第6讲对数与对数函数(学生版)
2015届高三数学(文,山东版)一轮课件:第2章 第6节 对数与对数函数
返回菜单
数学·新课标(文科)山东专用
【解析】 f(x)=ln(x2+1),x∈R,当 x=0 时,f(0)=ln 1= 0,即 f(x)过点(0,0),排除 B,D.
∵f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x), ∴f(x)是偶函数,其图象关于 y 轴对称,故选 A. 【答案】 A
C.2
D.4
【解析】 2log510+log50.25=log5100+log50.25=log525 =2.
【答案】 C
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
2.若函数 y=f(x)是函数 y=ax(a>0,且 a≠1)Байду номын сангаас反函数,且
f(2)=1,则 f(x)等于( )
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
二、对数函数的定义、图象与性质
定义
函数 y=logax(a>0 且 a≠1)叫做对数函数
a>1
0<a<1
图象
s
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
定义域:_(_0_,__+__∞__)____ 值域:_(_-__∞__,__+__∞__)___
换底公式
logcb
logab=_lo_g_c_a_(a,c 均大于 0 且不等于 1,b>0)
服/务/教/师 免/费/馈/赠
返回菜单
数学·新课标(文科)山东专用
如果 a>0,且 a≠1,M>0,N>0,那么: ①loga(M·N)=__lo_g_a_M__+__lo_g_a_N____; 运算性质 ②logaMN =_l_o_g_a_M__-__lo_g_a_N___; ③logaMn=nlogaM(n∈R).
新高考一轮复习人教A版第二章第六讲对数与对数函数课件(58张)
【名师点睛】对数运算的一些结论 (1)logam bn=mn logab. (2)logab·logba=1. (3)logab·logbc·logcd=logad.
3.对数函数的图象与性质
y=logax
a>1
图象
0<a<1
定义域 值域
(0,+∞) R
(续表)
y=logax
a>1
0<a<1
过定点(1,0),即 x=1 时,y=0
题组一 走出误区 1.(多选题)下列结论错误的是( )
A.2lg 3≠3lg 2 B.若 MN>0,则 loga(MN)=logaM+logaN C.y=log2x2 不是对数函数,而 y=log2(-x)是对数函数 D.函数 y=ln 11+-xx与 y=ln(1+x)-ln(1-x)的定义域 相同 答案:ABC
解析:原式=1-2log63+log63lo2g+64log663×log66×3 =1-2log63+lologg63642+1-log632=212-lolgo6g263 =log6l6o-g6l2og63=lloogg6622=1.
答案:1
3.已知 2x=12,log231=y,则 x+y 的值为________. 答案:2 4.设 2a=5b=m,且1a+1b=2,则 m=________.
[例 4](1)(2020 年新高考Ⅱ)已知函数 f(x)=lg(x2-4x-
5)在(a,+∞)单调递增,则 a 的取值范围是( )
A.(-∞,-1]
B.(-∞,2]
C.[2,+∞)
D.[5,+∞)
解析:由 x2-4x-5>0,得 x<-1 或 x>5,即函数 f(x)的定义域为(-∞,-1)∪(5,+∞).令t=x2-4x-5, 则t=(x-2)2-9,所以函数t在(-∞,-1)上单调递减, 在(5,+∞)上单调递增,又函数y=lg t在(0,+∞)上 单调递增,从而函数f(x)的单调递增区间为(5,+∞), 由题意知(a,+∞)⊆(5,+∞),∴a≥5.
对数及对数函数教案8篇
写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
2022版高考数学总复习文档-第六节-对数与对数函数-含答案
第六节对数与对数函数学习要求:1.理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数.2.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.3.知道对数函数y=log a x与指数函数y=a x(a>0,且a≠1)互为反函数.1.对数的概念(1)对数的定义一般地,如果①a x=N(a>0,且a≠1) ,那么数x叫做以a为底N的对数,记作②x=log a N ,其中③a叫做对数的底数,④N叫做对数的真数.(2)几种常见的对数对数形式特点记法一般对数底数为a(a>0且a≠1) ⑤ log a N常用对数底数为10 ⑥ lg N自然对数底数为e ⑦ ln N2.对数的性质与运算法则(1)对数的性质(i)负数和0无对数.(ii)1的对数等于0,即log a1=0(a>0且a≠1).(iii)log a a=1(a>0且a≠1).▶提醒a log a N=⑧N ;log a a N=⑨N (a>0且a≠1). (2)换底公式及其推论换底公式:⑩ log b N =log a Nlog a b(a,b均大于0且不等于1).推论:log a b=1log b a ,lo g a m bn=nmlog a b(a>0且a≠1,b>0且b≠1,m,n∈R,且m≠0),log a b·log b c·log c d= log a d (a,b,c均大于0且不等于1,d大于0).(3)对数的运算法则如果a>0且a≠1,M>0,N>0,那么log a(MN)= log a M+log a N ,log a MN= log a M-log a N ,log a M n=n log a M (n∈R).3.对数函数的图象与性质a>1 0<a<1图象性质定义域:(0,+∞)值域:R图象恒过点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0 当x >1时,y <0; 当0<x <1时,y >0 是(0,+∞)上的增函数是(0,+∞)上的减函数▶提醒 当对数函数的底数a 的大小不确定时,需分a >1和0<a <1两种情况进行讨论. 4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =loga x (a >0,且a ≠1)互为反函数,它们的图象关于直线 y =x 对称.知识拓展1.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大.2.对数函数y =log a x (a >0,且a ≠1)的图象过定点(1,0),且过点(a ,1),(1a ,-1),函数图象只在第一、四象限.1.判断正误(正确的打“√”,错误的打“✕”).(1)log a(MN)=log a M+log a N.()(2)函数y=log a x2与函数y=2log a x相等.()(3)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数.()(4)函数y=ln1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.()答案(1)✕(2)✕(3)✕(4)√2.(新教材人教A版必修第一册P127T3改编)log29×log34+2log510+log50.25=()A.0B.2C.4D.6答案 D3.(新教材人教A版必修第一册P133例3改编)已知a=ln 3,b=log3e,c=logπe,则下列关系正确的是()A.c<b<aB.a<b<cC.b<a<cD.b<c<a答案 A4.(新教材人教A版必修第一册P159T1改编)图中曲线是对数函数y=log a x的图象,已知a取√3,43,35,110四个值,则对应于C1,C2,C3,C4的a值依次为()A.√3,43,35,110B.√3,43,110,35C.43,√3,35,110D.43,√3,110,35答案 A5.已知函数f(x)=log a(2x-a)在区间[23,34]上恒有f(x)>0,则实数a的取值范围是.答案(12,1)对数式的化简与求值1.(多选题)设a,b,c都是正数,且4a=6b=9c,则()A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a答案AD∵a,b,c都是正数, 故可设4a=6b=9c=M,∴a=log4M,b=log6M,c=log9M,则1a =log M4,1b=log M6,1c=log M9.∵log M4+log M9=2log M6,∴1a +1c=2b,即1c=2b−1a,去分母整理得,ab+bc=2ac.故选AD.2.计算:2log 23+2log 31-3log 77+3ln 1= . 答案 0解析 原式=3+2×0-3×1+3×0=0. 3.计算:(lg 14-lg25)×10012= . 答案 -20解析 原式=(lg 2-2-lg 52)×10012=lg (122×52)×10=lg 10-2×10=-2×10=-20.4.计算:(1-log 63)2+log 62·log 618log 64= .答案 1 解析 原式 =1-2log 63+(log 63)2+log 663·log 6(6×3)log 64=1-2log 63+(log 63)2+1-(log 63)2log 64=2(1-log 63)2log 62=log 66-log 63log 62=log 62log 62=1.名师点评1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数,然后逆用对数的运算法则,化为同底对数真数的积、商、幂再运算.3.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.对数函数的图象及应用典例1(1)(2020安徽亳州二模)在同一个平面直角坐标系中,函数f(x)=1a x 与g(x)=lg ax的图象可能是()(2)(2020宁夏银川模拟)已知函数f(x)=|ln x|,若0<a<b,且f(a)=f(b),则2a+b的取值范围是()A.(2√2,+∞)B.[2√2,+∞)C.(3,+∞)D.[3,+∞)答案(1)A(2)B解析(1)由题意a>0且a≠1,所以函数g(x)=lg ax单调递减,故排除B、D;对于A、C,由函数f(x)=1a x 的图象可知0<a<1,对于函数g(x)=lg ax,g(1)=lg a<0,故A正确,C错误.(2)f(x)=|ln x|的图象如下:因为0<a<b且f(a)=f(b),所以|ln a|=|ln b|且0<a<1,b>1,所以-ln a=ln b,即ab=1,易得2a+b≥2√2ab=2√2,当且仅当2a=b,即a=√22,b=√2时等号成立.故选B.名师点评1.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.2.常把一些对数型方程、不等式问题转化为相应的函数图象问题,利用数形结合法求解.1.(2020广东惠州模拟)当a >1时,在同一坐标系中,函数g (x )=a -x 与f (x )=-log a x 的图象大致是( )答案 D 因为a >1,所以g (x )=a -x=(1a )x为R 上的减函数,且过(0,1);f (x )=-log a x 为(0,+∞)上的减函数,且过(1,0), 故只有D 选项符合.2.(2020陕西榆林三模)设x 1、x 2、x 3均为实数,且e -x 1=ln x 1,e -x 2=ln(x 2+1),e -x 3=lg x 3,则( ) A.x 1<x 2<x 3 B.x 1<x 3<x 2 C.x 2<x 3<x 1 D.x 2<x 1<x 3 答案 D 因为e -x 1=ln x1⇒(1e )x 1=ln x 1,e-x 2=ln(x 2+1)⇒(1e )x 2=ln(x 2+1),e-x 3=lg x3⇒(1e )x 3=lg x 3,所以作出函数y =(1e )x,y 1=ln x ,y 2=ln(x +1),y 3=lg x 的函数图象,如图所示:由图象可知函数y 2,y 1,y 3与y 的交点A ,B ,C 的横坐标依次为x 2,x 1,x 3,即有x 2<x 1<x 3.故选D .对数函数的性质及应用角度一 比较对数值的大小典例2 (2020课标Ⅲ理,12,5分)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b 答案 A a =log 53∈(0,1),b =log 85∈(0,1),则ab =log 53log 85=log53·log58<(log 53+log 582)2=(log 5242)2<1,∴a <b.又∵134<85,∴135<13×85,两边同取以13为底的对数得log 13135<log 13(13×85),即log 138>45, ∴c >45. 又∵55<84,∴8×55<85,两边同取以8为底的对数得log 8(8×55)<log 885, 即log 85<45,∴b <45.综上所述,c >b >a ,故选A . 角度二 解简单的对数不等式典例3 若log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A.(0,1) B.(0,12)C.(12,1)D.(0,1)∪(1,+∞)答案 C 由题意得a >0且a ≠1,故必有a 2+1>2a ,又log a (a 2+1)<log a 2a <0,所以0<a <1,且2a >1,∴a >12.故a 的取值范围是(12,1).角度三 与对数函数有关的复合函数问题典例4 已知函数f (x )=log a (ax 2-x ).(1)若a =12,求f (x )的单调区间; (2)若f (x )在区间[2,4]上是增函数,求实数a 的取值范围.解析 (1)当a =12时,f (x )=lo g 12(12x 2-x),由12x 2-x >0,得x 2-2x >0,解得x <0或x >2,所以函数f (x )的定义域为(-∞,0)∪(2,+∞),利用复合函数单调性可得函数f (x )的增区间为(-∞,0),减区间为(2,+∞).(2)令g (x )=ax 2-x ,则函数g (x )的图象开口向上,对称轴为x =12a 的抛物线,①当0<a<1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递减,且g(x)min=ax2-x>0,即{12a≥4,g(4)=116a-14>0,此不等式组无解.②当a>1时,要使函数f(x)在区间[2,4]上是增函数, 则g(x)=ax2-x在[2,4]上单调递增,且g(x)min=ax2-x>0,即{12a≤2,g(2)=4a-2>0,解得a>12,又a>1,∴a>1.综上实数a的取值范围为(1,+∞).名师点评(1)确定函数的定义域,研究或利用函数的性质,都要在其定义域上进行.(2)如果需将函数解析式变形,一定要保证其等价性,否则结论错误.(3)在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,并且真数必须为正.1.(2020课标Ⅲ文,10,5分)设a=log32,b=log53,c=23,则()A.a <c <bB.a <b <cC.b <c <aD.c <a <b答案 A 因为a =log 32=log 3√83<log3√93=23=c , b =log 53=log 5√273>log5√253=23=c ,所以a <c <b.故选A .2.若a >b >0,0<c <1,则 ( ) A.log a c <log b c B.log c a <log c bC.a c <b cD.c a >c b答案 B ∵0<c <1,∴当a >b >1时,log a c >log b c ,故A 项错误;∵0<c <1,∴y =log c x 在(0,+∞)上单调递减,又a >b >0,∴log c a <log c b ,故B 项正确;∵0<c <1,∴y =x c 在(0,+∞)上单调递增,又∵a >b >0,∴a c >b c ,故C 项错误;∵0<c <1,∴y =c x 在(0,+∞)上单调递减,又∵a >b >0,∴c a <c b ,故D 项错误.故选B .3.若函数f (x )=log a (x 2+32x)(a >0,a ≠1)在区间(12,+∞)上恒有f (x )>0,则f (x )的单调递增区间为 .答案 (0,+∞)解析 令M =x 2+32x ,当x ∈12,+∞时,M ∈(1,+∞),因为f (x )>0,所以a >1,所以函数y =log a M 为增函数,又M =(x +34)2−916,因此M 的单调递增区间为(-34,+∞).又x 2+32x >0,所以x >0或x <-32,所以函数f (x )的单调递增区间为(0,+∞).A组基础达标1.(2020课标Ⅰ文,8,5分)设a log34=2,则4-a= ()A.116B.19C.18D.16答案 B2.(多选题)设a=log0.20.3,b=log20.3,则()A.1a <1bB.ab<0C.a+b<0D.ab<a+b 答案BCD3.已知a=log2e,b=ln 2,c=lo g1213,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b答案 D4.(多选题)已知函数f(x)=lg(x2+ax-a-1),则下列论述中正确的是()A.当a=0时, f(x)的定义域为(-∞,-1)∪(1,+∞)B.当a=0时,f(x)一定有最小值C.当a=0时, f(x)的值域为RD.若f(x)在区间[2,+∞)上单调递增,则实数a的取值范围是[-4,+∞)答案AC对于A,当a=0时,解x2-1>0,有x∈(-∞,-1)∪(1,+∞),故A正确;对于B,当a=0时,f(x)=lg(x2-1),x2-1∈(0,+∞),此时f(x)=lg(x2-1)的值域为R,故B错误,C正确;对于D,若f(x)在区间[2,+∞)上单调递增,此时y=x2+ax-a-1的图象的对称轴的方程为直线x=-a 2,则-a2≤2,解得a≥-4.