21.1_二次根式及性质练习题

合集下载

八年级数学《二次根式》练习题(含答案)

八年级数学《二次根式》练习题(含答案)

八年级数学《二次根式》练习题(含答案)21.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 1x =+成立的条件是 。

12. 若1a b -+()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()4 21.2440y y -+=,求xy 的值。

22. 当a 1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

九年级数学上册第21章二次根式21.1二次根式ppt作业课件新版华东师大版

九年级数学上册第21章二次根式21.1二次根式ppt作业课件新版华东师大版

B.14
C.19
D.以上都不对
11.若 (a-2)2+a-2=0,则 a 的取值范围是____a_≤__2____.
12.若|a+b+1|与 a+2b+4互为相反数,则(a+b)2018=__1____.
13.若 x、y 是实数,且 y= x2-9+x-93-x2+7,则 5x+6y=_-___2_2___.
A. (-3)2=-3 B.- 32=-3 C. (±3)2=±3 D. 32=±3
6. (2a-1)2=1-2a,则(
7.当 m<0 时,化简 mm2的结果是__-__1____.
8.化简: (1) (-412)2;
解:412
(2) (3.14-π)2.
解:π-3.14
9.(绍兴期中)若实数 x 满足|x-3|+ x2+8x+16=7,化简 2|x+4|
- (2x-6)2的结果是( A )
A.4x+2
B.-4x-2
C.-2
D.2
10.已知实数 x,y 满足|x-3|+x y-8=0,则以 x,y 的值为两边长
的等腰三角形的周长是( C )
A.14 或 19
18.已知非零实数 a,b 满足 a2-8a+16+|b-3|+ (a-5)(b2+1) +4=a,求 ab-1 的值
解:由题意得:(a-5)(b2+1)≥0,∴a≥5, ∴ a2-8a+16= (a-4)2=|a-4|=a-4, ∴ a2-8a+16+|b-3|+ (a-5)(b2+1)+4=a-4+|b-3|+ (a-5)(b2+1)+4 =a,∴|b-3|+ (a-5)(b2+1)=0. 又∵|b-3|≥0, (a-5)(b2+1)≥0, ∴|b-3|= (a-5)(b2+2)=0,∴b=3,a=5, ∴ab-1=52=25.

2020华师大版九年级数学上 二次根式(全章)习题及答案

2020华师大版九年级数学上 二次根式(全章)习题及答案

【文库独家】二次根式21.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a )A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a +B. 22a +C. ()222a + D. ()224a +17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.)A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1 B. ()2 C. ()3 D. ()4 21.2440y y -+=,求xy 的值。

22. 当a 1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

二次根式 华东师大版数学九年级上册素养提升练(含解析)

二次根式 华东师大版数学九年级上册素养提升练(含解析)

第21章 二次根式单元大概念素养目标大概念素养目标对应新课标内容运用二次根式、最简二次根式的概念进行判断了解二次根式、最简二次根式的概念【P55】掌握二次根式的运算法则了解二次根式(根号下仅限于数)加、减、乘、除运算法则【P55】 能依据二次根式的运算法则进行二次根式的混合运算会用二次根式(根号下仅限于数)加、减、乘、除运算法则进行简单的四则运算【P55】21.1 二次根式基础过关全练知识点1 二次根式的定义1.【新独家原创】下列各式一定是二次根式的是( ) A.√a 2−2 023 B.√2 023−a 2 C.√2 023a 2 D.√2 023a 22.(2023四川遂宁期中)若√1−n 是二次根式,则n 的值可以是( ) A.-1 B.2 C.3 D.5知识点2 二次根式有意义的条件3.(2023吉林长春绿园期中)若代数式3√1−x有意义,则x 的取值范围在数轴上表示正确的是( )A B CD4.【易错题】(2023河南周口郸城月考)若式子√x+2x−2-(x -1)0有意义,则实数x 的取值范围是 .5.(2023山西临汾洪洞月考)当x 是怎样的实数时,下列各式在实数范围内有意义? (1)√3x −4;(2)√6−3x ;(3)√1a−3;(4)√a+1a−1.知识点3 二次根式的性质6.(2023吉林长春南关东北师大附中明珠校区期中)满足√(a −3)2=3-a 的正整数a 的所有值的和为 ( ) A.3 B.6 C.10 D.157.【一题多变】(2023福建漳州三中期中)实数a ,b 在数轴上的位置如图所示,则式子√a 2+√(b −a)2-|a +b |化简的结果为 ( )A.aB.2a+bC.2a-bD.-a+2b[变式](2023福建师大附中月考)已知△ABC中,a、b、c为三角形的三边长,化简√(a+c−b)2+|a-c-b|=.8.(2023吉林长春汽开区月考)若实数a、b满足|a+1|+√b−2=0,则a+b=.9.(2023湖南衡阳石鼓月考)在一节数学课上,李老师出了这样一道题目:先化简,再求值:|x-1|+√(x−10)2,其中x=9.小明同学是这样计算的:解:|x-1|+√(x−10)2=x-1+x-10=2x-11.当x=9时,原式=2×9-11=7.小荣同学是这样计算的:解:|x-1|+√(x−10)2=x-1+10-x=9.谁的计算结果是正确的呢?错误的计算错在哪里?能力提升全练10.(2022四川雅安中考,5,★☆☆)使√x−2有意义的x的取值范围在数轴上表示为()A BC D11.【教材变式·P4T3】(2023福建漳州龙文模拟,8,★☆☆)当3<a<5时,化简√(a−5)2+√(7−a)2+|3-2a|= () A.-9 B.9C.2a-5D.5-2a12.(2023湖南怀化模拟,11,★★☆)已知y=√(x−3)2-x+4,当x分别取正整数1,2,3,4,5,…,2 022时,所对应y值的总和是() A.2 026 B.2 027C.2 028D.2 02913.(2022四川遂宁中考,12,★☆☆)实数a、b在数轴上的位置如图所示,化简:|a+1|-√(b−1)2+√(a−b)2=.14.【数学文化】(2023河南郑州二七模拟,16,★★☆)我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积S=√14[a2b2−(a2+b2−c22)2],现已知△ABC的三边长分别为1,2,√5,则△ABC的面积为.15.(2023四川自贡模拟,19,★☆☆)已知m=√16−n2+√n2−16n+4-3,求(m+n)2 022的值.素养探究全练16.【运算能力】(2022山东烟台龙口期中)阅读下列解题过程.例:若代数式√(a−1)2+√(a−3)2的值是2,求a的取值范围.解:原式=|a-1|+|a-3|,当a<1时,原式=(1-a)+(3-a)=4-2a=2,解得a=1(舍去);当1≤a≤3时,原式=(a-1)+(3-a)=3-1=2,符合条件;当a>3时,原式=(a-1)+(a-3)=2a-4=2,解得a=3(舍去).所以a的取值范围是1≤a≤3.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当2≤a≤5时,化简:√(a−2)2+√(a−5)2=;(2)若等式√(3−a)2+√(a−7)2=4成立,则a的取值范围是;(3)若√(a+1)2+√(a−5)2=8,求a的取值范围.答案全解全析基础过关全练1.C ∵a 2≥0,∴2 023a 2≥0,∴√2 023a 2一定是二次根式.2.A ∵√1−n 是二次根式,∴1-n ≥0,∴n ≤1,∴n 的值可以是-1.3.D 根据题意知1-x >0,解得x <1,所以x 的取值范围在数轴上表示如下:4.x ≥-2且x ≠1,x ≠2解析 本题易忽略分母x -2≠0和零指数幂中底数x -1≠0而致错.依题意可得x +2≥0且x -2≠0,x -1≠0,解得x ≥-2且x ≠1,x ≠2.5.解析 (1)若√3x −4有意义,则 3x -4≥0,解得x ≥43,即当x ≥43时,√3x −4有意义.(2)若√6−3x 有意义,则6-3x ≥0,解得x ≤2,即当x ≤2时,√6−3x 有意义. (3)若√1a−3有意义,则a -3>0,解得a >3,即当a >3时,√1a−3有意义.(4)若√a+1a−1有意义,则a +1≥0且a -1≠0,解得a ≥-1且a ≠1,即当a ≥-1且a ≠1时,√a+1a−1有意义. 6.B ∵√(a −3)2=3-a ,∴3-a ≥0,解得a ≤3,则正整数a 的值有1、2、3,∴1+2+3=6. 7.D 根据题意得a <0<b ,|b |<|a |,所以原式=|a |+|b -a |-|a +b |=-a +b -a +a +b =-a +2b.[变式]2c解析由三角形的三边关系知a+c>b,c+b>a,故a+c-b>0,a-c-b<0,∴√(a+c−b)2+|a-c-b|=|a+c-b|+|a-c-b|=a+c-b-a+c+b=2c.8.1解析∵|a+1|+√b−2=0,∴{a+1=0,b−2=0,解得{a=−1,b=2,∴a+b=-1+2=1.9.解析小荣同学的计算结果正确,小明同学的计算结果错误,错在去掉根号:|x-1|+√(x−10)2=x-1+x-10,∵x=9,∴应为|x-1|+√(x−10)2=x-1+10-x.能力提升全练10.B∵√x−2有意义,∴x-2≥0,∴x≥2.11.B∵当3<a<5时,a-5<0,7-a>0,3-2a<0,∴√(a−5)2+√(7−a)2+|3-2a|=|a-5|+|7-a|+|3-2a|=5-a+7-a+2a-3=9.12.C y=√(x−3)2-x+4=|x-3|-x+4,当x-3≥0,即x≥3时,y=x-3-x+4=1;当x-3<0,即x<3时,y=3-x-x+4=7-2x,当x=1时,y=5,当x=2时,y=3,所以当x分别取正整数1,2,3,4,5,…,2 022时,所对应y值的总和为5+3+1+1+1+…+1=8+2 020×1=8+2 020=2 028.13.2解析由数轴可得-1<a<0,1<b<2,∴a+1>0,b-1>0,a-b<0,∴|a+1|-√(b−1)2+√(a−b)2=a+1-(b-1)+(b-a)=a+1-b+1+b-a=2.14.1解析∵△ABC的三边长分别为1,2,√5,∴a=1,b=2,c=√5,∴△ABC的面积=√14×{12×22−[12+22−(√5)22]2}=1.15.解析由题意得16-n2≥0,n2-16≥0,n+4≠0,则n2=16且n≠-4,解得n=4,则m=√16−n2+√n2−16n+4-3=-3,∴(m+n)2 022=1.素养探究全练16.解析(1)∵2≤a≤5,∴a-2≥0,a-5≤0,∴原式=|a-2|+|a-5|=a-2-(a-5)=3.(2)由题意可知|3-a|+|a-7|=4,当a≤3时,3-a≥0,a-7<0,∴原式化为3-a-(a-7)=4,∴a=3,符合题意;当3<a<7时,3-a<0,a-7<0,∴原式化为-(3-a)-(a-7)=4,故3<a<7符合题意;当a≥7时,3-a<0,a-7≥0,∴原式化为-(3-a)+(a-7)=4,∴a=7,符合题意.综上所述,a的取值范围是3≤a≤7.(3)原式可化为|a+1|+|a-5|=8,当a≤-1时,a+1≤0,a-5<0,∴原式化为-(a+1)-(a-5)=8,∴a=-2,符合题意;当-1<a<5时,a+1>0,a-5<0,∴原式化为(a+1)-(a-5)=8,此方程无解,故-1<a<5不符合题意; 当a≥5时,a+1>0,a-5≥0,∴原式化为a+1+a-5=8,∴a=6,符合题意.综上所述,a=-2或6.。

