){478}A =,,,(5)=3s .(2)证明见解析(3)答案见解析【解析】【分析】(1)观察数列,结合题意得到(5)A 及(5)s ;(2)先得到11()i s a ≤,故12111()()()n n s a s a s a +++≤ ,再由12111()()()n n s a s a s a +++= 得到()1i s a =,从而证明出结论;(3)由题意得i j i a a +=或i j j a a +=,令1j =,得到32a a =或31a a =,当a b =时得到12n a a a na +++= ,当a b ¹时,考虑3a a =或3a b =两种情况,求出答案.【小问1详解】因为4785a a a ===,所以{}(5)4,7,8A =,则(5)=3s ;【小问2详解】依题意()1,12i s a i n ≥=,,, ,则有11()i s a ≤,因此12111()()()n n s a s a s a +++≤ ,又因为12111()()()n n s a s a s a +++= ,所以()1i s a =所以12,,,n a a a 互不相同.【小问3详解】依题意12,.a a ab ==由()i i j A a +∈或()j i j A a +∈,知i j i a a +=或i j j a a +=.令1j =,可得1i i a a +=或11i a a +=,对于2,3,...1i n =-成立,故32a a =或31a a =.①当a b =时,34n a a a a ==== ,所以12n a a a na +++= .②当a b ¹时,3a a =或3a b =.当3a a =时,由43a a =或41a a =,有4a a =,同理56n a a a a ==== ,所以12(1)n a a a n a b +++=-+ .当3a b =时,此时有23a a b ==,令13i j ==,,可得4()A a ∈或4()A b ∈,即4a a =或4a b =.令14i j ==,,可得5()A a ∈或5()A b ∈.令23i j ==,,可得5()A b ∈.所以5a b =.若4a a =,则令14i j ==,,可得5a a =,与5a b =矛盾.所以有4a b =.不妨设23(5)k a a a b k ====≥ ,令1(2,3,,1)i t j k t t k ==+-=-, ,可得1()k A b +∈,因此1k a b +=.令1,i j k ==,则1k a a +=或1k a b +=.故1k a b +=.所以12(1)n a a a n b a +++=-+ .综上,a b =时,12n a a a na +++= .3a a b =≠时,12(1)n a a a n a b +++=-+ .3a b a =≠时,12(1)n a a a n b a +++=-+ .【点睛】数列新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念,要将“新”性质有机地应用到“旧”性质上,创造性的解决问题.。
山东省实验中学2024届高三下学期第一次模拟考试生物试题
山东省实验中学2024届高三下学期第一次模拟考试生物试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.1972年Cesar Milstein和他的同事对蛋白质的分选机制进行了研究。
他们用分离纯化的核糖体在无细胞体系中用编码免疫球蛋白(1gG)轻链的mRNA指导合成多肽,发现合成的多肽比分泌到细胞外的成熟的免疫球蛋白在N端有一段多出的肽链片段(P)。
若添加粗面内质网,翻译的产物长度与活细胞分泌的肽链相同,且不含肽链P片段。
据此分析,下列叙述错误的是()A.细胞内IgG轻链的合成起始于附着型核糖体B.细胞内合成IgG过程中肽链P在粗面内质网内被剪切C.肽链P可能参与IgG肽链进入粗面内质网D.若P肽段功能缺失,则蛋白IgG将无法分泌到细胞外2.干旱胁迫下,植物根系能迅速合成脱落酸(ABA),引发保卫细胞发生一系列的生理变化,导致其胞内渗透压降低,气孔关闭从而降低了植物水分的蒸发,其分子机制如图1所示。
研究小组用ABA处理后,测定保卫细胞中的相关指标,结果如图2所示。
下列说法正确的是()A.ABA需要从根部极性运输至叶片才能作用于保卫细胞B.ABA使保卫细胞膜上Ca2+通道开放,导致其膜电位表现为外正内负C.胞质Ca2+浓度出现第二个峰值,可能与液泡膜上Ca2+通道开放有关D.ABA使保卫细胞中K+浓度升高和Cl-浓度降低,导致细胞失水气孔关闭3.转分化是一种类型的分化细胞转变成另一种类型的分化细胞的现象。
研究人员对诱导成年小鼠胰腺腺泡细胞转分化为胰岛β细胞进行了相关研究,部分过程如下图所示,图中指针表示Dnmt3a基因的表达量。
下列相关说法正确的是()A.转分化过程体现了动物细胞的全能性B.转分化过程与植物组织细胞脱分化过程相同C.胰腺腺泡细胞和胰岛β细胞中蛋白质种类完全不同D.适当降低Dnmt3a 的表达,可提升胰岛β细胞的比例4.癌细胞即使在氧气充足的条件下也主要依赖无氧呼吸产生ATP,这种现象称为“瓦堡效应”。
实验中学2016届高三下学期压题卷(二模)文综地理试题 含答案
山东省实验中学2013级高三第二次模拟考试文科综合试题2016。
6说明:试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第8页,第Ⅱ卷为第9页至第16页。
试题答案请用2B铅笔或0.5mm签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间150分钟。
第Ⅰ卷(共140分)一、选择题(本题包括35小题,每小题4分,共140分.每小题只有一...符合题意)个选项...2016年1月,我国开始全面实施“二孩”生育政策.读我国甲、乙、丙、丁四省(区)不同时期人口年龄构成图,完成1~3题。
1.图中最迫切需要实施“二孩”政策的省(区)是A.甲B.乙C.丙D.丁2.十年来甲省(区)A.人口数量明显增多B.省(区)内人口流动量大C.人口整体受教育水平提高D.劳动力充足,就业压力大3.到2035年,此项政策将使我国A.就学与就业压力减轻B.养老金支付总额减少C.劳动力人口减幅放缓D.男多女少的情况加剧雾霾是指空气中悬浮大量微小水滴和颗粒污染物.下图分别是中央气象台公布的某区域12月7日14时和8日8时近地面等压线(百帕)图。
读图完成4~5题。
4.这两日b地持续雾霾天气的主要原因是A.风力小,湿度大B.风力大,气温高C.气压高,气温低D.气温高,对流强5.若该天气系统的移动速度和方向不变,则F城降雨大约出现在A.8 日7—8 时B.8日12-13 时C.9日1—2时D.9日12—13 时中国援建印度尼西亚的泗水—马都拉大桥是东南亚最大的跨海大桥,大桥连接爪哇岛和马都拉岛。
读爪哇岛和马都拉岛等高线地形图(等高距500m),完成6~8题。
6.从成因上看,M山属于A.背斜形成的褶皱山B.岩浆喷发形成的火山C.向斜形成的褶皱山D.断层形成的断块山7.N地1月降水327mm,7月降水22mm,造成1月和7月降水差异的主要原因有①1月N地位于西北风的迎风坡②1月N地受赤道低压带北移影响③7月N地受干燥的东北风影响④7月N地位于东南风的背风坡A.①③B.①④C.②③D.②④8.跨海大桥建设过程中最可能遇到A.冷锋过境,风雪交加B.副高控制,晴热少雨C.台风来袭,狂风暴雨D.对流强盛,电闪雷鸣南美委内瑞拉的马拉开波湖不仅被誉为“石油湖”,而且渔业资源十分丰富。
山东省实验中学2020届高三第一次模拟考试数学(理)试卷含解析
山东省实验中学2020届高三第一次模拟考试数学(理)试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在直角坐标平面内,已知A(-2,0),3(2,0)以及动点。
是AABC的三个顶点,且sin Asin B-2cosC=0,则动点C的轨迹曲线「的离心率是()\/2a/3A.2B.2 c.扬 D.右2.若函数f(x)=l+\x\+x\贝0/(lg2)+/flg|k/(lg5)+/flg^=()A.2b.4 C.6 D.83.在AA3C中,CA_CA AB.则sinA:sin3:sinC=()543A.9:7:8b.c.6:8:7D何.3:由4.如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()种A.120B.260C.340D.4205.已知直线y=kx-1与抛物线J=8y相切,则双曲线x2-k2y2=l的离心率为()73A.打B.右C.D.26.已知数列{%}的前〃项和S"满足S"+a"=2n(nwN*),则%=()1_127321385A.3b.64 c.32d.64x+y>l,7.设x,y满足约束条件\x-y>-l,若目标函数z=ax+3y仅在点(1,0)处取得最小值,则。
的取值范围2x-y<2,为()A.(—6,3)B.(-6,-3)C.(。
,3)D.(-6,0]8.已知集合M=(x|y=log2(-4x-x2)},2V=(x|(-)x>4},则肱N=()A.d-2]b.[-2,0) c.(-4,2]D(-co,-4)9.如图,已知等腰梯形A3CD中,AB=2DC=4,AD=BC=^5,E是OC的中点,P是线段BC±的动点,则的最小值是()_9_4A.5B.0C.5D.110.已知^A={x\a-l<x<a+2},B=(x|3<x<5},则能使A^B成立的实数。
山东省济南市山东省实验中学2025届高三下第一次月考物理试题试卷
山东省济南市山东省实验中学2025届高三下第一次月考物理试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、我国《道路交通安全法》中规定:各种小型车辆前排乘坐的人(包括司机)必须系好安全带.这是因为()A.系好安全带可以减小惯性B.系好安全带可以防止因人的惯性而造成的伤害C.系好安全带可以防止因车的惯性而造成的伤害D.是否系好安全带对人和车的惯性没有影响2、关于元电荷,正确的说法是()A.元电荷就是点电荷.B.1C电量叫元电荷.C.元电荷就是质子.D.元电荷目前被认为是自然界中电荷的最小单元.3、如图所示,将两个质量均为m,带电量分别为+q、﹣q的小球a、b用绝缘细线悬挂于O点,置于水平方向的匀强电场中,用力F拉小球a,使整个装置处于平衡状态,且悬线Oa与竖直方向的夹角为30°.则F的大小可能为()A.mg B.mg C.mg D.mg4、如图,空间存在一方向水平向右的匀强电场,两个带电小球P和Q用相同的绝缘细绳悬挂在水平天花板下,两细绳都恰好与天花板垂直,则A.P和Q都带正电荷B.P和Q都带负电荷C.P带正电荷,Q带负电荷D.P带负电荷,Q带正电荷5、汽车在平直公路上以速度v 0匀速行驶,发动机的功率为P ,司机为合理进入限速区,减小了油门,使汽车功率立即减小一半并保持该功率继续行驶,设汽车行驶过程中所受阻力大小不变,从司机减小油门开始,汽车的速度v 与时间t 的关系如图所示,则在0~t 1时间内下列说法正确的是A .汽车的牵引力不断减小B .t =0时,汽车的加速度大小为Pmv C .汽车行驶的位移为3010328v t mv P+D .阻力所做的功为210328P t mv - 6、质量为m 的小球套在竖直的光滑杆上,一根轻质弹簧一端固定于O 点,另一端与小球相连,弹簧与杆在同一竖直平面内.让小球从A 点开始释放,此时弹簧处于原长,当小球下降的最大竖直高度为h 时到达B 点,若全过程中弹簧始终处于弹性限度内,竖直杆与OB 的夹角为30°,下列研究小球从A 到B 全过程的说法正确的是A .当弹簧与杆垂直时,小球速度最大B .小球的加速度为重力加速度的位置共有三个C .弹簧的弹性势能先增大后减小D .弹簧的弹性势能增加量大于mgh二、多项选择题:本题共4小题,每小题5分,共20分。
2024年东北三省三校高三下学期第一次联合模拟考数学试题及答案
哈尔滨师大附中 东北师大附中 辽宁省实验中学2024年高三第一次联合模拟考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,定在.本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四选项中,只有一项是符合题目要求的.1.已知集合{}1,2M =,(){}2log 212x N x −≤=∈R ,则M N = ( ) A .{}1B .{}2C .{}1,2D .∅2.已知复数z 的共轭复数是z ,若i 1i z ⋅=−,则z =( ) A .1i −+B .1i −−C .1i −D .1i +3.已知函数()y f x =是定义在R 上的奇函数,且当0x <时,()2af x x x=+,若()38f =−,则a =( ) A .3−B .3C .13D .13−4.已知平面直角坐标系xOy 中,椭圆C :22221x y a b+=(0a b >>)的左顶点和上顶点分别为A ,B ,过左焦点F 且平行于直线AB 的直线交y 轴于点D ,若2OD DB =,则椭圆C 的离心率为( )A .12B C .13D .235.()521x x y y −−的展开式中32x y 的系数为( ) A .55B .70−C .30D .25−6.已知正四棱锥P ABCD −各顶点都在同一球面上,且正四棱锥底面边长为4,体积为643,则该球表面积为( ) A .9πB .36πC .4πD .4π37.已知函数()22e e xx f x ax −=−−,若0x ≥时,恒有()0f x ≥,则a 的取值范围是( )A .(],2−∞B .(],4−∞C .[)2,+∞D .[)4,+∞8.设1033e a =,11ln 10b =,ln 2.210c =,则( ) A .a b c <<B .c b a <<C .b c a <<D .a c b <<二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.等差数列{}n a 中,10a >,则下列命题正确的是( ) A .若374a a +=,则918S =B .若150S >,160S <,则2289a a > C .若211a a +=,349a a +=,则7825a a += D .若810a S =,则90S >,100S <10.在平面直角坐标系xOy 中,抛物线C :24y x =的焦点为F ,点P 在抛物线C 上,点Q 在抛物线C 的准线上,则以下命题正确的是( ) A .PQ PF +的最小值是2 B .PQ PF ≥C .当点P 的纵坐标为4时,存在点Q ,使得3QF FP =D .若PQF △是等边三角形,则点P 的橫坐标是311.在一个只有一条环形道路的小镇上,有2家酒馆A ,一个酒鬼家住在D ,其相对位置关系如图所示.小镇的环形道路可以视为8段小路,每段小路需要步行3分钟时间.某天晚上酒鬼从酒馆喝完酒后离开,因为醉酒,所以酒鬼在每段小路的起点都等可能的选择顺时针或者逆时针的走完这段小路。
2024届山东省实验中学高三下学期一模英语试题及答案
绝密★启用并使用完毕前山东省实验中学2024届高三第一次模拟考试英语试题2024.04(本试卷共10页, 共三部分: 全卷满分120分, 考试用时100分钟)注意事项:1. 答卷前, 先将自己的姓名、准考证号填写在试卷和答题纸上。
2. 选择题的作答: 每小题选出答案后, 用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动, 用橡皮擦干净后, 再选涂其他答案标号。
3. 非选择题的作答: 用0.5mm黑色签字笔直接答在答题卡上对应的答题区域内, 写在试卷、草稿纸和答题卡上的非答题区域均无效。
第一部分阅读理解(共两节, 满分50分)第一节(共15小题; 每小题2.5分, 满分37.5分)阅读下列短文, 从每题所给的A、B、C、D四个选项中选出最佳选项。