但当a=-4时,f(x)=lg(x2-4x+3)在x=2处无意义,故D错误.故选AC.5.(2020陕西西安高三二模)函数y=log5(x2+2x-3)的单调递增区间是.答案(1,+∞)解析由题意可知x2+2x-3>0,解得x<-3或x>1,即函数y=log5(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞).令g(x)=x2+2x-3,则函数g(x)在(-∞,-3)上单调递减,在(1,+∞)上单调递增,根据复合函数的单调性,可得函数y=log5(x2+2x-3)的单调递增区间为(1,+∞).6.函数f(x)=e x-e-x+ln1+x1-x+1,若f(a)+f(1+a)>2,则a的取值范围是.答案(-12,0)解析由题意得, f(x)的定义域为(-1,1),关于原点对称设g(x)=f(x)-1=e x-e-x+ln1+x1-x,则g(-x)=e-x-e x+ln1-x1+x,则g(-x)+g(x)=0,所以g(x)是(-1,1)上的奇函数,因为f(a)+f(1+a)>2,所以f(1+a)-1>-f(a)+1,所以f(1+a)-1>-[f(a)-1],即g(1+a)>-g(a)=g(-a),因为y=e x-e-x单调递增,y=ln1+x1-x单调递增,所以g(x)单调递增,则{-1<a<1,-1<1+a<1,1+a>-a,即−12<a<0.故a的取值范围是(-12,0).7.已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[-3,1]上是减函数,求a的取值范围.解析(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(-x),所以ln(2x2+ax+3)=ln(2x2-ax+3),故a=0,所以f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t≥3,所以ln t≥ln 3,故f(x)的值域为[ln 3,+∞).(2)设u(x)=2x2+ax+3,f(u)=ln u.因为f(x)在[-3,1]上是减函数,所以u(x)=2x2+ax+3在[-3,1]上是减函数,且u(x)>0在[-3,1]上恒成立,故{-a4≥1,u(x)min=u(1)=5+a>0,解得-5<a≤-4,即a的取值范围是(-5,-4].B组能力拔高8.(2020山西大同三模)在同一平面直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案A由题意知,函数f(x)=2-ax(a>0,且a≠1)为减函数,当0<a<1时,函数f(x)=2-ax的零点为x=2a>2,且函数g(x)=log a(x+2)在(-2,+∞)上为减函数,故C,D均不正确;当a>1时,函数f(x)=2-ax的零点为x=2a <2,且x=2a>0,且g(x)=log a(x+2)在(-2,+∞)上是增函数,故B不正确,故选A.9.(多选题)(2020山东济南模拟)已知函数f(x)=lg(1|x-2|+1),则下列说法正确的是()A.f(x+2)是偶函数B.f(x+2)是奇函数C.f(x)在区间(-∞,2)上是减函数,在区间(2,+∞)上是增函数D.f(x)没有最小值答案AD因为f(x)=lg(1|x-2|+1),所以f (x +2)=lg (1|x |+1),定义域为{x |x ≠0},关于原点对称,又f (-x +2)=lg (1|-x |+1)=lg (1|x |+1)=f (x +2),所以f (x +2)为偶函数,故A 说法正确,B 说法错误; f (x )=lg (1|x -2|+1)={lg (1x -2+1),x >2,lg (12-x +1),x <2.因为当x ∈(2,+∞)时,y =1x -2为减函数,所以y =1x -2+1为减函数,所以y =lg (1x -2+1)在区间(2,+∞)上为减函数,故C 说法错误;因为当x ∈(2,+∞)时,y =lg (1x -2+1)为减函数,且当x →+∞时,y →0,所以f (x )没有最小值,故D 说法正确.10.(2020辽宁高三三模)设f (x )为定义在R 上的奇函数,当x ≥0时, f (x )=log 3(x +1)+ax 2-a +1(a 为常数),则不等式f (3x +4)>-5的解集为 ( )A.(-∞,-1)B.(-1,+∞)C.(-∞,-2)D.(-2,+∞)答案 D 因为f (x )是定义在R 上的奇函数,所以f (0)=0,解得a =1,所以当x ≥0时,f (x )=log 3(x +1)+x 2.因为函数y =log 3(x +1)和y =x 2在x ∈[0,+∞)上都是增函数,所以f (x )在[0,+∞)上单调递增.由奇函数的性质可知,y =f (x )在R 上单调递增,因为f (2)=5,f (-2)=-5,所以f (3x +4)>-5⇒f (3x +4)>f (-2),即3x+4>-2,解得x>-2.11.(2020课标Ⅰ理,12,5分)若2a+log2a=4b+2log4b,则()A.a>2bB.a<2bC.a>b2D.a<b2答案B2a+log2a=22b+log2b<22b+log2(2b),令f(x)=2x+log2x,则f(a)<f(2b),又易知f(x)在(0,+∞)上单调递增,所以a<2b,故选B.12.(2020河北邢台模拟)若当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,则实数a的取值范围为.答案(1,2]解析因为当x∈(1,2]时,不等式(x-1)2≤log a x恒成立,所以{a>1,log a2≥1,解得1<a≤2,故实数a的取值范围是(1,2].13.已知函数f(x)=3-2log2x,g(x)=log2x.(1)当x∈[1,4]时,求函数h(x)=[f(x)+1]·g(x)的值域;(2)如果对任意的x∈[1,4],不等式f(x2)·f(√x)>k·g(x)恒成立,求实数k的取值范围.解析(1)易知h(x)=(4-2log2x)·log2x=-2(log2x-1)2+2.因为x∈[1,4],所以log2x∈[0,2],故函数h(x)的值域为[0,2].(2)由f (x 2)·f (√x )>k ·g (x )可得(3-4log 2x )(3-log 2x )>k ·log 2x.令t =log 2x ,因为x ∈[1,4],所以t =log 2x ∈[0,2],即(3-4t )(3-t )>k ·t 对任意t ∈[0,2]恒成立.当t =0时,k ∈R;当t ∈(0,2]时,k <(3-4t )(3-t )t 恒成立, 即k <4t +9t -15恒成立.因为4t +9t ≥12,当且仅当4t =9t ,即t =32时取等号,所以4t +9t -15的最小值为-3,即k <-3.综上,k 的取值范围是(-∞,-3).C 组 思维拓展14.(2020吉林长春高三模拟)若函数f (x )={log 12(3-x )m ,x <1,x 2-6x +m ,x ≥1的值域为R,则m 的取值范围为( )A.(0,8]B.(0,92]C.[92,8] D.(-∞,-1]∪(0,92]答案B①若m>0,则当x<1时, f(x)=lo g12(3-x)m单调递增,当x≥1时, f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,若函数f(x)的值域为R,则需f(3)=m-9≤m lo g12(3-1)=-m,解得0<m≤92;②若m≤0,则当x<1时,f(x)=lo g12(3-x)m单调递减或为常数函数,当x≥1时,f(x)=x2-6x+m=(x-3)2+m-9在(3,+∞)上单调递增,在[1,3)上单调递减,不满足函数f(x)的值域为R,舍去.综上,m的取值范围为(0,92],故选B.15.(2020山西运城高三模拟)已知函数f(x)=ln2+x2-x,g(x)=m(x-√4-x)+2,若∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1),则实数m的取值范围是()A.[14ln3-12,1-12ln3]B.(14ln3-12,1-12ln3)C.(-12,1)D.[-12,1]答案C∀x1∈[0,4],∃x2∈[0,1],使得f(x2)<g(x1)等价于f(x)min<g(x)min.函数f(x)=ln2+x2-x=ln(2+x)-ln(2-x),-2<x<2.因为y=ln(2+x)与y=-ln(2-x)在[0,1]上为增函数,所以函数f(x)在[0,1]上为增函数,所以f(x)min=f(0)=0.易知函数y=x-√4-x在[0,4]上为增函数,则-2≤x-√4-x≤4.故当m>0时,-2m+2≤g(x)≤4m+2,因为f(x)min<g(x)min,所以0<-2m+2,解得0<m<1;当m=0时,g(x)min=2>0,满足f(x)min<g(x)min;<m<0.当m<0时,4m+2≤g(x)≤-2m+2,因为f(x)min<g(x)min,所以0<4m+2,解得-12 <m<1.综上可知,-12。
对数与对数函数.板块一.对数与对数运算.学生版
题型一:对数的定义与对数运算【例1】 ⑴将下列指数式化为对数式,对数式化为指数式:①45625=;②61264-=;③1 5.733m⎛⎫= ⎪⎝⎭;④12log 164=-;⑤lg 0.012=-;⑥ln10 2.303=.⑵求下列各式中x 的值:①642log 3x =-;②log 86x =;③lg100x =;④2ln e x -=.【例2】 将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=;(4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例3】 将下列对数式写成指数式:(1)416log 21-=;(2)2log 1287=;(3)lg 0.012=-; (4)ln10 2.303=典例分析板块一.对数运算【例4】 已知32()log f x x =, 则(8)f 的值等于( ).A. 1B. 2C. 8D. 12【例5】 计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)【例6】 ⑴27log 9,⑵81log 43,⑶()()32log 32-+,⑷625log 345【例7】). A. 1B. -1C. 2D. -2【例8】 25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a【例9】 化简3log 1的结果是( ).A. 12B. 1C. 2【例10】 计算2(lg5)lg2lg50+⋅= .【例11】 计算:()2151515log 5log 45log 3⋅+【例12】 化简与求值:(1)21lg2lg52+(2)2log .【例13】 若2510a b ==,则11a b+= .【例14】 化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B. 32C. 2D.3【例15】 计算:① 53log 12.0- ②4912log 3log 2log ⋅-【例16】 求下列各值:⑴221log 36log 32-;⑵3log lg1;⑷3log 53;⑸3log 59;⑹3log3;⑺;⑻22(lg5)lg2lg25(lg2)+⋅+;⑼827log 9log 32⋅.【例17】 求值:⑴2572lg3lg7lglg 94++-;⑵;⑷32516log 4log 9log 5⋅⋅.【例18】 (1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.【例19】 (1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.题型二:对数运算法则的应用【例20】 若a 、0b >,且a 、1b ≠,log log a b b a =,则A.a b =B.1a b=C.a b =或1a b=D.a 、b 为一切非1的正数【例21】 求证:(1)log n a a n =; (2)log log log a a aMM N N-=.【例22】 试推导出换底公式:log log log c a c bb a=(0a >,且1a ≠;0c >,且1c ≠;0b >).【例23】 下列各式中,正确的是( )A.2lg 2lg x x =B.1log log a a x n=C.log log log a a a x xy y=1log 2a x =【例24】 已知λ====n a a a b b b n log log log 2121求证:λ=)(log 2121n a a a b b b n【例25】 已知32a =,用 a 表示33log 4log 6-【例26】 若32a =,则33log 82log 6-= .【例27】 已知3log 2a =,35b =用a b ,表示3log【例28】 已知(0,0,1)ab m a b m =>>≠且log m b x =,则log m a 等于A.1x -B.1x +C.1xD.1x -【例29】 已知lg 5m =,lg3n =,用,m n 表示30log 8.【例30】 (1)已知18log 9a =,185b =,试用a 、b 表示18log 45的值;(2)已知1414log 7log 5a b ==,,用a 、b 表示35log 28.【例31】 已知2log 3a =,37b =,求12log 56【例32】 8log 3p =,3log 5q =,那么lg 5等于 (用p ,q 表示);【例33】 知18log 9a =,185b =,用,a b 表示36log 45.【例34】 设,,x y z 均为实数,且34x y =,试比较3x 与4y 的大小.题型三:对数方程【例35】 求底数:(1)533log -=x , (2)872log =x【例36】 已知2(3)log (3)1x x x ++=,求实数x 的值.【例37】 已知log log a a x c b =+,求x【例38】 证明:b xxa ab a log 1log log +=【例39】 求x 的值:①43log 3-=x②35log 2-=x ③()()1123log 2122=-+-x x x④()[]0log log log 432=x【例40】 解方程24lg lg 3x x +=【例41】 (1)方程lg lg(3)1x x ++=的解x = ;(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .【例42】 解方程()()1212log 21log 222x x --+--=-【例43】 解方程)12(log 2)22(log 212+=++x x【例44】 已知12()x f x a-=,且(lg )f a =a 的值.【例45】 解方程2lg lg 1020x x x +=【例46】 设a 为实常数,解关于x 的方程)lg()3lg()1lg(x a x x -=-+-.【例47】 设正数a ,b ,c 满足222c b a =+.(1)求证:1)1(log )1(log 22=-++++b ca a cb ; (2)又设1)1(log 4=++ac b ,32)(log 8=-+c b a ,求a ,b ,c 的值.。
2021高三统考北师大版数学一轮第2章第6讲对数与对数函数含解析
2021高三统考北师大版数学一轮课时作业:第2章第6讲对数与对数函数含解析课时作业1.(2019·四川泸州一诊)2lg 2-lg 错误!的值为()A.1 B.2C.3 D.4答案B解析2lg 2-lg 错误!=lg错误!=lg 100=2,故选B.2.函数f(x)=错误!的定义域是()A.(-3,0)B.(-3,0]C.(-∞,-3)∪(0,+∞)D.(-∞,-3)∪(-3,0)答案A解析因为f(x)=错误!,所以要使函数f(x)有意义,需使错误!即-3<x〈0.3.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2x B.错误!C.log错误!x D.2x-2答案A解析由题意知f(x)=log a x(x>0).∵f(2)=1,∴log a2=1。
∴a=2。
∴f(x)=log2x.4.已知函数f(x)=log错误!x,x∈错误!,则f(x)的值域是()A.错误!B.错误!C.[0,2]D.错误!答案A解析函数f(x)=log错误!x,x∈错误!是减函数,所以函数的最小值为f错误!=log错误!错误!=错误!,函数的最大值为f错误!=log错误!错误!=2。
所以函数f(x)的值域为错误!.故选A.5.若x log23=1,则3x+3-x=()A.错误!B.错误!C.错误!D.错误!答案B解析因为x log23=1,所以log23x=1,所以3x=2,3-x=错误!,所以3x+3-x=2+错误!=错误!。
故选B.6.(2019·河北保定模拟)已知a=log23+log2错误!,b=log29-log2错误!,c=log32,则a,b,c的大小关系是()A.a=b〈c B.a=b〉cC.a〈b<c D.a〉b>c答案B解析a=log23+log2错误!=log23错误!,b=log29-log2错误!=log23错误!,因此,a=b,而log23错误!>log22=1,log32〈log33=1,所以a=b>c,故选B.7.(2020·北京东城区综合练习)已知函数f(x)=错误!则f(2+log23)的值为()A .24B .16C .12D .8答案 A解析 因为3〈2+log 23〈4,所以f (2+log 23)=f (3+log 23)=23+log 23=8×2log 23=24.故选A .8.函数y =log 13 |x +3|的单调递增区间为( )A .(-∞,3)B .(-∞,-3)C .(-3,+∞)D .(-∞,-3)∪(-3,+∞)答案 B解析 因为函数y =log 错误!x 为减函数,y =|x +3|在(-∞,-3)上是减函数,所以函数y =log 错误!|x +3|的单调递增区间为(-∞,-3).9.(2019·合肥模拟)若log a 错误!〈1(a >0且a ≠1),则实数a 的取值范围是( )A .错误!B .错误!C .错误!∪(1,+∞)D .错误!∪(1,+∞) 答案 D解析 因为log a 23〈1,所以log a 错误!<log a a .若a >1,则上式显然成立;若0〈a <1,则应满足23>a 〉0.所以a 的取值范围是错误!∪(1,+∞).故选D .10.(2019·安阳模拟)函数f (x )=log a (6-ax )(a 〉0且a ≠1)在[0,2]上为减函数,则实数a 的取值范围是( )A.(0,1) B.(1,3)C.(1,3]D.[3,+∞)答案B解析设u=6-ax,由题意得该函数是减函数,且u>0在[0,2]上恒成立,∴错误!∴1<a<3。