九年级数学上册 21.1《二次根式》习题精选 新人教版

九年级数学上册 21.1《二次根式》习题精选 新人教版
1).两式相等,必须 x≥1.但等式左边 x 可取任何数.【答案】×.
1 2 a
4. ab 、 a3b 、 是同类二次根式.…( )
3 x b
25.(a2 - mn + )÷a2b2 ;
m m m n m
b ab a b a b
1 2 2 3 3 4 99 100
1 x y x y
30.若 x,y 为实数,且 y= 1 4x + 4x 1 + .求 2 - 2 的值.
1 2 a
【提示】 a3b 、 化成最简二次根式后再判断.【答案】√.
3 x b
1
5. 8x , , 9 x2 都不是最简二次根式.( )
3 2 3 4
3. (x 1)2 = ( x 1)2 .…( )【提示】 (x 1)2 =|x-1|, ( x 1)2 =x-1(x≥
- 2 -
x2 a2 x x2 a2 x2 x x2 a2 x2 a2
1 1 1 1
29.计算(2 5 +1)( + + +…+ ).
七、选作题:(每小题 8 分,共 16 分)
x 2x x2 a2 1
28.当 x=1- 2 时,求 + + 的值.
2 y x y x
《二次根式》提高测试 答案
(一)判断题:(每小题 1 分,共 5 分)
2 2
(A) (B)- (C)-2x (D)2x
x x
a3
19.化简 ( a<0 ) 得…( )(A) a (B)- a (C)- a (D) a
15.x,y 分别为 8- 11 的整数部分和小数部分,则 2xy-y2=____________.

21.1_二次根式_全章

21.1_二次根式_全章

C BA21.1 二次根式第1课时学习目标1a≥0)的意义解答具体题目.2a≥02=a (a≥0),并利用它们进行计算和化简. 学习过程 一、预习形成:请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC 中, AC=3,BC=1, ∠C=90°,那么AB 边的长是__________. 二、课堂讲练: 探究一 议一议:1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当a<0归纳:一般地,我们把形如___________的式子叫做二次根式, ________称为二次根号.例1下列式子,哪些是二次根式,哪些不是二次根式:1x x>0)1x y+x≥0,y •≥0).归纳:二次根式应满足两个条件: (1)_________________ (2)_________________例2.当x在实数范围内有意义?练习:1.二次根式a-1 中,字母a的取值范围是()A. a<lB.a≤1C.a≥1D.a>12、函数y=中,自变量x的取值范围是_________思考:如何确定二次根式中字母的取值范围?三、巩固练习教材P练习1、2、3.四、应用拓展例3.当x11x+在实数范围内有意义?例4.(1)已知,求xy的值.(2)=0,求a2010+b2010的值.探究二根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.例5.计算1.22.(23.24. 2基础练习计算下列各式的值:2 = 2 = 2 = 2=-=( 2 = 22应用拓展计算:(1)2(x≥0)(2)2(3)2(4)2五、归纳小结本节课要掌握:______________________________________________________________ __________________________________________________________________________ _______________________________________________________________________ 六、布置作业1.教材P8复习巩固1、综合应用5.2.选用课时作业设计.第一课时作业设计(一)选择题1.下列式子中,是二次根式的是()A B C D.x2、已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对3、数a没有算术平方根,则a的取值范围是().A.a>0 B.a≥0 C.a<0 D.a=0(二)填空题1.2=________.2x _______.3的个数是__________.(三)综合提高题(选做)1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.6,求x y的值.21.1 二次根式第2课时【学习目标】1、(a≥0)并利用它进行计算和化简.2(a≥0),并利用这个结论解决具体问题.【学习过程】一、复习引入1.形如_____________的式子叫做二次根式;2a≥0)是一个_____________;3.2=_____(a≥0).猜想:当a≥0,举例说明.二、探究新知填空:=_______;=________.结论例1计算1.22.(23.24. 2例2化简:(1(2(3(4==;张后同学的解答过程是在化简时,李明同学的解答过程是4=-. 谁的解答正确?为什么?4三、巩固练习1、计算下列各式的值:2222( 2 22-2、教材P7练习2.四、应用拓展例3 计算1.2(x≥0)2.23. 2例4在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3例5 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2-a,则a可以是什么数?(3,则a可以是什么数?例6 当x>2· · · · 0 1 2p 例7 实数p 在数轴上的位置如图所示:2三、课堂小结:四、课堂评价:(一)选择题1 ). A .0 B .23 C .423D .以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是( ).A BC D (二)填空题1.2m 的最小值是________. (三)综合提高题(选做)1.若│1995-,求a -19952的值.(提示:先由a -2000≥0,判断1995-a •的值是正数还是负数,去掉绝对值)2. 若-3≤x≤2时,试化简│x -《二次根式》自我检测1、计算: (1) =2)32(-(2)=+-442x x (2≥x ) (3)2)73( = (4)2)52(-= 2、下列等式中的字母应符合什么条件? (1)22)(a a = (2)a a -=23、判断正误,如果是错的,请写出正确结果.(1)2)2(2-=- (2)7434322=+=+4、已知a 、b 、c 是△ABC 的三边长,化简:22)()(c a b c b a +----5、已知△ABC 的三边长分别为a 、b 、c, 且a 、b 、c 满足a 2 -|5|0c -=,则△ABC 的形状是 三角形.作业:回归教材,认真阅读.完成课本上21.1没有完成的练习及习题,做好小组展示准备.21.2 二次根式的乘除第1课时【学习目标】1、a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简2、•a≥0,b≥0)并运用它进行解题和化简.【学习过程】一、预习形成1.填空(1;(2=_______.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1(2(3(4二、课堂讲练一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4例2 化简(1(2(3(4(5三、巩固练习(1)计算:①②(2) 化简:(3)教材P11练习全部.四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2五、课堂小结:六、布置作业1.课本P151,4,5,6.(1)(2).2.选用课时作业设计.(一)选择题1,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简).A B C D311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 4.下列各等式成立的是()A.B.C.D.(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题(选做)1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==……通过上述探究你能猜测出: (a>0),并验证你的结论. 3*.化简(x -1x)2+4 -(x+1x)2-44.已知2310x x -+=.5.已知,a b (10b -=,求20112012a b -的值.21.2 二次根式的乘除第2课时【学习目标】a≥0,b>0a≥0,b>0)及利用它们进行运算.12、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.【学习过程】一、预习形成1.写出二次根式的乘法规定及逆向等式.2.填空(1;;(2;(3(4.3.利用计算器计算填空:(填>,<,=)二、课堂讲练知识归纳:一般地,对二次根式的除法规定:(2(3(4例1.计算:(1例2.化简:(1(2(3(4三、巩固练习教材P14 练习1.四、应用拓展例3.=,且x为偶数,求(1+x的值.五、归纳小结六、布置作业1.教材P 15 习题21.2 2、7、8、9. 2.选用课时作业设计. 第二课时作业设计 (一)选择题1的结果是( ).A .27 B .27 C D .72.阅读下列运算过程:3==5== 数学上将这种把分母的根号去掉的过程称作“分母有理化”( ).A .2B .6C .13D *( 二)填空题1.分母有理化:(1)=______.2.已知x=3,y=4,z=5_______.(三)综合提高题(选做)11,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算(1·m>0,n>0)(2)-(a>0)21.2 二次根式的乘除第3课时【学习目标】1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.【学习过程】一、预习形成计算(1(2(3二、课堂讲练议一仪:观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.____________________________________________;2.___________________________________________.我们把满足上述两个条件的二次根式,叫做最简二次根式.例1、现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那.试着化简一下。

二次根式及其性质练习题以及答案

二次根式及其性质练习题以及答案

二次根式及其性质练习题以及答案【精选问题1】若x是实数,当x满足什么条件时,下列各式有意义.(1)1x-6(2)(2x+3)0(3)x+7(4)1x-1(5)x2+0.1(6)x2-2x+2(7)40.5-x(8)(5-x)-(9)(8-x)-【精选问题2】求下列二次根式的值.(1)(π-3.2)2(2)a2+4a+4,其中a=-5【精选问题3】化简下列二次根式:(1)125(2)12a2(a≥0)(3)113(4)m8n(n>0)(5)x32y(y<0)【精选问题4】判断下列二次根式中,哪些是同类二次根式(先化简)-45,75,613,20,5,0.3【测试训练】一、填空题:1.如果1-x在实数范围内有意义,那么x应满足的条件是___________.2.式了x(x-3)=xx-3成立的条件是_________.3.5-xx-2在实数范围内有意义,x的.取值范围是__________.4.计算:(-4)2=__________;(2-5)2=__________;(3.14-π)2=__________.5.如果x2=-x,那么x的取值范围是_________.6.当m≥时,(4-2m)2=________.7.当m<2时,化简1-x-x2-4x+4的结果是__________.8.化简:750=_________.18a349b2=_________.15x3=_________.9.如果最简二次根式2a-1与11-4a是同类二次根式,那么a=__________.10.2x2y,ab2,3xy5,5(a2-b2),75x3y3,x2+y2,2y2c中,是最简二次根式的有_____________________________.二、选择题11.以下各组中不是同类二次根式的是().(A)8和2(B)54和108(C)8a和32a(D)63和11212.在下列根式中最简二次根式的个数是(). a2+b2,12,15,10,3xy2,3ab(A)5(B)4(C)3(D)2三、解答题13.如果(27-x)2+y+13=0,求xy.14.当m<0时,化简:|m|+m2+(m3)+m.15.解不等式:2x-34+3<13+5x.16.已知x+1x=6,求x+1x的值.。

(完整版)二次根式的概念及性质练习题

(完整版)二次根式的概念及性质练习题

二次根式的概念及性质练习题班级 姓名一.判断题(对的打“∨”,错的打“×”)(1x 的取值范围是x<0 ( )(2中字母x 的取值范围是x ≤34( ) (3)当x=-1( )(4)当a=-4( )(5)2= —12 ( );(6—12( ) (7)2= —12 ( );(8)(2=2×12=1 ( ) 二、填空题:1.b ≥3)s ≥0)这种形如a (0≥a )的代数式,叫做_______.2.当x______时,有意义.3x 的取值范围是_______ .4.(7)2; (8+(2=________.(10. 5.当x=-2_______. 6.当a 取______7.当x 取______8.当m=-2________.((()(()(()(2231_____,2______,3_____,4_____,5____,6____.======9、若直角三角形的两直角边分别是2cm 和acm ,则直角三角形的斜边长是_______10、若正方形的面积是(b-3)cm 2,则正方形的边长是_________。

三、选择题:1.下列各式中,哪一个是二次根式 ( )ABCD2.使代数式2x +有意义的x 的取值范围是( ) A .x ≠-2; B .x ≤12且x ≠-2; C .x<12且x ≠-2; D .x ≥12且x ≠-2 3.下列各式中一定成立的是( ) ABC .(2D=1-13=23四、求下列二次根式中字母的取值范围:五、计算:(1-(12)2; (2)(3)4时x 的值.x-4│—│7-x │. ()()()123(4。