AIntroduction to Drama ExamsOur exams inspire and enable learners across the globe to be confident communicators. Exams are open to anyone looking to gain confidence and experience in speech, communication and performance. There are no age restrictions. As one of the UK's oldest and most respected drama schools and awarding organizations, we examine over 100,000candidates and deliver exams both online and in person in many countries across the globe.Now we are pleased to offer free, online "Introduction to Examinations" information session. Booking is now opening for events until Summer 2024.Session InformationFee There isn't a fee for this session, but you are required to book in advance.Dates 6 February 2024, 6:00 p. m. -7:30 p. m.20 March 2024, 4:00 p. m. -5:30 p. m.15 May 2024, 12:00 p. m. -1:30 p. m.9 July 2024, 8:30 a. m. -10:00 a. m.How to register Fill in the form to book your place, including your email address and phone number, where you'll be able to select which date you'd like to attend.The 1.5-hour session will begin with an Introduction to Examinations, their history and the format of assessment. Work will then focus on the subjects available to take, and will end with a Q&A phase where participants will be invited to write in their questions to the host organizer.Ifyouhaveanyquestionsregardingthis,********************************.ukandwewillbehappytohelp. Looking forward to seeing you online at this event.1. What is an advantage of the drama exam?A. It is free of charge.B. It offers flexible schedules.C. It suits a wide range of people.D. It puts restrictions on nationality.2. What is required to register for the sessions?A. Payment in advance.B. Contact information.C. Education background.D. Performance experience.3. What should you do if you have a question during the online session?A. Email it to the drama school.B. Write it down before the session.C. Propose it at the beginning of the session.D. Send it to the host organizer in Q&A phase.BCafeterias have been filled with challenges—right from planning, purchasing, and preparing, to reducing waste, staying on budget, managing goods, and training staff. Through the tedious process, restaurateurs lacked a unified platform for efficient management. To bring consistency to the unorganised catering(餐饮)industry, childhood friends Arjun Subramanian and Raj Jain, who shared a passion for innovation, decided to partner in 2019 to explore opportunities in the cafeteria industry.In May 2020, they co-founded Platos, a one-stop solution for restaurants with a custom technology kit to streamline all aspects of cafeteria management. The company offers end-to-end cafeteria management, staff selection and food trials to ensure smooth operations and consistent service. "We believe startups solve real problems and Platos is our shot at making daily workplace food enjoyable again. We aim to simplify the dining experience, providing a convenient and efficient solution that benefits both restaurateurs and customers and creating a connected ecosystem, "says Subramanian, CEO and co-founder.Platos guarantees that a technology-driven cafeteria allows customers to order, pay, pick up, and provide ratings and feedback. It also offers goods and menu management to effectively perform daily operations. Additionally, its applications connect all shareholders for a smart cafeteria experience. "We help businesses that are into catering on condition that they have access to an industrial kitchen setup where they' re making food according to certain standards," Jain states.Since the beginning, Platos claims to have transformed 45 cafeterias across eight cities in the country. Currently, it has over 45,000 monthly users placing more than 200,000 orders. Despite facing challenges in launching cafeterias across major cities in the initial stages, Platos has experienced a 15% increase in its month-over-month profits.As for future plans, the startup is looking to raise $1 million from investors as strategic partners, bringing in capital, expertise, and networks. "Finding the right lead investor is the compass that points your startup toward success," Subramanian says.4. What does the underlined word "tedious" in Paragraph 1 mean?A. Time-consuming.B. Breath-taking.C. Heart-breaking.D. Energy-saving.5. What is the purpose of founding Platos?A. To connect customers with a greener ecosystem.B. To ensure food security and variety in cafeterias.C. To improve cafeteria management with technology.D. To make staff selection more efficient and enjoyable.6. What can we learn from the statistics in Paragraph 4?A. Platos has achieved its ultimate financial goal.B. Platos has gained impressive marketing progress.C. Challenges in food industry can be easily overcome.D. Tech-driven cafeterias have covered most urban areas.7. What is Subramanian's future plan for Platos?A. To reduce costs.B. To increase profits.C. To seek investment.D. To innovate technology.CWith a brain the size of a pinhead, insects possess a great sense of direction. They manage to locate themselves and move through small openings. How do they do this with their limited brain power? Understanding the inner workings of an insect's brain can help us in our search towards energy-efficient computing, physicist Elisabetta Chicca of the University of Groningen shows with her most recent result: a robot that acts like an insect.It's not easy to make use of the images that come in through your eyes when deciding what your feet or wings should do. A key aspect here is the apparent motion of things as you move. "Like when you're on a train,” Chicca explains. "The trees nearby appear to move faster than the houses far away." Insects use this information to infer how far away things are. This works well when moving in a straight line, but reality is not that simple. To keep things manageable for their limited brain power, they adjust their behaviour: they fly in a straight line, make a turn, then make another straight line.In search of the neural mechanism(神经机制)that drives insect behaviour, PhD student Thorben Schoepe developed a model of its neuronal activity and a small robot that uses this model to find the position. His model is based on one main principle: always head towards the area with the least apparent motion. He had his robot drive through a long passage consisting of two walls and the robot centred in the middle of the passage, as insects tend to do. In other virtual environments, such as a space with small openings, his model also showed similar behaviour to insects.The fact that a robot can find its position in a realistic environment is not new. Rather, the model gives insight into how insects do the job, and how they manage to do things so efficiently. In a similar way, you could make computers more efficient.In the future, Chicca hopes to apply this specific insect behaviour to a chip as well. "Instead of using a general-purpose computer with all its possibilities, you can build specific hardware; a tiny chip that does the job, keeping things much smaller and energy-efficient." She comments.8. Why is "a train" mentioned in Paragraph 2?A. To illustrate the principle of train motion.B. To highlight why human vision is limited.C. To explain how insects perceive distances.D. To compare the movement of trees and houses.9. What does Paragraph 3 mainly talk about concerning Schoepe's model?A. Its novel design.B. Its theoretical basis.C. Its possible application.D. Its working mechanism.10. What do the researchers think of the finding?A. Amusing.B. Discouraging.C. Promising.D. Contradictory.11. What will Chicca's follow-up study focus on?A. Inventing insect-like chips.B. Studying general-purpose robots.C. Creating insect-inspired computers.D. Developing energy-efficient hardware.DWith the help from an artificial language(AL)model, MIT neuroscientists have discovered what kind of sentences are most likely to fire up the brain's key language processing centers. The new study reveals that sentences that are more complex, because of either unusual grammar or unexpected meaning, generate stronger responses in these language processing centers. Sentences that are very straightforward barely engage these regions, and meaningless orders of words don't do much for them either.In this study, the researchers focused on language-processing regions found in the left hemisphere(半球)of the brain. By collecting a set of 1,000 sentences from various sources, the researchers measured the brain activity of participants using functional magnetic resonance imaging(fMRI)while they read the sentences. The same sentences were also fed into a large language model, similar to ChatGPT, to measure the model's activation patterns. Once the researchers had all of those data, they trained the model to predict how the human language network would respond to any new sentence based on how the artificial language network responded to these 1,000 sentences.The