高考数学一轮复习 第2章 函数的概念与基本初等函数 第6讲 对数与对数函数课件 文
(1)确定函数的定义域,研究或利用函数的性质,都要在其定义 域上进行. (2)如果需将函数解析式变形,一定要保证其等价性,否则结论 错误. (3)在解决与对数函数相关的比较大小或解不等式问题时,要优 先考虑利用对数函数的单调性来求解.在利用单调性时,一定 要明确底数 a 的取值对函数增减性的影响,及真数必须为正的 限制条件.
A.3
B.13
C. 3
D.
3 3
解析:选 D.因为 xlog34=1,即 log34x=1.所以 4x=3.即 2x= 3,
所以
2-x=
1= 3
3 3.
12/11/2021
(必修 1 P71 例 7(1)改编)函数 y=log2x2 的大致图象是( )
解析:选 D.法一:f(-x)=log2(-x)2=log2x2=f(x). 所以 y=log2x2 的图象关于 y 轴对称,故选 D. 法二:y=log2x2=2log2|x|=22lloogg22x(,-x> x)0, ,x<0. 作出图象可知选 D.
【答案】
(1)D
1 (2)4
12/11/2021
(1)在识别函数图象时,要善于利用已知函数的性质、函数图象 上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合 要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问 题,利用数形结合法求解.
12/11/2021
【对点通关】 1.(必修 1 P73 练习 T1 改编)若函数 y=a|x|(a>0,且 a≠1)的值 域为{y|y≥1},则函数 y=loga|x|的图象大致是( )
12/11/2021
【对点通关】
1.(2016·高考全国卷Ⅰ)若 a>b>0,0<c<1,则( )
第06讲 对数与对数函数(原卷版)备战2023年高考数学一轮复习精讲精练
第06讲对数与对数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:对数的运算;高频考点二:换底公式高频考点三:对数函数的概念;高频考点四:对数函数的定义域高频考点五:对数函数的值域①求对数函数在区间上的值域;②求对数型复合函数的值域③根据对数函数的值域求参数值或范围高频考点六:对数函数的图象①判断对数(型)函数的图象②根据对数(型)函数的图象判断参数③对数(型)函数图象过定点问题高频考点七:对数函数的单调性①对数函数(型)函数的单调性②由对数函数(型)函数的单调性求参数③由对数函数(型)函数的单调性解不等式④对数(指数)综合比较大小高频考点八:对数函数的最值①求对数(型)函数的最值②根据对数(型)函数的最值求参数③对数(型)函数的最值与不等式综合应用第四部分:高考真题感悟第五部分:第06讲对数与对数函数(精练)1、对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.(2)牢记两个重要对数:常用对数,以10为底的对数lg N ;自然对数,以无理数e=2.71828…为底数的对数ln N .(3)对数式与指数式的互化:log x a a N x N =⇔=. 2、对数的性质、运算性质与换底公式(1)对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质:①负数和零没有对数,即0N >;②1的对数等于0,即log 10a =;③底数的对数等于1,即log 1a a =;④对数恒等式log (0)a N a N N =>.(2)对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:①log ()log log a a a M N =M +N ⋅;②log log log a a a M =M N N-; ③log log ()n a a M =n M n ∈R .(3)对数的换底公式对数的换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a=>≠>≠>且且. 换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数.换底公式的变形及推广:①log log 01,0()且m n a a n b b a a b m =>≠>; ②(1log 01;01log )且且a b b a a b b a=>≠>≠;③log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,0d >).3、对数函数及其性质(1)对数函数的定义形如log x a y =(0a >,且1a ≠)的函数叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞.(2)对数函数的图象与性质定义域:(0,)+∞一、判断题1.(2022·江西·贵溪市实验中学高二期末)已知x y >,则不等式ln ln x y >成立 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)32log 8log 99⨯=( )3.(2021·江西·贵溪市实验中学高三阶段练习)21log 3436+=.( )4.(2021·江西·贵溪市实验中学高二阶段练习)若lg 2,lg3,a b ==则12log 5=12a a b -+ ( ) 二、单选题1.(2022·北京·一模)下列函数中,定义域与值域均为R 的是( )A .ln y x =B .x y e =C .3y x =D .1y x = 2.(2022·海南·模拟预测)已知20.70.7log 3,log 0.3,0.7a b c ===,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .a b c >>D .a c b >>3.(2022·湖南师大附中高一阶段练习)不等式()2log 311x +<成立的一个充分不必要条件是( )A .1133x -<< B .0x < C .113x -<< D .103x << 4.(2022·陕西西安·高一期末)函数()ln x f x x=的图像大致为( ) A . B .C .D .5.(2022·吉林·农安县教师进修学校高一期末)函数()1ln 34y x x =-+的定义域是( ) A .3,4⎛⎫-∞ ⎪⎝⎭ B .30,4⎛⎫ ⎪⎝⎭ C .()3,00,4⎛⎫-∞⋃ ⎪⎝⎭ D .3,4⎛⎫+∞ ⎪⎝⎭高频考点一:对数的运算1.(2022·甘肃平凉·二模(文))27log 7log 8⋅=______.2.(2022·北京师大附中高一期末)13331()log 5log 1527+-=______________. 3.(2022·浙江·杭州市富阳区第二中学高一阶段练习)计算7log 237log 27lg 25lg 47log 1++++=______.4.(2022·湖南·高一课时练习)计算:(1)()23log 279⨯;(2)101log 1000;(3)7775log 30log 12log 2--.高频考点二:换底公式1.(2022·贵州遵义·高三开学考试(理))已知lg 2,lg3a b ==,则4log 75=( )A .22a b a -+B .22b a a -+C .222b a a -+D .222a b a-+ 2.(2022·安徽·安庆市教育教学研究室高一期末)已知lg 2a =,lg3b =,用a ,b 表示36log 5,则36log 5=( )A .221a b a +-B .12a a b -+C .22a a b -+D .122a a b-+ 3.(2022·山东济南·二模)已知ln 2a =,ln3b =,那么3log 2用含a 、b 的代数式表示为( ) A .-a b B .a b C .b a D .a b +4.(2022·湖南·高一课时练习)计算:53611log log 6log 325⋅⋅=________.高频考点三:对数函数的概念1.(2021·河南·洛宁县第一高级中学高一阶段练习)已知函数()f x 满足①定义域为()0,∞+;②值域为R ;③()()22f x f x =.写出一个满足上述条件的函数:()f x =___________. 2.(2021·江苏·高一专题练习)对数函数f (x )的图象过点(3,-2),则f=________.3.(2021·江苏南通·高三期中)写出满足条件“函数()y f x =在()0,∞+上单调递增,且()()()f xy f x f y =+”的一个函数()f x =___________.4.(2021·全国·高一专题练习)若函数f (x )=(a 2+a -5)log ax 是对数函数,则a =________.高频考点四:对数函数的定义域1.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)函数f (x )的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2)D .(0, 12)2.(2022·四川·模拟预测(文))函数y =___________.3.(2022·四川宜宾·高一期末)函数y =________.4.(2022·上海市控江中学高一期末)函数()2lg 1y x kx =++定义域为R ,则实数k 的取值范围为______.5.(2022·上海浦东新·高一期末)函数1ln 2x y x-=-的定义域为_____________.高频考点五:对数函数的值域①求对数函数在区间上的值域1.(2022·全国·高三专题练习)函数()222log log f x x x =+在1,24⎛⎫ ⎪⎝⎭上的值域为_______________________. 2.(2022·全国·池州市第一中学高一开学考试)已知函数()2122log log f x x x =+.(1)求()f x 在区间[]1,8上的值域;3.(2022·全国·高一课时练习)求函数2log ,[8,)y x x =∈+∞的值域.②求对数型复合函数的值域1.(2022·贵州·毕节市第一中学高一阶段练习)函数y =2+log 2(x 2+3)(x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)2.(2022·青海·大通回族土族自治县教学研究室高一期末)函数()212log 8y x =+的值域是________.3.(2022·河南焦作·高一期末)已知函数()()()log 2log 4a a f x x x =++-(a >0且a ≠1)的图象过点()1,2.(1)求a 的值及()f x 的定义域;(2)求()f x 在[]0,3上的最小值.4.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;③根据对数函数的值域求参数值或范围1.(2022·河南信阳·高一期末)已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .272.(2022·陕西咸阳·高一期末)函数()log 1a f x x =+在[1,3]上的值域为[1,3],则实数a 的值是___________.3.(2022·全国·高一阶段练习)函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.4.(2022·河南·林州一中高一开学考试)若函数()2log 5242a y a x ax =--+⎡⎤⎣⎦有最小值,则a 的取值范围为______.5.(2022·山西省长治市第二中学校高一期末)已知函数212()log (23)f x x ax =-+ .(1)当1a =-时,求函数()f x 的值域;(2)若函数()f x 的值域为R ,求实数a 取值范围.高频考点六:对数函数的图象①判断对数(型)函数的图象1.(2022·广东汕尾·高一期末)当1a >时,在同一平面直角坐标系中,1xy a ⎛⎫= ⎪⎝⎭与()log a y x =-的图象是()A .B .C .D .2.(2022·广东·华南师大附中高一阶段练习)函数3x y -=与()3log y x =-的图象可能是( ) A . B .C .D .3.(2022·浙江·高三专题练习)已知lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()x f x a =与()1log bg x x =的图象可能是( )A .B .C .D .②根据对数(型)函数的图象判断参数1.(2022·新疆巴音郭楞·高一期末)如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b2.(2022·全国·高三专题练习(文))已知2(0,1)()log ,[1,2)aax x f x x x ⎧∈=⎨∈⎩,,若()2a f x =有两解,则a 的取值范围是( ) A .10,2⎛⎫ ⎪⎝⎭ B .10,2⎛⎤ ⎥⎝⎦ C .(1,2] D .(1,2)3.(2022·湖南师大附中高一期末)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<4.(2022·黑龙江·双鸭山一中高一期末)已知310()log 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=有四个根1234,,,x x x x 且1234x x x x <<<,则1234x x x x +++的取值范围是______.③对数(型)函数图象过定点问题1.(2022·黑龙江·双鸭山一中高一开学考试)函数()log (1)3,(0,1)a f x x a a =-++>≠且的图象一定过定点__________.2.(2022·湖北·江夏一中高一阶段练习)函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f (x )的图象上,则f (3)=________.3.(2022·四川南充·高一期末)函数log (1)2(0,1)a y x a a =-+>≠的图象恒过一定点是___________.高频考点七:对数函数的单调性①对数函数(型)函数的单调性1.(2022·北京房山·高一期末)下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是( ) A .21y x =-+ B .2log y x = C .3y x = D.y =2.(2022·全国·高一课时练习)函数12()log f x x =的单调递增区间是( )A .10,2⎛⎤ ⎥⎝⎦B .(]0,1C .()0,∞+D .[)1,+∞ 3.(2022·北京·高三专题练习)函数()()212log 6f x x x =-++的单调递增区间是( )A .1,32⎛⎫ ⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.(2022·河北张家口·高一期末)函数()()22log 65f x x x =-+-的单调递减区间是( )A .(],3-∞B .(]1,3C .[)3,+∞D .[)3,55.(2022·河南新乡·高一期末)函数()217log 2223y x x =--的单调递增区间为( )A .()11,+∞B .(),11-∞C .()23,+∞D .(),1-∞-6.(2022·山西·怀仁市第一中学校高一期末)()()23log 28f x x x =--的单调递增区间为( )A .(),1-∞B .(),4-∞C .()2,-+∞D .()4,+∞②由对数函数(型)函数的单调性求参数1.(2022·陕西西安·高一期末)已知()log log 1a a b b <-,则a 的取值范围是( ) A .1a >B .01a <<C .a b >D .0a b <<2.(2022·黑龙江·双鸭山一中高一期末)已知函数()2()lg 1f x x ax =-+-在[2,3]上单调递减,则实数a 的取值范围是( ) A .[4,)+∞B .[6,)+∞C .10,43⎛⎤⎥⎝⎦D .10,43⎡⎤⎢⎥⎣⎦3.(2022·内蒙古赤峰·高一期末)已知函数()()314,1log ,1aa x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( ) A .()0,1B .10,3⎛⎫⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .1,17⎡⎤⎢⎥⎣⎦4.(2022·湖南岳阳·高一期末)已知函数()2ln 3y x ax a =-+在[2,)+∞上单调递增,则实数a 的取值范围为( ) A .()4,-+∞B .(]0,4C .[)4,+∞D .(]4,4-5.(2022·福建泉州·高一期末)若函数()ln(2)=-f x ax 在(1,)+∞单调递增,则实数a 的取值范围为( ) A .(0,)+∞B .(2,)+∞C .(0,2]D .[2,)+∞6.(2022·重庆·高一期末)已知关于x 的函数2log (2)y ax =-在[]0,1上是单调递减的函数,则a 的取值范围为( )A .()0-,∞ B .()0,+∞ C .(]0,2D .()02,7.(2022·河南南阳·高一期末)若函数()()217log 45f x x x =-++在区间()32,2m m -+上单调递增,则实数m的取值范围为( ) A .3,14⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,23⎛⎫ ⎪⎝⎭③由对数函数(型)函数的单调性解不等式1.(2022·河南濮阳·高三开学考试(文))不等式()()2ln 1ln 35x x +>+的解集为( )A .