北师大版数学八年级上册教案6_实数_2
八年级数学上册 第二章第六节 实数(二)教案 北师大版
第二章 实数6.实数(二)一、教材分析 实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.[(3)正确运用公式:b a b a ⋅=⋅(a ≥0,b ≥0) ba b a=(a ≥0, b >0) 这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:b a b a ⋅=⋅(a ≥0,b ≥0)ba b a =(a ≥0, b >0) 3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word ,Powerpoi nt .四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。
北师大版初中八年级数学上册-《实数》教学设计-02
《实数》教学设计 教学目标:(一)教学知识点1.了解有理数的运算法则在实数范围内仍然适用.2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.3.正确运用公式 );0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba . (二)能力训练要求 1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力. 2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.(三)情感与价值观要求通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.2.发现规律:);0,0(≥≥⋅=⋅b a b a b a )0,0(>≥=b a b a ba .并能用规律进行计算. 教学难点1.类比的学习方法.2.发现规律的过程.教学方法:类比法.教学过程:Ⅰ.新课导入 上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.Ⅱ.新课讲解1.有理数的运算法则在实数范围内仍然适用.[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了. 如:2332⋅=⋅,.252)32(2322,3)212(32123=+=+=⋅⋅=⋅⋅所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:(1)1313+⋅; (2)77-;(3)(25)2;(4)2)212(+. 2.做一做填空:(1)94⨯=_________,94⨯=_________;(2)916⨯=_________,916⨯=_________;(3)94=_________,94=_________; (4)=2516_________,2516=_______ [师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 并作一些练习. 化简:(1)326⨯; (2)327⨯-4;(3)(3-1)2;(4)326⨯;(5)546. 3.例题讲解[例题]化简:(1)5312-⨯;(2)236⨯;(3)(5+1)2;(4))12)(12(-+. Ⅲ.课堂练习(一)随堂练习 化简:(1)2095⨯;(2)8612⨯;(3)(1+3)(2-3);(4)(323-)2. (二)补充练习1.化简: (1)250580⨯-⨯;(2)(1+5)(5-2);(3))82(2+;(4)3721⨯; (5)2)313(-;(6)10405104+ 2.一个直角三角形的两条直角边长分别为5 cm 和45 cm ,求这个直角三角形的面积.解:S =45521⨯⨯ )cm (5.71521)35(214552122=⨯=⨯⨯=⨯⨯= 答:这个三角形的面积为7.5 cm 2.Ⅳ.课时小结本节课主要掌握以下内容.1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.2.b a b a ⋅=⋅ (a ≥0,b ≥0);b a b a =(a ≥0,b >0)的推导及运用. Ⅴ.课后作业习题2.91.化简: (1)313⨯;(2)23;(3)23222+;(4)850⨯-21. Ⅵ.活动与探究下面的每个式子各等于什么数?2222222003,2002,2001,,4,3,2 .由此能得到一般的规律吗?对于一个实数a 、2a 一定等于a 吗?当a ≥0时,2a =a .当a <0时,有 .20032003)2003(,20022002)2002(,20012001)2001(,416)4(,39)3(,24)2(222222222==-==-==-==-==-==-所以当a <0时,有2a =-a .板书设计:§2.6.2 实数(二)一、有理数的运算法则在实数范围内仍然适用二、找规律b a b a ⋅=⋅(a ≥0,b ≥0);b a ba = (a ≥0,b >0) 三、例题讲解 四、课堂练习 五、课时小结 六、课后作业教学反思:这节内容是两个公式的推导与运用。
八年级数学上册实数教案北师大版