21.1 二次根式(1)

21.1 二次根式(1)

温故知新
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a, 则这个数就叫做a的平方根. a的平方根是 a
⑵什么是一个数的算术平方根?如何表示 正数的正的平方根叫做它的 算术平方根. 用 a 表示.
形如
a (a≥0)的式子叫做二次根式.
二次根式 注意: 1)
被开方数a≥0 根指数为2.
x3
8x 5x 3
5 x
(2)
x 7 x3
(4)ቤተ መጻሕፍቲ ባይዱ
1 1 x
求代数式中字母的取值范围的基本依据:
①被开方数≥0;
②分母≠0
1.二次根式:
形如
a (a≥0)的式子叫二次根式.
2.二次根式的性质: 1)
a
≥0
1 x
2
3
x0 x0
x为全体实数
(5 )
x0
5 x
(6)
7
x3
3 x 5
3.若 a 5 2b 3 =0,则a=
,b=
.
4. 已知a、b为实数,且满足
a 2b 1 1 2b 1
你能求出a、 b 的值吗?
求下列代数式中字母的取值范围:
1
3
思考
1)要做一个两条直角边分别为7cm和 4cm的三角尺,斜边的长应为 cm; 2)面积为S的正方形的边长为
2

3)要修建一个面积为6.28m 的圆形 喷水池,它的半径为 m( 取3.14) 4)一个物体从高处自由落下,落到地面 所用的时间t(s)与开始落下时的高度 h(m)满足关系 h=5t2. 用含h的式子 表示t,则t= .
1 1 2a
被开方数≥0
分母≠0

第二十一章 二次根式训练题

第二十一章  二次根式训练题

第二十一章 二次根式训练题21.1 二次根式一、选择题1.下列各式:15,12-b ,22b a +,1202-m ,144-中,二次根式的个数是( ) A. 4个B. 3个C. 2个D. 1个 2.如果x 25-是二次根式,那么x 应满足的条件是( ) A. x ≤2.5B. x ≥2.5C. x <2.5D. x >2.5 3.()2310-等于( ) A. 30B. -300C. 300D. -304.下列各式中,一定能成立的是( )A.()()225.25.2=- B.()22a a =C.1122-=+-x x x D.3392+•-=-x x x5.下列各式中,正确的是( ) A. a a =2 B. a a ±=2C. a a =2D. 22a a =6.计算()()222112a a -+-的结果是( )A. 24-aB. 0C. a 42-D. 24-a 或a 42-7.把a a 1-的a 移入根号内,得到( )A.aB. a -C. a -D. a --8.若0<a <1则414122-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-a a a a ,结果为( ) A. a 2B. a 2-C. a 2D. a 2-9.实数a ,b 在数轴上对应位置如图,化简2a b a --的结果是( )A. -bB. bC. 2a -bD. b -2a 10.若2442=+--a a a ,则实数a 的取值范围是( ) A. a >2B. a <2C. a ≥2D. a ≤2二、填空题11.若11-+-x x 有意义,则x .12.已知522+-+-=x x y ,则=x y .13.()26= ,()26-= ,26= ,由此得出式子()22a a =成立的条件是 .14.当x = 时,19+x 取值最小,这个最小值为 . 15.已知011=-++b a ,那么20062006b a += .16.当-1<a <3时,()()=-++2231a a .17.x x x -=+-636122成立的条件是 .18.若a ,b ,c 为三角形三边,且满足012135=-+-+-c b a ,则△ABC 是 三角形.19.当a <-1时,=+--++2244121a a a a . 20.在实数范围内因式分解:=-44x . 三、解答题21.如果a a a --=++1122,求a 的取值范围.22.如果-3<x <5,求96251022++++-x x x x 的值.23.求231294a a a a -+-+--+的值.24.已知x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.25.设x ,y 为实数,满足y <2144+-+-x x ,化简11--y y.26.已知:1-=a ,3=b . 求22222221⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛-+ab b a ab b a 的值.27.若x <35-. 求证:12253094942922=++-+-x x x x28.已知:实数a 满足0332=++a a a . 化简:1212+++-a a a .29.已知a 、b 、c 为△ABC 三边. 化简()()()()2222b ac c a b c b a c b a --+--+--+++.30.a 、b 为实数,且b <3133+-+-a a . 化简:13442--+-b b b .21.2 二次根式的乘除一、选择题1.化简4125等于( )A.4125 B. 2101±C. 25D. 101212.下列计算错误的是( ) A.542516=B.3836427= C.232924=D. 556517-=-3.计算227818⨯÷得( )A. 649B.66 C. 618D. 6344.若a <0,b <0,下列命题错误的是( ) A. ab 的算术平方根是ab B. b a ab •=C.b a ab •=D.b a ab -•-=5.下列等式成立的是( ) A. b a b a +=+22 B. ab a b a --=-C.ba b a =D.ab b a -=-226.下列式中计算错误的是( )A.2065946.292223.1983.181x x x x x ==••=⨯B. 70514707014141457014570==⨯⨯⨯=C. y x xy y x y x y x xy 22221111-=⎪⎪⎭⎫ ⎝⎛-=- D. ()()()()()()n m n m n m n m n m n m n m n m n m 222-=--+-=-+-7.化简:()xy y x --1得( ) A. y x - B. x y -C. y x --D. x y --8.331++x x 分母有理化,得( )A. 131+xB. 3331+xC. 1+xD. 33-x9.当3323+-=+x x x x 时,x 取值范围是( ) A. x ≤0B. x ≤-3C. x ≥-3D. -3≤x ≤010.当092=-+-y x ,则()=+1x y ( ) A. 33B. 33±C. 33-D. 23二、填空题11.二次根式x 12,a 35,y x 315,24x x +中,最简二次根式是 .12.=⨯1219 ,()()=-⨯-94 ,222425-= .13.12= ,714⨯= .14.化简=⨯83332 ,=-1973 .15.已知一个长方体的长a =6,宽b =15,高c =35,那么这个长方体的体积是 . 16.化简=⨯33832ab b a .17.下列二次根式:①21、②224041-、③28x -、④()1122 x x x +-、⑤5x 、⑥38、⑦22259y x +、⑧()()()b a b a b a +-2中最简二次根式有 (填序号). 18.若根式()y x b a --+86为最简二次根式时,x = ,y = . 19.若3<a <4,化简()()=--2243a a .20.计算=33155 ,=÷4.0324 ,=÷4312122 .三、解答题21.计算下列是中式.(1)⎪⎭⎫ ⎝⎛-••102132531(2)n m n m n m 3233•••(3)1012655÷(4)32643a a ÷22.比较下列各组中两个数的大小. (1)112-和53-(2)7232和32723.已知5=+y x ,3=xy ,求代数式yx x y +的值.24.已知实数a 满足a a a =-+-19931992,求21992-a 的值.25.已知长方形的长是π140(cm ),宽是π35(cm ),求与长方形面积相等的圆的半径.26.已知⎩⎨⎧=+=++13053y x y x 化简:x y -23.27.已知:x =1,先化简再求值334312x x xx +-.28.已知:1011+=+a a . 求221a a +及a a 1-的值.29.已知:3121122+-+-=x x y . 求yx y y x x -++的值.30.设()1123-+++=+++c b a c b a . 求222c b a ++的值.21.3 二次根式的加减一、选择题1.下列计算正确的是( ) A. 2222=+ B. 743=+ C.752863=+D.942188+=+ 2.计算47548213123-+的结果是( )A. 2B. 0C. -3D. 33.计算)93()34(3ab a b a b a a b a b +-+的结果是( )A.abB. 7abC. 0D. 13ab4.若103-=a ,则代数式262--a a 的值为( ) A. 0B. 1C. -1D. 105.若2=a ,则a a a a -+的值是( )A. 223+B. 223-C. 223+-D. 223--6.=--994411( ) A. 114B. 114-C. 0D. 112-7.计算:⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+y x y y x x xy x y x 42933(其中y >0)结果等于( )A. xy 2-B. 0C. xy xyD. xy 38.下列各组中是同类二次根式是( ) A. a a 和32aB. x x 3和xx 42 C.x 2和43xD. 33a 和a 39.已知:1018222=++a a a a ,则a=( )A. 4B. 2±C. 2D. 4±10.把()4222311xy y x x y y x -++--化简的结果是( ) A. x y -34B. y x --32 C . x y -32D. x y --32二、填空题11.二次根式加减时,可以先将二次根式化成 ,再将被开方数 的二次根式合并.12.=+212 ,=+5424 ,=-813953 .13.计算:=-32x xy ;=-21a a a .14.设三角形的三边长分别为a ,b ,c ,周长是l ,已知40=a cm ,160=c cm ,109=l cm ,那么b = . 15.计算:()()=-÷⎥⎦⎤⎢⎣⎡-+303220062736 . 16.计算:=⋅+-x x x 836212739 .17.若最简二次根式14432+a 与1622-a 是同类二次根式,则a 的值是 . 18.下列二次根式①5.0,②81,③18,④243,⑤5527y x ,⑥545,⑦3281,⑧y x 26,⑨y x 3,⑩22242y xy x ++中是同类二次根式的是 .(填序号)19.计算:=---31312231 .20.223+=a ,223-=b ,则=+22ab b a . 三、解答题 21.化简并求值:()()3323472++++x x ,其中32-=x .22.当321+=m 时,求m m m m m m m -+---+-22212121的值.23.已知34+=a ,34-=b ,求代数式ba b aba a +--的值.24.已知5152522=-+-x x ,求221525x x ---的值.25.已知()()0212=-+-x x ,求x x x x x x x x 3643122+-+÷⎪⎭⎫ ⎝⎛----的值.26.化简或计算(1)21431375518132+-+-(2)xy xy y x y x y x xy 123--+(3)()()()()y x y x y x y x 22+---+27.先化简再求值⎪⎪⎭⎫ ⎝⎛--+÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111,其中22=x .28.当91,4==y x 时,求31441y y x y x x ---的值.29.求证:⎪⎩⎪⎨⎧-=+=3232y x 是方程组⎪⎩⎪⎨⎧+=-+=+35223362y x y x 的解.30.最简根式()y x y x --221与()183216+++y x x 能是同类二次根式吗?若能是求x 、y 值;若不能,说明理由.第二十一章 单元测试(一)一、选择题(每题3分,共30分) 1.下列等式中成立的是( ) A. ()32323-=⨯- B. y x y x +=+22 C.532=+D.2332=•x x2.已知a 为实数,下列四个命题中错误的是( ) A. 若1-=aa ,则a <0 B. 若a ≠1,则111-=--a aC. 若aa 112-=-,则a >0D. 若a ≥-2,则12++a a 有意义3.下列各式中,最简二次根式为( ) A. 72B.324 C.ba D. 32b a4.下式中不是二次根式的为( ) A.12+b B. a (a <0) C. 0 D.()2b a -5.当a =1时,计算a a a 7251012-+-得( ) A. 11 B. -11 C. 3D. -36.下列各组中互为有理化因式的是( ) A. x -2和2+xB. 32+x 和x 23-C.y x +与y x --D.x 与32x7.代数式⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+ab a b a b a a b a b 93243的值一定是( )A. 正数B. 负数C. 0D. 18.a 12的同类二次根式为( ) A.ab3 B. a 54C. a271-D.248a9.若x <2,化简()()2232x x -+-的正确结论是( )A. -1B. 1C. 52-xD. x 25-10.()()200620052323-+值为( )A. 0B. 23-C. 32-D. 无法确定二、填空题(每题3分,共30分)11.若式子121++-x x 在实数范围内有意义,则x 的取值范围是 ;xx x x --=--4343成立的条件是 . 12.计算:=+123 .13.23-的相反数与12-的倒数的和是 . 14.若a ,b ,c 表示三角形的三边,则()2c b a --= .15.()0332=-++b a ,则=-+11a b .16.=⎪⎭⎫ ⎝⎛+•--20063232 .17.625-的算术平方根是 . 18.化简=--yx y x ,当0<a <1时,=-+2122a a .19.分母有理化:=-2346,251+-的倒数是 . 20.()()=-+-2223323223.三、解答题21.计算(每题2分,共8分) (1)()7512231-(2)61312322÷⎥⎥⎦⎤⎢⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-(3)()()121923121999---⨯-+- (4)261321121824--⨯÷-22.已知等腰三角形的顶角为120°,底边长为64cm ,求这个等腰三角形的面积.(3分)23.已知:,2323,2323-+=+-=y x 求22y x x y +的值.24.化简求值.ba b b a b ab b b a a b b a -÷⎪⎪⎭⎫ ⎝⎛+--++1,其中,53-=a ,53+=b .(3分)25.已知()2234-=x ,()2322-=y ,求(1)x+y 的值;(2)()27+-y x 的值.(4分)26.已知37+=x ,37-=x . 求233++xy y x 的值.27.解方程:()x x 3123=+.(4分)28.化简:(4分)()⎪⎪⎭⎫ ⎝⎛---b a a b a b a a b b a 22329.某船在点O 处测得小岛上的电视塔A 在北偏西60°的方向上,船向西航行20海里到达B 处,测得电视塔在船的西北方向,问向西航行多少海里船离电视塔最近?(5分)30.如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m. 假设拖拉机行驶时,周围100m 内会受到噪声影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由. 如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?(5分)第二十一章 单元测试(二)一、选择题(每题3分,共30分)1.以下判断正确的是( )A. 无限小数是无理数B. 平方是3的数是3C. 1的平方根和立方根相等D. 27-无平方根 2.若a <-3,则()212a +-=( )A. a -1B. 1-aC. a +3D. a --3 3.651+与65-的关系是( )A. 互为相反数B. 互为倒数C. 互为有理化因式D. 相等4.把aa 1--根号外因式移到根号内,则原式=( ) A. a B. a - C. a -- D. a -5.计算:()()()2623535+-+-的值为( ) A. 7- B. 327-- C. 347-- D. 346--6.已知35-=+y x ,35+=xy ,则x+y 的值等于( )A. 2B. 5C. 1528-D. 52321528--- 7.若()x x -=-222,则x 是( ) A. x <2B. x >2C. x ≤2D. x ≥2 8.已知-1<x <2()()=--+2223x x ( ) A. 5 B. -5 C. 12--xD. 12+x 9.矩形面积为24,一边长23+,则另一边长是( ) A. ()3224+ B. ()2324- C. ()23724+ D. ()23724- 10.已知x 、y 是正数,且有()()x y y x y x-=-3,则=x y ( ) A. 9 B. 91 C. 1 D. 1或9二、填空题(每小题3分,共30分)11.当x 时,x x 2112-++有意义.12.若最简根式()2334++a b a 和452++b a 是同类根式,则a = ,b = .13.当a <-2时,化简()=++-122a a .14.若a a =2,则a . 若a a -=2,则a . 若a a =2,则a .15.比较大小:①23-,②22+,③52-53-.16.当x = 时,xx -1有意义.17.若25-=x ,25+=x ,则=+÷⎪⎪⎭⎫ ⎝⎛-xy y x y x x y . 18.使式子122---a a 有意义的a 取值范围是 .19.当a >2b >0时,=+-a b ab b a 32244 .20. ()()()=+-+÷++a b b a b ab a 2 .三、解答题21.计算(每小题2分,共6分)(1)⎪⎪⎭⎫⎝⎛----5431813225.024(2)ab b a ab b 3123235÷⎪⎭⎫ ⎝⎛-(a >0,b >0)(3)132121231+-+++22.化简求值(每小题3分,共6分)(1)已知2352+=x . 求⎪⎪⎭⎫⎝⎛-++÷⎪⎪⎭⎫ ⎝⎛-++x x x x x x x x 1111的值.(2)已知23-=x ,求4434234--++x x x x 的值.23.已知321+=a ,求aa a a a a a -+-+-+-22212121的值.(4分)24.设x a -=8,43+=x b ,2+=x b .(6分)(1)当x 取何实数时,a 、b 、c 均有意义.(2)当a 、b 、c 为直角△ABC 三边,求x 值.25.化简:424242422222-++--++--+-++n n n n n n n n (n >2).(4分)26.已知:32+=-b a ,32-=-c b . 求bc ac ab c b a ---++222的值.(4分)27.已知a a 1=,5=b ,求1025102522222222-+-++a b b a a b b a 的值.(4分)28.已知代数式333--+-x x x ,(1)试确定x 的值;(2)利用(1)的结果求32637522++-x x 的值.(6分)。