researchers then used the model to determine 500 new sentences that would drive highest brain activity and sentences that would make the brain less active, and their findings were confirmed in subsequent human participants. To understand why certain sentences generate stronger brain responses, the model examined the sentences based on 11 different language characteristics. The analysis revealed that sentences that were more surprising resulted in greater brain activity. Another linguistic(语言的)aspect that correlated with the brain's language network responses was the complexity of the sentences, which was determined by how well they followed English grammar rules and bow logically they linked with each other.The researchers now plan to see if they can extend these findings in speakers of languages other than English. They also hope to explore what type of stimuli may activate language processing regions in the brain's right hemisphere.12. What sentences make our brain work harder?A. Lengthy.B. Logical.C. Straightforward.D. Complicated.13. What is the function of the AL model in the research?A. To examine language network.B. To reduce language complexity.C. To locate language processing area.D. To identify language characteristics.14. How did the researchers carry out their study?A. By conducting interviews.B. By collecting questionnaires.C. By analyzing experiment data.D. By reviewing previous studies.15. Which of the following is a suitable title for the text?A. AL Model Stimulates Brain ActivitiesB. AL Model Speeds Up Language LearningC. AL Model Reveals the Secrets of Brain ActivationD. AL Model Enhances Brain Processing Capacity第二节(共5小题; 每小题2.5分, 满分12.5分)根据短文内容, 从短文后的选项中选出能填入空白处的最佳选项。
山东省实验中学2023届高三第一次模拟考试数学试题
一、单选题二、多选题1. 在中,,,,则的面积为( )A.B.C.D.2.已知数列满足,则“数列是等差数列”的充要条件可以是( )A.B.C.D.3. 已知函数,则下列说法正确的是( )A .为奇函数B .为偶函数C .为奇函数D .为偶函数4. 已知,则( )A.B.C.D.5. 若复数是纯虚数,则实数( )A.B.C.D.6. 如图所示,平面向量,的夹角为60°,,点关于点的对称点,点关于点的对称点为点,则为()A.B.C .4D .无法确定7. 已知,则在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8. 设是定义在上的奇函数,对任意,满足,则的值等于( )A .2022B .2021C .4040D .40429. 函数在上有定义,若对任意的,,有则称在上具有性质,则下列说法正确的是( )A .在上具有性质;B.在其定义域上具有性质;C .在上单调递增;D.对任意,,,,有10.已知为圆锥底面圆的直径,点是圆上异于,的一点,为的中点,,圆锥的侧面积为,则下列说法正确的是( )A.圆上存在点使平面山东省实验中学2023届高三第一次模拟考试数学试题山东省实验中学2023届高三第一次模拟考试数学试题三、填空题四、解答题B.圆上存在点使平面C .圆锥的外接球表面积为D.棱长为的正四面体在圆锥内可以任意转动11. 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,显微镜下单位分区内的细菌分布数等等.其概率函数为,参数是单位时间(或单位面积)内随机事件的平均发生次数.现采用某种紫外线照射大肠杆菌,大肠杆菌的基因组平均产生3个嘧啶二体.设大肠杆菌的基因组产生的嘧啶二体个数为Y,表示经该种紫外线照射后产生k 个嘧啶二体的概率.已知Y服从泊松分布,记为,当产生的嘧啶二体个数不小于1时,大肠杆菌就会死亡,下列说法正确的有( )(参考数据:,恒等式)A .大肠杆菌a 经该种紫外线照射后,存活的概率约为5%B.设,则C .如果,那么,X的标准差D .大肠杆菌a 经该种紫外线照射后,其基因组产生的嘧啶二体个数的数学期望为312. “阿基米德多面体”又称“半正多面体”,与正多面体类似,它们也都是凸多面体,每个面都是正多边形,并且所有棱长也都相等,但不同之处在于阿基米德多面体的每个面的形状不全相同.有几种阿基米德多面体可由正多面体进行“截角”得到如图,正八面体的棱长为3,取各条棱的三等分点,截去六个角后得到一种阿基米德多面体,则该阿基米德多面体()A .共有18个顶点B .共有36条棱C.表面积为D.体积为13.若曲线,且经过这三点中的两点,则曲线的离心率可能为___________.(写出一个即可).14.在中,所对的三边分别为,且,则的取值范围是______.15. 已知平面向量,满足,,,则______.16.已知正项数列的前n项积为,且,.证明:(1)数列为等差数列,并求数列的通项公式;(2).17. 已知函数().若是的极值点.(1)求,并求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的导函数,求的最大值.18. 已知,设函数,是的导函数.(1)若,求曲线在点处的切线方程;(2)若在区间上存在两个不同的零点().①求实数a的取值范围;②证明:.19.已知是焦距为的双曲线上一点,过的一条直线与双曲线的两条渐近线分别交于,,且,过作垂直的两条直线和,与轴分别交于,两点,其中与轴交点的横坐标是.(1)求的值;(2)求的最大值,并求此时双曲线的方程;(3)判断以为直径的圆是否过定点,如果是,求出所有定点;如果不是,说明理由.20. 已知椭圆的中心在坐标原点,焦点在轴上,左、右焦点分别为、,离心率,短轴长为2,.(1)求椭圆的标准方程;(2)设过且斜率不为零的直线与椭圆交于、两点,过作直线的垂线,垂足为,证明:直线恒过一定点,并求出该定点的坐标;(3)过点作另一直线,与椭圆分别交于、两点,求的取值范围.21. 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了人,从女生中随机抽取了人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.喜欢数学课程不喜欢数学课程合计男生女生合计(1)请将列联表补充完整;试判断能否有的把握认为喜欢数学课程与否与性别有关;(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取人,现从人中随机抽取人,若所选名学生中的女生人数为,求的分布列及数学期望.附:,其中.0.1500.1000.0500.0250.0100.0050.0012,072 2.706 3.841 5.024 6.6357.87910.828。
山东省实验中学2017届高三上学期第二次诊断数学试卷(理科)含解析
2016-2017学年山东省实验中学高三(上)第二次诊断数学试卷(理科)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]2.命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<03.函数y=ln(1﹣x)的定义域为()A.(0,1) B.[0,1) C.(0,1]D.[0,1]4.已知角α是第二象限角,且,则cosα=()A.﹣B.﹣C.D.5.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.26.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃xα∈R,f(xα)=0B.函数y=f(x)的图象是中心对称图形C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减D.若xα是f(x)的极值点,则f′(xα)=07.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.09.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]10.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q二、填空题(本大题共5小题,每小题5分,共25分.)11.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=.12.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.13.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.14.函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.15.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.17.已知函数f(x)=x3+x﹣16.(1)求曲线y=f(x)在点(2,6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.18.已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.19.已知函数f(x)=cos(x﹣),x∈R.(Ⅰ)求f(﹣)的值;(Ⅱ)若cosθ=,θ∈(,2π),求f(2θ+).20.设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.21.若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.2016-2017学年山东省实验中学高三(上)第二次诊断数学试卷(理科)参考答案与试题解析一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=()A.(0,1) B.(0,2]C.(1,2) D.(1,2]【考点】交集及其运算;其他不等式的解法.【分析】求出集合A中其他不等式的解集,确定出A,找出A与B的公共部分即可求出交集.【解答】解:由A中的不等式变形得:log41<log4x<log44,解得:1<x<4,即A=(1,4),∵B=(﹣∞,2],∴A∩B=(1,2].故选D2.命题“对任意x∈R,都有x2≥0”的否定为()A.对任意x∈R,都有x2<0 B.不存在x∈R,都有x2<0C.存在x0∈R,使得x02≥0 D.存在x0∈R,使得x02<0【考点】命题的否定;全称命题.【分析】直接利用全称命题的否定是特称命题,写出命题的否定命题即可.【解答】解:因为全称命题的否定是特称命题,所以命题“对任意x∈R,都有x2≥0”的否定为.存在x0∈R,使得x02<0.故选D.3.函数y=ln(1﹣x)的定义域为()A.(0,1) B.[0,1) C.(0,1]D.[0,1]【考点】函数的定义域及其求法.【分析】由函数的解析式可直接得到不等式组,解出其解集即为所求的定义域,从而选出正确选项【解答】解:由题意,自变量满足,解得0≤x<1,即函数y=的定义域为[0,1)故选B4.已知角α是第二象限角,且,则cosα=()A.﹣B.﹣C.D.【考点】同角三角函数基本关系的运用.【分析】由角的范围和同角三角函数基本关系可得cosα=﹣,代值计算可得.【解答】解:∵角α是第二象限角,且,∴cosα=﹣=﹣,故选:A5.已知函数f(x)为奇函数,且当x>0时,,则f(﹣1)=()A.﹣2 B.0 C.1 D.2【考点】函数的值.【分析】利用奇函数的性质,f(﹣1)=﹣f(1),即可求得答案.【解答】解:∵函数f(x)为奇函数,x>0时,f(x)=x2+,∴f(﹣1)=﹣f(1)=﹣2,故选A.6.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃xα∈R,f(xα)=0B.函数y=f(x)的图象是中心对称图形C.若xα是f(x)的极小值点,则f(x)在区间(﹣∞,xα)单调递减D.若xα是f(x)的极值点,则f′(xα)=0【考点】函数在某点取得极值的条件;命题的真假判断与应用.【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出.【解答】解:f′(x)=3x2+2ax+b.(1)当△=4a2﹣12b>0时,f′(x)=0有两解,不妨设为x1<x2,列表如下由表格可知:①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.7.“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】按照充要条件的定义从两个方面去求①曲线y=sin(2x+φ)过坐标原点,求出φ的值,②φ=π时,曲线y=sin(2x+φ)过坐标原点.【解答】解:φ=π时,曲线y=sin(2x+φ)=﹣sin2x,过坐标原点.但是,曲线y=sin(2x+φ)过坐标原点,即O(0,0)在图象上,将(0,0)代入解析式整理即得sinφ=0,φ=kπ,k∈Z,不一定有φ=π.故“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的充分而不必要条件.故选A.8.函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数为()A.3 B.2 C.1 D.0【考点】根的存在性及根的个数判断.【分析】本题考查的知识点是指数函数的图象,要求函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象的交点个数,我们画出函数的图象后,利用数形结合思想,易得到答案.【解答】解:在同一坐标系下,画出函数f(x)=2lnx的图象与函数g(x)=x2﹣4x+5的图象如图:由图可知,两个函数图象共有2个交点故选B.9.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]【考点】其他不等式的解法.【分析】由函数图象的变换,结合基本初等函数的图象可作出函数y=|f(x)|的图象,和函数y=ax的图象,由导数求切线斜率可得l的斜率,进而数形结合可得a的范围.【解答】解:由题意可作出函数y=|f(x)|的图象,和函数y=ax的图象,由图象可知:函数y=ax的图象为过原点的直线,当直线介于l和x轴之间符合题意,直线l为曲线的切线,且此时函数y=|f(x)|在第二象限的部分解析式为y=x2﹣2x,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D10.设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,以下集合对不是“保序同构”的是()A.A=N*,B=NB.A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10}C.A={x|0<x<1},B=RD.A=Z,B=Q【考点】函数单调性的判断与证明.【分析】利用题目给出的“保序同构”的概念,对每一个选项中给出的两个集合,利用所学知识,找出能够使两个集合满足题目所给出的条件的函数,即B是函数的值域,且函数为定义域上的增函数.排除掉是“保序同构”的,即可得到要选择的答案.【解答】解:对于A=N*,B=N,存在函数f(x)=x﹣1,x∈N*,满足:(i)B={f (x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项A是“保序同构”;对于A={x|﹣1≤x≤3},B={x|x=﹣8或0<x≤10},存在函数,满足:(i)B={f(x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项B是“保序同构”;对于A={x|0<x<1},B=R,存在函数f(x)=tan(),满足:(i)B={f (x)|x∈A};(ii)对任意x1,x2∈A,当x1<x2时,恒有f(x1)<f(x2),所以选项C是“保序同构”;前三个选项中的集合对是“保序同构”,由排除法可知,不是“保序同构”的只有D.故选D.