1 第1讲 函数及其表示
人教版高中数学必修一第一章函数的概念课件PPT
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
第1讲 函数及其表示
第1讲函数及其表示一、知识梳理1.函数的概念函数两集合A,B A,B是两个非空数集对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)与之对应名称称f:A→B为从集合A到集合B的一个函数记法y=f(x),x∈A(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意] 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意]分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论几种常见函数的定义域(1)f (x )为分式型函数时,定义域为使分母不为零的实数集合. (2)f (x )为偶次根式型函数时,定义域为使被开方式非负的实数的集合.(3)f (x )为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合. (4)若f (x )=x 0,则定义域为{x |x ≠0}. (5)指数函数的底数大于0且不等于1.(6)正切函数y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .二、教材衍化1.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x +1D .y =x 2+1答案:B2.函数y =f (x )的图象如图所示,那么f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5] 3.函数y =x -2·x +2的定义域是________.解析:⎩⎪⎨⎪⎧x -2≥0,x +2≥0,⇒x ≥2.答案:[2,+∞)4.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (-2)=________,f [f (-2)]=________.解析:f (-2)=(-2)2=4,f [f (-2)]=f (4)=4+1=5. 答案:4 5一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B .( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( ) (4)函数f (x )的图象与直线x =1最多有一个交点.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)√ (3)× (4)√ (5)× 二、易错纠偏常见误区| (1)对函数概念理解不透彻; (2)对分段函数解不等式时忘记范围; (3)换元法求解析式,反解忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围为________.解析:因为f (x )是分段函数,所以f (x )≥1应分段求解.当x <1时,f (x )≥1⇒(x +1)2≥1⇒x ≤-2或x ≥0,所以x ≤-2或0≤x <1;当x ≥1时,f (x )≥1⇒4-x -1≥1,即x -1≤3,所以1≤x ≤10.综上所述,x ≤-2或0≤x ≤10,即x ∈(-∞,-2]∪[0,10].答案:(-∞,-2]∪[0,10]3.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)考点一 函数的定义域(基础型) 复习指导| 学习用集合与对应的语言来刻画函数,了解构成函数的要素,会求一些简单函数的定义域和值域.核心素养:数学抽象 角度一 求函数的定义域(1)(2020·安徽宣城八校联考)函数y =-x 2+2x +3lg (x +1)的定义域为( )A .(-1,3]B .(-1,0)∪(0,3]C . [-1,3]D .[-1,0)∪(0,3](2)(2020·华南师范大学附属中学月考)已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A .[0,1]B .(0,1)C .[0,1)D .(0,1] 【解析】 (1)要使函数有意义,x 需满足⎩⎪⎨⎪⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3].故选B .(2)由函数f (x )的定义域为[-1,1],得-1≤x ≤1,令-1≤2x -1≤1,解得0≤x ≤1,又由1-x >0且1-x ≠1,解得x <1且x ≠0,所以函数g (x )的定义域为(0,1),故选B .【答案】 (1)B (2)B求函数定义域的两种方法方法 解读适合题型直接法构造使解析式有意义的不等式(组)求解已知函数的具体表达式,求f (x )的定义域转移法若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域已知f (x )的定义域,求f (g (x ))的定义域若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域已知f (g (x ))的定义域,求f (x )的定义域[提醒] 定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.角度二 已知函数的定义域求参数若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________.【解析】 由题意可得mx 2+mx +1≥0对x ∈R 恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎨⎧m >0,Δ=m 2-4m ≤0, 解得0<m ≤4. 综上可得0≤m ≤4. 【答案】 [0,4]已知函数的定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.1.函数f (x )=3xx -1+ln(2x -x 2)的定义域为( ) A .(2,+∞) B .(1,2) C .(0,2)D .[1,2]解析:选B .要使函数有意义,则⎩⎪⎨⎪⎧x -1>0,2x -x 2>0,解得1<x <2. 所以函数f (x )=3xx -1+ln(2x -x 2)的定义域为(1,2).2.如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2 B .-1 C .1D .2解析:选D .因为-2x +a >0, 所以x <a 2,所以a2=1,所以a =2.3.(2020·山东安丘质量检测)已知函数f (x )的定义域为[0,2],则函数g (x )=f ⎝⎛⎭⎫12x + 8-2x 的定义域为( ) A .[0,3]B .[0,2]C .[1,2]D .[1,3]解析:选A .由题意,可知x 满足⎩⎪⎨⎪⎧0≤12x ≤2,8-2x ≥0,解得0≤x ≤3,即函数g (x )的定义域为[0,3],故选A . 考点二 函数的解析式(基础型) 复习指导| 在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.核心素养:数学运算(1)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )的解析式为________.(2)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________. (3)已知函数f (x )满足f (-x )+2f (x )=2x ,则f (x )的解析式为________. 【解析】 (1)(换元法)令2x +1=t ,得x =2t -1,因为x >0,所以t >1,所以f (t )=lg 2t -1,即f (x )的解析式是f (x )=lg 2x -1(x >1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3.(3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x . 【答案】 (1)f (x )=lg2x -1(x >1) (2)f (x )=x 2-x +3 (3)f (x )=2x求函数解析式的4种方法1.(一题多解)已知二次函数f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:法一(换元法):令2x +1=t (t ∈R ), 则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).法三(待定系数法):因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5,所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R ). 答案:x 2-5x +9(x ∈R )2.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:因为-1≤x ≤0,所以0≤x +1≤1,所以f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).答案:-12x (x +1)考点三 分段函数(基础型) 复习指导| 通过具体实例,了解简单的分段函数,并能简单应用.核心素养:数学抽象、数学运算 角度一 求分段函数的函数值(1)(2020·合肥一检)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11(2)(2020·山西太原三中模拟)设函数f (x )=⎩⎪⎨⎪⎧x 2-1(x ≥2),log 2x (0<x <2),若f (m )=3,则f ⎝⎛⎭⎫52-m =________.【解析】 (1)因为f (1)=12+2=3,所以f (f (1))=f (3)=3+13-2=4.故选C .(2)当m ≥2时,m 2-1=3,所以m =2或m =-2(舍); 当0<m <2时,log 2m =3,所以m =8(舍). 所以m =2.所以f ⎝⎛⎭⎫52-m =f ⎝⎛⎭⎫12=log 212=-1. 【答案】 (1)C (2)-1分段函数的求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度二 分段函数与方程、不等式问题(1)(一题多解)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8(2)(一题多解)(2018·高考全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)【解析】 (1)法一:当0<a <1时,a +1>1, 所以f (a )=a ,f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得a =2a , 所以a =14.此时f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6. 当a ≥1时,a +1>1,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a . 由f (a )=f (a +1)得2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6,故选C .法二:因为当0<x <1时,f (x )=x ,为增函数, 当x ≥1时,f (x )=2(x -1),为增函数, 又f (a )=f (a +1),所以a =2(a +1-1),所以a =14.所以f ⎝⎛⎭⎫1a =f (4)=6.(2)法一:①当⎩⎨⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x )即为2-(x +1)<2-2x ,即-(x +1)<-2x ,解得x <1.因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎨⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x )即1<2-2x ,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 故选D .法二:因为f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D .【答案】 (1)C (2)D有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D .当a >0时,不等式a [f (a )-f (-a )]>0可化为a 2+a -3a >0,解得a >2.当a <0时.不等式a [f (a )-f (-a )]>0可化为-a 2-2a <0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞).2.(2020·安徽安庆二模)已知函数f (x )=⎩⎨⎧x +1,-1<x <0,2x ,x ≥0.若实数a 满足f (a )=f (a -1),则f ⎝⎛⎭⎫1a =________.解析:由题意得a >0.当0<a <1时,由f (a )=f (a -1),即2a =a . 解得a =14,则f ⎝⎛⎭⎫1a =f (4)=8, 当a ≥1时,由f (a )=f (a -1),得2a =2(a -1),无解. 答案:8考点四 函数的新定义问题(创新型)复习指导| 所谓“新定义”函数,是相对于高中教材而言,指在高中教材中不曾出现或尚未介绍的一类函数.函数新定义问题的一般形式是:由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题.(2020·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ;②g (x )=x 3; ③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x . 其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝⎛⎭⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B .故选C .【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C .由x 2+1=1得x =0,由x 2+1=3得x =±2,所以函数的定义域可以是{0, 2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”:(1)∀x ∈R ,都有f (-x )+f (x )=0;(2)∀x 1,x 2∈R ,且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ; 以上三个函数中,________是“优美函数”.解析:由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的单调递减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.答案:②[基础题组练]1.函数y =1ln (x -1)的定义域为( )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)解析:选C .由ln(x -1)≠0,得x -1>0且x -1≠1.由此解得x >1且x ≠2,即函数y =1ln (x -1)的定义域是(1,2)∪(2,+∞).2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B .74C .43D .-43解析:选B .令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1, 所以f (a )=4a -1=6,即a =74.3.(多选)下列四组函数中,f (x )与g (x )是相等函数的是( ) A .f (x )=ln x 2,g (x )=2ln x B .f (x )=x ,g (x )=(x )2 C .f (x )=x ,g (x )=3x 3D .f (x )=x ,g (x )=log a a x (a >0且a ≠1)解析:选CD .对于选项A ,f (x )的定义域为{x |x ≠0},g (x )的定义域为{x |x >0},两个函数的定义域不相同,不是相等函数;对于选项B ,g (x )的定义域为{x |x ≥0},两个函数的定义域不相同,不是相等函数;对于选项C ,g (x )=3x 3=x ,两个函数的定义域和对应法则相同,是相等函数;对于选项D ,g (x )=log a a x =x ,x ∈R ,两个函数的定义域和对应法则相同,是相等函数.4.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4解析:选B .由题意得f ⎝⎛⎭⎫43=2×43=83. f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43. 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.5.(多选)函数f (x )=x 1+x 2,x ∈(-∞,0)∪(0,+∞),则下列等式成立的是( )A .f (x )=f ⎝⎛⎭⎫1x B .-f (x )=f ⎝⎛⎭⎫1x C .1f (x )=f ⎝⎛⎭⎫1xD .f (-x )=-f (x )解析:选AD .