华东师大版2018年九年级数学上册全册同步练习含答案

华东师大版2018年九年级数学上册全册同步练习含答案

华师大版九年级数学上册全册同步练习目录21.1二次根式第1课时二次根式的概念21.1二次根式第2课时二次根式的性质21.2二次根式的乘除1二次根式的乘法21.2二次根式的乘除2积的算术平方根21.2二次根式的乘除3二次根式的除法21.3二次根式的加减同步练习无答案华东师大版.doc22.1一元二次方程同步练习无答案华东师大版.doc22.2一元二次方程的解法22.2.1第1课时直接开平方法22.2一元二次方程的解法22.2.1第2课时因式分解法22.2一元二次方程的解法22.2.2配方法22.2一元二次方程的解法22.2.3公式法22.2一元二次方程的解法22.2.4一元二次方程根的判别式22.2一元二次方程的解法22.2.5一元二次方程的根与系数的关系22.3实践与探索第1课时用一元二次方程解决图形面积问题22.3实践与探索第2课时用一元二次方程解决平均变化率利润问题23.1成比例线段23.1.1成比例线段23.1成比例线段23.1.2平行线分线段成比例23.2相似图形23.3相似三角形23.3.1相似三角形23.3相似三角形23.3.2第1课时相似三角形的判定定理123.3相似三角形23.3.2第2课时相似三角形的判定定理23.3相似三角形23.3.3相似三角形的性质23.3相似三角形23.3.4相似三角形的应用23.4中位线23.5位似图形23.6图形与坐标23.6.1用坐标确定位置23.6图形与坐标23.6.2图形的变换与坐标24.1测量24.2直角三角形的性质24.3锐角三角函数24.3.1第1课时锐角三角函数的定义及关系应用24.3锐角三角函数24.3.1第2课时特殊角的三角函数值24.3锐角三角函数24.3.2用计算器求锐角三角函数值24.4解直角三角形第1课时解直角三角形24.4解直角三角形第2课时解直角三角形的应用_仰角俯角24.4解直角三角形第3课时解直角三角形的应用_坡度坡角25.1在重复试验中观察不确定现象第1课时不可能事件必然事件与随机事件25.1在重复试验中观察不确定现象第2课时用频率估计事件发生的机会大小25.2随机事件的概率25.2.1概率及其意义25.2随机事件的概率25.2.2频率与概率25.2随机事件的概率25.2.3列举所有机会均等的结果21.1 第1课时二次根式的概念知识点 1 二次根式的概念1.如果-x是二次根式,那么-x________0,则x________0.2.下列各式中,一定是二次根式的是( )A.35B.32 C.-2 D.x3.下列各式中,哪些是二次根式,哪些不是?为什么?3,35,-16,-7,x2(x≥0),||-8,a-2.知识点 2 二次根式有意义的条件4.如果二次根式3x-1在实数范围内有意义,那么必须使3x-1________0,所以当x________时,二次根式3x-1在实数范围内有意义.5.如果x-1无意义,那么字母x的取值范围是( )A.x≥1 B.x>1 C.x≤1 D.x<16.求使下列各式有意义的字母x的取值范围.(1)5-2x; (2)2x+1 2;(3)1x-1; (4)2x+1.7.当a为任意实数时,下列各式中是二次根式的是( ) ①a+1;②5a2;③|a|;④-a2-2;⑤(a-1)2. A.①②③ B.②③④ C.③④⑤ D.②③⑤8.[2017·绵阳]使代数式1x+3+4-3x有意义的整数x有( )A.5个 B.4个 C.3个 D.2个9.写出一个只含有字母x的二次根式,使它同时满足以下要求:(1)要使此式有意义,字母x必须取大于或等于2的实数;(2)此式的值恒为非正数.这个二次根式可以是__________ .10.[教材练习第2题变式]当x取何值时,下列各式有意义?(1)3-x+12x-1;(2)x+3|x|-4.11.若x,y为实数,且2x-1+1-2x+y=8,求xy的值.1.≥ ≤ 2.A3.解:3,-16,x2(x ≥0),|-8|是二次根式;35,-7,a -2不是二次根式.理由:3,-16,x 2(x ≥0),|-8|符合二次根式的概念,故是二次根式.35的根指数是3,故不是二次根式;-7的被开方数小于0,无意义,故不是二次根式;a -2的被开方数a -2的正负不能确定,故也不一定是二次根式.4.≥ ≥135.D 6.(1)x ≤52 (2)x ≥-12(3)x >1 (4)x >-1 7. D8.B 9.答案不唯一,如-x -210.解:(1)由原式有意义可得⎩⎪⎨⎪⎧3-x ≥0,2x -1>0,∴12<x ≤3. (2)根据题意,得⎩⎪⎨⎪⎧x +3≥0,①|x |-4≠0,②由①得x ≥-3,由②得x ≠±4,故当x ≥-3且x ≠4时,原式有意义.11.解:由已知可得⎩⎨⎧2x -1≥0,1-2x ≥0,∴x =12,∴y =8,∴xy =4.21.1 第2课时 二次根式的性质知识点 1 二次根式的非负性1.若x -1+(y +2)2=0,则(x +y )2018=( )A .-1B .1C .32018D .-320182.若|x -y |+y -2=0,则x y -3的值为________.知识点 2 二次根式的性质(a )2=a (a ≥0)3.计算(15)2的结果是( )A .225B .15C .±15D .-154.把414写成一个正数的平方的形式是( ) A .(212)2 B .(174)2 C .(±212)2 D .(±174)2 5.计算: (1)(11)2; (2)(- 20)2.知识点 3 二次根式的性质a 2=|a |6.计算:(-2)2=|________|=________.7.下列计算正确的是( ) A .(5)2=25 B .(-3)2=3C.(-3)2=-3D.02=08.计算:(1)916; (2)(-7)2.9.若x -2+3+y =0,则(x +y )2019的值为( ) A .5 B .-5 C .1 D .-110.若(x -3)2=3-x ,则x 的取值范围是________.11.[教材习题第2题变式]计算:(1)()32+⎝ ⎛⎭⎪⎫-232;(2)(a+3)2-a2(a>0).12.阅读材料,解答问题.例:若代数式(2-a)2+(a-4)2的值是常数2,求a的取值范围.分析:原式=|a-2|+|a-4|,因为|a-2|表示数a在数轴上对应的点到数2在数轴上对应的点的距离,|a-4|表示数a在数轴上对应的点到数4在数轴上对应的点的距离,所以我们可以借助数轴进行分析.图21-1-1解:原式=|a-2|+|a-4|.在数轴上看,应分三种情况讨论:①当a<2时,原式=2-a+4-a=6-2a;②当2≤a≤4时,原式=a-2+4-a=2;③当a>4时,原式=a-2+a-4=2a-6.通过分析可得a的取值范围是2≤a≤4.(1)此例题的解答过程中用了哪些数学思想?(2)化简:(3-a)2+(a-7)2.华东师大版2018年九年级数学上册同步练习含答案1.B 则原式=(-1)2018=1.2. 123.B4.B 5.(1)11 (2)20 6.-2 2 7.D8.(1)34 (2)79. D 10. x ≤311.解:(1)原式=3+23=323.(2)原式=a +3-a =3.12.解:(1)数形结合思想,分类讨论思想.(2)原式=|3-a |+|a -7|.①当a <3时,原式=3-a +7-a =10-2a ;②当3≤a ≤7时,原式=a -3+7-a =4;③当a >7时,原式=a -3+a -7=2a -10.21.2.1 二次根式的乘法知识点 1 ab =a ·b 成立的条件1.如果等式x +1·1-x =1-x 2成立,那么有x +1________0,1-x ________0,所以x 的取值范围是__________.2.若a ·b =ab 成立,则下列说法正确的是( )A .a ≥0,b ≥0B .a >0,b >0C .a ≤0,b ≤0D .a <0,b <0 知识点 2 二次根式的乘法法则的应用3.计算:8×12=____________. 4.下列计算正确的是( )A.2×5=7B.2×5=10C.5×6=11D.12×12= 2 5.[教材例1变式]计算: (1)3×5; (2)13×108;(3)68×(-32); (4)6×34×8.6.下列运算正确的是( )A .23×32=6 5 B.2a ·8a =4aC.(a 3)2=a 3D.5×920=327.阅读下列解答过程,在括号中填入恰当的内容. (-a )2=-a ×-a ①=(-a )×(-a ) ② =(-a )2 ③=a 2 ④=a . ⑤(1)由上述过程可知a 的取值范围为________;(2)上述解答过程有错误的是第________步,正确结果为________.8.王老师想设计一个长方形的实验基地,便于学生进行实地考察.为了考查学生的数学应用能力,他把长方形基地的长设计为8020米,宽设计为3 45米,让学生计算出这块实验基地的面积,你会计算吗?9.比较前后两个算式计算结果的大小(填“>”“<”或“=”):(1)2+12________2×2×12; (2)3+3________2×3×3;(3)9+16________2×9×16;…通过观察与归纳,写出其中的规律,并说明理由.教师详答1.≥ ≥ -1≤x ≤1 2. A 3. 8 124 24. B 5.(1)原式=3×5=15. (2)原式=13×108=36=6. (3)原式=6×(-3)×8×2=-18×4=-72. (4)原式=6×34×8=36=6. 6. D7. (1)a ≤0 (2)⑤ -a8.解:80 20×3 45=(80×3)×20×45=240×900=7200(米2). 9.解:(1)> (2)= (3)>规律:a +b ≥2 a ·b (a ≥0,b ≥0).理由:∵a =(a )2,b =(b )2(a ≥0,b ≥0),∴a +b -2 a ·b =(a )2-2 a ·b +(b )2=(a -b )2≥0, ∴a +b ≥2 a ·b (a ≥0,b ≥0).21.2.2 积的算术平方根知识点 1 ab=a·b成立的条件1.若等式a2-64=a+8·a-8成立,则有________≥0,________≥0,所以a的取值范围是________.2.若-ab=a·-b成立,则( )A.a≥0,b≥0 B.a≥0,b≤0C.a≤0,b≥0 D.ab≥0知识点 2 积的算术平方根的应用______.4( )A.125.计算:(1)30×6; (2)(-100)×(-4);(3)121169×81100; (4)(-5)2×(-7)2.6.[教材例2变式]化简:(1)-75;(2)a5.7.有下列各式:①54×12=32;②412-402=9;③(-3)×(-5)=-3×-5;④8=22;⑤(-3)2×(-5)2=15;⑥32+42=7.其中正确的有( )A.2个 B.3个 C.4个 D.5个8.若一个长方体的长为2 6 cm,宽为 3 cm,高为 2 cm,则它的体积为________ cm3.9.若20n是整数,则正整数n的最小值为________.10. 已知a=2,b=5,用只含a,b的代数式表示20,这个代数式是__________.11.计算下列各式:(1)2 4a3b2c(a>0,b>0);(2)a4+a6b2.12.已知m=(-33)×(-2 21),则有( )A.5.0<m<5.1 B.5.1<m<5.2C.5.2<m<5.3 D.5.3<m<5.413.[阅读思考]阅读探究:4×9×16=24,4×9×16=24;0.04×0.25×0.09×0.36=0.018,0.04×0.25×0.09×0.36=0.018.(1)根据上述具体数据,请你猜想:当a≥0,b≥0,c≥0时,a·b·c与a·b·c的关系是什么?(2)根据以上式子,请你猜想:当a≥0,b≥0,c≥0,…,f≥0时,a·b·c·…·f可以转化为什么?教师详答1.a+8 a-8 a≥82.B3.100 14101254. A5.解:(1)原式=5×6×6=5×62=6 5.(2)原式=100×4=100×4=10×2=20.(3)原式=121169×81100=1113×910=99130.(4)原式=25×49=25×49=5×7=35.6.解:(1)-75=-3×25=-5 3.(2)a5=a4·a=a4·a=a2a.7. B8.129.5 10.a2b11.