()4,+∞B .()1,4-C .()5,14,3⎛⎫--⋃+∞ ⎪⎝⎭D .()(),14,-∞-⋃+∞2.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)3.(2022·北京房山·高一期末)设函数21,2()2log (1),2xx f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()1f x >,则x 的取值范围是( )A .(0,3)B .(,0)(3,)-∞⋃+∞C .(,1)(2,)-∞-⋃+∞D .(1,2)-4.(2022·四川绵阳·一模(理))设函数()211,,21log ,,2x f x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩则满足()()21f x f x -<的x 的取值范围是( )A .13,24⎛⎤⎥⎝⎦B .3,14⎡⎫⎪⎢⎣⎭C .3,4⎛⎤-∞ ⎥⎝⎦D .1,12⎛⎫⎪⎝⎭5.(2022·江西赣州·一模(文))设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 取值范围是A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)④对数(指数)综合比较大小1.(2022·广东中山·高一期末)设2log 3a =,3log 4b =,5log 8c =,则( ) A .b a c << B .a b c << C .c b a <<D .b c a <<2.(2022·江西·南昌十五中高二阶段练习(理))设292log 3,log 5,15==a b c ,则( ) A .2a b <B .2log 180+>a cC .24+>a b cD .21316+<a a 3.(2022·福建·厦门双十中学高二阶段练习)设2ln1.01a =,ln1.02b =,0.02c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<4.(2022·江西·九江一中高二阶段练习(理))已知 1.12a =,0.64b =,ln 7c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .c b a <<5.(2022·江苏·南京市第一中学高三开学考试)已知0.2log 0.02a =,3log 30b =,ln 6c =,则( ) A .c b a <<B .b a c <<C .c a b <<D .a c b <<高频考点八:对数函数的最值①求对数(型)函数的最值1.(2021·江苏·沭阳县修远中学高一阶段练习)已知函数()21f x ax =-在区间[]0,2上的最大值为7,则()log a g x x =在区间[]1,4上的最大值为( )A .0B .1C .2D .42.(2021·天津市实验中学滨海学校高三期中(理))已知函数()420.5()log 46f x x x =-+,则( )A .()f x 有最小值,且最小值为-2B .()f x 有最小值,且最小值为-1C .()f x 有最大值,且最大值为-2D .()f x 有最大值,且最大值为-13.(2022·上海金山·高一期末)函数()12log 2y x =+,[]2,6x ∈的最大值为______. 4.(2021·山东·嘉祥县第一中学高三阶段练习)函数()()224log log 44xf x x =⋅的最小值为___________. 5.(2021·全国·高一课时练习)函数()23()log 9f x x =-的最大值是_______.②根据对数(型)函数的最值求参数1.(2022·河南平顶山·高一期末)已知函数()21log ,a f x x x a ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的最大值与最小值的差为2,则=a ( ) A .4B .3C .2D2.(2022·贵州·六盘水市第一中学模拟预测)若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是( )A .12a <<B .02,1a a <<≠C .01a <<D .2a ≥3.(2022·贵州毕节·高一期末)已知函数()22,4,log ,4,x a x f x x x ⎧-<=⎨≥⎩若()f x 存在最小值,则实数a 的取值范围是( ) A .(,4]-∞ B .[2,)-+∞ C .(,2)-∞-D .(,2]-∞-4.(2022·全国·高三专题练习)若函数2()log (1)a f x x ax =-+(01)a a >≠且没有最小值,则a 的取值范围是____________.5.(2022·甘肃省会宁县第一中学高一期末)已知函数()log a f x x =(0a >且1a ≠),()f x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为1. (1)求a 的值;(2)当函数()f x 在定义域内是增函数时,令()1122g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,判断函数()g x 的奇偶性,并证明,并求出()g x 的值域.6.(2022·河南信阳·高一期末)已知函数()log (4)a f x ax =-(0a >,且1a ≠). (1)求函数()f x 的定义域;(2)是否存在实数a ,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为1?若存在,求出a 的值;若不存在,请说明理由.7.(2022·天津河北·高一期末)已知函数()()log 1a f x x =-(0a >,且1a ≠) (1)求()2f 的值及函数()f x 的定义域;(2)若函数()f x 在[]2,9上的最大值与最小值之差为3,求实数a 的值.③对数(型)函数的最值与不等式综合应用1.(2022·湖北·武汉中学高一阶段练习)已知函数()1lg 43x x f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()1f x ≤成立,则实数m 的取值范围为 A .19,3⎡⎫-+∞⎪⎢⎣⎭B .11,4⎛⎫-∞ ⎪⎝⎭-C .1911,34⎡⎤--⎢⎥⎣⎦D .1911,34⎡⎫--⎪⎢⎣⎭2.(2022·吉林·长春市第二中学高一期末)已知函数()4412log 2log 2y x x ⎛⎫=-+ ⎪⎝⎭.(1)当[1,16]x ∈时,求该函数的值域;(2)若()4441log 2log log 2x x m x ⎛⎫++< ⎪⎝⎭,对于[4,16]x ∈恒成立,求实数m 的取值范围.3.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.4.(2022·江苏·无锡市第一中学高一期末)设函数3()log (933)x xf x k =-⋅-,其中k 为常数.(1)当2k =时,求()f x 的定义域;(2)若对任意[1,)x ∈+∞,关于x 的不等式(x)x f ≥恒成立,求实数k 的取值范围.1.(2021·湖南·高考真题)函数3()log (1)f x x =+的定义域为( ) A .(,1)-∞-B .(1,)-+∞C .[1,)-+∞D .(0,)+∞2.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 103.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<4.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<5.(2021·全国·高考真题(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5B .1.2C .0.8D .0.6一、单选题1.(2021·江苏·高一专题练习)已知136a =,b log =21.2c =,则a b c ,,的大小关系是( ) A .b c a >> B .a c b >> C .a b c >>D .b a c >>2.(2021·江苏·高一专题练习)1182112416--⎛⎫⎛⎫⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A B C .D .3.(2021·江苏·高一专题练习)已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --4.(2021·浙江·高一期中)已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .11,73⎡⎫⎪⎢⎣⎭B .1,17⎡⎫⎪⎢⎣⎭C .()0,1D .10,3⎛⎫ ⎪⎝⎭5.(2021·新疆·石河子第二中学高一阶段练习)已知()212()log f x x ax a =-+的值域为R ,且()f x 在(3,1)--上是增函数,则实数a 的取值范围是( ) A .20a ≤≤ B .102a -≤≤或4a ≥C .20a -≤≤或4a ≥D .04a ≤≤6.(2021·陕西·武功县教育局教育教学研究室高一期中)函数()()1lg 4211x x f x +=-+的最小值是( ).A .10B .1C .11D .lg117.(2021·重庆市第七中学校高一阶段练习)函数21()log 1xf x x的图象大致为( )A .B .C .D .8.(2021·江苏·高一专题练习)设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[]a b D ⊆,,使()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,,则称()f x 为“倍缩函数”.若函数()()2log 2x f x t =+(其中0t ≥)为“倍缩函数”,则t 的取值范围是( ) A .104⎛⎫ ⎪⎝⎭,B .()01,C .102⎛⎤⎥⎝⎦,D .14⎛⎫+∞ ⎪⎝⎭, 二、填空题9.(2021·河南·漯河实验高中高一阶段练习)()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________. 10.(2021·江苏·高一专题练习)已知()()2log 3(0a f x x ax a =-+>且1)a ≠,对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则a 的取值范围是__________. 11.(2021·江苏·高一专题练习)已知函数()221log 2f x ax x ⎛⎫=-+ ⎪⎝⎭在31,2⎡⎤⎢⎥⎣⎦上恒正,则实数a 的取值范围是__________.12.(2021·江苏省太湖高级中学高一阶段练习)对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“K 函数”.设()()22log 21,23,2x mx x f x x ⎧-+≥⎪=⎨-<⎪⎩为其定义域上的“K 函数”,则实数m 的取值范围是___________. 三、解答题13.(2021·江苏·高一专题练习)计算求值 (1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.14.(2021·河北省博野中学高三阶段练习)已知函数()()212log f x x mx m =--. (1)若1m =,求函数()f x 的定义域.(2)若函数()f x 的值域为R ,求实数m 的取值范围.(3)若函数()f x 在区间(1-∞,上是增函数,求实数m 的取值范围.15.(2021·江苏·高一专题练习)已知函数22()log (21),()log (21)()x xf xg x f x =+=--(1)求()g x 的定义域并判断()g x 的奇偶性; (2)求函数()g x 的值域;(3)若关于x 的方程(),[0,1]f x x m x =+∈有实根,求实数m 的取值范围16.(2021·江苏·高一专题练习)已知函数22()log (1)21=+-f x x . (1)判断函数()f x 的奇偶性,并证明;(2)对任意的()0x ∈-∞,,不等式12(21)log (2)++>-x x f m 恒成立,求实数m 的取值范围.。
数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析
第6讲 对数与对数函数 考纲展示 命题探究1 对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2 对数的性质与运算法则 (1)对数的性质几个恒等式(M ,N ,a ,b 都是正数,且a ,b ≠1)①a log a N =N ;②log a a N=N ;③log b N =log a N log ab ;④log am b n=n m log a b ;⑤log a b =1log ba ,推广log ab ·log bc ·log cd =log a d .(2)对数的运算法则(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n=n log a M (n ∈R );④log anM =1n log a M .3 对数函数的图象及性质a >10<a <1图 象续表a >10<a <1性 质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数注意点 对数的运算性质及公式成立的条件对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)等错误.1.思维辨析(1)若log 2(log 3x )=log 3(log 2y )=0,则x +y =5.( ) (2)2log 510+log 5(3)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=2.( ) (4)当x >1时,log a x >0.( ) (5)函数y =ln 1+x1-x与y =ln (1+x )-ln (1-x )的定义域相同.( )(6)若log a m <log a n ,则m <n .( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)× 2.函数y =ln (x +1)-x 2-3x +4 的定义域为( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]答案 C解析 要使函数有意义,须使⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x <1,所以函数的定义域为(-1,1).3.(1)若2a =5b =10,则1a +1b =________. (2)已知a 23 =49(a >0),则log 23 a =________.答案 (1)1 (2)3解析 (1)∵2a=5b=10,∴a =log 210,b =log 510,∴1a =lg 2,1b =lg 5,∴1a +1b =lg 2+lg 5=1.(2)因为a 23 =49(a >0),所以a =⎝ ⎛⎭⎪⎫49 32 =⎝ ⎛⎭⎪⎫233,故log 23 a =log 23⎝ ⎛⎭⎪⎫233=3.[考法综述] 考查对数运算,换底公式及对数函数的图象和性质,对数函数与幂指数函数相结合.综合考查利用单调性比较大小、解不等式等是高考热点.主要以选择题、填空题形式出现.典例 (1)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )A .3B .2C .1D .0(2)⎝ ⎛⎭⎪⎫1681 -34+log 354+log 345=________. (3)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.[解析] (1)在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 +log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=278.(3)当log 2a 与log 2(2b )有一个为负数时,log 2a ·log 2(2b )<0显然不是最大值.当log 2a 与log 2(2b )都大于零时,log 2a ·log 2(2b )≤⎣⎢⎡⎦⎥⎤log 2a +log 2(2b )22=⎣⎢⎡⎦⎥⎤log 2(2ab )22=4,当且仅当a =2b ,即a =4,b =2时“=”成立.[答案] (1)B (2)278 (3)4【解题法】 对数运算及对数函数问题解题策略(1)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12 (x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =2,c ,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由2>21=2得b 0=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,则实数a 的取值范围是( )A .(0,1)D .(10,+∞)答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,∴0<1+lg a1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a1-lg a<1,1+lg a1-lg a >0,解得-1<lg a <0,∴a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________. 答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log 23 +2-log 23 =3+13=433.