根据题意得f (x )=x 1+x 2,所以f ⎝⎛⎭⎫1x =1x1+⎝⎛⎭⎫1x 2=x 1+x 2,所以f (x )=f ⎝⎛⎭⎫1x ;f (-x )=-x1+(-x )2=-x 1+x 2=-f (x ),所以f (-x )=-f (x ).故AD 正确,BC 错误.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f (2x +1)log 2(x +1)的定义域是( )A .[1,2]B .(-1,1]C .⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D .由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1,所以函数f (x )的定义域是[-1,1], 所以要使函数f (2x +1)log 2(x +1)有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.(创新型)定义a ⊕b =⎩⎪⎨⎪⎧a ×b ,a ×b ≥0,a b ,a ×b <0,设函数f (x )=ln x ⊕x ,则f (2)+f ⎝⎛⎭⎫12=( ) A .4ln 2 B .-4ln 2 C .2D .0解析:选D .2×ln 2>0,所以f (2)=2×ln 2=2ln 2.因为12×ln 12<0,所以f ⎝⎛⎭⎫12=ln 1212=-2ln 2.则f (2)+f ⎝⎛⎭⎫12=2ln 2-2ln 2=0. 8.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D .当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D .9.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤210.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:因为f (1)=2,且f (1)+f (a )=0,所以f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-311.设函数f (x )=⎩⎪⎨⎪⎧1x ,x >1,-x -2,x ≤1,则f (f (2))=________,函数f (x )的值域是________.解析:因为f (2)=12,所以f (f (2))=f ⎝⎛⎭⎫12=-12-2=-52. 当x >1时,f (x )∈(0,1), 当x ≤1时,f (x )∈[-3,+∞), 所以f (x )∈[-3,+∞). 答案:-52[-3,+∞)12.设函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x ,x <1,则f (f (0))=________,若f (m )>1,则实数m 的取值范围是________.解析:f (f (0))=f (1)=ln 1=0;如图所示,可得f (x )=⎩⎨⎧ln x ,x ≥1,1-x ,x <1的图象与直线y =1的交点分别为(0,1),(e ,1).若f (m )>1,则实数m 的取值范围是(-∞,0)∪(e ,+∞).答案:0 (-∞,0)∪(e ,+∞)[综合题组练]1.(2020·海淀期末)下列四个函数:①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:选B .①y =3-x 的定义域与值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝⎛⎭⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x (x >0)的定义域和值域均为R .所以定义域与值域相同的函数是①④,共有2个,故选B .2.(创新型)设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A .对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A .3.(2020·宁夏银川一中一模)已知函数f (x )=⎩⎨⎧2-x+1,x ≤0,-x ,x >0,则f (x +1)-9≤0的解集为________.解析:因为f (x )=⎩⎪⎨⎪⎧2-x +1,x ≤0,-x ,x >0,所以当x +1≤0时,⎩⎪⎨⎪⎧x ≤-1,2-(x +1)-8≤0,解得-4≤x ≤-1;当x +1>0时,⎩⎪⎨⎪⎧x >-1,-x +1-9≤0,解得x >-1.综上,x ≥-4,即f (x +1)-9≤0的解集为[-4,+∞). 答案:[-4,+∞)4.(创新型)设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1;③f(x)=ln(2x+3);④f(x)=2sin x-1.其中是“美丽函数”的序号有________.解析:由已知,在函数定义域内,对任意的x都存在着y,使x所对应的函数值f(x)与y 所对应的函数值f(y)互为相反数,即f(y)=-f(x).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③。
高一数学必修1第一章第二节基本初等函数
精心整理第二章:函数及其表示第一讲:函数的概念:知识点一:函数的概念:典型例题:判断下列对应关系是否为集合A到集合B的函数:A=z,B=Z,A=Z,B=Z,A={-1,1},B={0},f:)))巩固练习:已知函数f(-3),的值时,求知识点三:函数相等:如果两个函数的定义域相等,并且对应关系完全一致,那么我们称这两个函数一致。
典型例题3:下列函数中,f(x)与g(x)相等的是()A、B、C、D、巩固练习:)(2))(4)知识点四:区间的表示:零售量是否为月份的函数?为什么?知识点二:分段函数:典型例题1:作出下列函数的图像:(1)f(x)=2x,x∈Z,且|x|≤2(2)y=|x|典型例题2:某市“招手即停”公共汽车票价按下列规则制定:(1)5公里以内(含5公里),票价2元(2)5公里以上,每增加5公里,票价增加一元(不足5公里按5f:(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点所代表的实数对应。
(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x ∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形};集合B={x|x是圆};对应关系f:每个三角形都有对应它的内切圆。
课堂练习:1、如图,把截面半径为25cm的圆形木头据成矩形木料,如果中元素作业布置:1、求下列函数的定义域:(1)2、下列哪一组中的函数f(x)与g(x)相等?3、画出下列函数的图像,并说明函数的定义域和值域(1)y=3x(2)(3)y=-4x+5(4)x2-6x+74、已知函数f(x)=3x2-5x+2,求的值。
高中数学必修一 第1讲函数及其表示
第4讲 函数及其表示基础梳理1.函数的基本概念(1)函数的定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A .(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫自变量,x 的取值范围A 叫做定义域,与x 的值对应的y 值叫函数值,函数值的集合{f (x )|x ∈A }叫值域.值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法 表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.两个防范(1)解决函数问题,必须树立优先考虑函数的定义域的良好习惯.(2)用换元法解题时,应注意换元后变量的范围.考向一 相等函数的判断【例1】下列函数中哪个与函数)0(≥=x x y 是同一个函数( )A y =( x )2B y=x x 2C 33x y =D y=2x 【例2】x x y 2=与⎩⎨⎧-∞∈-+∞∈=).0,(,);,0(,)(t t t t x f 是相同的函数吗? 考向二 求函数的定义域高中阶段所有基本初等函数求定义域应注意:(1)分式函数中分母不为0;(2)开偶次方时,被开方数大于等于0;(3)对数函数的真数大于0(如果底数含自变量,则底数大于0且不为1);(4)0次幂的底数不为0。
(5)正切函数2ππ+≠k x【例1】►求函数x x x x f -+--=4lg 32)(的定义域。
第一章 函数
第一讲函数及其表示知识梳理考点一 函数定义域一、 具体函数的定义域例1、(2015•湖北)函数()256lg 3x x f x x -+=+-的定义域为( )A .()2,3B .(]24,C .()(]23,3,4 D .()(]136-,3,例2、(2019•江苏)函数y =的定义域是 .例3、已知函数函数()1lg 4f x x ⎛⎫=- ⎪⎝⎭的定义域_______________.变式练习1. (山东)函数()f x =的定义域为( )A .()0,2B .(]02,C .()2+∞,D .[)2+∞,2. (2018秋•宜昌期中)函数()012f x x ⎛⎫=- ⎪⎝⎭的定义域为( )A .B .[)2+-∞,C .112+22⎡⎫⎛⎫-∞⎪ ⎪⎢⎣⎭⎝⎭,,D .1+2⎛⎫∞⎪⎝⎭,3. (2020•广东学业考试)函数()f x =的定义域是( )A .4+3⎛⎫∞ ⎪⎝⎭,B .53⎛⎫∞ ⎪⎝⎭-,C .4533⎛⎫ ⎪⎝⎭,D .4533⎛⎤⎥⎝⎦,4. (2013•山东)函数()f x =的定义域为( )A .(]30-,B .(]31-,C .(](]33-∞--,,0 D .()(]3-∞-,-3,15. (2017•深圳一模)函数y = )A .()2-,1B .[]2-,1C .()01,D .(]01,6. 已知函数()()lg tan 1f x x =-则()f x 的定义域是________________.二、 抽象函数定义域例1、(2019•西湖区校级模拟)已知函数()f x 的定义域为()11-,,则 函数()()11g x f f x x ⎛⎫=-- ⎪⎝⎭的定义域为( )A .()1,2B .()0,2C .()01,D .()11-,例2、(2019秋•辛集市校级月考)已知函数()21f x -的定义域为()0,1,则函数()13f x - 的定义域是( ) A .112⎛⎫⎪⎝⎭,B .103⎛⎫ ⎪⎝⎭,C .()11-,D .203⎛⎫⎪⎝⎭,例3、(2019秋•景德镇期中)若函数()y f x =的定义域为[]11-,,则()||1y f x =-的 定义域为( )A .[]11-,B .[]10-,C .[]01,D .[]22-,例4、已知()f x 是定义域在[)1+-∞,上的单调增函数,则不等式()222x x f e f -⎛⎫≥- ⎪⎝⎭ 的解集是_________. 变式练习1. (2019秋•崂山区校级期中)已知函数()y f x =的定义域为[]6-,1, 则函数()()212f xg x x +=+的定义域是( )A .()(]22-∞--,,3B .(]11-,3C .722⎡⎤--⎢⎥⎣⎦,D .[﹣,﹣2)(]2-,2. 已知函数()24y f x =-的定义域是[]15-,,则函数2x f ⎛⎫⎪⎝⎭的定义域是______________.3. 函数)1(+x f 的定义域[)32,-∈x ,求)21(+xf 的定义域.4. 设函数()2342||xf x e x +=-++,则不等式()()253f x f x -<-成立的x 的 取值范围是__________________.5. (2019秋•河南月考)已知函数f (x )的定义域是[]1,4,则函数()2()1x f g x x =-的定义域为( )A .[)(]01,1,2B .()0,2C .[]0,2D .()()0112,,6. (2019秋•城关区校级期中)已知函数()1f x +的定义域为[]21-,,则 函数()()122g x f x x =+--的定义域为( ) A .[]1,4 B .[]03, C .[)(]12,2,4 D .[)(]123,2,三、已知函数定义域求参例1、函数25lg 4y kx kx ⎛⎫=++ ⎪⎝⎭的定义域为R ,则实数k 的取值范围是 .例2、已知函数y =[]3-,6,求实数a b ,的值.例3、已知函数()2f x ax bx =+是定义在[]1a a -,2上的偶函数,那么a b +的值是例4、已知()f x 是定义在()4-,4上的奇函数,它在定义域内单调递减,若a 满足()()1230f a f a -+-<.求a 的取值范围.变式练习1. 已知函数()2log 21a y ax x =++.(1)若此函数的定义域为R ,求a 的取值范围;(2)若此函数的定义域为(()22+-∞-+∞,,求a 的值.2. 已知函数()f x =(Ⅰ)若()f x 的定义域为R ,试求a 的取值范围.(Ⅱ)若()f x 在[]2,3上有意义,试求a 的取值范围.3. 已知函数()22lg1a xy x a -=-+的定义域为集合A ,若4A ∉,则实数a 的取值集合是 .4. 已知()f x 是偶函数,且()f x 在[)0+∞,上是增函数,如果()()12f ax f x +≤-在112x ⎡⎤∈⎢⎥⎣⎦,上恒成立,则实数a 的取值范围是_________________.考点二 抽象函数的解析式例1、 已知()y f x =是一次函数,且有()1615f f x x =-⎡⎤⎣⎦,则()f x 的解析式为 .例2、已知函数)14fx =-,则()f x 的解析式为 .例3、已知函数22113f x x x x ⎛⎫+=++ ⎪⎝⎭,求()f x 的解析式,及 ()3f 及()2f 的值.变式练习1. (1)已知()f x 是一次函数,且()94f f x x =+⎡⎤⎣⎦,求()f x 的解析式.(2)已知()f x 为二次函数,且()02f =,()()11f x f x x +-=-,求()f x .2. 若)1fx =+()f x 的解析式为( )A .()2f x x x =-B .()()20f x x x x =-≥C .()()21f x x x x =-≥D .()2f x x x =+3. 已知()2211x f x x -=+,则()f x 的解析式为( )A .()21x f x x =+B .()221xf x x=-+ C .()221xf x x =+ D .()21xf x x =-+4. 若)1f x =+则()3f = ;()f x = .5. 已知函数()1221x f x x -=-+,则()f x =( ) A .2x +1﹣2x ﹣1B .2x +1﹣2x +1C .2x ﹣1﹣2x +1 D .2x ﹣1﹣2x ﹣16. 若函数()f x 对于任意实数x 恒有()()231f x f x x --=-,则()f x 等于( ) A .1x +B .1x -C .21x +D .33x +考点三 分段函数一、 求函数值例1、(2015•新课标Ⅱ)设函数()()211log 2121x x x f x x -⎧+-<⎪=⎨≥⎪⎩,,,则()()22log 12f f -+=( )A .3B .6C .9D .12例2、(2020•汉中二模)设()[]210(6)10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,,,则()5f 的值为( )A .10B .11C .12D .13例3、已知()()sin 023202x x f x f x x π⎧≤⎪⎪=⎨⎪-+>⎪⎩,,,则53f ⎛⎫⎪⎝⎭的值为 . 变式练习1. (2017秋•抚顺期末)若()()()200x x f x x x ⎧≥⎪=⎨-<⎪⎩,,,则()2f f -=⎡⎤⎣⎦( )A .2B .3C .4D .52.(2019•西湖区校级模拟)已知函数()()()3log 020x x x f x x >⎧⎪=⎨≤⎪⎩,,,则19f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值为 .3.(2017春•普宁市校级月考)已知()()sin 08520x x f x f x x π⎧≥⎪=⎨⎪++<⎩,,则()2016f -的值为( )A .810B .809C .808D .8064.(2019•深圳模拟)已知函数()()22log 0log 0x x a x x f x a x x ⎧>⎪=⎨+-<⎪⎩,,()01a a >≠且,若()()21224f f +-=,则a =二、求参数或自变量的值或范围例1、(2019•全国)已知()2200x x f x x x <⎧=⎨≥⎩,,,若()()20f a f +-=,则a = .例2、(2018·全国卷Ⅰ)设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]-∞,-1B .()0+∞,C .()10-,D .()0-∞,例3、(2017·全国卷Ⅲ)设函数f (x )=()+1020x x x f x x ≤⎧=⎨>⎩,,则满足()1+12f x fx ⎛⎫-> ⎪⎝⎭的x 的 取值范围是________.例4、(上海)设()()201x a x f x x a x x ⎧-≤⎪=⎨++>⎪⎩,,,若()0f 是()f x 的最小值,则a 的 取值范围为( )A .[]1-,2B .[]10-,C .[]12,D .