二、填空题(本大题共5小题,每小题5分,共25分.)11.设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=2.【考点】导数的运算;函数的值.【分析】由题设知,可先用换元法求出f(x)的解析式,再求出它的导数,从而求出f′(1).【解答】解:函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,令e x=t,则x=lnt,故有f(t)=lnt+t,即f(x)=lnx+x,∴f′(x)=+1,故f′(1)=1+1=2.故答案为:2.12.函数f(x)=Asin(ωx+φ),(A,ω,φ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,从而求得f(0)的值.【解答】解:由函数的图象可得A=,•T=﹣=•,求得ω=2.再根据五点法作图可得2×+φ=π,∴φ=,故f(x)=sin(2x+),∴f(0)=sin=,故答案为:.13.设a>0,若曲线y=与直线x=a,y=0所围成封闭图形的面积为a2,则a=.【考点】定积分在求面积中的应用.【分析】利用定积分表示图形的面积,从而可建立方程,由此可求a的值.【解答】解:由题意,曲线y=与直线x=a,y=0所围成封闭图形的面积为==,∴=a2,∴a=.故答案为:.14.函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.15.设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)=其中a,b∈R.若=,则a+3b的值为﹣10.【考点】函数的周期性;分段函数的解析式求法及其图象的作法.【分析】由于f(x)是定义在R上且周期为2的函数,由f(x)的表达式可得f()=f(﹣)=1﹣a=f()=;再由f(﹣1)=f(1)得2a+b=0,解关于a,b的方程组可得到a,b的值,从而得到答案.【解答】解:∵f(x)是定义在R上且周期为2的函数,f(x)=,∴f()=f(﹣)=1﹣a,f()=;又=,∴1﹣a=①又f(﹣1)=f(1),∴2a+b=0,②由①②解得a=2,b=﹣4;∴a+3b=﹣10.故答案为:﹣10.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小;(2)若a=4,b+c=8,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)由正弦定理将已知等式化成角的正弦的形式,化简解出sinA=,再由△ABC是锐角三角形,即可算出角A的大小;(2)由余弦定理a2=b2+c2﹣2bccosA的式子,结合题意化简得b2+c2﹣bc=16,与联解b+c=8得到bc的值,再根据三角形的面积公式加以计算,可得△ABC的面积.【解答】解:(1)∵△ABC中,,∴根据正弦定理,得,∵锐角△ABC中,sinB>0,∴等式两边约去sinB,得sinA=∵A是锐角△ABC的内角,∴A=;(2)∵a=4,A=,∴由余弦定理a2=b2+c2﹣2bccosA,得16=b2+c2﹣2bccos,化简得b2+c2﹣bc=16,∵b+c=8,平方得b2+c2+2bc=64,∴两式相减,得3bc=48,可得bc=16.因此,△ABC的面积S=bcsinA=×16×sin=4.17.已知函数f(x)=x3+x﹣16.(1)求曲线y=f(x)在点(2,6)处的切线方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.【考点】利用导数研究曲线上某点切线方程.【分析】(1)求出原函数的导函数,得到函数在x=2时的导数,即切线的斜率,然后由直线方程的点斜式得答案;(2)设出切点坐标,求出函数过切点的切线方程,由切线过原点求得切点横坐标,则直线方程与切点坐标可求.【解答】解:(1)由f(x)=x3+x﹣16,得f′(x)=3x2+1,∴f′(2)=3×22+1=13,∴曲线y=f(x)在点(2,6)处的切线方程为y﹣6=13(x﹣2),即13x﹣y﹣20=0;(2)设切点为(),,∴切线方程为,∵切线经过原点,∴,∴,x0=﹣2.则f′(﹣2)=13,∴所求的切线方程为y=13x;切点为(﹣2,﹣26).18.已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.【考点】两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;(2)由于x是[0,]范围内的角,得到2x+的范围,然后通过正弦函数的单调性求出f(x)在区间[0,]上的单调性.【解答】解:(1)f(x)=4cosωxsin(ωx+)=2sinωx•cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.19.已知函数f(x)=cos(x﹣),x∈R.(Ⅰ)求f(﹣)的值;(Ⅱ)若cosθ=,θ∈(,2π),求f(2θ+).【考点】二倍角的正弦;两角和与差的余弦函数.【分析】(1)把x=﹣直接代入函数解析式求解.(2)先由同角三角函数的基本关系求出sinθ的值以及sin2θ,然后将x=2θ+代入函数解析式,并利用两角和与差公式求得结果.【解答】解:(1)(2)因为,所以所以,所以=20.设f(x)=﹣x3+x2+2ax(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]的最小值为﹣,求f(x)在该区间上的最大值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)利用函数递增,导函数大于0恒成立,求出导函数的最大值,使最大值大于0.(2)求出导函数的根,判断出根左右两边的导函数的符号,求出端点值的大小,求出最小值,列出方程求出a,求出最大值.【解答】解:(1)f′(x)=﹣x2+x+2af(x)在存在单调递增区间∴f′(x)≥0在有解∵f′(x)=﹣x2+x+2a对称轴为∴递减∴f′(x)≤f′()=+2a,由0≤+2a,解得a≥﹣.检验a=﹣时,f(x)的增区间为(,),故不成立.故a>﹣.(2)当0<a<2时,△>0;f′(x)=0得到两个根为;(舍)∵∴时,f′(x)>0;时,f′(x)<0当x=1时,f(1)=2a+;当x=4时,f(4)=8a<f(1)当x=4时最小∴=解得a=1所以当x=时最大为21.若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和﹣1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g′(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))﹣c,其中c∈[﹣2,2],求函数y=h(x)的零点个数.【考点】函数在某点取得极值的条件;函数的零点.【分析】(1)求出导函数,根据1和﹣1是函数的两个极值点代入列方程组求解即可.(2)由(1)得f(x)=x3﹣3x,求出g′(x),令g′(x)=0,求解讨论即可.(3)先分|d|=2和|d|<2讨论关于的方程f(x)=d的情况;再考虑函数y=h(x)的零点.【解答】解:(1)由f(x)=x3+ax2+bx,得f′(x)=3x2+2ax+b.∵1和﹣1是函数f(x)的两个极值点,∴f′(1)=3﹣2a+b=0,f′(﹣1)=3+2a+b=0,解得a=0,b=﹣3.(2)由(1)得,f(x)=x3﹣3x,∴g′(x)=f(x)+2=x3﹣3x+2=(x﹣1)2(x+2)=0,解得x1=x2=1,x3=﹣2.∵当x<﹣2时,g′(x)<0;当﹣2<x<1时,g′(x)>0,∴﹣2是g(x)的极值点.∵当﹣2<x<1或x>1时,g′(x)>0,∴1不是g(x)的极值点.∴g(x)的极值点是﹣2.(3)令f(x)=t,则h(x)=f(t)﹣c.先讨论关于x的方程f(x)=d根的情况,d∈[﹣2,2]当|d|=2时,由(2 )可知,f(x)=﹣2的两个不同的根为1和一2,注意到f (x)是奇函数,∴f(x)=2的两个不同的根为﹣1和2.当|d|<2时,∵f(﹣1)﹣d=f(2)﹣d=2﹣d>0,f(1)﹣d=f(﹣2)﹣d=﹣2﹣d<0,∴一2,﹣1,1,2 都不是f(x)=d 的根.由(1)知,f′(x)=3(x+1)(x﹣1).①当x∈(2,+∞)时,f′(x)>0,于是f(x)是单调增函数,从而f(x)>f (2)=2.此时f(x)=d在(2,+∞)无实根.②当x∈(1,2)时,f′(x)>0,于是f(x)是单调增函数.又∵f(1)﹣d<0,f(2)﹣d>0,y=f(x)﹣d的图象不间断,∴f(x)=d在(1,2 )内有唯一实根.同理,在(一2,一1)内有唯一实根.③当x∈(﹣1,1)时,f′(x)<0,于是f(x)是单调减函数.又∵f(﹣1)﹣d>0,f(1)﹣d<0,y=f(x)﹣d的图象不间断,∴f(x)=d在(一1,1 )内有唯一实根.因此,当|d|=2 时,f(x)=d 有两个不同的根x1,x2,满足|x1|=1,|x2|=2;当|d|<2时,f(x)=d 有三个不同的根x3,x4,x5,满足|x i|<2,i=3,4,5.现考虑函数y=h(x)的零点:(i )当|c|=2时,f(t)=c有两个根t1,t2,满足|t1|=1,|t2|=2.而f(x)=t1有三个不同的根,f(x)=t2有两个不同的根,故y=h(x)有5 个零点.(i i )当|c|<2时,f(t)=c有三个不同的根t3,t4,t5,满足|t i|<2,i=3,4,5.而f(x)=t i有三个不同的根,故y=h(x)有9个零点.综上所述,当|c|=2时,函数y=h(x)有5个零点;当|c|<2时,函数y=h(x)有9 个零点.2017年1月18日。
山东省实验中学2010届高三上学期第一次诊断性测试数学理
山东省实验中学2010届高三第一次诊断性测试数学理试题注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至6页.共150分.考试时间120分钟.2.考生一律不准使用计算器.第Ⅰ卷(选择题 共60分)一、 选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若集合⎭⎬⎫⎩⎨⎧≤-+=032x x x A ,{}0432≤--=x x x B ,则 (R C )等于 ( )A .{3≤x x 或}4>xB .}31|{≤<-x xC .}43|{<≤x xD .}12|{-<≤-x x2.若b a c b a >∈,R 、、,则下列不等式成立的是 ( ) A.ba 11<. B. 22b a >. C. 1122+>+c b c a . D. ||||c b c a >. 3. 已知点)cos 2 ,cos (sin ααα⋅P 在第四象限, 则角的终边在 ( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 ( )A .31)(x x f = B .()1f x x =-+C .2()ln2x f x x -=+ D .()1()2x xf x a a -=+ 5.已知函数54)(--=x x x f ,则当方程a x f =)(有三个根时,实数的取值范围是( )A .15-<<-aB .15-≤≤-aC .5-<aD .1->a6.设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 则不等式)1()(f x f >的解集是 ( )A .)3,1()3,( --∞B .),3()0,3(+∞-C . ),3()1,1(+∞-D . ),3()1,3(+∞-7.下列四个函数中,图像如右图所示的只能是 ( ) A .x x y lg += B .x x y lg -=C .x x y lg +-=D .x x y lg --=8.若对(,0)a ∀∈-∞,R ∈∃θ,使a a ≤θsin 成立,则)6cos(πθ-的值为 ( )A .12 B .12- C .32 D .32- 9.已知函数0)1(),0()(2=>++=f a c bx ax x f ,则“a b 2>”是“0)2(<-f ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.函数|log |)(3x x f =在区间[]b a ,上的值域为[]1,0,则a b -的最小值为( )A . 31B. 32C.D.11.已知函数)0( log )(2>=x x x f 的反函数为,,且有8)()()(111=⋅---b f a f x f 若0>a 且0>b ,则ba 41+的最小值为 ( )A .B .3C .6D .912.已知定义在上的函数)(x f y =满足下列三个条件:①对任意的R x ∈都有);()2(x f x f -=+②对于任意的2021≤<≤x x ,都有),()(21x f x f <③)2(+=x f y 的图象关于y 轴对称,则下列结论中,正确的是 ( )A .)7()5.6()5.4(f f f <<B . )5.6()7()5.4(f f f <<C .)5.6()5.4()7(f f f <<D . )5.4()5.6()7(f f f <<第Ⅱ卷(非选择题 共90分)题号 二 三总分17 18 19 20 21 22分数二、 填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.函数x x x x f -++-=16)(2的定义域是_________________________.14.函数)32(log )(221--=x x x f 的单调递增区间是_____________________________.15.若,53)cos(,51)cos(=-=+βαβα则______________________tan tan =⋅βα. 16.已知实数y x ,满足)0(,1255334>+=⎪⎩⎪⎨⎧≥≤+-≤-a y ax z x y x y x 设,若633当取最大值时对应的点有无数多个,则= .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知集合{}1≤-=a x x A ,{}0452≥+-=x x x B . (1)若3a =,求;(2)若A B =∅ ,求实数的取值范围 .18.(本小题满分12分)已知3sin cos sin 2cos =-+xx xx .(1)求x tan ; (2)求xx x sin )4cos(22cos ⋅+π的值.19.(本小题满分12分)已知函数()32f x x ax bx c =-+++图像上的点))1(,1(f P 处的切线方程为31y x =-+,函数3)()(2+-=ax x f x g 是奇函数. (1)求函数)(x f 的表达式; (2)求函数)(x f 的极值.20.(本小题满分12分)已知20,1413)cos(,71cos παββαα<<<=-=且. (1)求α2tan 的值; (2)求β.21.(本小题满分12分)已知命题:在]2,1[∈x 内,不等式022>-+ax x 恒成立;命题:函数)32(log )(231a ax x x f +-=是区间),1[+∞上的减函数. 若命题“q p ∨”是真命题,求实数的取值范围.22. (本小题满分14分)已知函数x ax x x f ln )(2-+=, .a R ∈ (1)若函数)(x f 在[]2,1上是减函数,求实数的取值范围;(2)令2)()(x x f x g -=,是否存在实数,当∈x ],0(e (是自然常数)时,函数)(x g 的最小值是3,若存在,求出的值;若不存在,说明理由; (3)当∈x ],0(e 时,证明: x x x x e ln )1(2522+>-.山东省实验中学2007级第一次诊断性测试数 学 试 题(理科)答案 2009.10一、选择题1-5 DCCCA 6-10 DBAAB 11-12 BB 二、填空题11、 {12<≤-x x 或}31≤<x 12、)1,(--∞ 13、21 14、53. 三、解答题:本大题共6小题,共80分,解答应写出文字说明、演算步骤或推证过程.17.解:(I )当3a =,由13≤-x 得131≤-≤-x解得42≤≤x {}42≤≤=x x A …………………4分(2)由1≤-a x 得11+≤≤-a x a {}11+≤≤-=a x a x A …………………. 6分 由0452≥+-x x 解得41≥≤x x 或{}41≥≤=x x x B 或 ……….8分A B =∅ , ⎩⎨⎧<+>-4111a a 得 32<<a即的取值范围是32<<a .……………………………………………………………12分18.解:(1)3sin cos sin 2cos =-+x x xx , 3tan 1tan 21=-+x x 52tan =x ……4分 (2) 原式=x x x xx sin )sin 22cos 22(2sin cos 22--………………………………………8分xx x x x x x sin )sin (cos )sin )(cos sin (cos -+-=x xx sin sin cos += ……10分1cot +=x =27. ……12分19.解:(1) ()'232f x x ax b =-++, …………………1分函数()f x 在1x =处的切线斜率为-3, ()'1323f a b =-++=-,即20a b +=, 又()112f a b c =-+++=-得1a b c ++=-,………………………………3分 又函数3)(3+++-=c bx x x g 是奇函数,0)0(=g .3-=∴c2,4,3a b c =-==-, ………………………………6分()32243f x x x x =--+-. ………………………………7分(2))2)(23(443)(2'+--=+--=x x x x x f ,令,0)(=x f 得32=x 或2-=x ,()2,-∞-2-⎪⎭⎫ ⎝⎛-322,32⎪⎭⎫⎝⎛∞+,32 ()'f x 0- ()f x递减极小值递增极大值递减,极小11)2()(-=-=f x f .2741)32()(-==f x f 极大.………………………………… 12分20.