幂函数课件

合集下载

幂函数与函数图像_课件

幂函数与函数图像_课件

► 探究点2 幂函数的图象与性质
例 2 已知幂函数 f ( x)m22m3 (m∈N*)的图象关
于 y 轴 对 称 , 且 在 (0 , + ∞) 上 是 减 函 数 , 求 满 足
m
m
(a 1) 3 (3 2a) 3 的 a 的取值范围.
[思路] 利用幂函数的奇偶性和单调性确定m的值, 再由幂函数的单调性确定a的值.
y=f(x)―y―×a→y=af(x);
Ⅱ、函数 y=f(ax)(a>0)的图象可以将函数 y=f(x) 的图象中的每一点纵坐标不变横坐标伸长(a>1)或压缩
(0<a<1)为原来的1a倍得到.
y=f(x)―x―×a→y=f(ax).
(3)识图:图象的分布范围、变化趋势、对 称性、周期性等等.
3.函数图象的应用 (1)利用函数图象,研究函数的几何性质,如单调性、 周期性、奇偶性、最值、零点、值域及定义域、对称性 等; (2)利用函数图象、数形结合的思想方法解题,将代 数问题转化为平面解析几何问题处理.
[点评] (1)利用描点法作函数图象的步骤是:列表、 描点、连线,若对函数图象的形状比较熟悉,可不必列 表,直接描点、连线;(2)利用图象变换作函数图象, 关键是找出基本初等函数,将函数的解析式分解为只有 单个变换的函数链,然后依次进行单一变换,最终得到 所要的函数图象.
已知图象变换:①关于 y 轴对称;②关于 x 轴
方法三:函数 y=ex 的图象向左平移 1 个单位得 y= ex+1 的图象,然后横坐标缩短为原来的一半,纵坐标不变 得函数 y=e1+2x 的图象,最后关于 y 轴对称得函数 y= e1+2(-x)=e1-2x 的图象;
方法四:函数 y=ex 的图象向左平移 1 个单位得 y =ex+1 的图象,然后关于 y 轴对称得函数 y=e-x+1 的图 象,最后横坐标缩短为原来的一半,纵坐标不变得函数 y=e-2x+1.

幂函数课件(优质课)(共20张PPT)

幂函数课件(优质课)(共20张PPT)
1 x ④y ( ) 否 2
③y x 2 x 否
⑤y x 0 是
2 2
⑥y 1 否
2、若函数 f ( x) (a 3a 3) x 是幂函数,求a的值。 -1或4 规律

x 的系数是1
底数是单一的x 指数是常数
总结

幂函数的定义 幂函数的定义:一般地函数 y 其中x是自变量,α是常数。
上是增函数,0.5< 3 ∴ ∴ ( )2 (
3 2 3 ∴( ) ( ) 底数相同,若指数相同利用幂函数的
9 10
9 10
1.40.5 1.4 3
5
) 2∴ ( ) 2 ( ) 3 10 5 10
课堂练习 1、下列函数不是幂函数的是( c )
3 1 A y x B y x C y 2x D y x
定义域
y x2
R
(0,+∞)
O
x
值域
奇偶性

单调性(-∞,0)减
(0,+∞)增
y
y x3
函数
y x3
定义域 R
O
x
值域
R
奇偶性 奇
单调性 增
y
1 x2
y
函数
y
1 x2
定义域 [0,+∞)
O
x
值域
[0,+∞)
奇偶性 非奇非偶
单调性

幂函数的性质
函数 定义域 值域 奇偶性
yx
yx
5
(
9 10
1 )3
9 2 (4)取中间量 ( ) ,∵函数 9 x 10 y ( ) 在R 上是增函数