解:(1)原式=2×2ab ac=4ab ac.(2)原式=a4(1+a2b2)=a4·1+a2b2=a21+a2b2.12.C [13.解:(1)a·b·c=a·b·c.(2)当a≥0,b≥0,c≥0,…,f≥0时,a·b·c·…·f=a·b·c·…·f.21.2.3 二次根式的除法知识点 1a b=ab 成立的条件 1.若x x +1=xx +1成立,则有x ________0,x +1________0,所以x 的取值范围是________.2.等式-ba=-ba成立的条件是( )A .a ,b 异号B .a >0,b >0C .a ≥0,b ≥0D .a >0,b ≤0 知识点 2 二次根式的除法 3.计算:483=( )( )=________.4.计算: (1)183; (2)328;(3)315÷135; (4)3ab 32ab2.知识点 3 商的算术平方根 5.计算:29=( )( )=________. 6.若3+x 3-x =3+x 3-x成立,则x 的取值范围是( ) A .-3≤x <3 B .x <3C .x >-3D .-3<x ≤3 7.化简: (1)916; (2)325;(3)549; (4)-11-36.知识点 4 最简二次根式 8.[2017·贵港]下列二次根式中,是最简二次根式的是( ) A .- 2 B.12 C.15D.a 29.下列二次根式中,不是最简二次根式的有______个. ①x 2; ②0.3; ③118; ④2x 2+1. 10.化简: (1)17; (2)113; (3)510; (4)438.11.如果ab >0,a +b <0,那么下面各式:①a b =a b,②ab ·ba =1,③ab ÷ab=-b 中,正确的是( )A .①②B .②③C .①③D .①②③12.若 2m +n -2和 33m -2n +2都是最简二次根式,则m n=________. 13.[教材习题21.2第2题变式]计算:(1)35×52÷47; (2)113÷223×135; (3)3 223÷1225×⎝ ⎛⎭⎪⎫-18 15.14.王聪学习了二次根式的除法公式ab=ab后,他认为该公式逆过来a b =ab也应该成立,于是这样化简了下面这道题:-27-3=-27-3=(-3)×9-3=-3×9-3=9=3.你认为他的化简过程对吗?若不对,请说明理由,并改正.15.请先化简x -1x -1÷1x 2-x,再选取两个你喜欢的数代入化简后的式子中分别求值.16.观察下面的式子:1+13=213,2+14=314,3+15=415,…. (1)类比上述式子,再写出几个同类型的式子(至少写3个);(2)请你将发现的规律用含自然数n (n ≥1)的等式表示出来,并给出证明.教师详答1.≥ > x ≥0 2. D3. 48 3 16 44.(1) 6 (2)2 (3) 2 (4)32 b 5.2 9 236.A 7.解:(1)916=916=34. (2)325=325=35. (3)549=499=499=73. (4)-11-36=1136=1136=116. 8.A 9.3 10.解:(1)17=77×7=77. (2)113=43=4×33×3=2 33. (3)510=5 1010×10=5 1010=102.(4)438=4 3×28×2=4 616=4 64= 6. 11. B12. 1 13.解:(1)原式=35×52÷47=352×28×2=3542. (2)原式=43÷83×85=45=4×55×5=255. (3)原式=9×83÷121025×⎝ ⎛⎭⎪⎫-18 15 =-24÷102×5×158=-2 6×1010×158=-2 6×10×158=-9004=-152. 14.解:不对. 理由:因为-27-3有意义,而-27-3中的二次根式无意义. 改正:-27-3=273=9=3. 15.解:由题意得x >1, 所以原式=x -1x -1·x ()x -1 =()x -12x x -1=x -1x -1x =x .代入求值答案不唯一,如:当x =4时,原式=2. 当x =9时,原式=3. 16.解:(1)答案不唯一,如4+16=5 16,5+17=6 17,6+18=7 18. (2)规律:n +1n +2=(n +1)1n +2. 证明:n +1n +2=n (n +2)+1n +2=n 2+2n +1n +2=(n +1)1n +2.21.3 二次根式的加减知识点 1 同类二次根式1.下面与2是同类二次根式的是( )A. 3B.12C.8D.202.[2016·巴中改编]下列二次根式中,能与3合并的是( )A.18B.13C.24D.0.33.下列二次根式中,属于同类二次根式的是( )A.2 3与 6 B. 13与23C. 18与12D. 4a与8a4.已知最简二次根式3a-8与17-2a是同类二次根式,求a的值.知识点 2 二次根式的加减5.计算:27+3=________+3=(________+________)3=________.6.计算8-612的结果是________.7.计算414+313-8的结果是__________.8.计算:(1)1048-627+312;(2)13-12+273;(3)45+45-8+4 2.知识点 3 二次根式的混合运算9.计算:(3+2)(3-2)=________.10.[教材练习第2题变式]计算:(1)(5+2)2; (2)(23-2)2.11.下列各数中,与2-3的积为有理数的是( ) A.2+ 3 B.2- 3C.-2+ 3 D. 312.若a,b为有理数,且4+18+18=a+b2,则ab的值为( )A.34B.134C.132D.213.已知a-b=2 3-1,ab=3,则(a+1)(b-1)的值为________.14.若等腰三角形的两边长分别为2 3和5 2,则这个等腰三角形的周长是__________.15.若a,b分别是6-13的整数部分和小数部分,则2a-b的值是________.16.计算:(1)20+55-13×12;(2)(3 2+4 3)(4 2-3 3);(3)(1048-624+412)÷6;(4)⎝⎛⎭⎪⎫5-5102-(-210).17.对于任意不相等的两个实数a ,b ,定义运算“※”如下:a ※b =a +b a -b ,例如:3※2=3+23-2= 5.求4※1+8※12的值.18.若a =3-10,求代数式a 2-6a -2的值.19.如图21-3-1,有一张边长为6 2 cm 的正方形纸板,现将该纸板的四个角剪掉,制作一个有底无盖的长方体盒子,剪掉的四个角是面积相等的小正方形,此小正方形的边长为 2 cm.求:(1)剪掉四个角后,制作长方体盒子的纸板的面积; (2)长方体盒子的体积.图21-3-12 3x9x+y2xy3)-(x21x-5xyx)的值.20.已知4x2+y2-4x-6y+10=0,求(1.C 2. B 3. C4.解:由已知可得3a -8=17-2a ,解得a =5.5.3 3 3 1 4 3 6.- 27. 2+3-2 28.解:(1)原式=10×4 3-6×3 3+3×2 3=(40-18+6)3=28 3. (2)原式=33-2 3+3=-2 33. (3)原式=4 5+3 5-2 2+4 2=7 5+2 2.9.710.解:(1)原式=5+4 5+4=9+4 5. (2)原式=12-4 6+2=14-4 6. 11. A 12. C13.- 3 14.10 2+2 3 15.1316.解:(1)原式=2 5+55-13×12=3-2=1. (2)原式=3 2×4 2-3 2×3 3+4 3×4 2-4 3×3 3=24-9 6+16 6-36=7 6-12.(3)原式=10 486-6 246+4 126=10 8-6 4+4 2=20 2-12+4 2=24 2-12.(4)原式=5-2 5×510+2510+2 10=5-5 2+52+2 10=152-5 2+2 10. 17.解:4※1=4+14-1=53,8※12=8+128-12=-204=-52, 所以4※1+8※12=53-52=-56. 18.解:解法一:原式=(3-10)2-6×(3-10)-2=9-6 10+10-18+6 10-2=-1.解法二:因为a =3-10,所以a -3=-10,两边同时平方,得a 2-6a +9=10,所以a 2-6a =1,所以a 2-6a -2=-1.19.解:(1)制作长方体盒子的纸板的面积:(6 2)2-4×(2)2=64(cm 2). (2)长方体盒子的体积:(6 2-2 2)×(6 2-2 2)×2=32 2(cm 3).20.解:∵4x 2+y 2-4x -6y +10=0, ∴(2x -1)2+(y -3)2=0,∴x =12,y =3.⎝ ⎛⎭⎪⎫23x 9x +y 2x y 3-⎝⎛⎭⎪⎫x 21x-5xy x =()2x x +xy -(x x -5xy )=2x x +xy -x x +5xy =x x +6 xy .当x =12,y =3时,原式=1212+6 32=24+3 6.22.1~22.2一、选择题(每小题3分,共27分)1.下列方程中,是关于x 的一元二次方程的是( ) A.()x +82=x +8 B .x 2+18x=6C .ax 2+bx +c =0 D .x 2+x +1=x 22.一元二次方程4x 2+1=4x 的根的情况是( ) A .没有实数根 B .只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根3. 用配方法解方程x 2-2x -1=0时,配方后所得的方程为( ) A .(x +1)2=0 B .(x -1)2=0 C .(x +1)2=2 D .(x -1)2=24.下面是四名同学在解方程x(x +3)=x 时的答案,结果正确的是( ) A .x =-2 B .x =0C .x =0或x =2D .x =0或x =-25.若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程可能是( ) A .x 2+3x -2=0 B .x 2-3x +2=0 C .x 2-2x +3=0 D .x 2+3x +2=06.若关于x 的一元二次方程mx 2-2x +1=0无实数根,则一次函数y =(m -1)x -m 的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.若关于x 的一元二次方程(m -1)x 2+5x +m 2-3m +2=0有一个根为0,则m 的值为( ) A .0 B .1或2 C .1 D .28.若关于x 的一元二次方程(k -1)x 2-(2k +1)x +k =0有两个不相等的实数根,则k 的取值范围是( )A .k >-18B .k >-18且k≠1C .k <-18D .k ≥-18且k≠09.已知m ,n 是方程x 2+3x -2=0的两个实数根,则m 2+4m +n +2mn 的值为( ) A .1 B .3 C .-5 D .-9 二、填空题(每小题4分,共20分)10.若关于x 的方程ax 2+3x =2x 2+4是一元二次方程,则a 应满足的条件是________.11.已知一元二次方程x 2-6x +c =0有一个根为2,则另一个根为__________.12.若代数式4x 2+5x +6与-3x 2-2的值互为相反数,则x 的值为________.13.有一个数值转换机,其流程如图1-G -1所示.若输入a =-6,则输出的x 的值为________.图1-G-114.关于x的一元二次方程ax2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=________,b=________.三、解答题(共53分)15.(12分)解下列方程:(1)(x-2)2=4; (2)x2-2x=0;(3)(x+2)2-9x2=0; (4)x2-10x+21=0;(5)4x2+8x+1=0; (6)x2-2x=-4+2x.16. (10分)已知关于x的方程x2+2(2-m)x+3-6m=0.(1)若1是此方程的一个根,求m的值及方程的另一个根;(2)试说明:无论m取任何实数,此方程总有实数根.17.(10分)已知关于x的一元二次方程x2-ax+2=0的两实数根x1,x2满足x1x2=x1+x2-2.(1)求a的值;(2)求该一元二次方程的两实数根.18.