解:(1)由1cos ,072παα=<<, 34tan =α, ∴()222tan 24383tan 21tan 47143ααα⨯===---………………………………………………………… 4分(2)由20παβ<<<,得02παβ<-<又∵()13cos 14αβ-=,∴1433)sin(=-βα…………………………………………………… 6分由()βααβ=--得:()cos cos βααβ=--⎡⎤⎣⎦()()cos cos sin sin ααβααβ=-+-113433317147142=⨯+⨯=.3πβ=………………………………………………………………… 12分21.解 : ]2,1[∈x 时,不等式022>-+ax x 恒成立x x x x a -=->222在[]2,1∈x 上恒成立,令x xx g -=2)(,则)(x g 在[]2,1上是减函数,1)1()(max ==∴g x g , .1>∴a 即若命题真,则;1>a ……………………………5分又函数)32(log )(231a ax x x f +-=是区间),1[+∞上的减函数,[)[)⎩⎨⎧∞+>+-=∞++-=上恒成立,在上的增函数,是1032)(132)(22a ax x x u a ax x x u ⎩⎨⎧>≤∴0)1(1u a 11≤<-∴a .即若命题真,则.11≤<-a ……………………… 10分若命题“q p ∨”是真命题,得.1->a ………………………………………………………………… 12分22.解:(1)01212)(2'≤-+=-+=xax x x a x x f 在[]2,1上恒成立, 令 12)(2-+=ax x x h ,有⎩⎨⎧≤≤0)2(0)1(h h 得,271⎪⎩⎪⎨⎧-≤-≤a a ……………………… 4分得27-≤a ……………………………………………………………………………5分(2)假设存在实数,使x ax x g ln )(-=(],0(e x ∈)有最小值3,x a x g 1)('-=xax 1-= ……………………………………………6分 ① 当0≤a 时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,ea 4=(舍去),②当e a <<10时,)(x g 在)1,0(a 上单调递减,在],1(e a上单调递增 3ln 1)1()(min =+==a ag x g ,2e a =,满足条件.③当e a ≥1时,)(x g 在],0(e 上单调递减,31)()(min =-==ae e g x g ,ea 4=(舍去), 综上,存在实数2e a =,使得当],0(e x ∈时)(x g 有最小值3. ……………………10分 (3)令x x e x F ln )(2-=,由(2)知,3)(min =x F .令25ln )(+=x x x ϕ,2'ln 1)(xxx -=ϕ, 当e x ≤<0时,0)('≥x ϕ,()h x 在],0(e 上单调递增 ∴32521251)()(max =+<+==e e x ϕϕ ,25ln ln 2+>-∴x x x x e 即x x e 2522-x x ln )1(+>.………14分。
【恒心】山东省实验中学2011级高三第一次模拟考试数学(理科)试题及参考答案(Word版)
山东省实验中学2011级高三第一次模拟考试 数学试题(理科) (2014.3)第I 卷(选择题 50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}211,log 1,M x x N x x M N =-<<=<⋂则等于 A.{}01x x << B.{}1x x -<<2 C.{}x x -1<<0 D.{}11x x -<<2.设()()()1111201411n n i i f n n Z f i i -++-⎛⎫⎛⎫=+∈= ⎪ ⎪-+⎝⎭⎝⎭,则 A.2 B.2- C.2i D.2i -3.下列函数中既是奇函数,又在区间[]1,1-上单调递减的函数是A.()tan 2f x x =B.()1f x x =-+C.()()1222x x f x -=-D.()322log 2x f x x-=+ 4.下列有关命题的说法正确的是A.命题“若211x x ==,则”的否命题为:“若211x x =≠,则”;B.“1m =”是“直线00x my x my -=+=和直线互相垂直”的充要条件C.命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”;D.命题“已知x,y 为一个三角形的两内角,若x=y ,则sin sin x y =”的逆命题为真命题.5.已知正三棱锥V-ABC 的主视图、俯视图如下图所示,其中4,23VA AC ==,则该三棱锥的左视图的面积为A.9B.6C.33D.396.已知x 、y 的取值如下表所示:若y 与x 线性相关,且0.95,y x a a ∧=+=则A.2.2B.2.9C.2.8D.2.6 7.定义行列式运算()12343sin2142 3.1cos2a a x a a x a a a a f x =-=将函数的图象向右平移()0m m >个单位,所得图象对应的函数为奇函数,则m 的最小值为 A.12π B. 6π C. 3π D. 23π 8.已知函数()()()2,ln ,1x f x x g x x x h x x x =+=+=--的零点分别为123123,,,,x x x x x x ,则的大小关系是A.123x x x <<B. 213x x x <<C. 132x x x <<D. 321x x x << 9.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,恰好有三个连续的小球涂红色,则涂法共有A.24种B.30种C.20种D.36种10.若()1,2,3,,i A i n AOB =⋅⋅⋅∆是所在的平面内的点,且i OA OB OA OB ⋅=⋅ .给出下列说法: ①12n OA OA OA OA ==⋅⋅⋅==; ②1OA 的最小值一定是OB;③点A 、i A 在一条直线上;④向量i OA OA OB 及在向量的方向上的投影必相等.其中正确的个数是A.1个B.2个C.3个D.4个第II 卷(非选择题 100分)二、填空题:本大题共5小题,每小题5分,共25分.11.阅读右面的程序框图,执行相应的程序,则输出k 的结果是_______12.设函数()3f x x x a =+--的图象关于点(1,0)中心对称,则a 的值为_______13.在()60a x a x ⎛⎫+> ⎪⎝⎭的展开式中含常数项的系数是60,则0sin axdx ⎰的值为_______14.已知点(),p x y 满足条件0,,20x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数),若3z x y =+的最大值为8,则k=_________.15.双曲线22221x y a b-=的左右焦点为12,F F ,P 是双曲线左支上一点,满足2221122PF F F PF x y a =+= ,直线与圆相切,则双曲线的离心率e 为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)已知函数()()22sinsin cos 0,263x f x x x x R ωππωωω⎛⎫⎛⎫=-++-+>∈ ⎪ ⎪⎝⎭⎝⎭,且函数()f x 的最小正周期为π。
山东省实验中学2015届高三第一次(9月)诊断性考试数学(文)试题
山东省实验中学2015届高三第一次(9月)诊断性考试数学(文)试题第I 卷(共50分)一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项......符合题意) 1.设i 是虚数单位,复数2a ii +-是纯虚数,则实数a = A. 2-B.2C. 12-D. 122.已知集合{}{}1,,2A y y x x R B x x ==-∈=≥,则下列结论正确的是 A. 3A -∈B. 3B ∉C. A B B ⋂=D. A B B ⋃=3.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是“2πϕ=”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.已知等比数列{}n a 的前三项依次为1,1,4,n a a a a -++=则A. 342n ⎛⎫⋅ ⎪⎝⎭B. 243n ⎛⎫⋅ ⎪⎝⎭C. 1342n -⎛⎫⋅ ⎪⎝⎭D. 1243n -⎛⎫⋅ ⎪⎝⎭5.右图给出的是计算111124620+++⋅⋅⋅+的值的一个框图,其中菱形判断横应填入的条件是 A. 10i > B. 10i <C. 11i >D. 11i <6.函数()21log f x x x=-的零点所在的区间为 A. ()0,1 B . ()1,2C. ()2,3 D . ()3,47.某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为A.3πB.C.4D. 以上全错8.已知双曲线()22122:10,0x y C a b a b-=>>的离心率为2,若抛物线()22:20C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为A. 23x y =B. 23x y =C. 28x y =D. 216x y =9.已知O是三角形ABC所在平面内一定点,动点P满足O P O A λ=+u u u r u u r (sin sin AB ACAB B AC C+uu u r uuu ruu u r uuu r)(()0λ≥,则P 点轨迹一定通过三角形ABC 的 A.内心B.外心C.垂心D.重心10.已知函数()f x 对任意x R ∈,都有()()()60,1f x f x y f x ++==-的图像关于()1,0对称,且()24,f =则()2014f = A.0B.4-C.8-D.16-第II 卷(非选择题,共100分)二、填空题(本题包括5小题,共25分)11.设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为________3m12.已知函数()()34f x x ax a R =-+-∈若函数()y f x =的图象在点()()1,1P f 处的切线的倾斜角为4a π=,则________13.观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49……照此规律,第n 个等式为_______.14.若点P 在直线1:30l x y ++=上,过点P 的直线2l 与曲线()22:516C x y -+=只有一个公共点M ,则PM 的最小值为_________.15.已知x y 、满足约束条件11,22x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_________. 三、解答题:本大题共6小题,共75分,解答应写出文字说明、演算步骤或证明过程.16.(本小题满分12分)已知向量()()()sin ,cos ,cos 0a x x b x x ωωωωω==>r r,函数()f x a b =⋅r r 的最小正周期为π.(I )求函数()f x 的单调增区间;(II )如果△ABC 的三边a bc 、、所对的角分别为A 、B 、C ,且满足()222b c a b cf A +=,求的值.17.(本小题满分12分)为了对某课题进行研究,用分层抽样方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(I) 求x 、y;(II)若从高校B 、C 抽取的人中选2人作专题发言,求这2人都自高校C 的概率。
山东省实验中学2014届高三第二次模拟考试数学试题(理) Word版含答案
山东省实验中学2011级第二次模拟考试数学试题(理科)2014.4第I 卷(选择题 50分)一、选择题:本大题共10小题,每小题5分,共50分.在每个小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}()12,1R A x x B x x A C B =-≤≤=<⋂,则= A.{}1x x > B. {}1x x ≥ C.{}2x x 1<≤ D. {}2x x 1≤≤ 2.已知直线l ⊥平面α,直线m β⊂平面,有下面四个命题:①//l m αβ⇒⊥; ②//l m αβ⊥⇒;③//l m αβ⇒⊥;④//l m αβ⊥⇒ 其中正确的两个命题是A.①②B.③④C.②④D.①③3.给出下列图象其中可能为函数()()432,,,f x x ax cx bx d a b c d R =++++∈的图象是 A.①③ B.①②C.③④D.②④ 4.已知圆()()22121111C x y C C ++-=:,圆与圆关于直线10x y --=对称,则圆2C 的方程为A.()()22221x y ++-=B.()()22221x y -++= C.()()22221x y +++= D.()()22221x y -+-= 5.已知函数()y f x =满足:①()1y f x =+是偶函数;②在[)1,+∞上为增函数,若120,0x x <>,且()()12122x x f x f x +<---,则与的大小关系是A.()()12f x f x -=-B. ()()12f x f x -<-C.()()12f x f x ->-D.无法确定6.已知G 是ABC ∆的重心,点P 是GBC ∆内一点,若AP AB AC λμλμ=++,则的取值范围是 A.112⎛⎫⎪⎝⎭, B.213⎛⎫⎪⎝⎭, C.312⎛⎫⎪⎝⎭, D.()12,7.已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是A.4B.2C.1D.88.已知离心率为e的双曲线和离心率为2的椭圆有相同的焦点12F F P 、,是两曲线的一个公共点,若123F PF e π∠=,则等于A.2B. 2C.52D.3 9.设αβ,为锐角,那么“()22sinsin sin αβαβ+=+”是“2παβ+=”的A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件 10.已知函数()31,0,9,0x x f x xx x ⎧+>⎪=⎨⎪+≤⎩若关于x 的方程()()22f x x a a R +=∈有六个不同的实根,则a 的取值范围是A.(]2,8B.(]2,9C.()8,9D. (]8,9二、填空题:本大题共5小题,每小题5分,共25分.11.阅读下面程序框图,则输出的数据S 为______.12.几何体的三视图如图所示(单位:m ),则该几何体的体积为________m 3.13.已知对于任意的x R ∈,不等式35x x a -+->恒成立,则实数a 的取值范围是________.14.如图,用四种不同颜色给三棱柱111ABC A B C -的六个顶点涂色,要求四种颜色全都用上,每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色.则不同的涂色方法的种数为_________(用数字做答).15.设S 为非空数集,若,x yS ∀∈,都有,,x y x y xy S +-∈,则称S 为封闭集.下列命题①实数集是封闭集; ②全体虚数组成的集合是封闭集;③封闭集一定是无限集; ④若S 为封闭集,则一定有0S ∈;⑤若S ,T 为封闭集,且满足S U T ⊆⊆,则集合U 也是封闭集.其中真命题是_________________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)已知ABC ∆的面积为1,且满足02AB AC AB AC <⋅≤,设和的夹角为θ.(I )求θ的取值范围;(II )求函数()22sin cos 246f ππθθθ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭的最大值及取得最大值时的θ值. 17.(本小题满分12分)如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(I )求证:1AB ⊥平面1A BD ;(II )求二面角1A A D B --的大小.18.(本小题满分12分)盒中装有5个乒乓球用作比赛,其中2个是旧球,另外3个是新球,新球使用后...即成为了旧球.(I )每次比赛从盒中随机抽取1个球使用,使用后...放回盒中,求第2次比赛结束后盒内剩余的新球数为2个的概率P ;(II )每次比赛从盒中随机抽取2个球使用,使用后放回盒中,设第2次比赛结束后盒内剩余的新球数为X ,求X 的分布列和数学期望.19.(本小题满分12分)已知数列{}()*n a n N ∈的前n 项和为n S ,数列n S n ⎧⎫⎨⎬⎩⎭是首项为0,公差为12的等差数列. (I )求数列{}n a 的通项公式;(II )设()()*4215n a n b n N =⋅-∈,对任意的正整数k ,将集合{}21221,,k k k b b b -+中的三个元素排成一个递增的等差数列,其公差为x d ,求数列{}k d 的通项公式.(III )对(II )中的x d ,求集合{}1,k k x d x d x Z +<<∈的元素个数.20.(本小题满分13分)已知椭圆()2222:1x y C a b a b +=>>0的两个左、右焦点分别是())12,F F ,且经过点22A ⎛ ⎝⎭.(I )求椭圆C 的方程;(II )若椭圆C 上两点M ,N 使(),0,2OM ON OA OMN λλ+=∈∆求面积的最大值.21.(本小题满分14分)已知函数()2ln ,f x x ax x a R =+-∈.(I )若函数()[]12f x 在,上是减函数,求实数a 的取值范围;(II )令()()2g x f x x =-,是否存在实数(]0,a x e ∈,当(e 是自然常数)时,函数()g x 的最小值是3,若存在,求出a 的值;若不存,说明理由;(III )当(]0,x e ∈时,证明:()2251ln 2e x x x x ->+.。