八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。
2. 学会实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。
2. 实数的性质:实数的加减法、乘除法、乘方运算。
3. 实数的应用:解决实际问题,如长度、面积、体积等计算。
三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。
2. 难点:实数运算的灵活应用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。
2. 运用案例分析法,分析实际问题,引导学生运用实数解决。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。
2. 讲解实数的分类:有理数、无理数、实数。
3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。
4. 运用案例分析,让学生体会实数在实际问题中的应用。
5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。
6. 总结本节课内容,布置课后作业。
六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。
2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。
3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。
七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。
2. 探讨实数与生活中的实际问题,提高学生的数学素养。
八、教学资源:1. 教材:八年级数学上册,北师大版。
2. 教案:实数教案。
3. PPT:实数相关内容。
4. 练习题:实数运算练习题。
九、教学时间安排:1. 第一课时:实数的定义与分类。
2. 第二课时:实数的性质与运算。
3. 第三课时:实数的应用与拓展。
十、课后作业:1. 复习实数的定义、性质及运算方法。
2. 完成练习题,巩固所学知识。
北师大版八年级数学上册:2.6《实数》教学设计1
北师大版八年级数学上册:2.6《实数》教学设计1一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要介绍了实数的概念、分类和性质。
通过本节的学习,使学生能够理解实数的概念,掌握实数的分类和性质,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但实数的概念对学生来说是一个全新的概念,需要通过实例和讲解使其理解和接受。
同时,实数的分类和性质也需要通过大量的练习来巩固。
三. 教学目标1.知识与技能:理解实数的概念,掌握实数的分类和性质。
2.过程与方法:通过实例和讲解,使学生理解和接受实数的概念,通过练习巩固实数的分类和性质。
3.情感态度与价值观:培养学生的抽象思维能力,提高学生对数学的兴趣。
四. 教学重难点1.实数的概念和分类。
2.实数的性质。
五. 教学方法采用问题驱动法、案例分析法和练习法进行教学。
通过问题引导学生思考,通过案例分析让学生理解实数的概念,通过练习巩固实数的分类和性质。
六. 教学准备3.练习题。
七. 教学过程导入(5分钟)通过提问方式引导学生回顾有理数和数的概念,为新课的学习做好铺垫。
呈现(15分钟)1.利用多媒体课件呈现实数的定义和分类,用实例解释实数的概念。
2.引导学生通过观察和思考,总结实数的性质。
操练(15分钟)1.让学生分组讨论,列举出实数的分类和性质。
2.每组选一名代表进行汇报,其他组进行评价和补充。
巩固(15分钟)1.让学生独立完成练习题,检验对实数概念、分类和性质的理解。
2.教师选取部分学生的作业进行点评,指出错误并进行讲解。
拓展(10分钟)1.让学生思考:实数和数轴之间的关系。
2.引导学生通过画数轴,分析实数在数轴上的位置与实数的性质之间的关系。
小结(5分钟)1.教师引导学生总结本节课所学的内容,实数的概念、分类和性质。
2.学生分享学习收获和感受。
家庭作业(5分钟)1.完成课后练习题。
八年级数学上册2.6实数教学设计 (新版北师大版)
八年级数学上册2.6实数教学设计(新版北师大版)一. 教材分析本节课的主题是实数,是北师大版八年级数学上册第2.6节的内容。
实数是数学中的基础概念,包括有理数和无理数。
学生在学习实数之前已经掌握了有理数的相关知识,本节课主要是让学生了解无理数的概念,以及实数的分类。
教材内容由浅入深,从实数的定义到实数的分类,再到实数的运算,有助于学生系统地掌握实数的相关知识。
二. 学情分析八年级的学生已经掌握了有理数的相关知识,对数学概念有一定的理解能力。
但是,对于无理数的概念和性质,学生可能比较难理解,需要通过实例和生活中的实际问题来进行解释。
此外,学生可能对实数的分类和运算有一定的困惑,需要通过大量的练习来进行巩固。
三. 教学目标1.了解无理数的概念,知道无理数和有理数的区别。
2.掌握实数的分类,能够正确判断一个数是实数还是非实数。
3.掌握实数的运算规则,能够进行实数的加减乘除运算。