[]02,变式练习1. (2019•佛山模拟)已知函数()()2cos f n n n π=,且()()1n a f n f n =++,则123100=a a a a +++⋅⋅⋅+( ) A .0B .100C .100-D .102002. (江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .3. (2018秋•苏州期末)已知函数()2211222x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,,,,若()3f x =,则x = .4. (2018秋•罗湖区校级月考)若函数()1sin x af x x x x a ⎧-<⎪=⎨⎪≥⎩,,,的值域是[]1-,1,则实数a 的取值范围是( )A .2π⎛⎤-∞- ⎥⎝⎦,B .(]1-∞-,C .[11]-,D .(][)11+-∞-∞,,家庭作业1. (2020•郑州二模)设函数y =A ,函数()ln 3y x =-的定义域为B ,则AB =( )A .()3-∞,B .()83--,C .{}3D .[)-3,3 2. 函数f (x )的定义域为12⎛⎫⎪⎝⎭,3,则()lg 1f x +的定义域为( )A .()0+∞,B .12⎛⎫⎪⎝⎭,3C .1100100⎛⎫ ⎪⎝⎭,D.100⎫⎪⎪⎝⎭3. 已知函数()f x 满足()()1120f f x x x x x⎛⎫+-=≠ ⎪⎝⎭,则()2f -=( )A .72-B .92C .72 D .92-4. (2015•新课标Ⅰ)函数()()12221log 11x x f x x x -⎧-≤⎪=⎨-+>⎪⎩,,,且()3f a =-,则()6f a -=( )A .74-B .54-C .34-D .14-5. (2020•焦作一模)已知函数()1212log 18212x x x f x x ⎧+≤<⎪=⎨⎪≤≤⎩,,.若()()()f a f b a b =<,则ab 的最小值为( ) AB .12CD6.已知函数()()2lg 3f x mx mx m =--+的定义域为R ,则实数m 的取值范围为 .7.(江苏)已知函数()21010x x f x x ⎧+≥=⎨<⎩,,,则满足不等式()()212f x f x ->的x 的范围是 .8.(2017春•双辽市校级月考)已知函数()()()()2211222x x f x x x xx +≤-⎧⎪=-<<⎨⎪≥⎩ (1)在坐标系中作出函数的图象; (2)若()12f a =,求a 的取值集合.第二讲 单调性考点梳理考点一:单调函数的定义自左向右看图象是上升的自左向右看图象是下降的考点二:复合函数单调性形如()()x g f y =类的函数叫做复合函数同增异减:“同增”指内层函数和外层函数单调性相同时,整体为单调递增函数;“异减”指内层函数和外层函数单调性不同时,整体为单调递减函数. (1)当()0≠x f 时,函数()x f 和()x f 1单调性相反; (2)当()x f 非负时,函数()x f 和()x f 单调性相同.考点三:单调性的性质1.增+增=增,增-减=增,减+减=减,减-增=减2.()()x f k x g ⋅=,当0>k 时,()()x g x f ,单调性相同;当0<k 时,()()x g x f ,单调性相反3.奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点的区间上单调性相反题型一.判断单调性例1、 下列函数()x f 中,满足“对任意()0,,21∞-∈x x ,当21x x <时,都有()()21x f x f <”的是( )A .()x x f 24-=B .()21-=x x f C .()222--=x x x f D .()x x f -=例2、已知四个函数的图象如图所示,其中在定义域内具有单调性的函数是( )A .B .C .D .例3、性质①()()R x x f x f ∈=-,;②在()∞+,0对任意()2121,x x x x ≠,都有()()()[]02121<--x f x f x x .下列函数中,性质①②均满足的是( )A .13+-=x y B .⎪⎩⎪⎨⎧<--≥+--=0,10,122x x x x x x yC .114-=x y D .()x x x y -+=1lg2变式训练1.下列函数既是偶函数,又在()∞+,0上为减函数的是( ) A.1-=x y B .xy 1ln= C .xxy --=22 D .⎪⎩⎪⎨⎧<->+=0,20,222x x x x x x y2.设函数()x f y =在R 上为增函数,则下列结论一定正确的是( ) A .()x f y 1=在R 上为减函数 B .()x f y =在R 上为增函数 C .()[]2x f y =在R 上为增函数 D .()x f y -=在R 上为减函数题型二.求单调区间例1、画出下列函数的图像,并写出其单调区间.① ()21+-=x x f ; ②()2.-=x x x f ; ③()⎩⎨⎧>+-≤+=0,220,12x x x x x f例2、设函数()⎪⎩⎪⎨⎧><++-≤≤-=20,1220,12x x x x x x x f 或则函数()x f 的单调递增区间为( )A .()()2,1,0,∞-B .()()2110,,,C .(][]1,0,0,∞-D .()()2,1,0,∞-变式训练1.如果函数()x f y =在区间I 上是增函数,且函数()xx f y =在区间I 上是减函数,那么称函数()x f y =是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数()542+-=x x x f 是区间I上的“缓增函数”,则“缓增区间”I 为( )A .[)∞+,2 B .[]52, C .[]50, D .[]20,2.函数()R x x f y ∈=,的图象如图所示,则函数()()x f x g ln -=的单调减区间是( )A .⎥⎦⎤ ⎝⎛e 10,B .⎥⎦⎤⎢⎣⎡1,1e C .[)∞+,1 D .⎥⎦⎤⎝⎛e 10,和[)∞+,1题型三.单调性的运用应用(一) 比较函数值或自变量的大小例1、已知函数()x f 的图象关于直线1=x 对称,当112>>x x 时,()()[]()01212<--x x x f x f 恒成立,设()()e f c f b f a ==⎪⎭⎫⎝⎛-=,2,21,则c b a ,,的大小关系为( ) A .b a c >> B .a b c >> C .b c a >>D .c a b >>2、已知函数()x x x f 2sin -=,且()3.022,31log ,23ln f c f b f a =⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=,则以下结论正确的是( ) A .b a c >> B .b c a >> C .c b a >> D .c a b >>变式训练1.定义在R 上的函数()x f 满足:①()1-=x f y 的图象关于直线1=x 对称;②对任意的(]0,,21∞-∈x x ,当21x x ≠时,不等式()()02121>--x x x f x f 成立。
【创新设计】(江苏专用)高考数学一轮复习 第二章 第1讲 函数及其表示配套课件 理 新人教A版
【训练3】 求下列函数的值域: (1)y=x2x-2-x+x 1;(2)y=2x-1- 13-4x. 解 (1)法一 (配方法)
∵y=1-x2-1x+1,又 x2-x+1=x-122+34≥34,
∴0<x2-1x+1≤43,∴-13≤y<1.
∴函数的值域为-13,1.
法二 (判别式法) 由 y=x2x-2-x+x 1,x∈R. 得(y-1)x2+(1-y)x+y=0. ∵y=1 时,x∈∅,∴y≠1.
考向一 函数与映射的概念
【例1】 (1)(2012·临沂调研)已知a,b为两个不相等的实 数,集合M={a2-4a,-1},N={b2-4b+1,-2}, f:x―→x表示把M中的元素x映射到集合N中仍为x, 则a+b等于________. (2)已知映射f:A―→B.其中A=B=R,对应关系f: x―→y=-x2+2x,对于实数k∈B,在集合A中不存在 元素与之对应,则k的取值范围是________.
又∵x∈R,∴Δ=(1-y)2-4y(y-1)≥0,解得-13≤y≤1. 综上得-13≤y<1.∴函数的值域为-13,1.
(2)法一 (换元法) 设 13-4x=t,则 t≥0,x=13-4 t2, 于是 f(x)=g(t)=2·13-4 t2-1-t =-12t2-t+121=-12(t+1)2+6, 显然函数 g(t)在[0,+∞)上是单调递减函数,
[方法总结] (1)当所给函数是分式的形式,且分子、分母是 同次的,可考虑用分离常数法;(2)若与二次函数有关, 可用配方法;(3)若函数解析式中含有根式,可考虑用换 元法或单调性法;(4)当函数解析式结构与基本不等式有 关,可考虑用基本不等式求解;(5)分段函数宜分段求 解;(6)当函数的图象易画出时,还可借助于图象求解.
1 第1讲 函数及其表示
知识点考纲下载函数及其表示了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.了解简单的分段函数,并能简单应用.单调性理解函数的单调性及其几何意义.理解函数的最大值、最小值及其几何意义.奇偶性结合具体函数,了解函数奇偶性的含义.指数函数了解指数函数模型的实际背景.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.知道指数函数是一类重要的函数模型.对数函数理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.知道对数函数是一类重要的函数模型.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).幂函数了解幂函数的概念.结合函数y=x,y=x2,y=x3,y=1x,y=x12的图象,了解它们的变化情况.函数的图象会运用函数图象理解和研究函数的性质.函数与方程结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.根据具体函数的图象,能够用二分法求相应方程的近似解.函数模型及其应用了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.函数与映射的概念函数映射两集合A、B设A,B是两个非空的数集设A,B是两个非空的集合对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应函数映射名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x)(x∈A) 对应f:A→B是一个映射(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.判断正误(正确的打“√”,错误的打“×”) (1)对于函数f :A →B ,其值域是集合B .( )(2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(4)若A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( ) 答案:(1)× (2)√ (3)× (4)× (5)×(教材习题改编)函数f (x )=2x -1+1x -2的定义域为( )A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C .由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B .对于A .函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B .定义域和对应关系都相同,是相等函数;对于C .函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.(教材习题改编)已知函数f (x )=⎩⎪⎨⎪⎧x (x +4),x ≥0,x (x -4),x <0,则f (1)+f (-3)=________.解析:f (1)=1×5=5,f (-3)=-3×(-3-4)=21,故f (1)+f (-3)=5+21=26. 答案:26若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:因为x -4有意义,所以x -4≥0,即x ≥4. 又因为y =x 2-6x +7=(x -3)2-2,所以y min =(4-3)2-2=1-2=-1. 所以其值域为[-1,+∞). 答案:[-1,+∞)求函数的定义域[典例引领](1)(2018·河南濮阳一高第二次检测)函数f (x )=log 2(1-2x )+1x +1的定义域为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫-∞,12 C .(-1,0)∪⎝⎛⎭⎫0,12 D .(-∞,-1)∪⎝⎛⎭⎫-1,12 (2)如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2 B .-1 C .1D .2(3)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.【解析】 (1)由1-2x >0,x +1≠0,得x <12且x ≠-1,所以函数f (x )=log 2(1-2x )+1x +1的定义域为(-∞,-1)∪⎝⎛⎭⎫-1,12,故选D . (2)因为-2x +a >0,所以x <a 2,所以a2=1,所以a =2.(3)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[)0,1.【答案】 (1)D (2)D (3)[)0,1[提醒] 定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.[通关练习]1.函数f (x )=1ln (x +1)+4-x 2的定义域为( )A.[)-2,0∪(]0,2B.()-1,0∪(]0,2C.[]-2,2D.(]-1,2解析:选B .由⎩⎪⎨⎪⎧x +1>0,ln (x +1)≠0,4-x 2≥0,得-1<x ≤2,且x ≠0. 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0a x -1≠0⇒⎩⎪⎨⎪⎧0≤x ≤2x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]3.若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是________. 解析:由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得:0≤m ≤4. 答案:[0,4]求函数的解析式[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,则f (x )的解析式为________. (2)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )的解析式为________.(3)若f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2,则f (x )的解析式为________. (4)函数f (x )满足方程2f (x )+f ⎝⎛⎭⎫1x =2x ,x ∈R 且x ≠0,则f (x )=________.【解析】 (1)配凑法:由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)换元法:令2x +1=t ,由于x >0,所以t >1且x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).(3)待定系数法:设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3.所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.所以⎩⎪⎨⎪⎧4a =4,4a +2b =2,所以⎩⎪⎨⎪⎧a =1,b =-1,所以所求函数的解析式为f (x )=x 2-x +3. (4)解方程组法:因为2f (x )+f ⎝⎛⎭⎫1x =2x ,① 将x 换成1x ,则1x 换成x ,得2f ⎝⎛⎭⎫1x +f (x )=2x .② 由①②消去f ⎝⎛⎭⎫1x ,得3f (x )=4x -2x . 所以f (x )=43x -23x(x ∈R 且x ≠0)【答案】 (1)f (x )=x 2-2(x ≥2或x ≤-2) (2)f (x )=lg 2x -1(x >1) (3)f (x )=x 2-x +3 (4)43x-23x(x ∈R 且x ≠0)若本例(4)条件变为2f (x )+f (-x )=2x ,求f (x ). 解:因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .求函数解析式的4种方法[通关练习]1.已知f(x+1)=x+2x,则f(x)的解析式为f(x)=__________.解析:法一:设t=x+1,则x=(t-1)2(t≥1);代入原式有f(t)=(t-1)2+2(t-1)=t2-2t+1+2t-2=t2-1.故f(x)=x2-1(x≥1).法二:因为x+2x=(x)2+2x+1-1=(x+1)2-1,所以f(x+1)=(x+1)2-1(x+1≥1),即f(x)=x2-1(x≥1).答案:x2-1(x≥1)2.设y=f(x)是二次函数,方程f(x)=0有两个相等实根,且f′(x)=2x+2,则f(x)的解析式为f(x)=__________.解析:设f(x)=ax2+bx+c(a≠0),则f′(x)=2ax+b=2x+2,所以a=1,b=2,f(x)=x2+2x+c.又因为方程f(x)=0有两个相等的实根,所以Δ=4-4c=0,c=1,故f(x)=x2+2x+1.