(10分)已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.19.(11分)已知关于x的一元二次方程tx2-(3t+2)x+2t+2=0(t>0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2(其中x1<x2),若y是关于t的函数,且y=x2-2x1,求这个函数的表达式,并画出函数图象;(3)观察(2)中的函数图象,当y≥2t时,写出自变量t的取值范围.1.A 2.C 3.D 4.D 5.B 6.B 7.D8.B 9.C 10.a ≠211.4 12.-1或-4 13.无解14.答案不唯一,如a =1,b =2 15.解:(1)∵x -2=±4, ∴x =2±2, ∴x 1=4,x 2=0.(2)原方程可化为x (x -2)=0, ∴x 1=0,x 2=2.(3)原方程可化为(x +2)2-(3x )2=0, ∴(x +2+3x )(x +2-3x )=0, ∴-4(2x +1)(x -1)=0, ∴x 1=-12,x 2=1.(4)移项,得x 2-10x =-21, ∴x 2-10x +25=-21+25, ∴(x -5)2=4,∴x -5=±4, ∴x =5±2, ∴x 1=7,x 2=3.(5)∵a =4,b =8,c =1, ∴b 2-4ac =82-4×4×1=48>0, ∴x =-8±482×4,∴x 1=-2+32,x 2=-2-32.(6)原方程可化为x 2-2x -2x +4=0, 即x 2-4x +4=0,∴(x -2)2=0, ∴x 1=x 2=2.16.解:(1)把x =1代入方程,得 1+4-2m +3-6m =0, ∴m =1.故方程为x 2+2x -3=0.设方程的另一个根是t ,则1·t =-3, ∴t =-3.故m =1,方程的另一个根为-3.(2)∵在关于x 的方程x 2+2(2-m )x +3-6m =0中, Δ=4(2-m )2-4(3-6m )=4(m +1)2≥0, ∴无论m 取任何实数,此方程总有实数根. 17.解:(1)∵x 1+x 2=a ,x 1x 2=2, 又x 1x 2=x 1+x 2-2, ∴2=a -2, ∴a =4.(2)原方程为x 2-4x +2=0,∴(x -2)2=2,∴x -2=±2,∴x 1=2+2,x 2=2- 2.18.解:(1)Δ=b 2-4ac =4-4(2k -4)=20-8k . ∵方程有两个不相等的实数根,∴20-8k >0, ∴k <52.(2)∵k 为正整数, ∴0<k <52且k 为整数,即k 的值为1或2.∵x 1,2=-1±5-2k ,且方程的根为整数, ∴5-2k 为完全平方数.当k =1时,5-2k =3,不是完全平方数; 当k =2时,5-2k =1,是完全平方数, ∴k =2.19.解:(1)证明:Δ=(3t +2)2-4t (2t +2)=(t +2)2.∵t >0,∴(t +2)2>0, 即Δ>0,∴方程有两个不相等的实数根. (2)x =3t +2±(t +2)2t ,∵t >0,∴x 1=1,x 2=2+2t,∴y =x 2-2x 1=2+2t -2×1=2t,即y =2t(t >0).函数图象如图:(3)当y ≥2t 时,0<t ≤1.22.1 一元二次方程知识点 1 一元二次方程的定义及一般形式 1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =0 C .x 2-x =0 D. 1x+x 2=02.将下列一元二次方程化成一般形式,并写出方程的二次项系数、一次项系数和常数项.(1)2y 2=8; (2)3x 2-2=x ;(3)2y (4y +3)=13; (4)(3x -1)(x +2)=1.知识点 2 一元二次方程的解3.已知关于x 的一元二次方程2x 2-3mx -5=0的一个根是-1,把x =-1代入原方程得到关于m 的方程为____________,解得m =________.4.若关于x 的方程32x 2-2a =0的一个根是2,则2a -1的值是多少?知识点 3 根据实际问题列一元二次方程 5.[教材“问题2”变式题][2017·辽阳]共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的是( )A .1000(1+x )2=1000+440B .1000(1+x )2=440C .440(1+x )2=1000D .1000(1+2x )=1000+440 6.[2017·兰州]王叔叔从市场上买了一块长80 cm 、宽70 cm 的矩形铁皮,准备制作一个工具箱.如图22-1-1,他将矩形铁皮的四个角各剪掉一个边长为x cm 的正方形后,剩余的部分刚好能围成一个底面积为3000 cm 2的无盖长方形工具箱,根据题意列方程 _______________________________.图22-1-17.关于x的方程ax2+bx+c=0(a≠0),若a+b+c=0,则方程必有一根是( )A.-1 B.1 C.0 D.±18.已知m是一元二次方程x2+2x-1=0的一个根,则3m(m+2)-2的值为________.9.[教材习题22.1第2题变式]已知关于x的方程(k-3)x|k|-3-x-2=0是一元二次方程,求不等式kx-2k+6≤0的解集.10.已知关于x的方程(k2-1)x2+(k+1)x-2=0.(1)当k取何值时,此方程为一元一次方程?并求出此方程的根;(2)当k取何值时,此方程为一元二次方程?并写出这个方程的二次项系数、一次项系数和常数项.1.C2.解:(1)移项,得一元二次方程的一般形式为2y 2-8=0,其中二次项系数为2,一次项系数为0,常数项为-8.(2)移项,得一元二次方程的一般形式为3x 2-x -2=0,其中二次项系数为3,一次项系数为-1,常数项为-2.(3)整理,得一元二次方程的一般形式为8y 2+6y -13=0,其中二次项系数为8,一次项系数为6,常数项为-13.(4)整理,得一元二次方程的一般形式为3x 2+5x -3=0,其中二次项系数为3,一次项系数为5,常数项为-3.3.2+3m -5=0 14.解:因为关于x 的方程32x 2-2a =0的一个根是2,所以6-2a =0,解得a =3.当a =3时,2a -1=2×3-1=5.5.A6.(80-2x )(70-2x )=3000 [解析] 根据题意可知裁剪后的底面的长为(80-2x )cm ,宽为(70-2x )cm ,根据长方形的面积=长×宽,可以列出方程(80-2x )(70-2x )=3000.7. B8.1 [解析] 把x =m 代入方程x 2+2x -1=0中,得m 2+2m -1=0,变形得m 2+2m =1,所以3m (m +2)-2=3(m 2+2m )-2=3×1-2=1.9.解:∵关于x 的方程(k -3)x |k |-3-x -2=0是一元二次方程, ∴|k |-3=2且k -3≠0,解得 k =±5.①当k =5时,不等式kx -2k +6≤0可化为5x -2×5+6≤0,解得 x ≤45.②当k =-5时,不等式kx -2k +6≤0可化为-5x +2×5+6≤0,解得 x ≥165.10.解:(1)当k =1时,此方程为一元一次方程;方程的根为x =1.(2)当k ≠±1时,此方程为一元二次方程;方程的二次项系数为k 2-1,一次项系数为k +1,常数项为-2.22.2.1 第1课时 直接开平方法知识点 1 用直接开平方法解形如x 2=p (p ≥0)的一元二次方程1.解方程:x 2=25.因为x 是25的平方根,所以x =________.所以原方程的解为x 1=________,x 2=________.2.一元二次方程x 2-4=0的解是( ) A .x 1=2,x 2=-2 B .x =-2 C .x =2 D .x 1=2,x 2=0 3.[教材例1变式]用直接开平方法解下列方程:(1)x 2-5=0; (2)16x 2=81;(3)5x 2-125=0; (4)x 2-5=49.知识点 2 用直接开平方法解形如(mx +n )2=p (p ≥0)的一元二次方程4.将方程(2x -1)2=9的两边同时开平方, 得2x -1=________,即2x -1=________或2x -1=________, 所以x 1=________,x 2=________.5.下列方程中,不能用直接开平方法求解的是( )A .x 2-3=0B .(x -1)2-4=0C .x 2+2=0D .(x -1)2=(-2)26.用直接开平方法解下列方程:(1)(x +2)2=27; (2)(x -3)2-9=0;(3)(2x -8)2=16; (4)9(3x -2)2=64.7.若a ,b 为方程x 2-4(x +1)=1的两根,且a >b ,则a b=( )A .-5B .-4C .1D .38.[2016·深圳]给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则y ′=4x 3.已知函数y =x 3,则方程y ′=12的根是( )A .x 1=4,x 2=-4B .x 1=2,x 2=-2C .x 1=x 2=0D .x 1=2 3,x 2=-2 39.若(x 2+y 2-1)2=4,则x 2+y 2=________.10.已知直角三角形的两边长x ,y 满足||x 2-16+y 2-9=0,求这个直角三角形第三边的长.11. [2017·河北]对于实数p ,q ,我们用符号min {}p ,q 表示p ,q 两数中较小的数,如min {}1,2=1.因此,min {}-2,-3=________;若min {}(x -1)2,x 2=1,则x =________.1.±5 5 -5 2.A3.解:(1)x 2=5,x =±5,即x 1=5,x 2=- 5. (2)∵x 2=8116,∴x =±8116, 即x 1=94,x 2=-94.(3)∵5x 2=125, ∴x 2=25,∴x =±5,即x 1=5,x 2=-5.(4)x 2-5=49,x 2=499,解得x 1=73,x 2=-73.4.±3 3 -3 2 -15.C [解析] x 2-3=0移项得x 2=3,可用直接开平方法求解;(x -1)2-4=0移项得(x -1)2=4,可用直接开平方法求解;(x -1)2=(-2)2=4,可用直接开平方法求解.故选C.6.解:(1)∵x +2=±27, ∴x =-2±3 3,∴x 1=-2+3 3,x 2=-2-3 3.(2)∵(x -3)2-9=0,∴(x -3)2=9, ∴x -3=±3, ∴x 1=6,x 2=0. (3)∵2x -8=±16, ∴2x =8±4, ∴x 1=6,x 2=2. (4)∵(3x -2)2=649,∴3x -2=83或3x -2=-83,解得x 1=149,x 2=-29.7.A [解析] x 2-4(x +1)=1, ∴x 2-4x -4=1,∴(x -2)2=9, ∴x 1=5,x 2=-1.∵a ,b 为方程x 2-4(x +1)=1的两根,且a >b , ∴a =5,b =-1,∴a b =5-1=-5. 故选A.8. B [解析] 由函数y =x 3得n =3,则y ′=3x 2,∴3x 2=12,则x 2=4,∴x =±2, ∴x 1=2,x 2=-2.故选B.9. 3 [解析] (x 2+y 2-1)2=4直接开平方得x 2+y 2-1=±2.解得x 2+y 2=3或x 2+y 2=-1. ∵x 2≥0,y 2≥0,∴x2+y2=3.10.解:根据题意,得x2-16=0,y2-9=0,所以x=±4,y=±3.因为三角形的边长是正数,所以x=4,y=3.若第三边为斜边,则第三边的长为32+42=5;若第三边为直角边,则第三边的长为42-32=7,所以这个直角三角形第三边的长为7或5.11.- 3 2或-1 [解析] min{-2,-3}=- 3.∵min{(x-1)2,x2}=1,当x=0.5时,x2=(x-1)2,不可能得出最小值为1,当x>0.5时,(x-1)2<x2,则(x-1)2=1,x-1=±1,即x-1=1或x-1=-1,解得x1=2,x2=0(不合题意,舍去);当x<0.5时,(x-1)2>x2,则x2=1,解得x1=1(不合题意,舍去),x2=-1.综上所述,x的值为2或-1.。