四. 教学重难点1.无理数的概念和性质。
2.实数的分类。
3.实数的运算规则。
五. 教学方法采用讲授法、案例分析法、练习法、小组合作法等教学方法。
通过讲解实数的定义和性质,让学生了解无理数和有理数的区别;通过案例分析,让学生理解实数的分类;通过大量练习,让学生掌握实数的运算规则。
六. 教学准备1.教材、PPT、黑板、粉笔等教学用具。
2.相关的案例和练习题。
七. 教学过程1.导入(5分钟)通过一个生活中的实际问题来引入本节课的主题——实数。
例如:“小明家距离学校2.5公里,他每分钟走50米,问小明需要多少分钟才能到学校?”让学生思考,引出实数的概念。
2.呈现(10分钟)讲解实数的定义和性质,让学生了解实数包括有理数和无理数。
通过PPT展示实数的分类,让学生掌握实数的分类。
3.操练(10分钟)让学生进行实数的运算练习,例如:2+3√2、5-√3等。
让学生在练习中掌握实数的运算规则。
4.巩固(10分钟)通过小组合作,让学生讨论实数的运算规则,以及实数的分类。
6实数-北师大版八年级数学上册教案
6 实数-北师大版八年级数学上册教案一、知识点本章主要涉及以下知识点:1.实数的概念及分类2.实数的四则运算3.实数的比较大小及绝对值二、教学目标1.理解实数的概念及分类2.掌握实数的四则运算方法3.能够比较实数的大小和求出实数的绝对值三、教学重点1.实数的四则运算2.实数的比较大小及绝对值四、教学难点1.实数的概念及分类2.实数的绝对值五、教学过程1. 实数的概念及分类•实数的定义:所有有理数和无理数的并称为实数。
•实数的分类:–有理数:可以表示为两个整数的商的数,包括正有理数、负有理数、零;–无理数:不能表示为两个整数的商的数,包括无限不循环小数和无限循环小数。
2. 实数的四则运算•加法运算:–同号相加,取同号,将绝对值相加,结果的符号不变;–异号相加,取绝对值较大的数的符号,绝对值相减。
•减法运算:变成加法运算。
•乘法运算:–两数符号相同,结果为正,绝对值相乘;–两数符号不同,结果为负,绝对值相乘。
•除法运算:两数相除,商的符号与被除数、除数的符号相同,商的绝对值为两数绝对值的比值。
3. 实数的比较大小及绝对值•比较大小:–同号比大小,绝对值比较大小;–异号比大小,负数小于正数。
•求绝对值:数的绝对值是这个数到原点的距离,非负数的绝对值等于这个数本身,负数的绝对值等于其相反数。
六、教学反思本节课主要讲解了实数的概念、分类、四则运算和比较大小及绝对值等知识点。
针对实数概念分类比较抽象,需要同学们理解,并且注意与有理数、无理数的区别。
四则运算和大小比较以及绝对值的计算需要结合具体的例子,加深同学们的印象。
通过本篇教案的详细讲解,希望同学们可以掌握并应用实数相关的知识点。
北师大版八年级数学上册第二章实数教学设计
北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
数学北师大版八年级上册《实数》教案
《实数》教案一、教学内容与解析我从网上查了一下人教版的初中数学教材目录,发现“实数”一节内容在人教版数学教材上放在八年级上册第十三章的第三节,其主要内容是无理数与实数的概念、实数的分类、实数与数轴的一一对应关系、实数的相关性质、实数的运算等。
根据初中阶段学生的认知发展规律,此节内容可先让学生学习无理数、实数的概念和实数的分类以及实数与数轴的一一对应关系,余下内容可留在第二课时学习。
学生在第十三章的一、二节里已经学习了数的开平方和开立方运算,所以在课堂上可以通过复习上节内容顺利引出无理数的概念,进而引出实数的概念,进行实数的分类与授课。
实数概念的形成是数学发展的过程中很关键的一个环节,让学生深刻体会实数的构成是中学数学教学过程中很重要的一步,因此在讲述实数这一概念时,需要层层递进,一些关于有理数、实数的重要性质(比如所有的有理数均可写出分数的形式、实数的稠密性等等)在后续课程中可依据学生的学习情况讲授,不必第一节课即全部讲出,不然不利于学生的学习和教学的开展。
知识结构:二、教学目标1.知识与能力:理解有理数、实数的概念,会对实数进行分类,知道实数与数轴上的点具有一一对应的关系;2.过程与方法:让学生了解数的范围从整数到有理数,再到实数的扩展过程;积极参与负无理数问题引导下的思考和操作活动,体验发现无理数的过程,知道无理数是客观存在的数;3.情感态度价值观:培养观察、操作、分析能力,体会分类思想。
三、教学重点与难点(1)重点:了解无理数与实数的意义,知道如何对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
(2)难点:数轴上的点与实数一一对应。
四、教学过程1:复习导入(导言):公元前400年左右的古希腊,有个叫毕达哥拉斯学派。
这个学派中有一个名叫希帕索斯现却给他带来了杀生之祸,为什么这些数给他带来了不幸,这些数究竟与我们以前学过的数有什么不一样呢?这就涉及到我们前几节课学习的这些数的性质,我们这节课就来看看这些数的性质,通过这节课或许你就会知道,为什么这些数会给希帕索斯带来不幸了。
北师大版数学八年级上册6《实数》教学设计3
北师大版数学八年级上册6《实数》教学设计3一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数、无理数相关知识的基础上,进一步对实数进行系统的学习。