答案:x2+2x+1分段函数(高频考点)分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题难度不大,多为容易题或中档题.高考对分段函数的考查主要有以下四个命题角度: (1)由分段函数解析式,求函数值(或最值); (2)由分段函数解析式与方程,求参数的值(或范围); (3)由分段函数解析式,求解不等式.(4)由分段函数解析式,判断函数的奇偶性.(本章第3讲再讲解)[典例引领]角度一 由分段函数解析式,求函数值(或最值)(1)已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .4 C .2D .-4(2)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x +1,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14的值是________. 【解析】 (1)由题意得f ⎝⎛⎭⎫43=2×43=83. f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13=f ⎝⎛⎭⎫23=2×23=43. 所以f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=4.(2)由题意可得f ⎝⎛⎭⎫14=log 214=-2, 所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2+1=109. 【答案】 (1)B (2)109角度二 由分段函数解析式与方程,求参数的值 (或范围)(分类讨论思想)(2017·高考山东卷)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8【解析】 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,因为f (a )=f (a +1),所以a =2a ,解得a =14或a =0(舍去).所以f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a >1时,a +1>2,所以f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,所以2(a -1)=2a ,无解.当a =1时,a +1=2,f (1)=0,f (2)=2,不符合题意.综上,f ⎝⎛⎭⎫1a =6.故选C . 【答案】 C角度三 由分段函数解析式,求解不等式(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.【解析】 当x >0时,f (x )=2x >1恒成立,当x -12>0,即x >12时,f ⎝⎛⎭⎫x -12=2x -12>1,当x -12≤0,即0<x ≤12时,f ⎝⎛⎭⎫x -12=x +12>12,则不等式f (x )+f ⎝⎛⎭⎫x -12>1恒成立.当x ≤0时,f (x )+f ⎝⎛⎭⎫x -12=x +1+x +12=2x +32>1,所以-14<x ≤0.综上所述,x 的取值范围是⎝⎛⎭⎫-14,+∞. 【答案】 ⎝⎛⎭⎫-14,+∞分段函数问题的求解策略(1)分段函数的求值问题,首先确定自变量的值属于哪个区间,然后选定相应的解析式代入求解.(2)对求含有参数的自变量的函数值,如果不能确定自变量的范围,那么应采取分类讨论. (3)解由分段函数构成的不等式,一般要根据分段函数的不同分段区间进行分类讨论.[通关练习]1.设f (x )=⎩⎨⎧1-x ,x ≥0,2x ,x <0,则f (f (-2))=( )A .-1 B.14 C.12D.32 解析:选C .由题意得f (f (-2))=f (2-2)=f ⎝⎛⎭⎫14=1-14=1-12=12. 2.已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B .由题意得f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3, 解得a =12.故f (-3)=(12)-3+1=9,从而f (f (-3))=f (9)=log 39=2.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2, 则9+6a >3a 2,即a 2-2a -3<0, 解得-1<a <3. 答案:(-1,3)与函数有关的新定义问题[典例引领]若函数f (x )满足:在定义域D 内存在实数x 0,使得f (x 0+1)=f (x 0)+f (1)成立,则称函数f (x )为“1的饱和函数”.给出下列三个函数: ①f (x )=1x ; ②f (x )=2x ; ③f (x )=lg(x 2+2).其中是“1的饱和函数”的所有函数的序号为( ) A .①③ B .② C .①②D .③【解析】 对于①,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则1x 0+1=1x 0+1,所以x 20+x 0+1=0(x 0≠0,且x 0≠-1),显然该方程无实根,因此①不是“1的饱和函数”;对于②,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则2x 0+1=2x 0+2,解得x 0=1,因此②是“1的饱和函数”;对于③,若存在实数x 0,满足f (x 0+1)=f (x 0)+f (1),则lg[(x 0+1)2+2]=lg(x 20+2)+lg(12+2),化简得2x 20-2x 0+3=0,显然该方程无实根,因此③不是“1的饱和函数”. 【答案】 B解决与函数有关的新定义问题的策略(1)根据定义合理联想,即分析有关信息,通过联想和类比、拆分或构造,可以将新函数转化为我们熟知的基本初等函数进行求解.(2)捕捉解题信息,紧扣定义,根据定义与条件一步步进行推理求解.(3)合理、巧妙的赋值,即给x ,y 等量一些特殊的数值,求得特殊函数值,从而将新定义的函数进行化简和转化,利用已有函数知识进一步求解.[通关练习]1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( ) A .1个B .2个C.3个D.4个解析:选C.由x2+1=1得x=0,由x2+1=3得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.(2018·石家庄第一次模拟)若定义在R上的函数f(x)当且仅当存在有限个非零自变量x,使得f(-x)=f(x),则称f(x)为“类偶函数”,则下列函数中为类偶函数的是()A.f(x)=cos x B.f(x)=sin xC.f(x)=x2-2x D.f(x)=x3-2x解析:选D.A中函数为偶函数,则在定义域内均满足f(x)=f(-x),不符合题意;B中,当x =kπ(k∈Z)时,满足f(x)=f(-x),不符合题意;C中,由f(x)=f(-x),得x2-2x=x2+2x,解得x=0,不符合题意;D中,由f(x)=f(-x),得x3-2x=-x3+2x,解得x=0或x=±2,满足题意,故选D.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.判断一个函数解析式是否成立,一是根据“函数定义域中的任意一个自变量x在对应关系下都有唯一的函数值y与其对应”进行判断;二是结合函数解析式判断是否满足题目所给的特性.分段函数图象的画法及简单应用(1)分段函数是一个函数,只有一个图象,作图时只能将各段函数图象画在同一坐标系中,而不能将它们分别画在不同的坐标系中;根据函数的概念,可知在函数图象中,横坐标相同的地方不能有两个或两个以上的点;画每一段函数图象时,可以先不管定义域的限制,用虚线画出其图象,再用实线保留其在该段定义域内的图象即可.(2)已知分段函数的函数值范围求自变量(或参数)的范围问题,一般画出分段函数的图象,观察在相应区间上函数图象与相应直线交点的横坐标的范围,列出函数满足的不等式(组),求解即可.易错防范(1)因为函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R,一定要注明函数的定义域.(2)分段函数无论分成几段,都是一个函数,求分段函数的函数值,如果自变量的范围不确定,要根据定义域分成的不同子集进行分类讨论.1.(2018·广东深圳模拟)函数y =-x 2-x +2ln x 的定义域为( )A .(-2,1)B .[-2,1]C .(0,1)D .(0,1] 解析:选C.由题意得⎩⎪⎨⎪⎧-x 2-x +2≥0,x >0,ln x ≠0,解得0<x <1,故选C .2.(2018·宝鸡市质量检测(一))已知函数f (x )=⎩⎪⎨⎪⎧2cos πx ,x ≤0f (x -1)+1,x >0,则f (43)的值等于( )A .-1B .1C .32D .52解析:选B .依题意得f (43)=f (13)+1=f (-23)+1+1=2cos(-2π3)+2=2×(-12)+2=1,选B .3.已知f (12x -1)=2x -5,且f (a )=6,则a 等于( )A .-74B .74C .43D .-43解析:选B.令t =12x -1,则x =2t +2,所以f (t )=2(2t +2)-5=4t -1, 所以f (a )=4a -1=6,即a =74.4.已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域为( ) A .[-3,7] B .[-1,4] C .[-5,5]D.⎣⎡⎦⎤0,52 解析:选D .因为y =f (x +1)的定义域为[-2,3],所以-1≤x +1≤4. 由-1≤2x -1≤4,得0≤x ≤52,即y =f (2x -1)的定义域为⎣⎡⎦⎤0,52. 5.定义a ⊕b =⎩⎪⎨⎪⎧a ×b ,a ×b ≥0,a b ,a ×b <0,设函数f (x )=ln x ⊕x ,则f (2)+f ⎝⎛⎭⎫12=( ) A .4ln 2 B .-4ln 2 C .2D .0解析:选D .2×ln 2>0,所以f (2)=2×ln 2=2ln 2. 因为12×ln 12<0,所以f ⎝⎛⎭⎫12=ln1212=-2ln 2. 则f (2)+f ⎝⎛⎭⎫12=2ln 2-2ln 2=0. 6.函数f (x ),g (x )分别由下表给出.x 1 2 3 f (x )131x 1 2 3 g (x )321解析:因为g (1)=3,f (3)=1,所以f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 27.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2. 答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤28.设函数f (x )=⎩⎨⎧x2-1,x ≥0,1x,x <0,若f (f (a ))=-12,则实数a =________.解析:若f (a )≥0,则f (a )=1,此时只能是a >0,于是a =4;若f (a )<0,则f (a )=-2,此时只能是a <0,于是a =-12(若a >0,由a2-1=-2,解得a =-2不满足题意).答案:4或-129.已知f (x )=⎩⎪⎨⎪⎧f (x +1),-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f (-32)的值;(2)若f (a )=4且a >0,求实数a 的值.解:(1)由题意f (-32)=f (-32+1)=f (-12)=f (12)=2.(2)当0<a <2时,由f (a )=2a +1=4.得a =32.当a ≥2时,由f (a )=a 2-1=4得a =5或-5(舍).故a =32或 5.10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式. 解:(1)g (2)=1,f (g (2))=f (1)=0; f (2)=3,g (f (2))=g (3)=2.(2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.同理可得g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1.1.设函数f (x )=⎩⎪⎨⎪⎧-1,x >0,1,x <0,则(a +b )+(a -b )·f (a -b )2(a ≠b )的值为( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数解析:选C .若a -b >0,即a >b ,则f (a -b )=-1,则(a +b )+(a -b )·f (a -b )2=12[(a+b )-(a -b )]=b (a >b );若a -b <0,即a <b ,则f (a -b )=1,则(a +b )+(a -b )·f (a -b )2=12[(a +b )+(a -b )]=a (a <b ),综上,选C . 2.设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):∀x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A .3.设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围为________.解析:由f (f (a ))=2f (a )得,f (a )≥1. 当a <1时,有3a -1≥1, 所以a ≥23,所以23≤a <1.当a ≥1时,有2a ≥1,所以a ≥0,所以a ≥1,综上,a ≥23.答案:⎣⎡⎭⎫23,+∞ 4.已知函数f (x )=x +a x +b对于定义域内的任何x 均有f (x )+f ⎝⎛⎭⎫1x =0,则a 2 018+b 2 018=__________.解析:由题意得x +a x +b +1x+a1x +b =0,即(a +b )x 2+2(ab +1)x +a +b =0.所以⎩⎪⎨⎪⎧a +b =0ab +1=0,则有a =1,b =-1或a =-1,b =1. 所以a 2 018+b 2 018=(-1)2 018+12 018=2. 答案:25.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式;(2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1)得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x≥0.(2)f (x )的图象如图:6.某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨为3.00元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x 吨,3x 吨. (1)求y 关于x 的函数;(2)若甲、乙两用户该月共交水费26.40元,分别求出甲、乙两户该月的用水量和水费. 解:(1)当甲的用水量不超过4吨时,即5x ≤4, 乙的用水量也不超过4吨,y =(5x +3x )×1.8=14.4x ;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x ≤4且5x >4时,y =4×1.8+3x ×1.8+3(5x -4)=20.4x -4.8;当乙的用水量超过4吨时,即3x >4,y =24x -9.6,所以y =⎩⎪⎨⎪⎧14.4x ,0≤x ≤45,20.4x -4.8,45<x ≤43,24x -9.6,x >43.(2)由于y =f (x )在各段区间上均为单调递增, 当x ∈⎣⎡⎦⎤0,45时,y ≤f ⎝⎛⎭⎫45<26.4; 当x ∈⎝⎛⎦⎤45,43时,y ≤f ⎝⎛⎭⎫43<26.4;当x ∈⎝⎛⎭⎫43,+∞时,令24x -9.6=26.4, 解得x =1.5.所以甲户用水量为5x =7.5吨,所交水费为y 1=4×1.80+3.5×3.00=17.70(元);乙户用水量为3x =4.5吨,所交水费y 2=4×1.80+0.5×3.00=8.70(元).。
第一节 函数及其表示
第一节 函数及其表示
总纲目录
栏目索引
总纲目录 教材研读
1.函数与映射的概念 2.函数的有关概念 3.分段函数
考点突破
考点一 函数的定义域 考点二 求函数的解析式
教材研读
栏目索引
教材研读
1.函数与映射的概念
函数 两集合A、B 设A、B是两个① 非空数集 映射 设A、B是两个② 非空集
对应关系f:A→B 按照某种确定的对应关系f,使对于集合 按某种确定的对应关系f,使对于集 A中的③ 任意 一个数x,在集合B中 合A中的⑤ 任意 一个元素x,在 的元
2
x ( x )2 D.f(x)= 和g(x)= 2 x ( x)
答案 D A中两个函数的定义域不同;B中y=x0的x不能取0;C中两函数 的对应关系不同.故选D.
教材研读
栏目索引
3.函数f(x)= A.(0,2) 答案 C
1 的定义域为 ( log 2 x 1
C )
D.[2,+∞)
B.(0,2]
考点突破
栏目索引
1-3
2x 若函数f(x)=
2
2 ax a
1 的定义域为R,则实数a的取值范围是 [-1,0]
.
答案 [-1,0]
解析
2x 2 axa -1≥0,x∈R恒成立,则x2+2ax-a≥0,x∈ 由函数定义域为R得
2
R恒成立,则Δ=(2a)2+4a≤0,解得-1≤a≤0.
教材研读
栏目索引
3.分段函数
若函数在其定义域内,对于定义域内的不同取值区间,有着不同的
对应关系 ,这样的函数通常叫做分段函数.分段函数虽然由几部分 组成,但它表示的是一个函数.