高一数学《幂函数》PPT课件

高一数学《幂函数》PPT课件

根据n, m, p的取值不同,图像形状各 异。
03
幂函数运算规则与技巧
同底数幂相乘除法则
01
02
03
同底数幂相乘
底数不变,指数相加。公 式:a^m × a^n = a^(m+n)
同底数幂相除
底数不变,指数相减。公 式:a^m ÷ a^n = a^(m-n)
举例
2^3 × 2^4 = 2^(3+4) = 2^7;3^5 ÷ 3^2 = 3^(5-2) = 3^3
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
计算圆的面积
$S=pi r^2$,$r$为圆半 径,利用幂函数表示圆的 面积与半径关系。
增长率、衰减率问题中应用
细菌增长模型
假设细菌以固定比例增长,则细 菌数量与时间关系可用幂函数表
示。
放射性物质衰变
放射性物质衰变速度与剩余质量 之间的关系可用幂函数描述。
投资回报计算
投资回报率与时间关系可用幂函 数表达,用于预测未来收益。
利用积的乘方法则进行化简
如(ab)^n = a^n × b^n
举例
化简(x^2y)^3 ÷ (xy^2)^2,结果为x^4y
04
幂函数在生活中的应用举例
面积、体积计算中应用
计算正方形面积
$S=a^2$,其中$a$为正 方形边长,利用幂函数表 示面积与边长关系。

函数简单的幂函数课件

函数简单的幂函数课件

函数简单的幂函数课件pptxx年xx月xx日contents •幂函数概述•幂函数的图象和性质•幂函数的应用•幂函数的拓展•总结与反思目录01幂函数概述幂函数定义:形如y=x^a的函数,其中a为常数。

幂函数在高等数学中占有重要地位,其性质和应用有着广泛的应用。

0102非零的常数次幂函数$y=x^a$,当a>0时,函数在$(0,+\infty)$上单调递增;当a<0时,函数在$(0,+\infty)$上单调递减。

幂函数的图象幂函数的图象由点$(1,1)$出发,在$y$轴右侧的图象是上升的,在$y$轴左侧的图象是下降的,并且图象过点$(0,0)$。

幂函数的奇偶性当$a$为整数时,幂函数为奇函数;当$a$为偶数时,幂函数为偶函数。

当$a$为负奇数时,幂函数为既奇又偶函数;当$a$为负偶数时,幂函数为非奇非偶函数。

幂函数的对称性$y=x^a$的图象关于原点对称;$y=x^{-a}=1/x^a$的图象关于$y$轴对称。

幂函数的扩展在实际应用中,可以将幂函数扩展到多个变量的情形,如二元三次幂函数等。

03040502幂函数的图象和性质幂函数图象的绘制步骤、要点、注意事项总结词步骤要点注意事项1.定义域,2.函数式,3.图象1.定义域的确定,2.函数式的变换,3.图象的绘制1.定义域的边界值的处理,2.函数式变换的准确性,3.图象的精确度幂函数性质的运用基本性质、应用、实例总结词1.单调性,2.奇偶性,3.周期性基本性质1.函数的单调性,2.函数的奇偶性,3.函数的周期性应用 1.幂函数的单调递增区间,2.幂函数的奇偶性判断,3.幂函数的周期求解实例03幂函数的应用总结词了解幂函数与方程根的关系,掌握利用幂函数求解方程的方法。