21.1.2二次根式性质

21.1.2二次根式性质
5、化简
B
能力训练(课外思考)
1
1
2
2
2

2

2 1
2 x 1

(x>0 )
x 1
2
3
x 2 xy y
(x﹤y)

x y
2
yx
2
4、(2012湖北荆州,4,3分)若 x 2 y 9 与|x-y-3|互 为相反数,则x+y的值为( ) A.3 B.9 C.12 D.27 5、(2012呼和浩特,14,3分)实数a、b在数轴上的位置 如图所示,则 ( a b ) 2 a 的化简结果为_____
?
四、画龙点睛
性质1: a 具有双重非负性, 即 a 中 a 0且 a 0 性质2: ( a ) 2 a(a 0) 2 性质3: a a(a 0)
9 =_______
2、(P5练习T1,2;习题T2) 3、(2012·湖南省张家界市·15题·3分) 已知,x y 32 2 y 0 则 x y = 4、(2012四川泸州,21,5分)
.

五、融会贯通
1、若
练习1:
B
能力训练(课外思考)
3 x x 3 有意义,则x=________
解析:利用n为自然数及12-n≥0,可以先确定n的取值范围。 另外,如果 12 n 为一个自然数,那么12-n一定 是一个整数的平方,即12-n是一个完全平方数,逐步 缩小范围最终确定n的值
n 3,8,11,12
三、趁热打铁
1、若 a 1 (b 2) 0, 求a , b 的值。 (b 2) 2 c 5 0, 求b , c 的值。 2、若 a 1 (b 2) 2 c 5 0, 求a , b ,c 的值。 3、若

人教版初中九年级数学上册课堂同步试题及答案全册

人教版初中九年级数学上册课堂同步试题及答案全册

21.1二次根式(1)中学初三数学备课组一、选择题1.以下式子中,必然是二次根式的是()A.BC D.x2.以下式子中,不是二次根式的是()A BC D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B C.15D.以上皆不对4必然是二次根式的个数是().A.4 B.3 C.2 D.1二、填空题5.形如________的式子叫做二次根式.6.面积为a的正方形的边长为________.三、解答题7.某工厂要制作一批体积为1m3的产品包装盒,其高为,按设计需要,•底面应做成正方形,试问底面边长应是多少?8=0,求x y的值.21.1二次根式(2)中学初三数学备课组一、选择题1.以下各式中必然是二次根式的是( )A.10- B.22-aC.327D.132+x2.以下计算正确的选项是( ) A.()2552=B.()332-=-C.416±=D.749=3.若是a 为任意实数,那么以下各式中正确的选项是( ) A.a ≥0 B.a -≥0C.2a ≥0D.a -≥0二、填空题4.若a 的算式平方根是21,那么a =_______________. 5.计算:(1)()=222-_______;(2)=⎪⎭⎫⎝⎛--221________. 6.已知一个直角三角形的两直角边别离为x 和y ,那么斜边用代数式表示为_________________;当x =6,y =8时,斜边长为__________.三、解答题7.当x 是多少时,以下各式在实数范围内成心义?(1)x 2-;(2)121-x .8.当5=a 时,求式子221a a a +-+的值.21.2二次根式的乘除(1)中学 初三数学备课组一、选择题1.已知12)1(2-•=-x x ,那么有( )A.x >1 B.x <1C.x ≥1D.x ≤12.计算xx 2•的结果是( ) A.xB.2C.xD.23.以下计算正确的选项是( ) A.3163838=⨯ B.652535=⨯C.562234=⨯D.15125236=⨯二、填空题4.=⨯44__________,.__________62=⨯ 5.化简38)2(2⨯⨯-的结果是____________.三、解答题6.化简:(1)16925⨯;(2)429y x .7.假设直角三角形两条直角边长别离为15cm 和12cm ,求此直角三角形的面积.21.2二次根式的乘除(2)中学 初三数学备课组一、选择题1.以下各式是最简二次根式的为( )A.12+xB.32y xC.12- D.5.22.化简231+的结果为( )A.23+B.23-C.2 D.13.已知a aaa -=-112,那么a 的取值范围是( ) A.a ≤0 B.a <0C.0<a ≤1D.a >0二、填空题4.__________2385=÷,___________3=÷a b a .5.___________3625=,___________3611214=⨯.三、解答题6.把以下各式化为最简二次根式(1)326-;(2)328aa.7.已知长方形的面积是48,一边长是12,那么另一边长是多少?21.2二次根式的乘除(3)中学 初三数学备课组一、选择题1.以下化简中,正确的选项是( )A.1535925=⨯=⨯B.632=⨯C.222543=+D.33-12=2.以下计算正确的选项是( )A .3232--=-- B .a a 3313= C .a a=33D .a a333= 3.把(a -1)11-a根号外的因式移入根号内,其结果是( ) A .1-a B .-1-a C .a -1 D .-a -1二、填空题4.= . 5.把aa 1-中根号外面的因式移到根号内的结果是三、解答题6.计算:(1)213675÷⨯7.已知x+y=4,xy=2.求;xyy x 的值。