本节课的内容主要包括实数的定义、实数的性质以及实数的分类。
通过本节课的学习,使学生能够更深入的理解实数的概念,掌握实数的性质和分类,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在七年级时已经学习了有理数,对负数、分数、小数等有理数有了一定的认识。
但是,对于无理数和实数的概念,学生可能还比较模糊。
因此,在教学过程中,需要引导学生将已有的有理数知识与实数知识进行联系,帮助学生建立起实数的整体观念。
三. 教学目标1.理解实数的定义,掌握实数的性质和分类。
2.能够运用实数的概念解决实际问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.实数的定义和性质。
2.实数的分类。
3.实数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例教学法、小组讨论法等教学方法,引导学生主动探索、积极思考,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关的教学案例和实际问题。
2.准备PPT课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的相关知识,如负数、分数、小数等,为学生引入实数的概念做好铺垫。
2.呈现(10分钟)利用PPT课件呈现实数的定义、性质和分类,让学生直观地感受到实数的概念。
3.操练(10分钟)让学生通过PPT上的练习题,对实数的性质和分类进行巩固。
同时,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生分小组讨论,通过实际问题,运用实数的概念解决问题。
教师在这个过程中,给予学生指导,帮助学生更好地理解实数的应用。
5.拓展(10分钟)让学生进一步探讨实数在实际生活中的应用,如长度、面积、体积等,提高学生的实际问题解决能力。
6.小结(5分钟)教师引导学生对实数的定义、性质和分类进行总结,加深学生对实数知识的理解。
北师大版八年级数学上册:2.6《实数》教学设计2
北师大版八年级数学上册:2.6《实数》教学设计2一. 教材分析《实数》是北师大版八年级数学上册第二章第六节的内容,本节主要让学生了解实数的定义,理解实数与数的区别,掌握实数的性质,如大小比较、加减乘除运算等。
教材通过引入实数的概念,使得学生对数的认识更加深入,为后续的函数、方程等知识的学习打下基础。
二. 学情分析学生在学习本节内容前,已经学习了有理数、无理数等基础知识,对数的概念有一定的了解。
但实数作为一个全新的概念,需要学生从更高的角度去理解和把握。
此外,实数的性质和运算规则需要学生在已有知识的基础上进行推理和归纳,因此,学生在学习本节内容时可能会有一定的难度。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够进行实数的大小比较、加减乘除运算。
3.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.实数的定义和性质。
2.实数的运算规则。
五. 教学方法1.采用问题驱动法,引导学生主动探究实数的定义和性质。
2.运用实例解析法,让学生通过实际问题理解实数的运算规则。
3.采用小组合作学习法,培养学生团队合作、交流分享的良好学习习惯。
六. 教学准备1.准备相关实数的教学案例和实例。
2.制作PPT,展示实数的定义、性质和运算规则。
3.分组安排,便于学生进行小组合作学习。
七. 教学过程1.导入(5分钟)利用PPT展示实数的定义,引导学生回顾已学的有理数、无理数等知识,为新知识的学习做好铺垫。
2.呈现(10分钟)通过PPT展示实数的性质,如大小比较、加减乘除运算等,让学生初步了解实数的特点。
3.操练(10分钟)让学生通过PPT上的实例,亲自进行实数的运算,巩固实数的性质和运算规则。
4.巩固(10分钟)学生分组讨论,总结实数的性质和运算规则,教师巡回指导,解答学生的疑问。
5.拓展(10分钟)利用实际问题,让学生运用实数知识解决问题,提高学生运用知识的能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
2024年北师大版八年级数学上册全册教案教学设计
2024年北师大版八年级数学上册全册教案教学设计一、教学内容第一章《实数》详细内容:1.1 有理数的复习;1.2 无理数的概念;1.3 实数的性质与分类。
第二章《平面几何》详细内容:2.1 线段与角;2.2 三角形;2.3 四边形;2.4 圆。
第三章《函数及其图像》详细内容:3.1 函数的定义;3.2 函数的图像;3.3 一次函数;3.4 二次函数。
第四章《数据的收集与处理》详细内容:4.1 数据的收集与整理;4.2 数据的表示;4.3 概率初步。
二、教学目标1. 理解实数的概念,掌握实数的分类及性质,能够进行实数的四则运算。
2. 掌握平面几何的基本概念,熟练运用几何图形的性质解决实际问题。
3. 理解函数的定义,掌握函数图像的特点,能够解决实际问题中的函数关系。
4. 学会数据的收集、整理和表示方法,了解概率初步知识,提高解决实际问题的能力。
三、教学难点与重点1. 教学难点:实数的性质与分类,函数的定义与图像,数据的收集与处理。