旧教材适用2023高考数学一轮总复习第二章函数与基本初等函数第1讲函数及其表示课件
B.(-1,1]
C.(-,-1)
D.(-4,0)∪(0,1]
答案 A
解析 要使函数 f(x)有意义,应有
-x2-3x+4≥0,
x+1>0,
解得-1<x<0 或 0<x≤1,故选 A.
x+1≠1,
3 . (2021·陕 西 省 高 三 教 学 质 量 检 测 ( 四 )) 已 知 函 数 f(x) =
□06 唯一确定
A→B
一个元素 x,在集合 B 中都有 合 B 中都有□04 唯一确定的
的元素 y 与之对应
数 f(x)与之对应
名称 记法
称对应 f:A→B 为从集 称 f:A→B 为从集合 A 到集
合 A 到集合 B 的一个 合 B 的一个函数
映射
y=f(x),x∈A
f:A→B
2.函数的定义域、值域
x-1 B.y= x-1与 y= x-1 C.y=4lg x 与 y=2lg x2 D.y=(3 x)3 与 y=x 答案 D
解析 A 中,y=x-1 与 y= (x-1)2=|x-1|的解析式不同,两函数
不相等;B 中,y=
x-1的定义域为[1,+∞),y=
x-1 x-1的定义域为(1,
+∞),定义域不同,两函数不相等;C 中,y=4lg x 与 y=2lg x2=4lg |x|的
A.f:x→y=12x B.f:x→y=13x C.f:x→y=23x D.f:x→y= x 答案 C 解析 依据函数的概念,集合 A 中任一元素在集合 B 中都有唯一确定 的元素与之对应,故选项 C 不符合.
-x2-3x+4 2.函数 f(x)= lg (x+1) 的定义域为( )
A.(-1,0)∪(0,1]
函数的概念及其表示法
时,有x=f^(-1)(y),则称x=f^(-1)(y)为y=f(x)的反函数。
性质
02
原函数和反函数在相应的区间上单调性相同。
求导法则
03
原函数的导数等于反函数的导数的倒数。
05 函数的实际应用
一次函数的应用
01
02
03
线性回归分析
一次函数是线性回归分析 的基础,通过拟合数据点, 可以预测因变量的变化趋 势。
函数的概念及其表示法
目录
• 函数的基本概念 • 函数的表示法 • 函数的定义域和值域 • 函数的运算 • 函数的实际应用
01 函数的基本概念
函数的定义
01
函数是一种特殊的对应关系,它 使得集合A中的每一个元素都能通 过某种法则对应到集合B中的唯一 一个元素。
02
函数通常用大写字母表示,如f(x), g(x)等,其中x是自变量,f(x)是因 变量。
初等函数
由代数函数和三角函数经过有限次四则运算 得到的函数。
三角函数
与三角学相关的函数,如正弦函数、余弦函 数等。
超越函数
不能表示为有限次四则运算的初等函数的函 数,如自然对数函数、正切函数等。
02 函数的表示法
解析法
解析法
使用数学表达式来表示函数,如 $f(x) = x^2 + 2x + 1$。解析法 精确地描述了函数与自变量之间的数学关系,适用于需要精确计算 的情况。
表格法
01 02
表格法
列出自变量和因变量的若干组对应数值,以表格的形式表示函数。适用 于已知部分函数值的情况,可以通过插值或拟合的方法确定其他点的函 数值。
优点
简单、直观,能够提供一定程度的近似值。
高中数学必修一之知识讲解-函数及其表示方法
函数及其表示方法【学习目标】(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。
2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]x a x b a b{|},≤<=;x a x b a b<≤=;[){|},(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。
高中数学教案 第1讲 函数的概念及其表示
第1讲函数的概念及其表示1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.1.函数的概念一般地,设A,B是非空的□1实数集,如果对于集合A中的□2任意一个数x,按照某种确定的对应关系f,在集合B中都有□3唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.函数的三要素:□4定义域、□5值域、对应关系.2.同一个函数(1)前提条件:①定义域□6相同;②对应关系□7相同.(2)结论:这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有□8解析法、□9列表法和图象法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的□10并集.常用结论1.直线x=a(a是常数)与函数y=f(x)的图象至多有1个交点.2.注意以下几类函数的定义域:(1)分式型函数,定义域为分母不为零的实数集合.(2)偶次方根型函数,定义域为被开方式非负的实数集合.(3)f(x)为对数式时,函数的定义域是真数为正数、底数为正且不为1的实数集合.(4)若f(x)=x0,则定义域为{x|x≠0}.(5)正切函数y=tan x的定义域为{x|x≠kπ+π2,k∈Z}.1.思考辨析(在括号内打“√”或“×”)(1)函数y=1与y=x0是同一个函数.()(2)对于函数f:A→B,其值域是集合B.()(3)若A=B=R,f:x→y=log2x,其对应是从A到B的函数()(4)若两个函数的定义域与值域分别相同,则这两个函数是同一个函数.()答案:(1)×(2)×(3)×(4)×2.回源教材(1)下列函数中与函数y=x是同一个函数的是()A.y=(x)2B.u=3v3C.y=x2D.m=n2n解析:B函数y=(x)2与函数m=n2n和y=x的定义域不同,则不是同一个函数,函数y=x2=|x|与y=x的解析式不同,也不是同一个函数.故选B.(2)已知f(x)=x+3+1x+2,若f(a)=133,则a=.解析:f(a)=a+3+1a+2=133,解得a=1或-5 3 .答案:1或-5 3(3)函数f(x)=-x2+2x+3+1x-2的定义域为.解析:x2+2x+3≥0,-2≠0得-1≤x≤3且x≠2.故f(x)的定义域为[-1,2)∪(2,3].答案:[-1,2)∪(2,3]函数的概念1.(多选)下列对应关系是集合A到集合B的函数的为()A.A=R,B={y|y>0},f:x→y=|x|B.A=Z,B=Z,f:x→y=x2C.A=Z,B=Z,f:x→y=xD.A={-1,1},B={0},f:x→y=0解析:BD对于A,A中有元素0,在对应关系下y=0,不在集合B中,不是函数;对于B,符合函数的定义,是从A到B的函数;对于C,A中元素x<0时,B中没有元素与之对应,不是函数;对于D,A中任意元素,在对应关系下y=0,在集合B中,是从A到B的函数.故选BD.2.(多选)下列每组中的函数不是同一个函数的是()A.f(x)=|x|,g(x)=(x)2B.f(t)=|t|,g(x)=x2C.f(x)=-2x3,g(x)=-2xD.f(x)=x2-9x-3,g(x)=x+3解析:ACD对于A,函数f(x)的定义域为R,函数g(x)的定义域为[0,+∞),所以这两个函数不是同一个函数;对于B,因为g(x)=x2=|x|,且f(t),g(x)的定义域均为R,所以这两个函数是同一个函数;对于C,f(x)=-2x3=-x-2x,f(x)和g(x)的对应关系不同,所以这两个函数不是同一个函数;对于D,函数f(x)的定义域为{x|x∈R,且x≠3},函数g(x)的定义域为R,所以这两个函数不是同一个函数.故选ACD.3.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y =f (x )的图象可能是()解析:B A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2],只有B 可能.反思感悟函数概念的判定方法(1)函数的定义要求非空数集A 中的任何一个元素在非空数集B 中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,但B 中有可能存在与A 中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同.函数的定义域例1(1)(2024·雅安期末)函数y =ln (x +1)4-x2的定义域为()A.(-1,2)B.(-1,2]C.(1,2)D.(1,2]解析:A +1>0,-x 2>0得-1<x <2,所以函数y =ln (x +1)4-x 2的定义域为(-1,2).故选A.(2)(2024·哈尔滨九中考试)已知函数y =f (x )的定义域是[-2,3],则函数y =f (2x -1)的定义域是()A.[-5,5]B.-12,2C.[-2,3]D.12,2解析:B函数y =f (x )的定义域是[-2,3],则-2≤2x -1≤3,解得-12≤x≤2,所以函数y =f (2x -1)的定义域是-12,2.故选B.反思感悟函数定义域的求解方法(1)求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.(2)求抽象函数定义域的方法:①若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域可由不等式a ≤g (x )≤b 求出.②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域.训练1(1)函数f (x )=-x 2+x +6+|x |x -1的定义域为()A.(-∞,-2]∪[3,+∞)B.[-3,1)∪(1,2]C.[-2,1)∪(1,3]D.(-2,1)∪(1,3)解析:Cx 2+x +6≥0,-1≠0,解得-2≤x ≤3且x ≠1.(2)(2024·南昌二中第四次考试)已知函数f (x )的定义域为(1,+∞),则函数F (x )=f (2x -3)+3-x 的定义域为()A.(2,3]B.(-2,3]C.[-2,3]D.(0,3]解析:A 函数f (x )的定义域为(1,+∞),x -3>1,-x ≥0,>2,≤3,即2<x ≤3,故函数F (x )的定义域为(2,3].故选A.函数的解析式例2(1)已知f(1-sin x)=cos2x,求f(x)的解析式;(2)已知f(x+1x )=x2+1x2,求f(x)的解析式;(3)已知f(x)是一次函数且3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式;(4)已知f(x)满足2f(x)+f(-x)=3x,求f(x)的解析式.解:(1)(换元法)设1-sin x=t,t∈[0,2],则sin x=1-t,∵f(1-sin x)=cos2x=1-sin2x,∴f(t)=1-(1-t)2=2t-t2,t∈[0,2].即f(x)=2x-x2,x∈[0,2].(2)(配凑法)∵f(x+1x)=x2+1x2=(x+1x)2-2,∴f(x)=x2-2,x∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f(x)是一次函数,可设f(x)=ax+b(a≠0).∴3[a(x+1)+b]-2[a(x-1)+b]=2x+17.即ax+(5a+b)=2x+17,a=2,5a+b=17,a=2,b=7.∴f(x)的解析式是f(x)=2x+7.(4)(解方程组法)∵2f(x)+f(-x)=3x,①∴将x用-x替换,得2f(-x)+f(x)=-3x,②由①②解得f(x)=3x.反思感悟函数解析式的求法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达方式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.(4)方程思想:已知关于f (x )与f (1x )或f (-x )等的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).训练2(1)已知f (x +1)=x -2x ,则f (x )=.解析:令t =x +1,则t ≥1,x =(t -1)2,代入原式有f (t )=(t -1)2-2(t -1)=t 2-4t +3(t ≥1),所以f (x )=x 2-4x +3(x ≥1).答案:x 2-4x +3(x ≥1)(2)已知f (x )满足f (x )-2f (1x )=2x ,则f (x )=.解析:∵f (x )-2f (1x)=2x ,①以1x 代替①中的x ,得f (1x )-2f (x )=2x ,②①+②×2得-3f (x )=2x +4x ,∴f (x )=-2x 3-43x .答案:-2x 3-43x(3)已知f [f (x )]=4x +9,且f (x )为一次函数,则f (x )=.解析:因为f (x )为一次函数,所以设f (x )=kx +b (k ≠0),所以f [f (x )]=f (kx +b )=k (kx +b )+b =k 2x +b (k +1),因为f [f (x )]=4x +9,所以k 2x +b (k +1)=4x +9恒成立,2=4,(k +1)=9,=2,=3=-2,=-9,所以f (x )=2x +3或f (x )=-2x -9.