利用幂函数求解方程通过对幂函数的性质和图像的掌握,利用幂函数求解方程的解,特别注意在特定区间求解方程时需要注意的问题。

幂函数与方程根的关系幂函数在方程中的应用,主要是指利用幂函数的性质和图像特点,通过观察幂函数的图像来确定方程的根。

函数简单的幂函数课件ppt

函数简单的幂函数课件ppt
幂函数在化学反应中的运 用
描述化学反应速率、平衡常数等化学现象。
幂函数在物质性质中的运用
描述物质溶解度、沸点、密度等化学性质。
幂函数在量子力学中的运 用
用于描述原子能级、分子结构等化学现象。
05
总结与展望
本章内容总结
幂函数的定义
掌握了幂函数的定义和基本形 式。
幂函数的性质
了解了幂函数的单调性、奇偶性 、渐近线等性质。
幂函数的图像
幂函数的图像概述
幂函数的图像呈现出一种类似于直线或者曲线的形态,其变 化趋势和单调性及奇偶性有关。
绘制幂函数图像的方法
可以采用描点法或者直接根据幂函数的定义绘制图像。对于 不同的$a$值,可以分别绘制对应的幂函数图像,观察其变化 规律。
03
幂函数的运算性质
幂函数的加减乘除运算
总结词
幂函数的求导与求积分
总结词
幂函数的求导与求积分是学习幂函数的进阶内容,掌握其方法对解决实际问题有很大帮助 。
详细描述
求导是指找出函数在某一点的导数值,它反映了函数在这一点附近的斜率;求积分是指计 算函数在一个区间内的面积,它反映了函数在区间内的整体性质。对于幂函数,我们可以 利用微积分的基本公式进行求导与求积分。
幂函数的复合运算
01
总结词
ቤተ መጻሕፍቲ ባይዱ
幂函数的复合运算是学习幂函数的重要一环,通过复合运算可以加深
对幂函数的理解。
02 03
详细描述
复合运算通常是指将一个函数嵌套在另一个函数中,从而形成一个新 的函数。在幂函数的复合运算中,我们通常将一个幂函数作为另一个 幂函数的自变量。
举例
例如,我们可以将两个幂函数f(x)=x^a和g(x)=x^b进行复合,得到 一个新的幂函数h(x)=f(g(x))=(x^b)^a=x^(a*b)。

《幂函数》新教材PPT完美课件

《幂函数》新教材PPT完美课件

第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
பைடு நூலகம்
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)
第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T) 第三章 3.3幂函数--【新教材】人教A版(2 019) 高中数 学必修 第一册 课件(共 60张PP T)

高中数学课件-幂函数

高中数学课件-幂函数

奇偶性 奇函数
偶函数
奇函数
非奇非 偶函数
奇函数
x∈[0,+∞)
单调性 增
时,增 x∈(-∞,0]


时,减
x∈[0,+∞) 时,增 x∈(-∞,0] 时,减
主页
[难点正本 疑点清源] 1.在(0,1)上,幂函数中指数越大,函数图象越靠近 x 轴, 在(1,+∞)上幂函数中指数越大,函数图象越远离 x 轴.

n

b 2a
n
f (m) 0 b2 4ac 0 f (n) 0
f(x)min>0(x∈[m, n])
④f(x)=ax2+bx+c<0(a>0)

[m,
n]
上恒成立
f f
(m) 0 (n) 0
f(x)max<0(x∈[m, n])
幂函数的图像与性质
知识点梳理
1.幂函数的概念 一般地,我们把形如 y=xα 的函数称为幂函数,其中 x 是自变量,α 是常数.
变式训练 4
已知幂函数 f(x)= x(m2 m)1 (m∈N*)
(1)试确定该函数的定义域,并指明该函数在其定义域上的单 调性; (2)若该函数还经过点(2, 2),试确定 m 的值,并求满足条 件 f(2-a)>f(a-1)的实数 a 的取值范围.
解 (1)m2+m=m(m+1),m∈N*, 而 m 与 m+1 中必有一个为偶数, ∴m(m+1)为偶数.
∴m>-1+ 5.
[8 分]
由②得 Δ2=(-m)2-4<0,即-2<m<2.
[12 分]
综上可得 5-1<m<2.
[14 分]

幂函数-课件ppt

幂函数-课件ppt
5.已知点 33,3 3在幂函数 f(x)的图象上,则 f(x)的定义域
为___(_-__∞_,__0_)_∪__(_0_,__+__∞_)___,奇偶性为_____奇__函__数________, 单调减区间为__(_-__∞_,__0_)_和__(_0_,__+__∞_)_____.
二次函数的解析式 已知二次函数 f(x)有两个零点 0 和-2,且它有最 小值-1. (1)求 f(x)解析式; (2)若 g(x)与 f(x)图象关于原点对称,求 g(x)解析式. [课堂笔记]
(1)幂函数的形式是 y=xα(α∈R),其中只有参数 α,因此只 需一个条件即可确定其解析式. (2)若幂函数 y=xα(α∈R)是偶函数,则 α 必为偶数.当 α 是 分数时,一般将其先化为根式,再判断.
(3)若幂函数 y=xα 在(0,+∞)上单调递增,则 α>0,若在(0, +∞)上单调递减,则 α<0.
分类讨论思想在求二次函数最值中的应用
(2014·山东青岛模拟)已知 f(x)=ax2-2x(0≤x≤1),
求 f(x)的最小值. [解] (1)当 a=0 时,f(x)=-2x 在[0,1]上递减, ∴f(x)min=f(1)=-2. (2)当 a>0 时,f(x)=ax2-2x 图象的开口方向向上,且对称 轴为 x=1a.
在(-∞,-2ba)上是 ___增_____函数;在(-
2ba,+∞)上是增函数 2ba,+∞)上是减函数
最值
a>0
当 x=-2ba时,
ymin=
4ac-b2 4a
a<0
当 x=-2ba时, ymax=4ac4-a b2
1.已知函数 f(x)=ax2+x+5 的图象在 x 轴上方,则 a 的取