山东省实验中学2024届高三第一次诊断考试数学试题(解析版)
山东省实验中学2024届高三第一次诊断考试数学试题2023.10第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的注意事项:1.答卷前,先将自己的考生号等信息填写在试卷和答题纸上,并在答题纸规定位置贴条形码.2.本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部.3.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.4.非选择题的作答:用0.5mm 黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效..1.已知集合{}24x A x =<,{}1B =≤,则A B = ()A.()0,2 B.[)1,2 C.[]1,2 D.()0,1【答案】B 【解析】【分析】化简集合A 和B ,即可得出A B ⋂的取值范围.【详解】解:由题意在{}24xA x =<,{}1B =≤中,{}2A x x =<,{}12B x x =≤≤∴{}12A B x x ⋂=≤<故选:B.2.已知复数z 满足i 2i z =-,其中i 为虚数单位,则z 为()A .12i-- B.12i + C.12i-+ D.12i-【答案】C 【解析】【分析】计算12i z =--,再计算共轭复数得到答案.【详解】()()()2i i 2i 12i i i i z -⨯--===--⨯-,则12i z =-+.故选:C3.“()0,4b ∈”是“R x ∀∈,210bx bx -+>成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由R x ∀∈,210bx bx -+>成立求出b 的范围,再利用充分条件、必要条件的定义判断作答.【详解】由R x ∀∈,210bx bx -+>成立,则当0b =时,10>恒成立,即0b =,当0b ≠时,2040b b b >⎧⎨-<⎩,解得04b <<,因此R x ∀∈,210bx bx -+>成立时,04b ≤<,因为(0,4)[0,4),所以“()0,4b ∈”是“R x ∀∈,210bx bx -+>成立”的充分不必要条件.故选:A4.设随机变量X ,Y 满足:31Y X =-,12,3X B ⎛⎫~ ⎪⎝⎭,则()D Y =()A.4 B.5 C.6D.7【答案】A 【解析】【分析】二项分布与n 次独立重复试验的模型.先利用二项分布的数学期望公式求出()D X ,再利用方差的性质求解即可.【详解】解:因为12,3X B ⎛⎫= ⎪⎝⎭ ,则()11421339D X ⎛⎫=⨯⨯-= ⎪⎝⎭,又31Y X =-,所以()()()224313349D Y D X D X =-==⨯=.故选:A .5.设数列{}n a 为等比数列,若2342a a a ++=,3454a a a ++=,则数列{}n a 的前6项和为()A.18B.16C.9D.7【答案】C【解析】【分析】由已知条件求出等比数列{}n a 的首项和公比,再利用等比数列的求和公式可求得结果.【详解】设等比数列{}n a 的公比为q ,则()()223412234511214a a a a q q q a a a a q q q ⎧++=++=⎪⎨++=++=⎪⎩,解得1172a q ⎧=⎪⎨⎪=⎩,因此,数列{}n a 的前6项和为()61127912-=-.故选:C.6.已知函数()(),023,0x a x f x a x a x ⎧<⎪=⎨-+≥⎪⎩满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,则a 的取值范围是()A.()0,1 B.()2,+∞ C.10,3⎛⎤ ⎥⎝⎦D.3,24⎡⎫⎪⎢⎣⎭【答案】C 【解析】【分析】首先判断函数的单调性,再根据分段函数单调性的定义,列式求解.【详解】∵()f x 满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,∴()f x 在R 上是减函数,()00120203a a a a a ⎧<<⎪∴-<⎨⎪-⨯+≤⎩,解得103a <≤,∴a 的取值范围是10,3⎛⎤ ⎥⎝⎦.故选:C .7.已知函数()f x 为R 上的奇函数,()1f x +为偶函数,则()A.()()20f x f x --+=B.()()1f x f x -=+C.()()22f x f x +=-D.()20230f =【答案】C 【解析】【分析】根据题意,利用函数的奇偶性和对称性,逐项分析、判定选项,即可求解.【详解】对于A 中,函数()1f x +为偶函数,则有()()11f x f x +=-,可得()()2f x f x +=-,又由()f x 为奇函数,则()()()()22,f x f x f x f x --=-+-=-,则有()()2f x f x --=--,所以()()2f x f x ---=-,即()()2=fx f x --,所以A 错误;对于B 中,函数()1f x +为偶函数,则有()()11f x f x +=-,所以B 不正确;对于C 中,由()()()2+==f x f x f x --,则()()()42f x f x f x +=-+=,所以()f x 是周期为4的周期函数,所以()()22f x f x +=-,所以C 正确;对于D 中,由()f x 是周期为4的周期函数,可得()()()()150********f f f f =-+⨯=-=-,其中结果不一定为0,所以D 错误.故选:C.8.已知OA ,OB ,OC 均为单位向量,满足12OA OB ⋅= ,0OA OC ⋅≥ ,0OB OC ⋅≥,OC xOA yOB =+ ,则3x y +的最小值为()A.14-B.3-C.14-D.-1【答案】B 【解析】【分析】首先确定向量,OA OB 的夹角,从而构建单位圆,确定向量,,OA OB OC的坐标,并利用三角函数表示3x y +,并利用三角函数求最小值.【详解】1cos ,2OA OB OA OB OA OB ⋅==,所以π,3OA OB =,根据0OA OC ⋅≥ ,0OB OC ⋅≥,则π,0,2OA OC ⎛⎤∈ ⎥⎝⎦ ,π,0,2OB OC ⎛⎤∈ ⎥⎝⎦,如图,建立平面直角坐标系,设()1,0A,1,22B ⎛ ⎝⎭,()cos ,sin C θθ,ππ,62θ⎡⎤∈-⎢⎥⎣⎦,由OC xOA yOB =+,可知,cos 2sin 2y x y θθ⎧=+⎪⎪⎨⎪=⎪⎩,得cos sin 3x θθ=-,sin 3y θ=,()33cos sin cos 333x y θθθθθϕ⎛⎫+=-==+⎪⎪⎭,其中cos tan ϕϕϕ===,所以π0,6ϕ⎛⎫∈ ⎪⎝⎭,则ππ,62θϕϕϕ⎡⎤+∈-++⎢⎥⎣⎦,所以当π2θ=时,所以3x y +的最小值是33-.故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法正确的是()A.在研究成对数据的相关关系时,线性相关关系越强,相关系数r 越接近于1B.样本数据:27,30,37,39,40,50的第30百分位数与第50百分位数之和为68C.已知随机变量()2~,X N μσ,若()()151P X P X ≥-+≥=,则2μ=D.将总体划分为2层,通过分层随机抽样,得到两层的样本平均数和样本方差分别为12x x 和21s ,22s ,若12x x =,则总体方差()2221212s s s =+【答案】ABC 【解析】【分析】A 由相关系数的实际意义判断;B 由百分位数定义求出对应分位数判断;C 根据正态分布对称性判断;D 由分层抽样中样本、总体间的均值、方差关系判断.【详解】A :由成对数据相关性中相关系数实际意义知:相关系数r 越接近于1,线性相关关系越强,反之也成立,对;B :由630% 1.8,650%3⨯=⨯=,则第30百分位数与第50百分位数分别为373930,382+=,故和为68,对;C :由()()()()151151P X P X P X P X ≥-+≥=≥-+-<=,故()()15P X P X ≥-=<,根据正态分布对称性:1522μ-+==,对;D :由题意,总体均值为12x x x ==,若两层样本容量依次为,m n ,则()()2222222112212··m n m n s s x x s x x s m n m n m n m n ⎡⎤⎤⎡=+-++-=+⎢⎥⎥⎢++++⎦⎣⎣⎦,当且仅当m n =时()2221212s s s =+,错.故选:ABC 10.若110a b<<,则()A.22a b < B.2ab b < C.()()ln ln a b ->- D.a b a b+>+【答案】AB 【解析】【分析】首先由条件得0b a <<,再根据不等式的性质,以及函数的单调性,即可判断选项.【详解】由110a b<<,得0b a <<,则0b a ->->,所以22b a >,故A 正确;0b a <<,0b <,则2b ab >,故B 正确;由0b a ->->,则()()ln ln b a ->-,故C 错误;由0b a <<,则a b a b +=+,故D 错误.故选:AB11.已知函数()1sin sin f x x x=-,则()A.()y f x =的图象关于原点对称B.()f x 的最小正周期为πC.()y f x =的图象关于直线π2x =对称 D.()f x 的值域为R【答案】ACD【解析】【分析】根据奇函数的定义即可判断A ,根据周期的定义即可判断B ,根据()()()πf x f x f x +=-=-即可判断C ,根据奇偶性以及单调性即可判断D.【详解】令sin 0π,Z x x k k ≠⇒≠∈,故()1sin sin f x x x=-的定义域为{}π,Z x x k k ≠∈,关于原点对称,有()()()()11sin sin sin sin f x x x f x x x-=--=-+=--为奇函数,A 正确,()()()()11πsin πsin sin πsin f x x x f x x x +=+-=-+≠+,π不是()f x 的周期,故B 错误,()()()11πsin πsin sin πsin f x x x x x +=+-=-++,由于()()()πf x f x f x +=-=-,故π2x =是()f x 的一条对称轴,故C 正确,令[)(]sin 1,00,1t x =∈- ,()1f t t t=-在(]0,1t ∈单调递增,故()1f t t t=-在(]0,1t ∈上的范围为(],0-∞,由于()1f t t t =-为奇函数,所以()1f t t t=-在[)1,0t ∈-上的范围为[)0,∞+,故()f x 的值域为R ,D 正确,故选:ACD12.在平面直角坐标系xOy 中,将函数()y f x =的图象绕坐标原点逆时针旋转()090αα︒<≤︒后,所得曲线仍然是某个函数的图象,则称()f x 为“α旋转函数”,则()A.存在“90°旋转函数”B.“70°旋转函数”一定是“80°旋转函数”C.若()1g x ax x=+为“45°旋转函数”,则1a =D.若()ex bxh x =为“45°旋转函数”,则2e 0b -≤≤【答案】ACD 【解析】【分析】对A ,举例说明即可;对B ,举反例判断即可;根据函数的性质,结合“α旋转函数”的定义逐个判断即可;对CD ,将45︒旋转函数转化为函数与任意斜率为1的函数最多一个交点,再联立函数与直线的方程,分析零点个数判断即可.【详解】对于A ,如y x =,旋转90°后为y x =-满足条件,故A 正确;对于B ,如倾斜角为10︒的直线是70︒旋转函数,不是80︒旋转函数,故B 错误;对与C ,若1()g x ax x=+为45︒旋转函数,则根据函数的性质可得,1()g x ax x=+逆时针旋转45︒后,不存在与x 轴垂直的直线,使得直线与函数有1个以上的交点.故不存在倾斜角为45︒的直线与1()g x ax x=+的函数图象有两个交点.即(R)y x b b =+∈与1()g x ax x=+至多1个交点.联立1y ax x y x b⎧=+⎪⎨⎪=+⎩,可得2(1)10a x bx --+=.当1a =时,10bx -+=最多1个解,满足题意;当1a ≠时,2(1)10a x bx --+=的判别式24(1)b a ∆=--,对任意的a ,都存在b 使得判别式大于0,不满足题意,故1a =.故C 正确;对与D ,同C ,()e xbxh x =与(R)y x a a =+∈的交点个数小于等于1,即对任意的a ,e x bx a x =-至多1个解,故()e x bx g x x =-为单调函数,由()()()11,110e xb x g x g -=-=-'<',故(1)()10exb x g x --'=≤恒成立,即e (1)xb x ≥--恒成立.即e x y =图象在(1)y b x =--上方,故0b -≥,即0b ≤.当e x y =与(1)y b x =--相切时,可设切点00(,e )x x ,对e xy =求导有e xy '=,故00e e 1x x x =-,解得02x =,此时02e e x b =-=-,故2e 0b -≤≤.故D 正确.故选:ACD.【点睛】数学中的新定义题目解题策略:①仔细阅读,理解新定义的内涵;②根据新定义,对对应知识进行再迁移.第Ⅱ卷三、填空题:本题共4小题,每小题5分,共20分.13.若π1cos 43θ⎛⎫+= ⎪⎝⎭,则sin 2θ=______.【答案】79【解析】【分析】根据二倍角公式以及辅助角公式即可求解.【详解】由π1cos 43θ⎛⎫+= ⎪⎝⎭得2ππ17cos 22cos 1212499θθ⎛⎫⎛⎫+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭,故77sin 2sin 299θθ-=-⇒=,故答案为:7914.已知平面向量a ,b 为单位向量,且0a b ⋅=,若2c a =+ ,则cos ,a c = ______.【答案】23【解析】【分析】代入向量数量积的夹角公式,即可求解.【详解】()2222a c a a a b ⋅=⋅+=+⋅=,3c == ,所以22cos ,133a c a c a c ⋅===⨯.故答案为:2315.二项式()20235x +展开式的各项系数之和被7除所得余数为______.【答案】6【解析】【分析】利用赋值法可得系数和为()20232023516+=,进而根据二项式定理展开式的特征可得余数.【详解】令1x =得()20232023516+=,由于()202320231223320232023202320236171C 7C 7C 77=-+=-+-+++ ,由于()202320231223320231223320232023202320232023202320236171C 7C 7C 7767C 7C 7C 77=-+=-+-+++=-+-+++ ,1223320232023202320237+C 7C 7C 77--+++ 均能被7整除,所以余数为6,故答案为:616.若函数()()2sin cos 1f x x ω=-在区间()0,2π恰有2个零点,则ω的取值范围是______.【答案】π5π5ππ,,6666⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ 【解析】【分析】利用三角函数的性质计算即可.【详解】在()0,2πx ∈时,[)cos 1,1x ∈-,此时cos y x =的图象关于直线πx =对称,若0ω>,则[)cos ,x ωωω∈-,易知()πcos 2πZ 6x k k ω=+∈或()5πcos 2πZ 6x k k ω=+∈时,()()2sin cos 10f x x ω=-=,因为恰有两个零点,故5ππ66ω>>,此时cos x ω只能取到π6,如下图所示,符合题意;若0ω<,则(]cos ,x ωωω∈-,同上,有π5π66ω->>-,此时cos x ω只能取到π6,如下图所示,符合题意;综上π5π5ππ,,6666ω⎛⎫⎛⎫∈-- ⎪ ⎪⎝⎭⎝⎭ .故答案为:π5π5ππ,,6666⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ .【点睛】本题关键在于对ω符号的讨论,还需要考虑到cos y x ω=的对称性,取零点时通过数形结合注意端点即可.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知120A =︒,1b =,2c =.(1)求sin B ;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)14(2)10【解析】【分析】(1)根据余弦定理求解a ,即可由三边求解cos B ,进而可求正弦值,(2)根据面积公式即可求解.公众号:高中试卷君【小问1详解】由余弦定理可得:22222cos 14221cos1207BC a b c bc A ==+-=+-⨯⨯⨯︒=,则BC =,222cos214a c b B ac +-===,()0,πB∈,所以sin14B===.【小问2详解】由三角形面积公式可得1sin90241sin302ABDACDAB ADSS AC AD⨯⨯⨯︒==⨯⨯⨯︒△△,则11121sin12055210 ACD ABCS S⎛⎫==⨯⨯⨯⨯︒=⎪⎝⎭△△.18.已知数列{}n a的前n项和为n S,且2nS n n=+.(1)求{}n a的通项公式;(2)若数列{}n b满足2,2,nnana nbn⎧⎪=⎨⎪⎩为奇数为偶数,求数列{}n b的前2n项和2n T.【答案】(1)2na n=(2)124423nn+-+【解析】【分析】(1)根据1n n na S S-=-即可求解,(2)根据分组求和,结合等差等比数列的求和公式即可求解.【小问1详解】当2n≥时,()()221112n n na S S n n n n n-=-=+----=,当1n=时,112a S==,因为1a也符合上式.所以2na n=.【小问2详解】由(1)可知2,2,n n n n b n ⎧=⎨⎩为奇数为偶数,所以()()246222610422222n n T n =+++⋅⋅⋅+-++++⋅⋅⋅+()()124142424422143n n n n n +-+--=+=+-.19.