答案:2x +3或-2x -9分段函数求分段函数的函数值例3已知函数f (x )e x +1,x <1,f x -2),x ≥1,则f (3)=.解析:因为f (x )e x +1,x <1,f x -2),x ≥1,所以f (3)=f (1)=f (-1)=e -1+1=1.答案:1分段函数与方程、不等式例4(1)(2024·济宁模拟)已知a ∈R ,函数f (x )log 2(x 2-3),x >2,3x +a ,x ≤2.f (f (5))=2,则a =.解析:因为5>2,所以f (5)=log 2(5-3)=1≤2,所以f (f (5))=f (1)=3+a =2,解得a =-1.答案:-1(2)(2024·咸阳模拟)已知函数f (x )2x ,x ≤0,|ln x |,x >0,则不等式f (x )<1的解集为.解析:当x ≤0时,f (x )=2x <1=20,解得x <0;当x >0时,f (x )=|ln x |<1,即-1<ln x <1,解得1e<x <e.综上,不等式f (x )<1的解集为(-∞,0)∪(1e ,e).答案:(-∞,0)∪(1e,e)反思感悟分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.训练3(1)(2024·合肥模拟)已知f (x )e x -2,x <4,log 5(x -1),x ≥4,则f (f (26))等于()A.1 5B.1 eC.1D.2解析:C f(26)=log5(26-1)=log525=2,∴f(f(26))=f(2)=e2-2=e0=1.(2)(2024·唐山模拟)设函数f(x)2+1,x≤0,x,x>0.若f(a)=0,则a=.解析:当a≤0时,a2+1≥1≠0(舍去);当a>0时,lg a=0,a=1,故实数a的值为1.答案:1限时规范训练(六)A级基础落实练1.(多选)(2024·宁德高级中学第一次月考)下列函数中,与函数y=x+2是同一个函数的是()A.y=(x+2)2B.y=3x3+2C.y=x2x+2 D.y=t+2解析:BD函数y=x+2的定义域为R.对于A,y=(x+2)2的定义域为[-2,+∞),故A错误;对于B,y=3x3+2=x+2,定义域为R,解析式相同,故B正确;对于C,y=x2x+2的定义域为{x|x≠0},故C错误;对于D,y=t+2,定义域为R,解析式相同,故D正确.故选BD.2.函数f(x)=lg(x-2)+1x-3的定义域是()A.(2,+∞)B.(2,3)C.(3,+∞)D.(2,3)∪(3,+∞)解析:D∵f(x)=lg(x-2)+1x-3,-2>0,-3≠0,解得x>2,且x≠3,∴函数f(x)的定义域为(2,3)∪(3,+∞).3.(多选)如图所示,可以表示y是x的函数的图象是()解析:ACD对于B:对每一个x的值,不是有唯一确定的y值与之对应,不是函数图象;对于A、C、D:对每一个x的值,都有唯一确定的y值与之对应,是函数图象.故选ACD.4.(2023·成都期末)已知函数f(x)x+2),x≤0,x,x>0,则f(f(-2))=()A.4B.8C.16D.32解析:C f(-2)=f(0)=f(2)=22=4,f(4)=16,故选C.5.一次函数f(x)满足:f[f(x)-2x]=3,则f(1)=()A.1B.2C.3D.5解析:C设f(x)=kx+b(k≠0),∴f[f(x)-2x]=f(kx+b-2x)=k(kx+b-2x)+b=(k2-2k)x+kb+b=3,2-2k=0,+b=3,解得k=2,b=1,∴f(x)=2x+1,∴f(1)=3.6.(2024·潍坊模拟)存在函数f(x)满足:对任意x∈R都有()A.f(|x|)=x3B.f(sin x)=x2C.f(x2+2x)=|x|D.f(|x|)=x2+1解析:D对于A,当x=1时,f(|1|)=f(1)=1;当x=-1时,f(|-1|)=f(1)=-1,不符合函数定义(一个自变量的值只有唯一一个函数值与之对应),A错误.对于B,令x=0,则f(sin x)=f(0)=0,令x=π,则f(sinπ)=f(0)=π2,不符合函数定义,B错误.对于C,令x=0,则f(0)=0,令x=-2,则f(0)=f((-2)2+2×(-2))=2,不符合函数定义,C错误.对于D,f(|x|)=x2+1=|x|2+1,x∈R,则|x|≥0,则存在x≥0时,f(x)=x2+1,符合函数定义,即存在函数f(x)=x2+1(x≥0)满足:对任意x∈R都有f(|x|)=x2+1,D正确.故选D.7.(2024·河南适应性考试)已知函数f(x)x+1-1,x≥1,log3(x+5)-2,x<1,且f(m)=-2,则f(m+6)=()A.-16B.16C.26D.27解析:C若m≥1,则f(m)=3m+1-1=-2,所以3m+1=-1,无解;若m<1,则f(m)=-log3(m+5)-2=-2,所以log3(m+5)=0,所以m=-4,所以f(m +6)=f(2)=32+1-1=26,故选C.8.(2024·江苏三校联考)已知函数y=f(2x-1)的定义域是[-2,3],则y=f(x)x+2的定义域是()A.[-2,5]B.(-2,3]C.[-1,3]D.(-2,5]解析:D因为函数y=f(2x-1)的定义域是[-2,3],所以-2≤x≤3,所以-5≤2x-1≤5,所以函数y=f(x)的定义域为[-5,5].要使y=f(x)x+2有意义,则5≤x≤5,+2>0,解得-2<x≤5,所以y=f(x)x+2的定义域是(-2,5].故选D.9.已知函数f(2x+1)=4x2-1,则f(x)=.解析:f(2x+1)=(2x+1)2-2(2x+1),所以f(x)=x2-2x.答案:x2-2x10.设函数f(x),x≤0,x,x>0,则满足f(x+2)<f(2x)的x取值范围为.解析:当x≤-2时,f(x+2)=1,f(2x)=1,则1<1,矛盾;当-2<x≤0时,f(x+2)=2x+2,f(2x)=1,则2x+2<1⇒x<-2,矛盾;当x>0时,f(x+2)=2x+2,f(2x)=22x,则2x+2<22x⇒x+2<2x⇒x>2,所以x >2.综述:x取值范围为(2,+∞).答案:(2,+∞)11.(2024·昆明市第一中学考试)已知f(x+1)=1x,则f(x)=,其定义域为.解析:0,0,解得x>0,所以f(x+1)=1x(x>0),令x+1=t,则t>1,x=(t-1)2,所以f(t)=1(t-1)2(t>1),所以f(x)=1(x-1)2(x>1).答案:1(x-1)2(1,+∞)12.已知函数f(x)的定义域为[-2,2],则函数g(x)=f(2x)+1-2x的定义域为.解析:2≤2x≤2,-2x≥0,解得-1≤x≤0,所以函数g(x)的定义域是[-1,0].答案:[-1,0]B级能力提升练13.(2024·东北师大附中模拟)已知函数f(x)满足2f(x)+f(-x)=3x2+2x+6,则()A.f(x)的最小值为2B.∃x∈R,2x2+4x+3f(x)<2C.f(x)的最大值为2D.∀x∈R,2x2+4x+5f(x)<2解析:B因为2f(x)+f(-x)=3x2+2x+6,2f(-x)+f(x)=3x2-2x+6,所以f(x)=x2+2x+2.对于A,C,f(x)=(x+1)2+1≥1,所以f(x)的最小值为1,无最大值,故A,C错误;对于B,2x2+4x+3f(x)=2x2+4x+3x2+2x+2=2-1x2+2x+2,因为0<1x2+2x+2≤1,所以1≤2-1x2+2x+2<2,即1≤2x2+4x+3f(x)<2,故B正确;对于D,2x2+4x+5f(x)=2x2+4x+5x2+2x+2=2+1x2+2x+2,2<2+1x2+2x+2≤3,即2<2x2+4x+5f(x)≤3,故D错误.故选B.14.(2024·武汉二调)已知函数f(x)+1,x≤a,x,x>a,若f(x)的值域是R,则实数a的取值范围是()A.(-∞,0]B.[0,1]C.[0,+∞)D.(-∞,1]解析:B法一:易知函数y=2x是R上的增函数,且值域为(0,+∞),函数y=x+1是R上的增函数,且值域为R,所以要使函数f(x)的值域为R,需满足2a≤a+1.在同一平面直角坐标系中作出函数y=2x与y=x+1的图象,如图所示,由图可知,当0≤x≤1时,2x≤x+1,所以实数a的取值范围为[0,1],故选B.法二:若a=-1,则当x≤a时,x+1≤0,当x>a时,2x>12,可知此时f(x)的值域不是R,即a=-1不满足题意,故排除选项A,D;若a=2,则当x≤a 时,x+1≤3,当x>a时,2x>4,可知此时f(x)的值域不是R,即a=2不满足题意,故排除选项C.故选B.15.设函数f (x )x +λ,x <1(λ∈R ),x ,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是.解析:当a ≥1时,2a ≥2,∴f (f (a ))=f (2a )=22a =2f (a )恒成立;当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立,由题意λ≥(a +1)max ,∴λ≥2,综上,λ的取值范围是[2,+∞).答案:[2,+∞)16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )x +a ,-1<x <0,e 2x ,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f (92)=f (32),则ab的取值范围为.解析:因为f (x +2)=2f (x ),所以f (92)=f (12+4)=(2)2f (12)=2e b ,f (32)=f (-12+2)=2f (-12)=22×(-12)+a =2(a -1).因为f (92)=f (32),所以2(a -1)=2e b ,所以a =2e b +1,因为b 为正实数,所以a b =2e b +1b =2e +1b ∈(2e ,+∞),故ab的取值范围为(2e ,+∞).答案:(2e ,+∞)。
《函数及其表示方法》函数的概念与性质PPT(第1课时函数的概念)
求函数值和值域
第三章 函 数
已知 f(x)=2-1 x(x∈R,x≠2),g(x)=x+4(x∈R). (1)求 f(1),g(1)的值; (2)求 f(g(x)). 【解】 (1)f(1)=2-1 1=1,g(1)=1+4=5. (2)f(g(x))=f(x+4)=2-(1x+4)=-21-x=-x+1 2(x∈R,且 x≠ -2).
栏目 导引
第三章 函 数
下列各组函数表示同一个函数的是( ) A.f(x)=x-,xx,≥x0<,0 与 g(x)=|x| B.f(x)=1 与 g(x)=(x+1)0 C.f(x)= x2与 g(x)=( x)2 D.f(x)=x+1 与 g(x)=xx2--11
栏目 导引
第三章 函 数
解析:选 A.A 项中两函数的定义域和对应关系相同,为同一个 函数;B 项中,f(x)的定义域为 R,g(x)的定义域为(-∞,-1)∪ (-1,+∞);C 项中 f(x)的定义域为 R,g(x)的定义域为[0, +∞);D 项中,f(x)的定义域为 R,g(x)的定义域为(-∞,1)∪(1, +∞).B,C,D 三项中两个函数的定义域都不相同,所以不 是同一个函数.故选 A.
栏目 导引
第三章 函 数
■名师点拨 对函数概念的 5 点说明
(1)当 A,B 为非空数集时,符号“f:A→B”表示 A 到 B 的一 个函数. (2)集合 A 中的数具有任意性,集合 B 中的数具有唯一性. (3)符号“f”表示对应关系,在不同的函数中 f 的具体含义不一 样. (4)函数的定义强调的是“对应关系”,对应关系也可用小写英 文字母如 g,h 表示. (5)在函数的表示中,自变量与因变量与用什么字母表示无关紧 要,如 f(x)=2x+1,x∈R 与 y=2s+1,s∈R 是同一个函数.
人教B版高中数学必修一 《函数及其表示方法》函数的概念与性质PPT课件(第1课时函数的概念)
24
[解] (1)对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.
(2)对于A中的元素±1,在f的作用下与B中的1对应,A中的元素 ±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一 元素对应,是“多对一”的对应,故是函数.
43
1.判断两个函数相同 函数的定义主要包括定义域和定义域到值域的对应法则,因此, 判定两个函数是否相同时,就看定义域和对应法则是否完全一致,完 全一致的两个函数才算相同.
44
2.对函数定义的再理解 (1)函数的定义域必须是非空实数集,因此定义域为空集的函数不 存在.如 y= 11-x+ x-3就不是函数;集合 A 中的元素是实数,即 A≠∅且 A⊆R.
5若 fx是实际问题的解析式,则应符合实际问题,使实际问题 有意义.
34
2.下列函数的定义域不是 R 的是( )
A.y=x+1
B.y=x2
C.y=1x
D.y=2x
C [A 中为一次函数,B 中为二次函数,D 中为正比例函数,定
义域都是 R;C 中为反比例函数,定义域是{x|x≠0},不是 R.]