幂函数的性质及其应用课件

幂函数的性质及其应用课件
幂函数性质
当自变量$x$的取值范围为全体实 数时,幂函数的值域为 $(0,+\infty)$。
幂函数的奇偶性
奇偶性定义
如果一个函数满足$f(-x)=f(x)$,那 么这个函数就是偶函数;如果满足 $f(-x)=-f(x)$,那么这个函数就是奇 函数。
幂函数的奇偶性
当$n$为偶数时,幂函数$y = x^{n}$ 是偶函数;当$n$为奇数时,幂函数 $y = x^{n}$是奇函数。
幂函数的应用场景
幂函数在金融领域的应用
1 2
投资组合优化
幂函数可以用于建立投资组合模型,根据不同资 产的价格波动和相关性进行优化,以实现风险分 散和资产增值。
资本资产定价模型(CAPM)
幂函数可以用于CAPM中的回报率预测,根据风 险和资产的相关性来计算期望回报率。
3
期权定价模型
幂函数可以用于期权定价模型的构建,通过考虑 标的资产价格、行权价、剩余期限等因素来估算 期权的合理价格。
通过一个实际案例,介绍了幂函数在解决实际问题中的应用。
详细描述
首先介绍了幂函数的定义和性质,然后通过一个具体的例子,展示了如何利用幂函数解决实际问题。这个例子涉 及到物理学中的力学和工程学中的材料科学,通过幂函数来描述和预测材料的强度和重量之间的关系。
利用幂函数解决实际问题二例
总结词
通过另一个实际案例,介绍了幂函数在 解决实际问题中的应用。
数据压缩
在数据压缩领域,幂函数 被用于构建压缩算法,以 实现数据的紧凑表示和存 储。
加密算法
幂函数也被广泛应用于加 密算法中,如RSA公钥密 码体系,以提供安全的数 据传输和保护。
图像处理
在图像处理中,幂函数可 以用于实现图像的缩放、 旋转和扭曲等变换。

幂函数ppt课件全

幂函数ppt课件全

(4)
1
y x2
(5)
y x1
21
y x2
(-2,4)
y x3
4
(2,4)
3
y=x
2
(-1,1) 1
(1,1)
1
y x2
-4
-2
2
4
6
y x 1 (-1,-1) -1
-2
-3 22
(-2,4)
4
y=x3 (2,4)
y=x2
3
y=x
1
y=x 2
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
… -8 -1 0 1 8 27 64 …
… / / 0 1 2 3 2…
y 8
y=x3
6
4
1
2
y=x 2
-3 -2 -1 0 1 2 3 4
x
-2
-4
-6
17
-8
函数 y x3 的图像
定义域: R
值 域: R
奇偶性:在R上是奇函数
单调性:在R上是增函数
18
1
函数 y x 2 的图像
定义域:[0,)
2
1
2
所求的幂函数为y
x
1 2
.
10
练习3:已知幂函数f(x)的图像经过点(3,27), 求证:f(x)是奇函数。
证明: 设所求的幂函数为y x 函数的图像过点(3,27)
27 3 ,即33 3
3
f (x) x3
f (x)的定义域为R, f (x) (x)3 x3
f (x) f (x)
f (x1) f (x2)
x1

幂函数(课件)