人教版数学九年级上册全册含课后练习

人教版数学九年级上册全册含课后练习

21.1 二次根式(1)(民中)第一课时一、教学目标: (a ≥0)的意义解答具体题目.二、教学重难点: 1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题.三、 教学过程:例1. 下列式子,哪些是二次根式,、1x x>0)、、、1x y+(x ≥0,y•≥0).例2. 当x 在实数范围内有意义?四、应用拓展:例3.当x +11x +在实数范围内有意义?例4(1)已知,求x y的值.(2)=0,求a 2004+b 2004的值.五、归纳小结:1(a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、课后作业:(一)选择题:1.下列式子中,是二次根式的是( )A .BCD .x2.下列式子中,不是二次根式的是( )A B C D .1x3.已知一个正方形的面积是5,那么它的边长是( )A .5BC .15D .以上皆不对 (二)填空题:1.形如________的式子叫做二次根式;面积为a 的正方形的边长为_____;负数______平方根.(三)综合提高题:1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?+x2在实数范围内有意义?2.当x是多少时,x3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b=b+4,求a、b的值.21.1 二次根式(2)(民中)第二课时一、教学目标:a≥02=a(a≥0),并利用它们进行计算和化简.二、教学重难点:1a≥0)是一个非负数;)2=a(a≥0)及其运用.2.难点:a≥0)是一个非负数;用探究的方法导出)2=a (a≥0).三、教学过程:例1计算)21.22.(23.24.(2四、应用拓展:例2 计算1.2(x≥0)2.23.24.2例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3五、归纳小结1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P9 7.七、课后作业:(一)选择题:1二次根式的个数是( ). A .4 B .3 C .2 D .12.数a 没有算术平方根,则a 的取值范围是( ).A .a>0B .a ≥0C .a<0D .a=0(二)填空题1.()2=______. 2_______数.(三)综合提高题1.计算(1)2 (2)-2 (3)(12)2(4)( 2 (5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-521.1 二次根式(3)(民中)第三课时一、教学目标: (a ≥0)并利用它进行计算和化简.二、教学重难点:1a (a ≥0). 2.难点:探究结论.三、教学过程:例1 化简(1 (2 (3 (4四、应用拓展:例2、填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3),则a 可以是什么数?五、归纳小结:(a ≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业: 1.教材P 8习题21.1 3、4、6、8.七、课后作业:(一)选择题:1).A.0 B.23C.423D.以上都不对2.a≥0).A BC D.(二)填空题:1=________.2.则正整数m的最小值是________.(三)综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│21.2 二次根式的乘除(1)(民中)第四课时一、教学目标:a≥0,b≥0)(a≥0,b≥0),并利用它们进行计算和化简二、教学重难点:(a≥0,b≥0)(a≥0,b≥0)及它们的运用.a≥0,b≥0).三、教学过程:例1.计算:(1(2(3(4例2.化简:(1(2(3(4(5四、巩固练习:教材P11练习全部五、应用拓展:例3.判断下列各式是否正确,不正确的请予以改正:(1=(2=4六、归纳小结:本节课应掌握:(1=(a≥0,b≥0)(a≥0,b≥0)及其运用.七、布置作业:1.课本P151,4,5,6.(1)(2).八、课后作业:(一)选择题1和,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简)A B C.D.311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.×B.×C.D.×(二)填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?21.2 二次根式的乘除(2)(民中)第五课时一、教学目标:a ≥0,b>0(a ≥0,b>0)及利用它们进行运算. 二、教学重难点:1a ≥0,b>0)a ≥0,b>0)及利用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.三、教学过程:例1.计算:(1(2 (3 (4例2.化简:(1 (2 (3 (4 四、巩固练习: 教材P14 练习1.五、应用拓展:例3.=,且x 为偶数,求(1+x六、归纳小结: a ≥0,b>0a ≥0,b>0)及其运用.七、布置作业:1.教材P 15 习题21.2 2、7、8、9.八、课后作业:(一)选择题: 1.的结果是( )A .27B .27C D .723==5==数学上将这种把分母的根号去掉的过程称作“分母有理化”)A .2B .6C .13 D (二)填空题:1.分母有理化:(1)=_________;(2) =______.2.已知x=3,y=4,z=5_______.(三)综合提高题:1.有一种房梁的截面积是一个矩形,且矩形的长与宽之比为:1,•现用直径为3的一种圆木做原料加工这种房梁,那么加工后的房染的最大截面积是多少?2.计算:(1·(m>0,n>0)(2)(a>0)21.2 二次根式的乘除(3)(民中)第六课时一、教学目标:理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.二、重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式.三、教学过程:例1.(1)(2) ;(3)例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.四、巩固练习:教材P14练习2、3五、应用拓展:例3.观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=--1,32=-,从计算结果中找出规律,并利用这一规律计算+)的值.六、归纳小结:本节课应掌握:最简二次根式的概念及其运用.七、布置作业:1.教材P15习题21.2 3、7、10.八、课后作业:(一)选择题:1y>0)是二次根式,那么,化为最简二次根BAC式是( ). A(y>0) B .y>0) C (y>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A B C . D .3.在下列各式中,化简正确的是( )A B ±12 C 2 D .4的结果是( ) A .-3 B . C . D . (二)填空题:1.化简=_________.(x ≥0) 2.a 化简二次根式号后的结果是_________.(三)综合提高题:1.已知a 确,•请写出正确的解答过程:2.若x 、y 为实数,且y x y -的值.21.3 二次根式的加减(1)(民中)第七课时一、教学目标:理解和掌握二次根式加减的方法.二、重难点关键:1.重点:二次根式化简为最简根式. 2.难点关键:会判定是否是最简二次根式.三、教学过程:例1.计算:(1 (2例2.计算:(1) (2))+ 四、巩固练习:教材P 19 练习1、2.五、应用拓展:例3.已知4x 2+y 2-4x-6y+10=0,求(23+y -(x )的值. 六、归纳小结:本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.七、布置作业: 1.教材P 21 习题21.3 1、2、3、5.八、课后作业:(一)选择题:1.以下二次根式:;( ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17=1,其中错误的有( ). A .3个 B .2个 C .1个 D .0个(二)填空题:1是同类二次根式的有________.2.计算二次根式的最后结果是________.(三)综合提高题:1≈2.236-)的值.(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 21.3 二次根式的加减(2)(民中)第八课时一、教学目标:运用二次根式、化简解应用题.二、重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.三、教学过程:例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?三、巩固练习:教材P19 练习3四、应用拓展:例3.若最简根式3a是同类二次根式,求a、b的值.(•同类二次根式就是被开方数相同的最简二次根式)五、归纳小结:本节课应掌握运用最简二次根式的合并原理解决实际问题.六、布置作业:1.教材P21习题21.3 7.七、课后作业:(一)选择题:1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式)A.BC.D.以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示)A.BC.D.(二)填空题:1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m2,•鱼塘的宽是_______m.(结果用最简二次根式)2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(结果用最简二次根式)(三)综合提高题:1.n是同类二次根式,求m、n21.3 二次根式的加减(3)(民中)第九课时一、教学目标:含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.二、重难点关键:重点:二次根式的乘除、乘方等运算规律;难点:由整式运算知识迁移到含二次根式的运算.三、教学过程:例1.计算:(1)(2)()÷例2.计算:(1))((2)))四、巩固练习:课本P20练习1、2.BACQPBA C2m1m4m D五、应用拓展:例3.已知x b a -=2-x a b-,其中a 、b 是实数,且a+b ≠0, 六、归纳小结:本节课应掌握二次根式的乘、除、乘方等运算.七、布置作业: 1.教材P 21 习题21.3 1、8、9.八、课后作业:(一)选择题1.的值是( ).A .203B .23C .23D .2032 ).A .2B .3C .4D .1(二)填空题:1.(-12+2)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若-1,则x 2+2x+1=________.4.已知,,则a 2b-ab 2=_________.(三)综合提高题: 12.当时,(结果用最简二次根式表示) 第二十二章 一元二次方程(民中)第十课时一、教学目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念。

二次根式练习题及答案

二次根式练习题及答案

二次根式练习题及答案二次根式练题及答案(一)一、选择题(每小题2分,共24分)1.若在实数范围内有意义,则 $\sqrt{x-3}$ 的取值范围是()A。

$x\geq 3$ B。

$x>3$ C。

$x\leq 3$ D。

$x<3$2.在下列二次根式中。

$\sqrt{x-2}$ 的取值范围是 $x\geq2$ 的是() A。

$\sqrt{x-2}$ B。

$\sqrt{2-x}$ C。

$\sqrt{2+x}$ D。

$\sqrt{4-x^2}$3.如果 $x\geq 1$,那么 $\sqrt{x^2-2x+1}$ 的值是()A。

$1$ D。

无法确定4.下列二次根式,不能与$\sqrt{2}+\sqrt{3}$ 合并的是()A。

$\sqrt{2}+\sqrt{3}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}-\sqrt{2}$ D。

$\sqrt{3}+\sqrt{2}$5.如果最简二次根式 $\sqrt{a}+\sqrt{b}$ 与 $\sqrt{a}-\sqrt{b}$ 能够合并,那么 $a$ 的值为()A。

2 B。

3 C。

4 D。

56.已知 $\sqrt{a}+\sqrt{b}=\sqrt{3}+\sqrt{2}$,则 $\sqrt{a}-\sqrt{b}$ 的值为()A。

$\sqrt{3}-\sqrt{2}$ B。

$\sqrt{2}-\sqrt{3}$ C。

$\sqrt{3}+\sqrt{2}$ D。

$\sqrt{2}+\sqrt{3}$7.下列各式计算正确的是()A。

$\sqrt{8}+\sqrt{12}=4\sqrt{2}+2\sqrt{3}$ B。

$\sqrt{5}+\sqrt{20}=3\sqrt{5}$ C。

$\sqrt{3}+\sqrt{2}=\sqrt{5}$ D。

$\sqrt{6}+\sqrt{3}=\sqrt{18}$8.等式 $\sqrt{x+3}-\sqrt{x-1}=2$ 成立的条件是()A。

二次根式精选习题及答案

二次根式精选习题及答案

二次根式精选习题21.1二次根式:1. 使式子有意义的条件是2. 当 __________ 时,VTP有意义。

3. 若、、~m — 有意义,则m 的取值范围是。

m 1 -------------------4. 当x ___________ 时,J 1 x 2是二次根式。

5. 在实数范围内分解因式:x 4 9 ______________ , x 22^2x 2 ____________ 6. 若■, 4? 2x ,则x 的取值范围是 ________________________ 。

7. 已知x 2 22 x ,则x 的取值范围是 ________________________8. 化简:「X 2—2X ^1 xp1的结果是 ___________________________ 。

9. 当 1 x p 5时,x 5____________ 。

10. 把a j 丄的根号外的因式移到根号内等于 __________________ 。

11.使等式x 1 x 1 _________________ 成立的条件是14.下列各式一定是二次根式的是(B. 3 2mC. .a 21D.15.若 2p a p 3,贝U , 2 a 223等于A. 5 2aB. 1 2aC. 2a 5D. 2a 112.若a b 1与J a 2b 4互为相反数,则2005a b13.在式子J* x f 02, . y 1 y2 ,、,2x x p 0 ,33^. x 21, x y 中,二次根式有( )A. 2个B. 3个C. 4个D. 5个2A. a 1 ,a 1C. a 1、、1Q2 3 22 3 A2 12、3 2 2 3,12L 22^3 2 ,3L L L L L L 3 2 2L L L L L L L L 4A. 1B. 2C. 3D. 421.若、,x ' 2 y y 4y 4 0, 求xy 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档