函数y =log 12(x 2-2x )的单调递减区间是________.[错解][错因分析] 易出现两种错误:一是不考虑定义域,二是应用复合函数的单调性法则时出错.[正解] 由x 2-2x >0,得函数y =log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞).令u =x 2-2x ,则u 在(-∞,0)上是减函数,在(2,+∞)上是增函数,又y =log 12u 在(0,+∞)上是减函数,所以函数y =log 12(x 2-2x )在(-∞,0)上是增函数,在(2,+∞)上是减函数.故函数y =log 12(x 2-2x )的单调递减区间是(2,+∞).故填(2,+∞).[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·衡水中学模拟]已知log 7[log 3(log 2x )]=0,那么x - 12等于( )A.13B.36C.33D.24答案 D解析 由log 7[log 3(log 2x )]=0,得log 3(log 2x )=1,即log 2x =3,解得x =8,所以x - 12 =8- 12 =18=122=24.故选D.2.[2016·武邑中学仿真]lg 51000-8 23 =( ) A.235 B .-175 C .-185 D .4答案 B解析 lg 51000-8 23 =lg 5103-8 23 =lg 1035 -(23) 23 =35-4=-175.3.[2016·冀州中学猜题]已知x =log 23,y =log 4π,z ,则( ) A .x <y <z B .z <y <x C .y <z <x D .y <x <z答案 A解析 y =log 4π=log 2πlog 24=log 2π>log 23,即y >x ,z >1,所以x <y <z .故选A.4.[2016·枣强中学期中]已知函数f (x )=log 2x ,若在[1,8]上任取一个实数x 0,则不等式1≤f (x 0)≤2成立的概率是( )A.14B.13C.27D.12答案 C解析 1≤f (x 0)≤2⇒1≤log 2x 0≤2⇒2≤x 0≤4,∴所求概率为4-28-1=27.5. [2016·衡水二中仿真]已知函数g (x )是偶函数,f (x )=g (x -2),且当x ≠2时其导函数f ′(x )满足(x -2)f ′(x )>0,若1<a <3,则( )A .f (4a )<f (3)<f (log 3a )B .f (3)<f (log 3a )<f (4a )C .f (log 3a )<f (3)<f (4a )D .f (log 3a )<f (4a )<f (3) 答案 B解析 ∵(x -2)f ′(x )>0,∴x >2时,f ′(x )>0;x <2时,f ′(x )<0.∴f (x )在(2,+∞)上递增,在(-∞,2)上递减.∵g (x )是偶函数,∴g (x -2)关于x =2对称,即f (x )关于x =2对称,∵1<a <3,∴f (3)<f (log 3a )<f (4a ).故选B.6.[2016·枣强中学期末]已知函数f (x )=|log 12 x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)答案 D解析 ∵f (x )=⎪⎪⎪⎪⎪⎪log 12 x ,若m <n ,有f (m )=f (n ),∴log 12 m =-log 12n .∴mn =1.∴0<m <1,n >1.∴m +3n =m +3m 在m ∈(0,1)上单调递减.当m =1时,m +3n =4,∴m +3n >4.7.[2016·衡水二中模拟]已知函数f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]答案 D解析 令t =g (x )=x 2-ax +3a ,∵f (x )=log t 在定义域上为减函数,要使f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[2,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎨⎧--a 2≤2,g (2)>0,∴⎩⎪⎨⎪⎧a ≤4,a >-4,即-4<a ≤4,选D. 8.[2016·武邑中学预测]函数y =lg 1|x +1|的大致图象为( )答案 D解析 y =lg 1|x |是偶函数,关于y 轴对称,且在(0,+∞)上单调递减,而y =lg1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选D.9.[2016·冀州中学仿真]函数y =ax 2+bx 与y =log x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )答案 D解析 从对数的底数入手进行讨论,结合各个选项的图象从抛物线对称轴的取值范围进行判断,D 选项0<⎪⎪⎪⎪⎪⎪b a <1,0<⎪⎪⎪⎪⎪⎪b 2a <12,0<-b 2a <12或-12<-b2a <0,故选D.10. [2016·武邑中学猜题]若直角坐标平面内的两个不同点M ,N 满足条件:①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对答案 C解析 由题意,当x >0时,将f (x )=log 3x 的图象关于原点对称后可知,g (x )=-log 3(-x )(x <0)的图象与x ≤0时f (x )=-x 2-4x 的图象存在两个交点,如图所示,故“友好点对”的个数为2,故选C.11.[2016·衡水二中期末]已知a >0且a ≠1,若函数f (x )=alg (x2-2x+3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________. 答案 (2,3)解析 因为x 2-2x +3=(x -1)2+2≥2有最小值2,所以lg (x 2-2x +3)≥lg 2,所以要使函数f (x )有最大值,则函数f (x )必须单调递减,所以0<a <1.由log a (x 2-5x +7)>0得0<x 2-5x +7<1,即⎩⎪⎨⎪⎧0<x 2-5x +7,x 2-5x +7<1,解得2<x <3,即原不等式的解集为(2,3). 12.[2016·冀州中学预测]已知函数f (x )=log 12 (x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围. 解 (1)由题意可知,x 2-2ax +3=0的两根为x 1=1, x 2=3,∴x 1+x 2=2a ,∴a =2.(2)因为函数f (x )的值域为(-∞,-1],则f (x )max =-1, 所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2,得3-a 2=2, 所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,有y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2.所以实数a 的取值范围是[1,2).能力组13.[2016·枣强中学模拟]设a =log 32,b =ln 2,c =5- 12 ,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案 C解析 ∵12<log 32=ln 2ln 3<ln 2,而c =5- 12 =15<12,∴c <a <b . 14. [2016·衡水二中期中]已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.15.[2016·衡水中学热身]已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫1,83 解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1,解之得1<a <83,若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,所以a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎪⎫1,83. 16.[2016·武邑中学月考]已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图知,要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f (x )|≤1,只需|f (13)|≤1, 即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a .当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞).。
高三数学复习(理):第6讲 对数与对数函数
第6讲对数与对数函数[学生用书P30]1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log aN=N(a>0,且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x>1时,y>0当0<x<1时,y<0当x>1时,y<0 当0<x<1时,y>0在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x 对称.常用结论1.换底公式的三个重要结论(1)log a b=1log b a;(2)log a m b n=nm log a b;(3)log a b·log b c·log c d=log a d.2.对数函数的图象与底数大小的关系如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内与y=1相交的对数函数从左到右底数逐渐增大.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)log a(MN)=log a M+log a N.()(2)log a x·log a y=log a(x+y).()(3)函数y=log2x及y=log133x都是对数函数.()(4)对数函数y=log a x(a>0且a≠1)在(0,+∞)上是增函数.()(5)函数y =ln1+x1-x与y =ln(1+x )-ln(1-x )的定义域相同.( ) (6)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只经过第一、四象限.( ) 答案:(1)× (2)× (3)× (4)× (5)√ (6)√ 二、易错纠偏常见误区|K(1)对数函数图象的特征不熟致误; (2)忽视对底数的讨论致误; (3)忽视对数函数的定义域致误.1.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是________.(填序号)解析:函数y =log a (-x )的图象与y =log a x 的图象关于y 轴对称,符合条件的只有②.答案:②2.函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或12.答案:2或123.函数y =log 23(2x -1)的定义域是________. 解析:由log 23(2x -1)≥0,得0<2x -1≤1.所以12<x ≤1.所以函数y =log 23(2x -1)的定义域是⎝ ⎛⎦⎥⎤12,1.答案:⎝ ⎛⎦⎥⎤12,1[学生用书P31]对数式的化简与求值(自主练透) 1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B .19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a=3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log 34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log 34=log 39log 34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log 34=log 39log 34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B.2.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1 B . 10.1 C. lg 10.1D. 10-10.1解析:选A.根据题意,设太阳的星等与亮度分别为m 1与E 1,天狼星的星等与亮度分别为m 2与E 2,则由已知条件可知m 1=-26.7,m 2=-1.45,根据两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,把m 1与m 2的值分别代入上式得,-1.45-(-26.7)=52lg E 1E 2,得lg E 1E 2=10.1,所以E 1E 2=1010.1,故选A.3.计算(lg 2)2+lg 2·lg 50+lg 25的结果为________.解析:原式=lg 2(lg 2+lg 50)+lg 25=2lg 2+lg 25=lg 4+lg 25=2. 答案:24.已知2x =3,log 483=y ,则x +2y 的值为________.解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:35.设2a =5b =m ,且1a +1b =2,则m =________. 解析:由2a =5b =m 得a =log 2m ,b =log 5m , 所以1a +1b =log m 2+log m 5=log m 10. 因为1a +1b =2,所以log m 10=2. 所以m 2=10,所以m =10.答案:106.已知log 23=a ,3b =7,则log 37221的值为________.解析:由题意3b =7,所以log 37=b . 所以log 37221=log6384=log 284log 263=log 2(22×3×7)log 2(32×7)=2+log 23+log 23·log 372log 23+log 23·log 37=2+a +ab2a +ab .答案:2+a +ab2a +ab对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数函数的图象及应用(典例迁移)(1)已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b满足的关系是( )A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<1(2)方程4x =log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为________.【解析】 (1)由函数图象可知,f (x )为单调递增函数,故a >1.函数图象与y轴的交点坐标为(0,log a b ),由函数图象可知-1<log a b <0,解得1a <b <1.综上有0<1a <b <1.(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 和函数g (x )=log a x 在⎝ ⎛⎦⎥⎤0,12上有交点,由图象知⎩⎪⎨⎪⎧0<a <1,log a 12≤2,解得0<a ≤22.【答案】 (1)A (2)⎝⎛⎦⎥⎤0,22【迁移探究】 (变条件)在本例(2)中,若4x <log a x 在⎝ ⎛⎦⎥⎤0,12上恒成立,则实数a 的取值范围是________.解析:当0<x ≤12时,令f (x )=4x ,g (x )=log a x ,则函数f (x )=4x 的图象在函数y =log a x 图象的下方,又当x =12时,412=2,即函数y =4x 的图象过点⎝ ⎛⎭⎪⎫12,2,把点⎝ ⎛⎭⎪⎫12,2代入g (x )=log a x ,得a =22.若函数f (x )=4x 的图象在函数g (x )=log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝ ⎛⎭⎪⎫22,1.答案:⎝ ⎛⎭⎪⎫22,1对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.函数f (x )=lg(|x |-1)的大致图象是( )解析:选B.由函数f (x )的值域为R ,可以排除C ,D ,当x >1时,f (x )=lg(x -1)在(1,+∞)上单调递增,排除A ,选B.2.若不等式x 2-log a x <0对x ∈⎝ ⎛⎭⎪⎫0,12恒成立,则实数a 的取值范围是________.解析:只需f 1(x )=x 2在⎝ ⎛⎭⎪⎫0,12上的图象恒在f 2(x )=log a x 图象的下方即可.当a >1时,显然不成立; 当0<a <1时,如图所示,要使x 2<log a x 在x ∈⎝ ⎛⎭⎪⎫0,12上恒成立,只需f 1⎝ ⎛⎭⎪⎫12≤f 2⎝ ⎛⎭⎪⎫12,所以有⎝ ⎛⎭⎪⎫122≤log a 12,解得a ≥116,所以116≤a <1.即实数a 的取值范围是⎣⎢⎡⎭⎪⎫116,1.答案:⎣⎢⎡⎭⎪⎫116,1对数函数的性质及应用(多维探究) 角度一 解对数方程、不等式(1)方程log 2(x -1)=2-log 2(x +1)的解为________.(2)设f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,则方程f (a )=f (-a )的解集为________.【解析】 (1)原方程变形为log 2(x -1)+log 2(x +1)=log 2(x 2-1)=2,即x 2-1=4,解得x =±5,又x >1,所以x = 5.(2)当a >0时,由f (a )=log 2a =log 12⎝ ⎛⎭⎪⎫1a =f (-a )=log 12a ,得a =1;当a <0时,由f (a )=log 12(-a )=log 2⎝ ⎛⎭⎪⎫-1a =f (-a )=log 2(-a ),得a =-1.