幂函数(课件)
04
利用导数研究幂函数的极值 和拐点
01 03
详细描述
02
幂函数与其他初等函数的复 合函数性质
THANKS
感谢观看
幂函数在物理中的应用
力学
在力学中,幂函数可以描 述物体的运动规律,例如 加速度与时间的关系。
热力学
在热力学中,幂函数可以 描述气体分子的速度分布 规律。
电磁学
在电磁学中,幂函数可以 描述电流与电压的关系。
幂函数在其他领域的应用
经济学
计算机科学
在经济学中,幂函数可以用于描述商 品的需求量与价格的关系、消费者的 购买决策等。
02
幂函数的运算规则
幂的乘法规则
总结词
同底数幂相乘,指数相加
详细描述
幂函数是数学中一种重要的函数,其形式为 (a^x)(其中 (a) 是底数,(x) 是指 数)。当两个幂函数相乘时,如果它们的底数相同,则它们的指数相加。即, (a^x times a^y = a^{x+y})。
幂的除法规则
总结词
幂函数(优秀课件)
目 录
• 幂函数的基本概念 • 幂函数的运算规则 • 幂函数的应用 • 幂函数的扩展知识 • 幂函数的习题与解析
01
幂函数的基本概念
幂函数的定义
总结词
幂函数是一种数学函数,其一般形式 为$y=x^n$,其中$n$是一个实数。
详细描述
幂函数是函数的一种,其一般形式为$y=x^n$ ,其中$x$是自变量,$y$是因变量,$n$是一 个实数。当$n>0$时,幂函数在$(0, +infty)$ 区间内单调递增;当$n<0$时,幂函数在$(0, +infty)$区间内单调递减;当$n=0$时,幂函 数值为1。

人教A版(2019)高中数学必修1第三章3.3幂函数 课件(共20张PPT)

人教A版(2019)高中数学必修1第三章3.3幂函数 课件(共20张PPT)
1
1
0.5
0.125
0
0
知识点二 五个幂函数的图象
定义域
值域
奇偶性
单调性
R
R


知识点二 五个幂函数的图象
在同一平面直角坐标系内画出以上五个函数图象.
- 9 -
知识点三 一般幂函数的性质
在第一象限内,函数图象的变化趋势与指数有什么关系?
- 10 -
知识点三 一般幂函数的性质
不管指数是多少,图象都经过哪个定点?
知识点三 一般幂函数的性质
- 14 -
百“炼”成钢,熟能生巧
幂函数性质的应用
比较幂值大小关键是看指数相同还是底数相同,若指数相同利用幂函数的单调性;若底数相同,利用“指大图高”判断;若底数,指数都不相同,构造中间量。
规律总结
- 15 -
课堂练习
-1
-16 -
- 17 -
了解幂函数的概念会画常见幂函数的图象结合图像了解幂函数图象的变化情况和简单性质会用幂函数的单调性比较两个底数不同而指数相同课老师:
时间:2024年9月15日
- -
幂函数
01/
幂函数的概念
目录
02/ 幂函数的图象与性质
03/ 综合应用
-0 -
情景导入
写出下列y关于x的函数关系式:(1)购买每千克1元的蔬菜x千克,需要支付的钱数y;(2)正方形的边长为x,正方形的面积y;(3)正方体的边长为x,正方体的体积y;(4)正方形的面积为x,正方形的边长y;(5)某人x s内骑车进行了1 km,她骑车的平均速度y;
- 5 -
知识点二 五个幂函数的图象
函数
定义域
R
R
值域

3.3 幂函数 课件(37张)

3.3 幂函数    课件(37张)