35
17
(1)C [选项 A 中,由于 f(x)= x2=|x|,g(x)=x 两函数对应法则不 同,所以它们不是同一函数;
选项 B 中,由于 f(x)=x 的定义域为 R,g(x)=xx2的定义域为{x|x≠0}, 它们的定义域不相同,所以它们不是同一函数;
选项 C 中,f(x)=3 x3=x,g(x)=x 的定义域和对应法则完全相同, 所以它们是同一函数;
数学一轮复习第二章函数导数及其应用第一讲函数及其表示学案含解析
第二章函数、导数及其应用第一讲函数及其表示知识梳理·双基自测错误!错误!错误!错误!知识点一函数的概念及表示1.函数与映射的概念函数映射两集合A,B 设A,B是两个__非空数集__设A,B是两个__非空集合__对应关系f:A→B 如果按照某种确定的对应关系f,使对于集合A中的__任意__一个数x,在集合B中有__唯一__的数f(x)和它对应如果按某一个确定的对应关系f,使对于集合A中的__任意__一个元素x在集合B中有__唯一__的元素y与之对应名称称对应__f:A→B__为从集合A到集合B的一个函数称对应__f:A→B__为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个2。
函数(1)函数实质上是从一个非空数集到另一个非空数集的映射.(2)函数的三要素:__定义域、值域、对应法则__。
(3)函数的表示法:__解析法、图象法、列表法__。
(4)两个函数只有当__定义域和对应法则__都分别相同时,这两个函数才相同.知识点二分段函数及应用在一个函数的定义域中,对于自变量x的不同取值范围,有着不同的对应关系,这样的函数叫分段函数,分段函数是一个函数而不是几个函数.错误!错误!错误!错误!1.映射:(1)映射是函数的推广,函数是特殊的映射,A,B为非空数集的映射就是函数;(2)映射的两个特征:第一,在A中取元素的任意性;第二,在B中对应元素的唯一性;(3)映射问题允许多对一,但不允许一对多.2.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.3.分段函数虽由几个部分组成,但它表示的是一个函数.4.与x轴垂直的直线和一个函数的图象至多有1个交点.双错误!错误!错误!题组一走出误区1.判断下列结论是否正确(请在括号中打“√"或“×”)(1)f(x)=错误!+错误!是一个函数.(×)(2)函数f(x)的图象与直线x=1的交点只有1个.(×)(3)已知f(x)=m(x∈R),则f(m3)等于m3.(×)(4)y=ln x2与y=2ln x表示同一函数.(×)(5)f(x)=错误!则f(-x)=错误!(√)题组二走进教材2.(必修P23T2改编)下列所给图象是函数图象的个数为(B)A.1 B.2C.3 D.4[解析]①中当x〉0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.3.(必修1P24T4改编)已知f(x5)=lg x,则f(2)等于(D) A.lg 2 B.lg 32C.lg 错误!D.错误!lg 2[解析]解法一:由题意知x〉0,令t=x5,则t〉0,x=t错误!,∴f(t)=lg t错误!=错误!lg t,即f(x)=错误!lg x(x>0),∴f(2)=错误!lg 2,故选D.解法二:令x5=2,则x=2错误!,∴f(2)=lg 2错误!=错误!lg 2。
函数及其表示方法 PPT
状元随笔
对函数概念的 3 点说明 (1)当 A , B 为非空实数集时,符号“ f :A→B ” 表示 A 到 B 的一个函数。 (2)集合 A 中的数具有任意性,集合 B 中的数具 有唯一性。 (3)符号“f ”表示对应关系,在不同的函数中 f 的具体含义不一样。
知识点二 同一函数 一般地,如果两个函数的定义域相同,对应关系也 相同(即对自变量的每一个值,两个函数对应的函数值 都相等),则称这两个函数就是同一个函数。
(3)A 中的元素 0 在 B 中没有对应元素,故所给对 应关系不是集合 A 到集合 B 的函数。
1.从本题(1)可以看出函数 f(x)的定义域是非 空数集 A,但值域不一定是非空数集 B,也可以是集合 B 的子集。
2.判断从集合 A 到集合 B 的对应是否为函数,一 定要以函数的概念为准则,另外也要看 A 中的元素是 否有意义,同时,一定要注意对特殊值的分析。
方法归纳
(1)判断一个集合 A 到集合 B 的对应关系是不是 函数关系的方法:①A,B 必须都是非空数集;②A 中 任意一个数在 B 中必须有并且是唯一的实数和它对应。
【注意】 A 中元素无剩余,B 中元素允许有剩余。 (2)函数的定义中“任意一个 x”与“有唯一确定 的 y”说明函数中两变量 x,y 的对应关系是“一对一” 或者是“多对一”,而不能是“一对多”。
解析:对 B,集合 A 中的元素 1 对应集合 B 中的元 素±1,不符合函数的定义;对 C,集合 A 中的元素 0 取 倒数没有意义,在集合 B 中没有元素与之对应,不符合 函数的定义;对 D,A 集合不是数集,故不符合函数的 定义.综上,选 A。
答案:A
2.函数 f(x)= xx--21的定义域为(
应两个 y 的值,不符合函数的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点最新考纲函数及其表示了解函数、映射的概念.了解函数的定义域、值域及三种表示法(解析法、图象法和列表法). 了解简单的分段函数,会用分段函数解决简单的问题.函数的基本性质 理解函数的单调性、奇偶性,会判断函数的单调性、奇偶性. 理解函数的最大(小)值的含义,会求简单函数的最大(小)值. 指数函数了解指数幂的含义,掌握有理指数幂的运算.理解指数函数的概念,掌握指数函数的图象、性质及应用. 对数函数理解对数的概念,掌握对数的运算,会用换底公式. 理解对数函数的概念,掌握对数函数的图象、性质及应用. 幂函数了解幂函数的概念.掌握幂函数y =x ,y =x 2,y =x 3,y =1x,y =x 12的图象和性质.函数与方程 了解函数零点的概念,掌握连续函数在某个区间上存在零点的判定方法. 函数模型及其应用了解指数函数、对数函数以及幂函数的变化特征.能将一些简单的实际问题转化为相应的函数问题,并给予解决.1.函数与映射的概念函数映射两集合 A 、B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系 f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称 称f :A →B为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法y =f (x )(x ∈A )对应f :A →B 是一个映射(1)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)函数y =f (x )的图象与直线x =a 最多有2个交点.( ) (2)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数.( )(3)若两个函数的定义域与值域相同,则这两个函数是相等函数.( )(4)若A =R ,B ={x |x >0},f :x →y =|x |,则对应关系f 是从A 到B 的映射.( ) (5)分段函数是由两个或几个函数组成的.( )(6)分段函数的定义域等于各段定义域的并集,值域等于各段值域的并集.( ) 答案:(1)× (2)√ (3)× (4)× (5)× (6)√ [教材衍化]1.(必修1P18例2改编)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x+1D .y =x 2+1解析:选B.对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y=x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数,故选B.2.(必修1P25B 组T1改编)函数y =f (x )的图象如图所示,那么f (x )的定义域是________;值域是________;其中只有唯一的x 值与之对应的y 值的范围是________.答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]3.(必修1P19T1(2)改编)函数y =x -2·x +2的定义域是________.解析:⎩⎪⎨⎪⎧x -2≥0,x +2≥0,⇒x ≥2.答案:[2,+∞) [易错纠偏](1)对函数概念理解不透彻; (2)换元法求解析式,反解忽视范围.1.已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 中不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .解析:对于③,因为当x =4时,y =23×4=83∉Q ,所以③不是函数.答案:③2.已知f (x )=x -1,则f (x )=________.解析:令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0). 答案:x 2-1(x ≥0)函数的定义域(1)(2020·杭州学军中学月考)函数f (x )=x +2x 2lg (|x |-x )的定义域为________.(2)若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域为________.(3)若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 【解析】 (1)要使函数f (x )有意义,必须使 ⎩⎪⎨⎪⎧x +2x 2≥0,|x |-x >0,|x |-x ≠1,解得x <-12. 所以函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12. (2)由⎩⎪⎨⎪⎧x -1≠0,0≤2x ≤2,得0≤x <1,即定义域是[0,1).(3)因为函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0.【答案】 (1)⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12 (2)[0,1) (3)[-1,0](变条件)若将本例(2)中“函数y =f (x )”改为“函数y =f (x +1)”,其他条件不变,如何求解?解:由函数y =f (x +1)的定义域为[0,2], 得函数y =f (x )的定义域为[1,3],令⎩⎪⎨⎪⎧1≤2x ≤3,x -1≠0,得12≤x ≤32且x ≠1.所以g (x )的定义域为⎣⎡⎭⎫12,1∪⎝⎛⎦⎤1,32.函数定义域的求解策略(1)求给定函数的定义域往往转化为解不等式(组)的问题.在解不等式组取交集时可借助于数轴,要特别注意端点值的取舍.(2)求抽象函数的定义域:①若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;②若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得y =f (x )的定义域.(3)已知函数定义域求参数范围,可将问题转化成含参数的不等式(组),然后求解. [提醒] (1)求函数定义域时,对函数解析式先不要化简; (2)求出定义域后,一定要将其写成集合或区间的形式.1.(2020·浙江新高考优化卷)函数f (x )=3x 21-x +lg(-3x 2+5x +2)的定义域是( )A.⎝⎛⎭⎫-13,+∞ B.⎝⎛⎭⎫-13,1 C.⎝⎛⎭⎫-13,13 D.⎝⎛⎭⎫-∞,-13 解析:选B.依题意可得,要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0-3x 2+5x +2>0,解得-13<x <1.故选B. 2.(2020·浙江新高考预测卷)已知集合A ={x |y =x -x 2},B ={x |y =ln(1-x )},则A ∪B =( )A .[0,1]B .[0,1)C .(-∞,1]D .(-∞,1)解析:选C.因为由x -x 2≥0得0≤x ≤1, 所以A ={x |0≤x ≤1}. 由1-x >0得x <1,所以B ={x |x <1},所以A ∪B ={x |x ≤1}. 故选C.3.若函数f (x )=mx 2+mx +1的定义域为实数集,则实数m 的取值范围是________. 解析:由题意可得mx 2+mx +1≥0恒成立. 当m =0时,1≥0恒成立;当m ≠0时,则⎩⎪⎨⎪⎧m >0,Δ=m 2-4m ≤0,解得0<m ≤4. 综上可得0≤m ≤4. 答案:[0,4]求函数的解析式(1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 【解】 (1)(配凑法)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg2t -1,又x >0,所以t >1, 故f (x )的解析式是f (x )=lg2x -1,x >1. (3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.所以f (x )的解析式是f (x )=2x +1-2-x3,x ∈R .求函数解析式的4种方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法. (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围. (4)解方程组法:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 求解析式时要注意新元的取值范围.1.(2020·杭州学军中学月考)已知f (x +1)=x +2x ,则f (x )的解析式为f (x )=__________.解析:法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1). 法二:因为x +2x =(x )2+2x +1-1=(x +1)2-1,所以f (x +1)=(x +1)2-1(x +1≥1),即f (x )=x 2-1(x ≥1). 答案:x 2-1(x ≥1)2.设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2,则f (x )的解析式为f (x )=________.解析:设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1,故f (x )=x 2+2x +1. 答案:x 2+2x +1分段函数(高频考点)分段函数是一类重要的函数,是高考的命题热点,多以选择题或填空题的形式呈现,试题多为容易题或中档题.主要命题角度有:(1)分段函数求值;(2)已知函数值,求参数的值(或取值范围); (3)与分段函数有关的方程、不等式问题. 角度一 分段函数求值(2020·杭州萧山中学高三适应性考试)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,f (x +2),x ≤0,g (x )=x 2,则f (8)=________;g [f (2)]=________;f ⎣⎡⎦⎤f ⎝⎛⎭⎫12=________. 【解析】 f (8)=log 28=3,g [f (2)]=g (log 22)=g (1)=1,f ⎣⎡⎦⎤f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫log 212=f (-1)=f (1)=log 21=0.【答案】 3 1 0角度二 已知函数值求参数的值(或取值范围)(2020·瑞安市龙翔高中高三月考)设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1(x ≥1)log 2(1-x )(x <1),若f (f (a ))=3,则a =________.【解析】 函数f (x )=⎩⎪⎨⎪⎧-2x 2+1(x ≥1)log 2(1-x )(x <1),若f (f (a ))=3,当a ≥1时,可得f (-2a 2+1)=3,可得log 2(2a 2)=3,解得a =2.当a <1时,可得f (log 2(1-a ))=3,log 2(1-a )≥1时,可得-2(log 2(1-a ))2+1=3,解得a ∈∅.log 2(1-a )<1时,可得log 2(1-log 2(1-a ))=3,即1-log 2(1-a )=8,log 2(1-a )=-7,1-a =1128,可得a =127128. 综上得a 的值为2或127128.【答案】 2或127128角度三 与分段函数有关的方程、不等式问题(2020·镇海中学5月模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-2,x ≤-1,(x -2)(|x |-1),x >-1,则f (f (-2))=________,若f (x )≥2,则x 的取值范围为________.【解析】 由分段函数的表达式得f (-2)=⎝⎛⎭⎫12-2-2=4-2=2,f (2)=0,故f (f (-2))=0.若x ≤-1,由f (x )≥2得⎝⎛⎭⎫12x-2≥2,得⎝⎛⎭⎫12x≥4,则2-x ≥4, 得-x ≥2,则x ≤-2,此时x ≤-2. 若x >-1,由f (x )≥2得(x -2)(|x |-1)≥2, 即x |x |-x -2|x |≥0,若x ≥0,得x 2-3x ≥0,则x ≥3或x ≤0,此时x ≥3或x =0; 若-1<x <0,得-x 2+x ≥0,得x 2-x ≤0,得0≤x ≤1,此时无解. 