如图,某公园拟在长为8(百米)的道路OP 的一侧修建一条运动跑道,跑道的前一部分为曲线段OSM ,该曲线段为函数()sin 0,0y A x A ωω=>>,[]0,4x ∈的图象,且图象的最高点为(3,S ,跑道的后一部分为折线段MNP .为保证跑步人员的安全,限定120MNP ∠=︒.(1)求A ,ω;(2)求折线段跑道MNP 长度的最大值.【答案】(1)A =6π=ω(2)3百米【解析】【分析】(1)由图象即可得A 和函数的周期,继而求得ω;(2)解法一,由(1)的函数解析式,即可求得M 点坐标,求出MP 的长,在MNP △中利用余弦定理结合基本不等式即可求得答案;解法二,在MNP △中利用正弦定理求得NP MN +的表达式,结合三角恒等变换化简,即可求得答案.【小问1详解】依题意,有A =34T =,则12T =,又2πT ω=,∴6π=ω;【小问2详解】由(1)知,π6y x =.当4x =时,2π33y ==,∴()4,3M .又()8,0P ,∴5MP ==.解法一:在MNP △中,120MNP ∠=︒,5MP =,由余弦定理得2222cos MN NP MN NP MNP MP +-⋅⋅∠=.故()22252MN NP MN NP MN NP +⎛⎫+-=⋅≤ ⎪⎝⎭,从而()23254MN NP +≤,即3MN NP +≤,当且仅当3MN NP ==时等号成立.故折线段赛道MNP 最长为3百米.解法二:在MNP △中,120MNP ∠=︒,5MP =.设PMN θ∠=,则060θ︒<<︒.由正弦定理得()sin120sin sin 60MP NP MN θθ==︒︒-,∴sin 3NP θ=,()103sin 603MN θ=︒-.故()sin 6033NP MN θθ+=+︒-()1sin cos 603223θθθ⎛⎫=+=+︒ ⎪ ⎪⎝⎭.∵060θ︒<<︒,∴当30θ=︒时,()sin 603θ+︒取到最大值3,即折线段赛道MNP 最长,故折线段赛道MNP 最长为1033百米.20.已知()f x 、()g x 分别为定义域为R 的偶函数和奇函数,且()()e x f x g x +=.(1)求()f x 的单调区间;(2)对任意实数x 均有()()230g x af x +-≥成立,求实数a 的取值范围.【答案】(1)()f x 的增区间为()0,∞+,减区间为(),0∞-(2)(,-∞【解析】【分析】(1)对于()()e x f x g x +=将x 换成x -结合奇偶性求出()f x 、()g x 的解析式,在利用导数求出函数的单调区间;(2)设e e x xt -=+,则问题转化为243042t t a -+-⋅≥在2t ≥时恒成立,参变分离可得82a t t ≤+,再利用基本不等式求出8t t +的最小值,即可求出a 的取值范围.【小问1详解】因为()()e x f x g x +=①,()f x 、()g x 分别为定义域为R 的偶函数和奇函数,所以()()f x f x -=,()()g x g x -=-,所以()()e x f x g x --+-=,即()()e x f x g x --=②,①②解得()()1e e 2x x f x -=+,()()1e e 2x x g x -=-,所以()()1e e 2x x f x -'=-,()()1e e 02x x g x -=+'>,所以()f x '(()g x )在定义域R 上单调递增,又()()0010e e 02f '=-=,所以当0x >时()0f x ¢>,即()f x 的单调递增区间为()0,∞+,当0x <时()0f x '<,即()f x 的单调递减区间为(),0∞-.【小问2详解】公众号:高中试卷君设e e x x t -=+,因为e e 2-+≥=x x ,当且仅当0x =时取等号,所以2t ≥,不等式()()230g x af x +-≥恒成立,转化为243042t t a -+-⋅≥在2t ≥时恒成立,分离参数得82a t t ≤+在2t ≥时恒成立,由均值不等式8t t +≥=当且仅当t =时取等号,故8t t+的最小值为,所以2a a ≤⇒≤,故实数a 的取值范围为(,-∞.21.某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为27;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为12,若前一次抽中奖品,则这次抽中的概率为13.记该顾客第n 次摸球抽中奖品的概率为n P .(1)求2P 的值,并探究数列{}n P 的通项公式;(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.【答案】(1)1942,1311776n n P -⎛⎫=-- ⎪⎝⎭(2)第二次,证明见解析【解析】【分析】(1)根据全概率公式即可求解2P ,利用抽奖规则,结合全概率公式即可由等比数列的定义求解,(2)根据1311776n n P -⎛⎫=-- ⎪⎝⎭,即可对n 分奇偶性求解.【小问1详解】记该顾客第()*N i i ∈次摸球抽中奖品为事件A ,依题意,127P =,()()()()()22121121212119||1737242P P A P A P A A P A P A A ⎛⎫==+=⨯+-⨯= ⎪⎝⎭.因为()11|3n n P A A -=,()11|2n n P A A -=,()n n P P A =,所以()()()()()1111||n n n n n n n P A P A P A A P A P A A ----=+,所以()111111113262n n n n P P P P ---=+-=-+,所以1313767n n P P -⎫⎛-=-- ⎪⎝⎭,又因为127P =,则131077P -=-≠,所以数列37n P ⎧⎫-⎨⎬⎩⎭是首项为17-,公比为16-的等比数列,故1311776n n P -⎛⎫=-- ⎪⎝⎭.【小问2详解】证明:当n 为奇数时,131319776742n n P -=-<<⋅,当n 为偶数时,131776n n P -=+⋅,则n P 随着n 的增大而减小,所以,21942n P P ≤=.综上,该顾客第二次摸球抽中奖品的概率最大.22.已知函数()ln a f x x x =+的最小值为1.(1)求a ;(2)若数列{}n x 满足()10,1x ∈,且()1n n x f x +=,证明:1322n n n x x x ++++>.【答案】(1)1a =(2)证明见解析【解析】【分析】(1)首先求函数的导数,并讨论0a ≤和0a >两种情况讨论函数的单调性,并求函数的最小值,即可求实数a 的取值;(2)由(1)的结果可知,11n x +>,*N n ∈,并设()()1ln g x f x x x x x=-=+-,1x ≥,利用导数判断函数的单调性,根据()()21n n g x g x ++>,即可证明.【小问1详解】()221a x a f x x x x-'=-+=,0x >.①若0a ≤,()0f x ¢>恒成立,可得()f x 在()0,∞+上单调递增,()f x 没有最小值,不符合题意;②若0a >,令()0f x '=,得x a =,当0x a <<时,()0f x '<,当x a >时,()0f x ¢>,所以()f x 在()0,a 上单调递减,在(),a +∞上单调递增,所以()()min 1ln 1f x f a a ==+=,所以1a =.【小问2详解】证明:由(1)可得,()f x 在()0,1上单调递减,在()1,+∞上单调递增,则有()()11f x f ≥=,因为()10,1x ∈,所以()211x f x =>,()()32111n n x f x x x f +>⋅⋅⋅=>=.令()()1ln g x f x x x x x=-=+-,1x ≥,()2222131240x x x g x x x ⎛⎫--- ⎪-+-⎝⎭'==<,所以()g x 在区间[)1,+∞上单调递减,且()10g =,所以()()1110n n n g x f x x +++=-<,而()21n n x f x ++=,所以21n n x x ++<,所以()()21n n g x g x ++>,即()()2211n n n n f x x f x x ++++>--,即3221n n n n x x x x ++++->-,所以1322n n n x x x ++++>.【点睛】关键点点睛:本题考查利用导数研究函数的最值以及不等式的综合应用问题,第二问是本题的难点,关键是构造函数()()1ln g x f x x x x x=-=+-,1x ≥,并结合()1n n x f x +=,即可求解.。
山东省实验中学等四校2019届高三联合考试理科数学试题-解析版
山东省实验中学等四校2019届高三联合考试理科数学试题一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|log2x<1},集合B=,则A∪B=()A. B. C. D.2.已知复数z满足i•z=3+2i(i是虚数单位),则=()A. B. C. D.3.已知等差数列{a n}的公差不为零,S n为其前n项和,S3=9,且a2-1,a3-1,a5-1构成等比数列,则S5=()A. 15B.C. 30D. 254.已知正实数a,b,c满足log2a=log3b=log6c,则()A. B. C. D.5.已知实数x,y满足约束条件,则目标函数的最小值为()A. B. C. D.6.某三棱锥的三视图如图所示,则此三棱锥的外接球表面积是()A.B.C.D.7.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有()A. 12种B. 18种C. 24种D. 64种8.如图Rt△ABC中,∠ABC=,AC=2AB,∠BAC平分线交△ABC的外接圆于点D,设,,则向量=()A.B.C.D.9.在△ABC中,a,b,c分别为角A,B,C的对边,若△ABC的面为S,且,则=()A. 1B.C.D.10.图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.11.已知椭圆C:,>>的左、右焦点分别为F1,F2,M为椭圆上异于长轴端点的一点,△MF1F2的内心为I,直线MI交x轴于点E,若,则椭圆C的离心率是()A. B. C. D.12.已知函数f(x)=,>,,当a<0时,方程f2(x)-2f(x)+a=0有4个不相等的实数根,则a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.观察下列式子,>,>,>,……,根据上述规律,第n个不等式应该为______.14.若(x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a2=______.15.“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何.”用现在的数学语言表述是:“如图所示,一圆柱形埋在墙壁中,AB=1尺,D为AB的中点,AB⊥CD,CD=1寸,则圆柱底面的直径长是______寸”.(注:l尺=10寸)16.如图所示,边长为1的正三角形ABC中,点M,N分别在线段AB,AC上,将△AMN沿线段MN进行翻折,得到右图所示的图形,翻折后的点A在线段BC上,则线段AM的最小值为______三、解答题(本大题共7小题,共82.0分)17.已知数列{a n}的前n项和S n满足=+1(n≥2,n∈N),且a1=1.(1)求数列的通项公式{a n};(2)记b n=,T n为{b n}的前n项和,求使T n≥成立的n的最小值.18.如图在直角△ABC中,B为直角,AB=2BC,E,F分别为AB,AC的中点,将△AEF沿EF折起,使点A到达点D的位置,连接BD,CD,M为CD的中点.(Ⅰ)证明:MF⊥面BCD;(Ⅱ)若DE⊥BE,求二面角E-MF-C的余弦值.19.随着科技的发展,网络已逐渐融入了人们的生活.网购是非常方便的购物方式,为了了解网购在我市的普及情况,某调查机构进行了有关网购的调查问卷,并从参与调查的市民中随机抽取了男女各100人进行分析,从而得到表(单位:人)经常网购偶尔或不用网购合计男性50 100女性70 100合计()完成上表,并根据以上数据判断能否在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关?(II)①现从所抽取的女市民中利用分层抽样的方法抽取10人,再从这10人中随机选取3人赠送优惠券,求选取的3人中至少有2人经常网购的概率;②将频率视为概率,从我市所有参与调查的市民中随机抽取10人赠送礼品,记其中经常网购的人数为X,求随机变量X的数学期望和方差.参考公式:P(K2≥k0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82820.抛物线C:y=x2,直线l的斜率为2.(Ⅰ)若l与C相切,求直线l的方程;(Ⅱ)若l与C相交于A,B,线段AB的中垂线交C于P,Q,求的取值范围.21.已知函数,(Ⅰ)当x>0时,证明f(x)>g(x);(Ⅱ)已知点P(x,xf(x)),点Q(-sin x,cos x),设函数,当,时,试判断h(x)的零点个数.22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),曲线C的极坐标方程为ρ=4cosθ.(Ⅰ)求直线l的普通方程及曲线C的直角坐标方程;(Ⅱ)设点P(1,0),直线l与曲线C相交于A,B,求的值.23.已知函数f(x)=|x-1|+2|x-3|.(Ⅰ)解关于x的不等式f(x)≤4;(Ⅱ)若f(x)-m2-m>0恒成立,求实数m的取值范围.答案和解析1.【答案】D【解析】解:A={x|0<x<2},B={y|y≥0};∴A∪B=[0,+∞).故选:D.可求出集合A,B,然后进行并集的运算即可.考查描述法、区间的定义,对数函数的单调性,以及并集的运算.2.【答案】A【解析】解:由i•z=3+2i,得z=,∴.故选:A.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.3.【答案】D【解析】解:设等差数列{a n}的公差为d(d≠0),由题意,,解得.∴.故选:D.设等差数列{a n}的公差为d(d≠0),由已知列关于首项与公差的方程组,求解得到首项与公差,再由等差数列的前n项和公式求解.本题考查等差数列的通项公式与前n项和,考查等比数列的性质,是基础题.4.【答案】C【解析】解:∵正实数a,b,c满足log2a=log3b=log6c,∴设log2a=log3b=log6c=k,则a=2k,b=3k,c=6k,∴c=ab.故选:C.设log2a=log3b=log6c=k,则a=2k,b=3k,c=6k,由此能推导出c=ab.本题考查命题真假的判断,考查对数性质、运算法则等基础知识,考查运算求解能力,是基础题.5.【答案】B【解析】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点M(x,y)到定点D(-1,2)的斜率,当M位于A(1,-)时,此时DA的斜率最小,此时z min==-.故选:B.作出不等式组对应的平面区域,目标函数的几何意义为动点M(x,y)到定点D(-1,2)的斜率,利用数形结合即可得到z的最小值.本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.6.【答案】B【解析】解:根据几何体得三视图转换为几何体为:该几何体为:下底面为边长为2的等边三角形,有一长为2的侧棱垂直于下底面的三棱锥体,故:下底面的中心到底面顶点的长为:,所以:外接球的半径为:R==故:外接球的表面积为:S=4π.故选:B.首先利用三视图转换为几何体,进一步求出几何体的外接球的半径,最后求出几何体的表面积.本题考查的知识要点:三视图和几何体之间的转换,几何体的体积公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.7.【答案】C【解析】解:根据题意,分2步进行分析:①,将4人分成3组,有C42=6种分法;②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,有2种情况,将剩下的2组全排列,安排其他的2项工作,有A22=2种情况,此时有2×2=4种情况,则有6×4=24种不同的安排方法;故选:C.根据题意,分2步进行分析:①,将4人分成3组,②,甲不能安排木工工作,甲所在的一组只能安排给泥工或油漆,将剩下的2组全排列,安排其他的2项工作,由分步计数原理计算可得答案.本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.8.【答案】C【解析】解:设圆的半径为r,在Rt△ABC中,∠ABC=,AC=2AB,所以∠BAC=,∠ACB=,∠BAC平分线交△ABC的外接圆于点D,所以∠ACB=∠BAD=∠CAD=,则根据圆的性质BD=CD=AB,又因为在Rt△ABC中,AB==r=OD,所以四边形ABDO为菱形,所以==.故选:C.根据Rt△ABC中,的边角关系,结合圆的性质,得到四边形ABDO为菱形,所以==.本题考查了向量的平行四边形法则,共线向量基本定理,圆的性质等知识,考查分析解决问题的能力和计算能力.属于中档题.9.【答案】D【解析】解:由,得4×absinC=a2+b2-c2+2ab,∵a2+b2-c2=2abcosC,∴2absinC=2abcosC+2ab,即sinC-cosC=1即2sin(C-)=1,则sin(C-)=,∵0<C<π,∴-<C-<,∴C-=,即C=,则=sin(+)=sin cos+cos sin==,故选:D.根据三角形的面积公式以及余弦定理进行化简求出C的值,然后利用两角和差的正弦公式进行求解即可.本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出C的值以及利用两角和差的正弦公式进行计算是解决本题的关键.10.【答案】C【解析】解:令圆的半径为1,利用几何概型的概率公式,计算所求的概率为P===-1.故选:C.设圆的半径为1,利用几何概型的概率公式计算所求的概率即可.