所以方程f (a )=f (-a )的解集为{1,-1}. 【答案】 (1)x =5 (2){1,-1}【迁移探究】 (变问法)本例(2)中,f (a )>f (-a )的解集为________. 解析:由题意,得⎩⎪⎨⎪⎧a >0,log 2a >log 12a或⎩⎨⎧a <0,log 12(-a )>log 2(-a ), 解得a >1或-1<a <0. 答案:(-1,0)∪(1,+∞)对于形如log a f (x )>b 的不等式,一般转化为log a f (x )>log a a b ,再根据底数的范围转化为f (x )>a b 或0<f (x )<a b .而对于形如log a f (x )>log b g (x )的不等式,一般要转化为同底的不等式来解.角度二 对数函数性质的综合应用已知函数f (x )=log a (3-ax ).(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.【解】 (1)因为a >0且a ≠1,设t (x )=3-ax , 则t (x )=3-ax 为减函数,x ∈[0,2]时,t (x )的最小值为3-2a , 当x ∈[0,2]时,f (x )恒有意义, 即x ∈[0,2]时,3-ax >0恒成立. 所以3-2a >0.所以a <32.又a >0且a ≠1,所以a ∈(0,1)∪⎝ ⎛⎭⎪⎫1,32.(2)t (x )=3-ax ,因为a >0, 所以函数t (x )为减函数.因为f (x )在区间[1,2]上为减函数, 所以y =log a t 为增函数,所以a >1,当x ∈[1,2]时,t (x )最小值为3-2a ,f (x )最大值为f (1)=log a (3-a ),所以⎩⎪⎨⎪⎧3-2a >0,log a (3-a )=1,即⎩⎪⎨⎪⎧a <32,a =32.故不存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:选A.令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上单调递减,则有⎩⎪⎨⎪⎧g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[)1,2.2.已知函数f (x )=log 12(x 2-2ax +3).(1)若f (-1)=-3,求f (x )的单调区间;(2)是否存在实数a ,使f (x )在(-∞,2)上为增函数?若存在,求出a 的范围;若不存在,说明理由.解:(1)由f (-1)=-3,得log 12(4+2a )=-3.所以4+2a =8,所以a =2. 则f (x )=log 12(x 2-4x +3),由x 2-4x +3>0,得x >3或x <1.故函数f (x )的定义域为(-∞,1)∪(3,+∞).令μ=x 2-4x +3,则μ在(-∞,1)上单调递减,在(3,+∞)上单调递增. 又y =log 12μ在(0,+∞)上单调递减,所以f (x )的单调递增区间是(-∞,1),单调递减区间是(3,+∞). (2)令g (x )=x 2-2ax +3,要使f (x )在(-∞,2)上为增函数,应使g (x )在(-∞,2)上单调递减,且恒大于0.因此⎩⎪⎨⎪⎧a ≥2,g (2)≥0,即⎩⎪⎨⎪⎧a ≥2,7-4a ≥0,a 无解.所以不存在实数a ,使f (x )在(-∞,2)上为增函数.比较指数式、对数式的大小(师生共研)(1)(2021·广州调研)已知a =⎝ ⎛⎭⎪⎫1213,b =log 23,c =log 46,则a ,b ,c 的大小关系为( )A .a >c >bB .a <b =cC .a >b >cD .a <c <b(2)(2020·高考全国卷Ⅲ)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b【解析】 (1)a =⎝ ⎛⎭⎪⎫1213<⎝ ⎛⎭⎪⎫120=1,b =log 23>log 22=1,c =log 46>log 44=1,所以a 为三者中的最小值.由于 c =log 46=12log 26=log 26<log 23=b ,所以a <c <b .故选D.(2)因为45=log 8845,b =log 85,(845)5=84>55,所以845>5,所以45=log 8845>log 85=b ,即b <45.因为45=log 131345,c =log 138,(1345)5=134<85,所以1345<8,所以45=log 131345<log 138=c ,即c >45.又2 187=37<55=3 125,所以lg 37<lg 55,所以7lg 3<5lg 5,所以lg 3lg 5<57,所以a =lg 3lg 5<57<45,而85<57,所以5lg 8<7lg 5,所以lg 5lg 8>57,所以b =lg 5lg 8>57,所以c >b >a .【答案】 (1)D (2)A(1)比较指数式和对数式的大小,可以利用函数的单调性,引入中间量;有时也可用数形结合的方法.(2)解题时要根据实际情况来构造相应的函数,利用函数单调性进行比较,如果指数相同,而底数不同则构造幂函数,若底数相同而指数不同则构造指数函数,若引入中间量,一般选0或1.1.(2020·六校联盟第二次联考)设a =log 30.4,b =log 23,则( ) A .ab >b 且a +b >0 B .ab <0且a +b >0 C .ab >0且a +b <0D .ab <0且a +b <0解析:选 B.因为-1=log 313<log 30.4<log 31=0,所以a ∈(-1,0),b =log 23>log 22=1,所以ab <0,a +b >0,选B.2.(2020·全国统一考试(模拟卷))若a >b >c >1且ac <b 2,则( ) A .log a b >log b c >log c a B .log c b >log b a >log a c C .log b c >log a b >log c aD .log b a >log c b >log a c解析:选B.因为a >b >c >1,所以log a b <log a a =1,log b c <log b b =1,log c a >log c c=1,排除选项A ,C ;log a b -log b c =lg b lg a -lg c lg b =(lg b )2-lg a lg clg a lg b,因为lg a lgc <⎝ ⎛⎭⎪⎫lg a +lg c 22=⎝ ⎛⎭⎪⎫lg ac 22<⎝ ⎛⎭⎪⎫lg b 222=(lg b )2,所以(lg b )2-lg a lg c lg a lg b >0,所以log a b >log b c ,所以log c b >log b a ,排除选项D.所以选B.3.已知函数f (x )=|x |,且a =f ⎝ ⎛⎭⎪⎫ln 32 ,b =f (log 213),c =f (2-1),则a ,b ,c的大小关系为( )A .a <c <bB .b <c <aC .c <a <bD .b <a <c解析:选A.ln 32<ln e =12,log 23>12, 所以log 23>12>ln 32.又f (x )是偶函数,在(0,+∞)上为增函数, 所以f ⎝ ⎛⎭⎪⎫ln 32<f ⎝ ⎛⎭⎪⎫12<f (log 23)=f ⎝ ⎛⎭⎪⎫log 213,所以a <c <b .[学生用书P33]思想方法系列5 数形结合法在对数函数问题中的应用 设方程10x =|lg(-x )|的两个根分别为x 1,x 2,则( ) A .x 1x 2<0 B .x 1x 2=0 C .x 1x 2>1D .0<x 1x 2<1【解析】 作出y =10x 与y =|lg(-x )|的大致图象,如图. 显然x 1<0,x 2<0.不妨令x 1<x 2, 则x 1<-1<x 2<0,所以10 x 1=lg(-x 1),10 x 2=-lg(-x 2), 此时10x 1<10 x 2,即lg(-x 1)<-lg(-x 2), 由此得lg(x 1x 2)<0,所以0<x 1x 2<1,故选D. 【答案】 D一些对数型函数、方程、不等式问题的求解,需转化为相应函数图象问题,利用数形结合法求解.设实数a ,b 是关于x 的方程|lg x |=c 的两个不同实数根,且a <b <10,则abc 的取值范围是________.解析:由题意知,在(0,10)上,函数y =|lg x |的图象和直线y =c 有两个不同交点,所以ab =1,0<c <lg 10=1,所以abc 的取值范围是(0,1).答案:(0,1)[学生用书P283(单独成册)][A 级 基础练]1.函数y =log 3(2x -1)+1的定义域是( ) A .[1,2] B .[1,2) C.⎣⎢⎡⎭⎪⎫23,+∞ D.⎝ ⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log 3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log 3(2x -1)≥log 313,x >12,解得x ≥23.2.(2020·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.3.函数y =ln 1|2x -3|的图象为( )解析:选A.易知2x -3≠0,即x ≠32,排除C ,D. 当x >32时,函数为减函数; 当x <32时,函数为增函数,所以选A. 4.若0<a <1,则不等式1log a x >1的解是( )A .x >aB .a <x <1C .x >1D .0<x <a解析:选B.由题意知0<log a x <1,又0<a <1,所以a <x <1.5.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是 ( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以1<a <2.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.6.已知函数f (x )=x 3+a log 3x ,若f (2)=6,则f ⎝ ⎛⎭⎪⎫12=________.解析:由f (2)=8+a log 32=6,解得a =-2log 32,所以f ⎝ ⎛⎭⎪⎫12=18+a log 312=18-a log 32=18+2log 32×log 32=178.答案:1787.已知2x =72y=A ,且1x +1y =2,则A 的值是________.解析:由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2. 答案:7 28.已知函数f (x )=|log 3 x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n=2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm =9.答案:99.设f (x )=log a (1+x )+log a (3-x )(a >0,且a ≠1),且f (1)=2.(1)求a 的值及f (x )的定义域; (2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,且a ≠1),所以a =2. 由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3, 所以函数f (x )的定义域为(-1,3). (2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数; 当x ∈(1,3)时,f (x )是减函数,故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2. 10.已知函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2). (1)求a 的值;(2)若g (x )=f (1-x )+f (1+x ),求g (x )的解析式及定义域; (3)在(2)的条件下,求g (x )的单调减区间.解:(1)函数f (x )=log a x (a >0且a ≠1)的图象过点(4,2), 可得log a 4=2,解得a =2.(2)g (x )=f (1-x )+f (1+x )=log 2(1-x )+log 2(1+x )=log 2(1-x 2), 由1-x >0且1+x >0,解得-1<x <1, 可得g (x )的定义域为(-1,1). (3)g (x )=log 2(1-x 2),由t =1-x 2在(-1,0)上单调递增,(0,1)上单调递减, 且y =log 2t 在(0,+∞)上单调递增, 可得函数g (x )的单调减区间为(0,1).[B 级 综合练]11.(2020·高考全国卷Ⅰ)若2a +log 2a =4b +2log 4b ,则( ) A .a >2b B .a <2b C .a >b 2D .a <b 2解析:选B.方法一:令f (x )=2x +log 2x ,因为y =2x 在(0,+∞)上单调递增,y =log 2x 在(0,+∞)上单调递增,所以f (x )=2x +log 2x 在(0,+∞)上单调递增.又2a +log 2a =4b +2log 4b =22b +log 2b <22b +log 2(2b ),所以f (a )<f (2b ),所以a <2b .故选B.方法二:(取特值法)由2a +log 2a =4b +2log 4b =4b +log 2b ,取b =1,得2a +log 2a =4,令f (x )=2x +log 2x -4,则f (x )在(0,+∞)上单调递增,且f (1)<0,f (2)>0,所以f (1)f (2)<0,f (x )=2x +log 2x -4在(0,+∞)上存在唯一的零点,所以1<a <2,故a >2b =2,a <b 2都不成立,排除A ,D ;取b =2,得2a +log 2a =17,令g (x )=2x +log 2x -17,则g (x )在(0,+∞)上单调递增,且g (3)<0,g (4)>0,所以g (3)g (4)<0,g (x )=2x +log 2x -17在(0,+∞)上存在唯一的零点,所以3<a <4,故a >b 2=4不成立,排除C.故选B.12.已知x 1=log 132,x 2=2-12,x 3满足⎝ ⎛⎭⎪⎫13x 3=log 3x 3,则( )A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 1<x 2解析:选A.由题意可知x 3是函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3x 的图象交点的横坐标,在同一直角坐标系中画出函数y 1=⎝ ⎛⎭⎪⎫13x与y 2=log 3 x 的图象,如图所示,由图象可知x 3>1,而x 1=log 132<0,0<x 2=2-12<1,所以x 3>x 2>x 1.故选A.13.设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为13,则实数a 的值为________.解析:作出y =|log a x |(0<a <1)的大致图象如图所示,令|log a x |=1.得x =a 或x =1a ,又1-a -⎝ ⎛⎭⎪⎫1a -1=1-a -1-a a =(1-a )(a -1)a <0,故1-a <1a -1,所以n -m 的最小值为1-a =13,a =23.答案:2314.已知函数f (x )=log a (2x -a )在区间⎣⎢⎡⎦⎥⎤12,23上恒有f (x )>0,则实数a 的取值范围是________.解析:当0<a <1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是减函数,所以log a (43-a )>0,即0<43-a <1.解得13<a <43,故13<a <1;当a >1时,函数f (x )在区间⎣⎢⎡⎦⎥⎤12,23上是增函数,所以log a (1-a )>0,即1-a >1, 解得a <0,此时无解.综上所述,实数a 的取值范围是⎝ ⎛⎭⎪⎫13,1.答案:⎝ ⎛⎭⎪⎫13,115.已知函数f (x )=lgx -1x +1.(1)计算:f (2 020)+f (-2 020);(2)对于x ∈[2,6],f (x )<lg m (x +1)(7-x )恒成立,求实数m 的取值范围. 解:(1)由x -1x +1>0,得x >1或x <-1.所以函数f (x )的定义域为{x |x >1或x <-1}.又f (x )+f (-x )=lg ⎝ ⎛⎭⎪⎪⎫x -11+x ·-x -11-x =0,所以f (x )为奇函数. 所以f (2 020)+f (-2 020)=0.(2)当x ∈[2,6]时,f (x )<lg m (x +1)(7-x )恒成立可化为x -11+x<m (x +1)(7-x )恒成立, 即m >(x -1)(7-x )在[2,6]上恒成立.又当x ∈[2,6]时,(x -1)(7-x )=-x 2+8x -7=-(x -4)2+9.所以当x =4时,[(x -1)(7-x )]max =9,所以m >9.即实数m 的取值范围是(9,+∞).[C 级 提升练]16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称,而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=k x (k ≠0)是“自反函数”.“自反函数”f(x)=kx(k≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k>0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为减函数;当k<0时,f(x)=kx(k≠0)在区间(-∞,0),(0,+∞)上为增函数;f(x)=kx(k≠0)是奇函数,但不是周期函数.。
2024届新高考一轮复习北师大版 第三章 第六节 对数与对数函数 课件(42张)
.