综上得x ≥3或x =0或x ≤-2. 【答案】 0 x ≥3或x =0或x ≤-2(1)根据分段函数解析式,求函数值的解题思路先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)已知分段函数的函数值,求参数值的解题思路先假设所求的值在分段函数定义区间的各段上,构造关于参数的方程.然后求出相应自变量的值,切记要代入检验.(3)已知分段函数的函数值满足的不等式,求自变量取值范围的解题思路 依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.1.(2020·浙江教育评价高三第二次联考))设函数f (x )=⎩⎪⎨⎪⎧-2x 2+1,x ≥1log 2(1-x ),x <1,则f (f (4))=( )A .2B .3C .5D .6解析:选C.f (f (4))=f (-31)=log 2 32=5.故选C.2.(2020·Z20联盟开学联考)已知函数f (x )=⎩⎪⎨⎪⎧|x +2|-1,x ≤0log 2 x ,x >0,若f (a )≤1,则实数a 的取值范围是( )A .(-∞,-4]∪[2,+∞)B .[-1,2]C .[-4,0)∪(0,2]D .[-4,2]解析:选D.f (a )≤1⇔⎩⎪⎨⎪⎧a ≤0,|a +2|-1≤1,或⎩⎪⎨⎪⎧a >0,log 2 a ≤1,解得-4≤a ≤0或0<a ≤2,即a ∈[-4,2],故选D.核心素养系列2 数学抽象——函数的新定义问题以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新问题.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.给出下列函数:①f (x )=sin 2x ; ②g (x )=x 3; ③h (x )=⎝⎛⎭⎫13x;④φ(x )=ln x .其中是一阶整点函数的是( ) A .①②③④ B .①③④ C .①④D .④【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数,排除D ;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数,排除A ;对于函数h (x )=⎝⎛⎭⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数,排除B.故选C.【答案】 C本题意在考查考生的数学抽象、逻辑推理、数学运算、直观想象等核心素养.破解新定义函数题的关键是:紧扣新定义的函数的含义,学会语言的翻译、新旧知识的转化,便可使问题顺利获解.如本例,若能把新定义的一阶整点函数转化为函数f (x )的图象恰好经过1个整点,问题便迎刃而解.1.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有( )A .1个B .2个C .3个D .4个解析:选C.由x 2+1=1得x =0,由x 2+1=3得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.2.若定义在R 上的函数f (x )当且仅当存在有限个非零自变量x ,使得f (-x )=f (x ),则称f (x )为“类偶函数”,则下列函数中为类偶函数的是( )A .f (x )=cos xB .f (x )=sin xC .f (x )=x 2-2xD .f (x )=x 3-2x解析:选D.A 中函数为偶函数,则在定义域内均满足f (x )=f (-x ),不符合题意;B 中,当x =k π(k ∈Z )时,满足f (x )=f (-x ),不符合题意;C 中,由f (x )=f (-x ),得x 2-2x =x 2+2x ,解得x =0,不符合题意;D 中,由f (x )=f (-x ),得x 3-2x =-x 3+2x ,解得x =0或x =±2,满足题意,故选D.[基础题组练]1.函数f (x )=1x -2+ln(3x -x 2)的定义域是( ) A .(2,+∞) B .(3,+∞) C .(2,3)D .(2,3)∪(3,+∞)解析:选C.由⎩⎪⎨⎪⎧x -2>0,3x -x 2>0,解得2<x <3,则该函数的定义域为(2,3),故选C.2.(2020·嘉兴一模)已知a 为实数,设函数f (x )=⎩⎪⎨⎪⎧x -2a ,x <2,log 2(x -2),x ≥2,则f (2a +2)的值为( )A .2aB .aC .2D .a 或2解析:选B.因为函数f (x )=⎩⎪⎨⎪⎧x -2a,x <2,log 2(x -2),x ≥2,所以f (2a +2)=log 2(2a +2-2)=a ,故选B. 3.下列哪个函数与y =x 相等( ) A .y =x 2xB .y =2log 2xC .y =x 2D .y =(3x )3解析:选D.y =x 的定义域为R ,而y =x 2x 的定义域为{x |x ∈R 且x ≠0},y =2log 2x 的定义域为{x |x ∈R ,且x >0},排除A 、B ;y =x 2=|x |的定义域为x ∈R ,对应关系与y =x 的对应关系不同,排除C ;而y =(3x )3=x ,定义域和对应关系与y =x 均相同,故选D.4.(2020·杭州七校联考)已知函数f (x )=x 3+cos ⎝⎛⎭⎫π2-x +1,若f (a )=2,则f (-a )的值为( )A .3B .0C .-1D .-2解析:选B.因为函数f (x )=x 3+cos ⎝ ⎛⎭⎪⎫π2-x +1,所以f (x )=x 3+sin x +1,因为f (a )=2,所以f (a )=a 3+sin a +1=2,所以a 3+sin a =1,所以f (-a )=(-a )3+sin(-a )+1=-1+1=0.故选B.5.已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4解析:选D.由已知可得M =N ,故⎩⎪⎨⎪⎧a 2-4a =-2b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4. 6.存在函数f (x )满足:对于任意x ∈R 都有( ) A .f (sin 2x )=sin x B .f (sin 2x )=x 2+xC .f (x 2+1)=|x +1|D .f (x 2+2x )=|x +1| 解析:选D.取特殊值法.取x =0,π2,可得f (0)=0,1,这与函数的定义矛盾,所以选项A 错误;取x =0,π,可得f (0)=0,π2+π,这与函数的定义矛盾, 所以选项B 错误;取x =1,-1,可得f (2)=2,0,这与函数的定义矛盾, 所以选项C 错误; 取f (x )=x +1,则对任意x ∈R 都有f (x 2+2x )=x 2+2x +1=|x +1|,故选项D 正确.7.已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式为( ) A .f (x )=x1+x 2B .f (x )=-2x1+x 2C .f (x )=2x1+x 2D .f (x )=-x1+x 2解析:选C.令1-x 1+x =t ,则x =1-t 1+t ,所以f (t )=(1+t )2-(1-t )2(1+t )2+(1-t )2=2t1+t 2,故函数f (x )的解析式为f (x )=2x1+x 2,故选C.8.设函数f (x )=⎩⎪⎨⎪⎧-1,x >0,1,x <0,则(a +b )+(a -b )·f (a -b )2(a ≠b )的值为( )A .aB .bC .a ,b 中较小的数D .a ,b 中较大的数解析:选C.若a -b >0,即a >b ,则f (a -b )=-1, 则(a +b )+(a -b )·f (a -b )2=12[(a +b )-(a -b )]=b (a >b );若a -b <0,即a <b ,则f (a -b )=1,则(a +b )+(a -b )·f (a -b )2=12[(a +b )+(a -b )]=a (a <b ).综上,选C.9.(2020·绍兴高三教学质量调研)设函数f (x )=⎩⎪⎨⎪⎧2x +n ,x <1log 2x ,x ≥1,若f (f (34))=2,则实数n为( )A .-54B .-13C.14D.52解析:选D.因为f (34)=2×34+n =32+n ,当32+n <1,即n <-12时,f (f (34))=2(32+n )+n=2,解得n =-13,不符合题意;当32+n ≥1,即n ≥-12时,f (f (34))=log 2(32+n )=2,即32+n=4,解得n =52,故选D.10.设f (x ),g (x )都是定义在实数集上的函数,定义函数(f ·g )(x ):对任意的x ∈R ,(f ·g )(x )=f (g (x )).若f (x )=⎩⎪⎨⎪⎧x ,x >0,x 2,x ≤0,g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则( )A .(f ·f )(x )=f (x )B .(f ·g )(x )=f (x )C .(g ·f )(x )=g (x )D .(g ·g )(x )=g (x )解析:选A.对于A ,(f ·f )(x )=f (f (x ))=⎩⎪⎨⎪⎧f (x ),f (x )>0,f 2(x ),f (x )≤0,当x >0时,f (x )=x >0,(f ·f )(x )=f (x )=x ;当x <0时,f (x )=x 2>0,(f ·f )(x )=f (x )=x 2;当x =0时,(f ·f )(x )=f 2(x )=0=02,因此对任意的x ∈R ,有(f ·f )(x )=f (x ),故A 正确,选A.11.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________.解析:由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.答案:f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤212.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________. 解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2.答案:213.函数f (x ),g (x )分别由下表给出.(f (x ))的解析:因为g (1)=3,f (3)=1,所以f (g (1))=1.当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 214.设函数f (x )=⎩⎨⎧(x +1)2,x <1,4-x -1,x ≥1,则使得f (x )≥1的自变量x 的取值范围是________.解析:f (x )≥1等价于⎩⎪⎨⎪⎧x <1,(x +1)2≥1或⎩⎪⎨⎪⎧x ≥1,4-x -1≥1.由⎩⎪⎨⎪⎧x <1,(x +1)2≥1,得x ≤-2或0≤x <1.由⎩⎪⎨⎪⎧x ≥1,4-x -1≥1,得1≤x ≤10. 综上所述,x 的取值范围是x ≤-2或0≤x ≤10. 答案:(-∞,-2]∪[0,10]15.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.解析:当a >0时,1-a <1,1+a >1,此时f (1-a )=2(1-a )+a =2-a ,f (1+a )=-(1+a )-2a =-1-3a .由f (1-a )=f (1+a )得2-a =-1-3a ,解得a =-32.不合题意,舍去.当a <0时,1-a >1,1+a <1, 此时f (1-a )=-(1-a )-2a =-1-a , f (1+a )=2(1+a )+a =2+3a ,由f (1-a )=f (1+a )得-1-a =2+3a ,解得a =-34.综上可知,a 的值为-34.答案:-3416.(2020·杭州市富阳二中高三(上)开学考试)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1x +6x -6,x >1,则f (f (-2))=________,f (x )的最小值是________.解析:由题意可得f (-2)=(-2)2=4, 所以f (f (-2))=f (4)=4+64-6=-12;因为当x ≤1时,f (x )=x 2,由二次函数可知当x =0时,函数取最小值0; 当x >1时,f (x )=x +6x -6,由基本不等式可得f (x )=x +6x -6≥2x ·6x-6 =26-6,当且仅当x =6x 即x =6时取到等号,即此时函数取最小值26-6;因为26-6<0,所以f (x )的最小值为26-6. 答案:-1226-617.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0.若a [f (a )-f (-a )]>0,则实数a 的取值范围为________.解析:易知a ≠0.由题意得,当a >0时,则-a <0,故a [f (a )-f (-a )]=a (a 2+a -3a )>0,化简可得a 2-2a >0,解得a >2或a <0.又因为a >0,所以a >2.当a <0时,则-a >0,故a [f (a )-f (-a )]=a [-3a -(a 2-a )]>0,化简可得a 2+2a >0,解得a >0或a <-2,又因为a <0,所以a <-2.综上可得,实数a 的取值范围为(-∞,-2)∪(2,+∞).答案:(-∞,-2)∪(2,+∞)[综合题组练]1.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x解析:选D.当x <0时,|x |=-x ,x |sgn x |=x ,x ·sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.2.(2020·宁波市九校期末联考)已知下列各式:①f (|x |+1)=x 2+1;②f (1x 2+1)=x ;③f (x 2-2x )=|x |;④f (|x |)=3x +3-x .其中存在函数f (x )对任意的x ∈R 都成立的序号为________.解析:①f (|x |+1)=x 2+1,由t =|x |+1(t ≥1),可得|x |=t -1,则f (t )=(t -1)2+1,即有f (x )=(x -1)2+1对x ∈R 均成立;②f (1x 2+1)=x ,令t =1x 2+1(0<t ≤1),x =±1t-1,对0<t ≤1,y =f (t )不能构成函数,故不成立;③f (x 2-2x )=|x |,令t =x 2-2x ,若t <-1时,x ∈∅;t ≥-1,可得x =1±1+t (t ≥-1),y =f (t )不能构成函数;④f (|x |)=3x +3-x ,当x ≥0时,f (x )=3x +3-x ;当x <0时,f (-x )=3x +3-x ;将x 换为-x 可得f (x )=3x +3-x ;故恒成立.综上可得①④符合条件.答案:①④3.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1).(1)求f (x )的解析式; (2)画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧-2a +b =3,-a +b =2,解得a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0.(2)f (x )的图象如图:4.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))与g (f (2)); (2)求f (g (x ))与g (f (x ))的表达式.解:(1)g (2)=1,f (g (2))=f (1)=0;f (2)=3,g (f (2))=g (3)=2. (2)当x >0时,f (g (x ))=f (x -1)=(x -1)2-1=x 2-2x ; 当x <0时,f (g (x ))=f (2-x )=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.同理可得g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x <-1或x >1,3-x 2,-1<x <1.5.设计一个水渠,其横截面为等腰梯形(如图),要求满足条件AB +BC +CD =a (常数),∠ABC =120°,写出横截面的面积 y 关于腰长x 的函数,并求它的定义域和值域.解:如图,因为AB +BC +CD =a ,所以BC =EF =a -2x >0, 即0<x <a2,因为∠ABC =120°,所以∠A =60°,所以AE =DF =x 2,BE =32x ,y =12(BC +AD )·BE =3x 4⎣⎡⎦⎤2(a -2x )+x 2+x 2 =34(2a -3x )x =-34(3x 2-2ax ) =-334⎝⎛⎭⎫x -a 32+312a 2, 故当x =a 3时,y 有最大值312a 2,它的定义域为⎝⎛⎭⎫0,a 2,值域为⎝⎛⎦⎤0,312a 2. 6.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1), f (x )=-2f (x +1)=-2(x +1)2; 当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧-12(x -1)2,x ∈(1,2]x 2,x ∈[0,1]-2(x +1)2,x ∈[-1,0)4(x +2)2,x ∈[-2,-1).。