本题考查了几何概型的概率计算问题,是基础题.11.【答案】B【解析】解:△MF1F2的内心为I,连接IF1和IF2,可得IF1为∠MF1F2的平分线,即有=,=,可得===2,即有==2,即有e=,故选:B.连接IF1和IF2,分别运用角平分线定理和比例的性质、椭圆的定义和离心率公式,计算可得所求值.本题考查椭圆的定义和性质,主要是离心率的求法,考查角平分线定理的运用,以及运算能力,属于基础题.12.【答案】A【解析】解:令t=f(x),则方程f2(x)-2f(x)+a=0可转化为t2-2t+a=0,设方程t2-2t+a=0的解为t=t1,t=t2,则方程f2(x)-2f(x)+a=0有4个不相等的实数根等价于t=f(x)的图象与直线t=t1,t=t2的交点共4个,由函数t=f(x)的图象与直线t=t1,t=t2的位置关系可得:-3≤t1,设g(t)=t2-2t+a,则,解得:-15≤a<-8,故选:A.由方程的解与函数图象交点的相互转化得:原方程可转化为t2-2t+a=0,设方程t2-2t+a=0的解为t=t1,t=t2,则方程f2(x)-2f(x)+a=0有4个不相等的实数根等价于t=f(x)的图象与直线t=t1,t=t2的交点共4个,由二次方程区间根问题得:由函数t=f(x)的图象与直线t=t1,t=t2的位置关系可得:-3≤t1,设g(t)=t2-2t+a,则,解得:-15≤a<-8,得解.本题考查了方程的解与函数图象交点的相互转化及二次方程区间根问题,属中档题.13.【答案】ln(n+1)>++……+【解析】解:根据题意,对于第一个不等式,ln2>,则有ln(1+1)>,对于第二个不等式,ln3>+,则有ln(2+1)>+,对于第三个不等式,ln4>++,则有ln(2+1)>++,依此类推:第n个不等式为:ln(n+1)>++……+,故答案为:ln(n+1)>++……+.根据题意,依次分析不等式的变化规律,综合可得答案.本题考查归纳推理的应用,分析不等式的变化规律.14.【答案】80【解析】解:∵(x+1)5=[(x-1)+2]5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a2=•23=80,故答案为:80.根据(x+1)5=[(x-1)+2]5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,利用二项式展开式的通项公式求得a2的值.本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15.【答案】26【解析】解:∵AB⊥CD,AD=BD,∵AB=10寸,∴AD=5寸,在Rt△AOD中,∵OA2=OD2+AD2,∴OA2=(OA-1)2+52,∴OA=13寸,∴圆柱底面的直径长是2AO=26寸.故答案为:26.由勾股定理OA2=OD2+AD2,代入数据即可求得.考查了学生对勾股定理的熟练应用,考查了数形结合思想,属于基础题.16.【答案】2-3【解析】解:设AM=x,∠AMN=α,则BM=1-x,∠AMB=180°-2α,∴∠BAM=2α-60°,在△ABM中,由正弦定理可得=,即,∴x=,∴当2α-60°=90°即α=75°时,x取得最小值=2-3.故答案为:2-3.设AM=x,∠AMN=α,在△ABM中利用正弦定理得出x关于α的函数,从而可得x的最小值.本题考查正弦定理解三角形的应用,属中档题.17.【答案】解:(1)数列{a n}的前n项和S n满足=+1,所以:,所以:数列{}为等差数列,且,则:,即,当n≥2时,=2n-1.又a1=1也满足上式,所以:a n=2n-1;(2)由(1)知,,∴,由有n2≥4n+2,有(n-2)2≥6,所以n≥5,∴n的最小值为5.【解析】(1)直接利用递推关系式求出数列的通项公式.(2)利用(1)的结论,进一步利用裂项相消法和放缩法求出结果.本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.【答案】证明:(Ⅰ)取DB中点N,连结MN、EN,∵MN,EF,∴四边形EFMN是平行四边形,∵EF⊥BE,EF⊥DE,BE∩EF=E,∴EF⊥平面BDE,∴EF⊥EN,∴MF⊥MN,在△DFC中,DF=FC,又∵M为CD的中点,∴MF⊥CD,又∵MF∩MN=M,∴MF⊥平面BCD.解:(Ⅱ)∵DE⊥BE,DE⊥EF,BE∩EF=E,∴DE⊥平面BEF,以E为原点,BE、EF、ED所在直线分别为x,y,z轴,建立空间直角坐标系,设BC=2,则E(0,0,0),F(0,1,0),C(-2,2,0),M(-1,1,1),∴=(0,1,0),=(-1,0,1),=(2,-1,0),设面EMF的法向量=(x,y,z),则,取x=1,得=(1,0,1),同理,得平面CMF的法向量=(1,2,1),设二面角E-MF-C的平面角为θ,则cosθ==,∴二面角E-MF-C的余弦值为.【解析】(Ⅰ)取DB中点N,连结MN、EN,四边形EFMN是平行四边形,由EF⊥BE,EF⊥DE,得EF⊥平面BDE,从而EF⊥EN,MF⊥MN,求出MF⊥CD,由此能证明MF⊥平面BCD.(Ⅱ)以E为原点,BE、EF、ED所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角E-MF-C的余弦值.本题考查面面垂直及线面垂直性质定理、线面垂直判定与性质定理以及利用空间向量求线面角与二面角,考查基本分析求解能力,属中档题.19.【答案】解:(1)完成列联表(单位:人):由列联表,得:k2==>,∴能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有10×=7人,偶尔或不用网购的有10×=3人,∴选取的3人中至少有2人经常网购的概率为:P==.②由2×2列联表可知,抽到经常网购的市民的频率为:,将频率视为概率,∴从我市市民中任意抽取一人,恰好抽到经常网购市民的概率为0.6,由题意X~B(10,0.6),∴随机变量X的数学期望E(X)=10×0.6=6,方差D(X)=10×0.6×0.4=2.4.【解析】(1)完成列联表,由列联表,得k2=,由此能在犯错误的概率不超过0.01的前提下认为我市市民网购与性别有关.(2)①由题意所抽取的10名女市民中,经常网购的有10×=7人,偶尔或不用网购的有10×=3人,由此能选取的3人中至少有2人经常网购的概率.②由2×2列联表可知,抽到经常网购的市民的频率为:,由题意X~B(10,0.6),由此能求出随机变量X的数学期望E(X)和方差D(X).本题考查独立检验的应用,考查概率、离散型随机变量的分布列、数学期望、方差的求法,考查古典概型、二项分布等基础知识,考查运算求解能力,是中档题.20.【答案】解:(1)设直线l的方程为y=2x+b,联立直线l与抛物线C的方程,得x2-2x-b=0,△=4+4b=0,所以,b=-1,因此,直线l的方程为y=2x-1;(2)设直线l的方程为y=2x+b,设点A(x1,y1)、B(x2,y2)、P(x3,y3)、Q(x4,y4),联立直线l与抛物线C的方程,得x2-2x-b=0,△=4+4b>0,所以,b>-1.由韦达定理得x1+x2=2,x1x2=-b.所以,,因为线段AB的中点为(1,2+b),所以,直线PQ的方程为,由,得2x2+x-5-2b=0,由韦达定理得,,所以,,所以,>,所以,的取值范围是,.【解析】(1)设直线l的方程为y=2x+b,将直线l与抛物线C的方程联立,利用△=0求出b的值,从而得出直线l的方程;(2)设点A(x1,y1)、B(x2,y2)、P(x3,y3)、Q(x4,y4),设直线l的方程为y=2x+b,将直线l的方程与抛物线C的方程联立,由△>0得出b的范围,并列出韦达定理,求出|AB|并求出线段AB的中点坐标,然后得出线段AB中垂线的方程PQ,将直线PQ的方程与抛物线C的方程联立,列出韦达定理并求出|PQ|,然后得出的表达式,结合不等式的性质求出这个代数式的取值范围.本题考查抛物线的综合问题,考查韦达定理设而不求法在抛物线综合问题中的应用,考查计算能力,属于中等题.21.【答案】解:(Ⅰ)令φ(x)=f(x)-g(x)=,x>0;则φ′(x)=.令G(x)=e x-2x(x>0),G′(x)=e x-2(x>0),易得G(x)在(0,ln2)递减,在(ln2,+∞)递增,∴G(x)≥G(ln2)=2-2ln2>0,∴e x-2x>0在(0,+∞)恒成立.∵φ(x)在(0,1)递减,在(1,+∞)递增.∴φ(x)≥φ(1)=e-2>0.∵f(x)>g(x);(Ⅱ)∵点P(x,xf(x)),点Q(-sin x,cos x),∴h(x)==-x sinx+e x cos x,h′(x)=-sin x-x cosx+e x cos x-e x sin x=(e x-x)cos x-(e x+1)sin x.①当x,时,可知e x>2x>x,∴e x-x>0∴(e x-x)cos x≥0,(e x+1)sin x≤0,∴h′(x)=(e x-x)cos x-(e x+1)sin x≥0.∴h(x)在[-,0)单调递增,h(0)=1>0,h(-)<0.∴h(x)在[-,0]上有一个零点,②当x,时,cos x≥sin x,e x>x,∴e x cos x>x sinx,∴h(x)>0在(0,]恒成立,∴在,无零点.③当,时,0<cos x<sin x,h′(x)=e x(cos x-sin x)-(x cosx+sin x)<0.∴在,单调递减,<,>.∴h(x)在(,]存在一个零点.综上,h(x)的零点个数为2..【解析】(Ⅰ)令φ(x)=f(x)-g(x)=,x>0;则φ′(x)=.易得e x-2x>,φ(x)≥φ(1)=e-2>0.即可证明f(x)>g(x);(Ⅱ)h(x)==-xsinx+e x cosx,分①x,②x,③时,讨论h(x)的零点个数即可.本题考查了利用导数解决函数零点问题,考查了分类讨论思想,属于压轴题.22.【答案】解:(Ⅰ)由(t为参数),消去参数t,可得.∵ρ=4cosθ,∴ρ2=4ρcosθ,即x2+y2-4x=0.∴曲线的直角坐标方程为(x-2)2+y2=4;(Ⅱ)把代入x2+y2-4x=0,得.设A,B两点对应的参数分别为t1,t2,则,t1t2=-3.不妨设t1<0,t2>0,∴=.【解析】(Ⅰ)由(t为参数)直接消去参数t,可得直线的普通方程,把ρ=4cosθ两边同时乘以ρ,结合ρ2=x2+y2,x=ρcosθ可得曲线的直角坐标方程;(Ⅱ)把代入x2+y2-4x=0,化为关于t的一元二次方程,利用根与系数的关系及参数t的几何意义求解.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,明确直线参数方程中参数t的几何意义是解题的关键,是中档题.23.【答案】解:(I)当x≤1时,不等式为:1-x+2(3-x)≤4,解得x≥1,故x=1.当1<x<3时,不等式为:x-1+2(3-x)≤4,解得x≥1,故1<x<3,当x≥3时,不等式为:x-1+2(x-3)≤4,解得x≤,故3≤x≤.综上,不等式f(x)≤4的解集为[1,].(II)由f(x))-m2-m>0恒成立可得m2+m<f(x)恒成立.又f(x)=,,<<,,故f(x)在(-∞,1]上单调递减,在(1,3)上单调递减,在[3,+∞)上单调递增,∴f(x)的最小值为f(3)=2.∴m2+m<2,解得-2<m<1.即m的最值范围是(-2,1).【解析】(I)讨论x的范围,去掉绝对值符号解不等式;(II)根据f(x)的单调性求出f(x)的最小值,得出关于m的不等式,从而求出m的范围.本题考查了绝对值不等式的解法,函数最值与函数恒成立问题,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省实验中学2013级第一次模拟考试
数学试题(理科)
2016.4
说明:试题分为第I 卷(选择题)和第II 卷(非选择题)两部分,共4页.试题答案请用2B 铅笔或0.5mm 黑色签字笔填涂到答题卡规定位置上,书写在试题上的答案无效.考试时间120分钟.
第I 卷 (共50分)
一、选择题(本题包括10小题,每小题5分,共50分.每小题只有一个选项符合题意) 1.设全集{}{}{}()1,2,3,4,5,6,7,2,3,4,6,1,4,5,U U M N C M N ===⋂=则 A. {}1
B. {}1,5
C. {}4,5
D. {}1,4,5
2.设i 是虚数单位,若复数()17
4a a R i
-∈-是纯虚数,则实数a 的值为 A. 4-
B. 1-
C.1
D.4
3.已知命题:1x p e >,命题ln 0q x <:
,则p 是q 的 A.充分不必要条件 B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
4.通过随机询问110名学生是否爱好打篮球,得到如下的2×2列联表:
参照附表,得到的正确结论是
A.在犯错误的概率不超过0.1%的前提下,认为“爱好打篮球与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好打篮球与性别有关”
C.有99%以上的把握认为“爱好打篮球与性别无关”
D.有99%以上的把握认为“爱好打篮球与性别有关” 5.执行如右图的程序框图,输出S 的值是
A.2
B.1
C.
12
D. 1-
6.若,x y 满足3010x y x y x k -+≥⎧⎪
++≥⎨⎪≤⎩
且2z x y =+的最大值为6,则k
的值为 A. 7- B. 1- C.1
D.7
7.偶函数()()()sin 0,0,0f x A x A ωϕωϕπ=+≠>≤≤的图象向右平移4
π
个单位得到的图象关于原点对称,则ω的值可以为 A.1 B.2 C.3
D.4
8.已知正四棱柱1111ABCD A BC D -
中,12,AB CC ==P ,E 分别为11,AC CC 的中点,则三棱锥P BDE -的体积为
C.
9.已知AB 是圆()2
2
:11C x y -+=的直径,点P 为直线10x y -+=上任意一点,则
PA PB ⋅的最小值是
A.1
B.0
1
10.已知()f x 为偶函数,当0x ≥时,()()
()24,0f x m x x m =-+->,若函数
()4y f f x m =-⎡⎤⎣⎦恰有4个零点,则实数m 的取值范围是
A. 1550,,462⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭
B. 1550,,642⎛⎫⎛⎫⋃ ⎪
⎪⎝⎭⎝⎭ C. 1550,,442⎛⎫⎛⎫
⋃ ⎪ ⎪⎝
⎭
⎝⎭
D. 1550,,
662⎛
⎫⎛⎫
⋃ ⎪ ⎪⎝⎭
⎝⎭
第II 卷(非选择题 共100分)
二、填空题(本大题共5个小题,每小题5分,共25分) 11.已知函数()4log 0
3
x x x f x x >⎧=⎨≤⎩,则116f f ⎡⎤
⎛⎫= ⎪⎢⎥⎝⎭⎣⎦
__________.
12.由曲线y 2y x =-和y 轴所围成的图形的面积为_________.
13.已知2n
x
⎛
+ ⎝
的展开式中二项式系数之和为128,
则展开式中x 的系数为________(用数字作答). 14.设01x <<,则
14
1x x
+-的最小值为________. 15.已知椭圆()22
22:10x y C a b a b
+=>>的左、右焦点分别为12,F F ,点P 是椭圆上异于
长轴端点的任意一点,若M 是线段1PF 上一点,且满足122,0MF PM MF OP =⋅=,则椭圆离心率的取值范围为__________.
三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.) 16. (本小题满分12分)
在ABC ∆中,边,,a b c 的对角分别为sin sin ,,,tan cos cos A B
A B C C A B
+=+.
(I )求角C 的大小;
(II )若c =2
2
a b +的取值范围.
17. (本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为矩形,
PA ⊥底面ABCD ,
PA AB =,点E 是棱PB 的中点.
(I )证明:AE ⊥平面PBC ;
(II )若AD=1,求二面角B EC D --的余弦值.
18. (本小题满分12分)
现有编号依次为:1,2,3,…,n 的n 级台阶,小明从台阶1出发顺次攀登,他攀登的步数通过抛掷骰子来决定:骰子的点数小于5时,小明向前一级台阶;骰子的点数大于等于5时,小明向前两级台阶.
(I )若抛掷骰子两次,小明到达的台阶编号记为ξ,求ξ的分布列和数学期望; (II )求小明恰好到达编号为6的台阶的概率.
19. (本小题满分12分)
已知数列{}n a 的前n 项和为1,1n S a =,且()()()
12211n n nS n S n n n N *
+-+=+∈.数列{}n b 满足()
21320,5n n n b b b n N b *
++-+=∈=,其前9项和为63.
(I )求数列{}{}n n a b 和的通项公式; (II )令n n
n n n
b a
c a b =
+,数列{}n c 的前n 项和为n T ,若对任意正整数n ,都有[]2,n T n a b -∈,求b a -的最小值.
20. (本小题满分13分)
已知抛物线()2
:2C x py p =>0的焦点为F ,直线4x x =与轴的交点为M ,与C 的交点
为N ,且5
4
NF MN =
. (I )求C 的方程;
(II )设()()2121A B -,,,,动点()(),22Q m n m -<<在曲线C 上,曲线C 在点Q 处的切线为l .问:是否存在定点()()0,0P t t <,使得l 与PA ,PB 都相交,,交点分别为D,E ,且QAB PDE ∆∆与的面积之比是常数?若存在,求t 的值;若不存在,说明理由. 21.(本小题满分14分) 设函数()()2
ln 1f x x b x =++.
(I )若对定义域内的任意x ,都有()()1f x f ≥成立,求实数b 的值; (II )若函数()f x 的定义域上是单调函数,求实数b 的取值范围; (III )若1b =-,证明对任意的正整数333
1
1111,
123n
k n f k n =⎛⎫
<+++⋅⋅⋅+ ⎪⎝⎭∑.。