(2)对数函数y=logax(a>0,且a≠1)的图象与性质
图象和性质
图象
a>1
0<a<1
图象和
a>1
性质
(1)定义域:(0,+∞)
(2)值域:R
性质
(3)过定点(1,0),即当x=1时,y=0
(4)当x>1时,y>0;当0<x<1时,y<0
(5)在定义域(0,+∞)上是增函数
当x值趋近于正无穷大时,函数值
②自然对数:当对数的底数a=
记为 ln N .
e 时,通常称之为自然对数,并把logeN简
2.对数的性质
(1)负数和0没有对数;
(2)loga1= 0
,loga a= 1
;
(3)对数恒等式: lo g =N (a>0,a≠1,N>0).
3.对数的运算性质
(1)若 a>0,且 a≠1,M>0,N>0,b∈R,那么:①loga(M·N)= logaM+logaN ;
2.若a>0,a≠1,b>0,b≠1,c>0,则logab·logbc=logac.(
)
3.若函数 g(x)的最大值为 m,则函数 f(x)=log 1 g(x)的最大值是 log 1 m.
2
4.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上单调递增.(
2
)
( × )
题组二 双基自测
2
能量为E1,门源县地震所释放的能量为E2, 则 的近似值为(
1
A.15
B.20
C.32
2022版新高考数学人教A版一轮课件:第三章 第六节 对数、对数函数
12 可知(b-a)min=1-3 =3 .
2 答案:3
考点突破·典例探究
对数式的化简与求值
【典例 1】(1)已知函数 f(x)=2x,x≥4, f(x+1),x<4,
则 f(2+log23)的值为(
)
A.24 B.16 C.12 D.8
(2)(2021·通州区模拟)某同学在数学探究活动中确定研究主题是“an(a>1,n∈N*) 是几位数”,他以 2n(n∈N*)为例做研究,得出相应的结论,其研究过程及部分研 究数据如表: 试用该同学的研究结论判断 450 是几位数 (参考数据 lg 2≈0.301 0)( ) A.101 B.50 C.31 D.30
【微思考】
(1)试利用换底公式分析logab与logba(其中a>0且a≠1,b>0且b≠1)的关 系.
(2)试利用换底公式化简logambn(其中a>0且a≠1,b>0且b≠1,m,n∈R,
m≠0).
提示:(1)
logab=lloogg
b=b
ba
Hale Waihona Puke .1log b a
(2)
logambn=llooggaaabmn=
【解析】当 x=2 时,函数 y=loga(x-1)+2(a>0,且 a≠1)的值为 2, 所以图象恒过定点(2,2). 答案:(2,2)
3 4.若 loga4 <1(a>0 且 a≠1),则实数 a 的取值范围是________.
3
3
【解析】当 0<a<1 时,loga4 <logaa=1,所以 0<a<4 ;
3
lg 25 lg (2 2) lg 9 lg 52 lg2 2 lg 32
= lg 2 · lg 3
全国近年高考数学一轮复习第2章函数、导数及其应用第6讲对数与对数函数学案(2021-2022学年)
第6讲对数与对数函数板块一知识梳理·自主学习[必备知识]考点1 对数的定义如果a x=N(a〉0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.考点2 对数的运算法则如果a>0且a≠1,M>0,N>0,那么(1)loga(M·N)=log a M+logaN,(2)log a错误!未定义书签。
=log a M-loga N,(3)log a M n=n logaM(n∈R).考点3对数函数的图象与性质(0,+∞)考点4 反函数指数函数y =ax(a >0且a ≠1)与对数函数y =l oga x (a >0且a≠1)互为反函数,它们的图象关于直线y =x 对称.[必会结论]1.对数的性质(a >0且a≠1) (1)lo ga 1=0;(2)log a a =1;(3)a log aN=N .2.换底公式及其推论(1)log ab =错误!未定义书签。
(a ,c 均大于0且不等于1,b>0); (2)log a b ·log ba=1,即log a b =错误!; (3)lo gam bn=错误!未定义书签。
l oga b ; (4)log a b ·log b c ·l ogc d =lo ga d. 3.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c <d <1<a <b .由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.[考点自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)若MN 〉0,则log a (MN )=log aM+log a N .( ) (2)log ax·log ay=l og a (x+y).( )ﻬ(3)对数函数y=lo gax(a >0且a ≠1)在(0,+∞)上是增函数.( )(4)函数y=ln 错误!与y =ln (1+x )-ln (1-x)的定义域相同.( )(5)对数函数y=lo ga x (a >0且a ≠1)的图象过定点(1,0)且过点(a ,1),错误!未定义书签。
第6讲 对数与对数函数 课件(共82张PPT)
解析 由 alog34=2 可得 log34a=2,所以 4a=9,所以 4-a=19,故选 B.
解析 答案
2.已知 a>0,a≠1,函数 y=ax 与 y=loga(-x)的图象可能是( )
解析 若 a>1,则 y=ax 是增函数,y=loga(-x)是减函数;若 0<a<1, 则 y=ax 是减函数,y=loga(-x)是增函数,故选 B.
且 a≠1)互为反函数,它们的图象关于直线 10 ___y_=__x___对称.
1.对数的性质(a>0 且 a≠1) (1)loga1=0;(2)logaa=1;(3)alogaN=N. 2.换底公式及其推论 (1)logab=llooggccba(a,c 均大于 0 且不等于 1,b>0); (2)logab·logba=1,即 logab=log1ba(a,b 均大于 0 且不等于 1); (3)logambn=mn logab; (4)logab·logbc·logcd=logad.
增区间.
∵当 x∈(4,+∞)时,函数 t=x2-2x-8 为增函数,
∴函数 f(x)的单调递增区间为(4,+∞).故选 D.
解析 答案
6.计算:log23×log34+( 3)log34=________. 答案 4 解析 log23×log34+( 3)log34 =llgg 32×2llgg32+3 log34=2+3log32=2+2=4.
8 5
<lg152·lg
3+lg 2
82=
lg
3+lg 2lg 5
82=llgg
22452<1,∴a<b.由
b=log85,得
8b=5,由
55<84,得
85b
<84,∴5b<4,可得 b<45.由 c=log138,得 13c=8,由 134<85,得 134<135c,
高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A版
高考数学一轮复习第二章函数导数及其应用第六节对数与对数函数学案文含解析新人教A 版第六节 对数对数函数2019考纲考题考情1.对数的概念 (1)对数的定义如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数。
(2)几种常见对数(1)对数的性质 ①alog aN=N (a >0且a ≠1,N >0)。
②log a a N=N (a >0,且a ≠1)。
(2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零,且不等于1,N >0)。
②log a b =1log b a,推广log a b ·log b c ·log c d =log a d 。
(3)对数的运算法则如果a >0,且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N 。
②log a M N=log a M -log a N 。
③log a M n=n log a M (n ∈R )。
④log am M n =n mlog a M (m ,n ∈R )。
3.对数函数的图象与性质4.y =a x与y =log a x (a >0,a ≠1)的关系指数函数y =a x与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称。
1.指数与对数的等价关系:a x=N ⇔x =log a N 。
2.换底公式的三个重要结论 (1)log a b =1log b a; (2)log am b n=n mlog a b ;(3)log a b ·log b c ·log c d =log a d 。
3.对数函数的图象与底数大小的比较如图,作直线y =1,则该直线与四个函数图象交点的横坐标为相应的底数。
高考数学专题复习 对数及对数函数(原卷版+解析版)
第六讲 对数及对数函数【套路秘籍】一.对数的概念 (1)对数的定义①一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b=N ,那么称b 是以a 为底N 的对数,记作b =log a N ,其中,a 叫做对数的底数,N 叫做真数.②底数的对数是1,即log a a =1,1的对数是0,即log a 1=0. (2)几种常见对数4.对数的性质与运算法则 (1)对数的性质 ①log a Na=N (a >0且a ≠1,N >0);②log a a N=N (a >0且a ≠1). (2)对数的重要公式①换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1,N >0);②log a b =1log b a (a ,b 均大于零且不等于1).(3)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a M N=log a M -log a N ; ③log a M n=n log a M (n ∈R ); ④log m na M =n mlog a M . 二.对数函数的定义1.形如y =log a x (a >0,a ≠1)的函数叫作对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质3.反函数指数函数y =a x(a >0且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数,它们的图象关于直线y =x 对称.【套路修炼】考向一 对数的运算【例1】(1)lg 22·lg 250+lg 25·lg 40=. (2)若3a=5b=225,则1a +1b = 。
(4)若log a 2=m ,log a 5=n ,则a 3m+n =( 。
【举一反三】1.已知a =log 32,那么log 38-2log 36用a 表示为. 2.若3x =4y=36,则2x +1y=.3. 设2a =5b=m ,且1a +1b=2,则m =.4.计算:(1-log 63)2+log 62·log 618log 64=.5.已知均不为1的正数a ,b ,c 满足a x =b y =c z,且1x +1y +1z=0,求abc 的值.6.设log a C ,log b C 是方程x 2-3x +1=0的两根,求log a bC 的值.7.方程33x -56=3x -1的实数解为.考向二 对数函数的判断【例2】函数f(x)=(a 2+a −5)log a x 为对数函数,则f(18)等于( ) A .3 B .−3 C .−log 36 D .−log 38【举一反三】1.下列函数是对数函数的是( )A .y =log 3(x +1)B .y =log a (2x)(a >0,a ≠1)C .y =lnxD .y =log a x 2(a >0,a ≠1) 2.下列函数,是对数函数的是 A .y=lg10xB .y=log 3x2C .y=lnxD .y=log13(x –1)3.在M=log (x –3)(x+1)中,要使式子有意义,x 的取值范围为A .(–∞,3]B .(3,4)∪(4,+∞)C .(4,+∞)D .(3,4)考向三 对数的单调性【例3】(1)函数f(x)=lg(6x −x 2)的单调递减区间为 。
函数及其性质:第6讲对数函数
对数函数对数的运算 【知识简介】对数的运算在高考中单独出现的频率不高,通过对数运算,可以降低运算级别,把积、商、幂转化成和、差、倍运算,常与等差数列、等比数列结合考查,难度不大. 【典例】 1(1)(2013·四川文,11)lg 5+lg 20的值是________. (2)(2014·安徽文,11)⎝⎛⎭⎫1681-34+log 354+log 345=________. 【解析】 (1)lg 5+lg 20=lg 100=lg 10=1. (2)原式=⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫234-34+log 3⎝⎛⎭⎫54×45=⎝⎛⎭⎫23-3+log 31=278. 【答案】 (1)1 (2)278(2013·陕西文,3)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a (bc )=log a b ·log a c D .log a (b +c )=log a b +log a cB 由对数换底公式可知A 错误.log a b ·log c a =log a b ·1log a c =log a b log a c =log c b ,故B 正确.因为log a (bc )=log a b+log a c ,所以C ,D 均错误,故选B.,对数运算的一般思路(1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算. 对数函数 【知识简介】对数函数的图象与性质是每年高考的必考内容之一,主要考查比较对数值的大小,解简单的对数不等式,有时考查判断对数型函数的单调性、奇偶性及最值问题.多以选择题或填空题的形式考查,难度低、中、高档都有.【典例】2(1)(2013·湖南,5)函数f(x)=2ln x的图象与函数g(x)=x2-4x+5的图象的交点个数为() A.3B.2C.1D.0(2)(2014·山东文,6)已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1 B.a>1,0<c<1C.0<a<1,c>1 D.0<a<1,0<c<1【解析】(1)在同一直角坐标系下画出函数f(x)=2ln x与函数g(x)=x2-4x+5=说(x-2)2+1的图象,如图所示.【答案】(1)B(2)D(2015·山东威海一模,13)已知a>0且a≠1,若函数f(x)=log a(ax2-x)在[3,4]上是增函数,则a的取值范围是________.【答案】 (1,+∞),对数值大小比较的主要方法 (1)化同底数后利用函数的单调性; (2)化同真数后利用图象比较;(3)借用中间量(0或1等)进行估值比较.与对数函数有关的复合函数问题的求解策略利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题,首先要确定函数的定义域,所有问题必须在定义域内讨论;其次分析底数与1的大小关系,底数大于1与底数小于1的两个函数的性质截然不同;最后考虑复合函数的构成,分析它是由哪些基本初等函数复合而成的. 综合应用 【知识简介】综合考查指数、对数运算,及指数函数、对数函数的单调性、图象等,高考中常以选择题、填空题形式出现,难度中等.