[教材提炼]
预习教材,思考问题
函数 f(x)=x、f(x)=x2、f(x)=1x,以前叫什么函数,它们有什么共同特征?
知识梳理 (1)一般地,函数__y_=__x_α__叫做幂函数(power function),其中 x 是自变量, α 是常数. (2)幂函数解析式的结构特征 ①指数为常数; ②底数是自变量,自变量的系数为 1; ③幂 xα 的系数为 1; ④只有 1 项.
若函数 f(x)=(2m+3)xm2-3 是幂函数,则 m 的值为( )
A.-1
B.0
C.1
D.2
解析:幂函数是形如 f(x)=xα 的函数,所以 2m+3=1,∴m=-1.
答案:A
探究二 幂函ቤተ መጻሕፍቲ ባይዱ的图象
[例 2] 幂函数 y=x2,y=x-1,y= 内的图象依次是图中的曲线( ) A.C2,C1,C3,C4 B.C4,C1,C3,C2 C.C3,C2,C1,C4 D.C1,C4,C2,C3
由题意得(a+
.
∵y= 在(-∞,0),(0,+∞)上均单调递减, ∴a+1>3-2a>0 或 0>a+1>3-2a 或 a+1<0<3-2a, 解得23<a<32或 a<-1.
利用幂函数解不等式的步骤 利用幂函数解不等式,实质是已知两个函数值的大小,判断自变量的大小,常与 幂函数的单调性、奇偶性等综合命题.求解步骤如下: (1)确定可以利用的幂函数; (2)借助相应的幂函数的单调性,将不等式的大小关系,转化为自变量的大小关系; (3)解不等式求参数范围,注意分类讨论思想的应用.
[解析] y= =3 x2≥0,故只有 D 中的图象适合. [答案] D
3.如果一个函数 f(x)在其定义域内对任意 x,y 都满足 fx+2 y≤12[f(x)+f(y)],则称这 个函数为下凸函数.下列函数:

《函数》第07讲 幂函数课件

《函数》第07讲 幂函数课件
(3).x 7, 3 , 求f x 的值域.
2.求下列函数在x (1, 2]的值域: x 1 y 2 x 1 x 2 3x 2 2 y x 5 3 f x x x 1
思考题
已知函数 f x 2 ,求f(x)的最小值,并求 x 4 此时的x值.
y loga x与y a 互为反函数.
x
log2 (3 1) 1, x
x
.
y loga ( x )的单调性?
y loga t , t x

知识应用
5 1.已知函数 f x x x
(1).x 1, 2 , 求f x 的值域.
(2).x 2, 4 , 求f x 的最小值.
问题2.你能画出函数的大致图像吗?
Y
2
1
0
X
1
2
a 函数 f x x (a>0)的大致图像 x
y
2 a a
0
a 2 a
x
b 思考:f x ax (a 0, b 0)的图像? x
作业问题选讲
选择题:正确率低下? ABCD四个字母很值钱, 5分. 3. 5. 11.
幂函数
知识梳理
一.幂函数的定义
名称 幂函数
指数函数
表达式
常数
为非零有理数
过定点
理由
y x

x
(1,1) 1 1 (0,1) a 0 1
ya
a 0, a 1
函数操
yx
yx
2
yx
3
yx
1 2
yx
1
4.常用幂函数的性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

展示内容
例1 例1拓展 深化提高2(2)
地点
前黑板 前黑板 前黑板
展示
深化提高2(4)
例2 例2 例2 深化提高2(4) 深化提高3
前黑板
前黑板 后黑板 后黑板 后黑板 后黑板
7组 8组 4组 1组 2组 5组 3组 6组 9组
目标: ⑴口头展示,声 音洪亮、清楚; 书面展示要分 层次,书写要 认真、 规范。 ⑵非展示同学巩 固基础知识、 整理落实学案, 做好拓展。不 浪费一分钟, 小组长做好安 排和检查。
目标达成:熟练掌握幂函数的图象与性质,
提高识图用图的能力
合作探究
内容: 1.对幂函数性质的理解 2.利用幂函数性质比较大小 3.例1、拓展、例2、深化提高3 目标: (1)人人参与,热烈讨论,大声表达自己的思想。 (2)组长控制好讨论节奏,先一对一分层讨论,再小 组内集中讨论,AA、BB解决好全部展示问题(即完 成100%),例1、拓展、例2即完成90%)。 (3)没解决的问题组长记录好,准备展示质疑。
1 2
(5) y=2x2 (6) y=x3+2
目标达成:准确理解幂函数的定义
探究
在同一个直角坐标系作出下列函数的图象: y x3 y x2
(-2,4)
4
(2,4)
3
yx
yx
(1,1)
2
2
1 2
(-1,1)
-4 -2
1
yx
4
1
6
(-1,-1)
-1
-2
从图象能得出他 们的性质吗?
-3
1.所有的幂函数在 (0,+∞)都有定义,并且 函数图象都通过点(1,1