【典例】 3(1)(2014·辽宁,3)已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a(2)(2015·四川,8)设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件 B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件(3)(2013·课标Ⅰ,11)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0,若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]【解析】 (1)由于0<2-13<20,所以0<a <1;由于log 213<log 21=0,所以b <0;由于log 1213>log 1212=1,所以c >1.综上,c >a >b .(2)由3a >3b >31,得a >b >1,∴log 3a >log 3b >0. 由换底公式得,1log a 3>1log b 3>0,即log a 3<log b 3. 而由log a 3<log b 3不能推出a >b >1,例如,当a <1,b >1时,满足log a 3<log b 3,但此时3b >3>3a . 故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.【答案】 (1)C (2)B (3)D 【名师点睛】题(3)恒成立问题首先想到分离参数,所以当x ≤0时,把x 2-2x ≥ax 化为x [(x -2)-a ]≥0,得到(x -2)-a ≤0,就达到了参变分离的效果;当x >0时,采用画图,通过数形结合就可以看出a 的范围. (2012·课标全国文,11)当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.⎝⎛⎭⎫0,22 B.⎝⎛⎭⎫22,1 C .(1,2) D .(2,2) B 方法一:由题意得,当0<a <1时,要使得4x <log a x ⎝⎛⎭⎫0<x ≤12,即当0<x ≤12时,函数y =4x 的图象在函数y =log a x 图象的下方.又当x =12时,412=2,即函数y =4x 的图象过点⎝⎛⎭⎫12,2,把点⎝⎛⎭⎫12,2代入函数y =log a x ,得a =22,若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去. 所以实数a 的取值范围是⎝⎛⎭⎫22,1.解决不等式有解或恒成立问题的方法对于较复杂的不等式有解或恒成立问题,可借助函数图象解决,具体做法为: (1)对不等式变形,使不等号两边对应两函数f (x ),g (x ); (2)在同一坐标系下作出两函数y =f (x )及y =g (x )的图象;(3)比较当x 在某一范围内取值时图象的上下位置及交点的个数来确定参数的取值或解的情况.利用对数函数的图象可求解的两类问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解. 【针对训练】1.(2015·山东日照质检,3)2lg 2-lg 125的值为( )A .1B .2C .3D .41.B 2lg 2-lg 125=lg 4+lg 25=lg 100=2.2.(2016·河北石家庄二模,3)已知a =312,b =log 1312,c =log 213,则( )A .a >b >cB .b >c >aC .c >b >aD .b >a >c2.A 因为a =3>1,0<b =log 1312=log 32<1,c =log 213=-log 23<0,故a >b >c ,故选A.3.(2016·山东烟台一模,5)已知函数f (x )=a x -2,g (x )=log a |x |(其中a >0且a ≠1),若f (4)g (-4)<0,则f (x ),g (x )在同一坐标系内的大致图象是()3.B ∵f (4)=a 4-2=a 2>0,又f (4)g (-4)<0,∴g (-4)=log a |-4|=log a 4<0,∴0<a <1,∴f (x )在R 上单调递减,过点(2,1),g (x )为偶函数,其图象在(0,+∞)上单调递减,故选B.4.(2016·山西太原五中质检,9)若函数f (x )=log a (x 3-ax )(a >0且a ≠1)在区间⎝⎛⎭⎫-12,0内单调递增,则 a 的取值范围是( ) A.⎣⎡⎭⎫14,1 B.⎣⎡⎭⎫34,1 C.⎣⎡⎭⎫94,+∞ D.⎝⎛⎭⎫1,945.(2015·河南安阳模拟,15)已知函数f (x )=⎩⎪⎨⎪⎧|ln x |(0<x ≤e ),2-ln x (x >e ).若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围为________.5.【解析】 画出函数f (x )的图象,如图.不妨令a <b <c ,由已知和图象可知,0<a <1<b <e <c <e 2. ∵-ln a =ln b ,∴ab =1.∵ln b =2-ln c ,∴bc =e 2, ∴a +b +c =b +e 2+1b (1<b <e),∵⎝⎛⎭⎫b +e 2+1b ′=1-e 2+1b 2<0,故其在(1,e)上为减函数,∴2e +1e <a +b +c <e 2+2,∴a +b +c 的取值范围是⎝⎛⎭⎫1e +2e ,2+e 2. 【答案】 ⎝⎛⎭⎫1e +2e ,2+e 2【点击高考】1.(2016·课标Ⅰ,8,中)若a >b >1,0<c <1,则( ) A .a c <b c B .ab c <ba c C .a log b c <b log a c D .log a c <log b c2.(2014·福建,4,易)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则下列函数图象正确的( )2.B 由题图可知y =log a x 过点(3,1), ∴log a 3=1,∴a =3.对A ,y =⎝⎛⎭⎫13x在R 上为减函数,错误; 对B ,y =x 3,符合;对C ,y =-x 3在R 上为减函数,错误;对D ,y =log 3(-x )在(-∞,0)上为减函数,错误.3.(2013·课标Ⅱ,8,中)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >b D .a >b >c3.D 由对数运算法则得a =log 36=1+log 32,b =1+log 52,c =1+log 72,由对数函数图象得log 32>log 52>log 72,所以a >b >c ,故选D.4.(2014·四川,9,难)已知f (x )=ln(1+x )-ln(1-x ),x ∈(-1,1).现有下列命题: ①f (-x )=-f (x );②f ⎝⎛⎭⎫2x1+x 2=2f (x );③|f (x )|≥2|x |.其中的所有正确命题的序号是( ) A .①②③ B .②③ C .①③ D .①②当x ∈[0,1)时,|f (x )|=ln(1+x )-ln(1-x )=ln 1+x1-x ,2|x |=2x ,令g (x )=ln 1+x1-x-2x ,则g ′(x )=2x 21-x 2≥0,∴g (x )在[0,1)上为增函数,∴g (x )≥g (0)=0,即|f (x )|≥2|x |;当x ∈(-1,0)时,|f (x )|=ln(1-x )-ln(1+x )=-ln 1+x1-x ,2|x |=-2x ,令h (x )=2x -ln 1+x1-x ,则h ′(x )=-2x 21-x 2<0,∴h (x )在(-1,0)上为减函数, ∴h (x )>0,即|f (x )|>2|x |.∴当x ∈(-1,1)时,|f (x )|≥2|x |,故③正确.5.(2016·浙江,12,中)已知a >b >1,若log a b +log b a =52,a b =b a ,则a =________,b =________.【答案】 4 26.(2015·浙江,12,易)若a =log 43,则2a +2-a =________. 6.【解析】 ∵a =log 43=12log 23,∴2a +2-a =212log 23+2-12log 23=(2log 23)12+(2log 23)-12=312+3-12=3+13=433.【答案】4337.(2014·重庆,12,易)函数f (x )=log 2x ·log2(2x )的最小值为________.1【答案】-4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲 对数与对数函数
,
1.函数y =x ln(1-x )的定义域为( )
A .(0,1)
B .[0,1)
C .(0,1]
D .[0,1] 2. (log 29)·(log 34)=( )
A .14
B .1
2
C .2
D .4
3.lg 52
+2lg 2-⎝⎛⎭⎫12-1=________.
4. 函数y =log a (4-x )+1(a >0,且a ≠1)的图象恒过点________.
5. 若log a 3
4
<1(a >0,且a ≠1),则实数a 的取值范围是________.
对数式的化简与求值
计算:(1)lg 25+lg 2·lg 50+(lg 2)2
;(2)(log 32+log 92)·(log 43+log 83).
[通关练习]
1.设2a =5b =m ,且1a +1
b
=2,则m =________.
2.已知log a 2=m ,log a 3=n ,则a 2m +
n 的值为________.
对数函数的图象及应用
(1)函数f (x )=lg
1
|x +1|
的大致图象为( )
(2)若不等式(x -1)2<log a x 在x ∈(1,2)内恒成立,则实数a 的取值范围为________.
[通关练习]
1.已知lg a +lg b =0(a >0且a ≠1,b >0且b ≠1),则函数f (x )=a x 与g (x )=-log b x 的图象可能是( )
2.已知函数f (x )=⎩
⎪⎨⎪⎧log 2x ,x >0,
2x ,x ≤0,且关于x 的方程f (x )-a =0有两个实根,则a 的取值范围为________.
对数函数的性质及应用(高频考点)
对数函数的性质是每年高考的必考内容之一,多以选择题或填空题的形式考查,难度低、中、高档都有.
高考对对数函数性质的考查主要有以下四个命题角度:
(1)求对数函数的定义域;(2)探究对数函数的性质;(3)比较对数值的大小;(4)解简单的对数不等式或方程.
(1)若a >b >0,0<c <1,则( )
A .log a c <log b c
B .log c a <log c b
C .a c <b c
D .c a >c b
(2)已知不等式log x (2x 2+1)<log x (3x )<0成立,则实数x 的取值范围是________.
[题点通关]
角度一 求对数函数的定义域
1.函数y =log 23
(2x -1)的定义域是( )
A .[1,2]
B .[1,2)
C .⎣⎡⎦⎤12,1
D .⎝⎛⎦
⎤1
2,1
角度二 探究对数函数的性质
2.函数f (x )=log a (ax -3)在[1,3]上单调递增,则a 的取值范围是( )
A .(1,+∞)
B .(0,1)
C .⎝⎛⎭
⎫0,1
3 D .(3,+∞)
角度三 比较对数值的大小
3.已知a =log 23+log 2 3,b =log 29-log 2 3,c =log 32,则a ,b ,c 的大小关系是( )
A .a =b <c
B .a =b >c
C .a <b <c
D .a >b >c
角度四 解简单的对数不等式或方程
4.已知f (x )是偶函数,且在[0,+∞)上是减函数,若f (lg x )>f (2),则x 的取值范围是( )
A .⎝⎛⎭⎫1100,1
B .⎝⎛⎭⎫0,1100∪(1,+∞)
C .⎝⎛⎭
⎫1
100,100 D .(0,1)∪(100,+∞)
,
——忽视函数的定义域致误
若函数f (x )=log 12
(-x 2+4x +5)在区间(3m -2,m +2)内单调递增,则实数m 的取值范围为( )
A .⎣⎡⎦⎤43,3
B .⎣⎡⎦⎤43,2
C .⎣⎡⎭⎫43,2
D .⎣⎡⎭⎫4
3,+∞
若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上递减,求a 的取值范围.
1.函数f (x )=ln (x +3)
1-2x
的定义域是( )
A .(-3,0)
B .(-3,0]
C .(-∞,-3)∪(0,+∞)
D .(-∞,-3)∪(-3,0)
2.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,且f (2)=1,则f (x )=( )
3.已知函数f (x )=⎩⎪⎨⎪⎧log 2 x ,x >0,3-x +1,x ≤0,
则f (f (1))+f ⎝⎛⎭⎫log 3 1
2的值是( ) A .5 B .3 C .-1 D .7
2
4.已知函数f (x )=log a (2x +b -1)(a >0,a ≠1)的图象如图所示,则a ,b 满足的关系是( )
A .0<a -1<b <1
B .0<b <a -
1<1
C .0<b -1<a <1
D .0<a -1<b -
1<1
5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,
log 1
2
(-x ),x <0,若af (-a )>0,则实数a 的取值范围是( )
A .(-1,0)∪(0,1)
B .(-∞,-1)∪(1,+∞)
C .(-1,0)∪(1,+∞)
D .(-∞,-1)∪(0,1)
6.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( )
A .f (a +1)>f (2)
B .f (a +1)<f (2)
C .f (a +1)=f (2)
D .不能确定 7.lg 2+lg 5+20
+()
513
2
×3
5=________.
8.函数f (x )=log 2 x ·log 2(2x )的最小值为________.
9.设函数f (x )=|log a x |(0<a <1)的定义域为[m ,n ](m <n ),值域为[0,1],若n -m 的最小值为1
3
,则实数a
的值为________.
10.关于函数f (x )=lg x 2+1
|x |
(x ≠0),有下列命题:
①其图象关于y 轴对称;
②当x >0时,f (x )是增函数;当x <0时,f (x )是减函数; ③f (x )的最小值是lg 2;
④f (x )在区间(-1,0)、(2,+∞)上是增函数; ⑤f (x )无最大值,也无最小值.
其中所有正确命题的序号是________.
11.已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.
(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a >1时,求使f (x )>0的x 的解集.
12.已知函数f (x )=log a (2x -a ),在区间⎣⎡⎦⎤
12,23上恒有f (x )>0,则实数a 的取值范围是( )
A .⎝⎛⎭⎫13,1
B .⎣⎡⎭⎫13,1
C .⎝⎛⎭⎫23,1
D .⎣⎡⎭⎫2
3,1
13.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12
x .
(1)求函数f (x )的解析式;(2)解不等式f (x 2
-1)>-2.
14.已知函数f (x )=lg ⎝⎛⎭
⎫x +a
x -2,其中x >0,a >0. (1)求函数f (x )的定义域;(2)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.。