1.5
0.5
2 < 5.1 2) 5.09
1 4
2
> 1.81 1.79 3)
1 4
拓展总结
• • • • 比较大小: 1、同指不同底,用幂函数单调性比较 2、同底不同指,用指数函数性质比较 3、底指全不同,利用中间量(常见0,1)
探究
y
4
y x3
3
2
yx
y x3
幂函数性质
y x2
yx
2.>0时, 图象都经过点(0,0) 和(1,1)在(0,+∞)函数 是增函数.
yx
1 2
y x 1
3.<0时, 图象都经过点(1,1) 在(0,+∞)函数是减函数; 在第一象限内,图象向上与Y轴无 限地接近,向右与X轴无限地接
小结
1.所有的幂函数在(0,+∞)都有定义, 并且函数图象都通过点(1,1) 2.>0时,图象都经过点(0,0)和(1,1), 在(0,+∞)函数是增函数. 3.<0时, 图象都经过点(1,1)图象 在(0,+∞)上是减函数;在第一象限内, 图象向上与Y轴无限地接近, 向右与X轴无限地接近.
(1,1)
1
2 4 6
1 2
(-1,1)
-4 -2
11
X
(-1,-1)
-1
-2
-3
探究
y
4
yx
4 3
2 3
3
yx
2
(-1,1)
-4 -2
11
(1,1)
1
2 4 6
X
-1
-2
-3
例2总结
• 当 0 时,在第一象限都是增函数,但 0 1 时, 是当 1 时,图象上升的快, 图象上升的慢
定义
一般地,函数y x 叫做幂函数, 其中x是自变量,
是常量.
几点说明:
1、幂函数的解析式必须是 y x 的形式, 其特征可归纳为“两个系数为1,只有1 项. 2、定义域与 的值有关系.
判断下列函数是否为幂函数.
1 (2) y x
(3) y= -x2
(1) y=x4
(4) y x
都拿出典型题目本和《非常学案》!
导学案反馈
1.存在的问题: (1)幂函数定义理解不到位 (2) 幂函数图象、性质应用不熟练
学习目标
• 1. 准确理解幂函数的定义,熟练掌握幂函数的图 象与性质,提高识图用图的能力; • 2. 自主学习,合作交流,探究幂函数图象与性质 应用的规律和方法; • 3. 以极度的热情投入到课堂学习中,感受函数图 象的曲线美。
2.数学思想方面:
(1)特殊到一般 (2)数形结合
3.学科班长:(1).回扣目标 总结收获 (2).评出优秀小组和个人
目标达成:学会幂函数图象与性质应用的规 律和方法
深化提高3
• 1、对幂函数定义的考察(幂前的系数为1) • 2、由幂函数的单调性得幂指数的范围 • 目标达成:准确理解幂函数的定义
整理巩固
要求: 1.整理巩固探究问题
2.落实基础知识
总结评价
【课堂小结】 1.知识方面:
1.准确理解幂函数定义 2.掌握幂函数的性质 3.利用幂函数性质比较大小
精彩点评
展示内容
例1
例1拓展
地点
前黑板 前黑板
深化提高2(2) 前黑板 深化提高2(4) 前黑板 例2 例2 前黑板 后黑板
例2
深化提高3 深化提高3
后黑板
后黑板 后黑板
展示 展示 7组 自愿点评 8组 4组 自愿点评 1组 2组 自愿点评 5组 3组 6组 9组
目标:
⑴先点评对错; 再点评思路方法, 应该注意的问题, 力争 进行必要的变形 拓展。 ⑵其他同学认真 倾听、积极思考、 记好笔记、大胆 质疑。 (3)有明确目 标意识,力争全 部达成目标, AA120%, BB110%, CC100%
以上问题中的函数有什么共同特征?
(1)
yx
3
1 2
(1)都是函数;
(2)均是以自变量为底的幂; (3)指数为常数; (4)自变量前的系数为1; (5)幂前的系数也为1。
(2) y x 2
(3) y x
(4) y x 1 y x (5)
y x 上述问题中涉及的函数,都是形如 的函数。
相关文档
最新文档