2. 教学重点:实数的概念与运算,几何图形的性质,函数的应用,概率初步。
四、教具与学具准备1. 教具:多媒体教学设备,几何模型,计算器。
2. 学具:直尺,圆规,三角板,计算器。
五、教学过程1. 实数教学:a. 通过数轴引入实数概念;b. 讲解有理数与无理数的区别;c. 举例说明实数的性质与分类;d. 课堂练习:实数的四则运算。
2. 平面几何教学:a. 以生活中的实例引入几何图形;b. 讲解线段、角、三角形、四边形、圆的性质;c. 例题讲解:几何图形的求解;d. 课堂练习:几何图形的作图。
3. 函数及其图像教学:a. 以实际问题引入函数概念;b. 讲解函数的定义、图像及性质;c. 例题讲解:一次函数、二次函数的应用;d. 课堂练习:绘制函数图像,解决实际问题。
4. 数据的收集与处理教学:a. 讲解数据的收集、整理和表示方法;b. 概率初步知识讲解;c. 例题讲解:数据的统计分析;d. 课堂练习:设计调查问卷,进行数据分析。
北师大版数学八年级上册6《实数》教学设计1
北师大版数学八年级上册6《实数》教学设计1一. 教材分析北师大版数学八年级上册6《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统学习。
本节课的主要内容是实数的定义、性质以及实数与数轴的关系。
教材通过丰富的例题和练习题,帮助学生巩固实数的概念,提高学生解决实际问题的能力。
二. 学情分析八年级的学生已经掌握了有理数和无理数的基本概念,对数轴有一定的了解。
但是,学生对实数的认识还停留在表面,对实数的内在联系和性质还不够清楚。
因此,在教学过程中,教师需要引导学生深入理解实数的含义,并通过实例让学生感受实数在生活中的应用。
三. 教学目标1.理解实数的定义,掌握实数的性质。
2.能够运用实数的概念解决实际问题。
3.培养学生的逻辑思维能力和数学表达能力。
四. 教学重难点1.实数的定义和性质。
2.实数与数轴的关系。
五. 教学方法采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过自主学习、合作交流,深入理解实数的概念和性质。
六. 教学准备1.教材、教案、PPT。
2.练习题。
3.数轴教具。
七. 教学过程1.导入(5分钟)利用数轴教具,引导学生回顾有理数和无理数的概念,提问:有理数和无理数能否包含所有的数呢?由此引出实数的概念。
2.呈现(10分钟)讲解实数的定义,引导学生通过实例理解实数的性质,如:实数具有加法、减法、乘法、除法等运算性质。
3.操练(10分钟)让学生在练习纸上完成教材中的相关练习题,教师巡回指导,帮助学生巩固实数的概念和性质。
4.巩固(5分钟)邀请学生上黑板演示实数的运算,并解释运算过程中实数的性质如何体现。
5.拓展(5分钟)讨论实数在生活中的应用,如:购物、测量等,让学生感受实数的重要性。
6.小结(5分钟)回顾本节课所学内容,强调实数的定义、性质以及实数与数轴的关系。
7.家庭作业(5分钟)布置教材后的练习题,要求学生独立完成,巩固实数的概念和性质。
8.板书(5分钟)板书实数的定义、性质以及实数与数轴的关系,方便学生复习。
八年级数学实数教案5篇
八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。
2021年八年级数学上册 第二章第六节 实数(二)教案 北师大版
2019-2020年八年级数学上册第二章第六节实数(二)教案北师大版一、教材分析实数(第2课时)是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》第6节内容.本节内容分为3个课时,本节是第2课时.本课时用类比的方法,引入实数的运算法则,运算律等,并利用这些运算法则、运算率进行有关运算,解决有关实际问题.二、学情分析七年级上学期已学习了有理数的加、减、乘、除、乘方运算,本学期又学习了有理数的平方根、立方根.这些都为本课时学习实数的运算法则、运算率提供了知识基础。
当然,毕竟是一个新的运算,学生有一个熟悉的过程,运算的熟练程度尚有一定的差距,在本节课及下节课的学习中,应针对学生的基础情况,控制上课速度和题目的难度.三、目标分析1.教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用.(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算.[(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念.●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律.(2)能用类比的方法解决问题,用已有知识去探索新知识.●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养.2.教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算.(2)发现规律:(≥0,≥0)(≥0,>0)3.教学难点(1)类比的学习方法.(2)发现规律的过程.4.教学方法(1)探索——交流法.(2)课前准备:教材、课件、电脑.电脑软件:Word,Powerpoint.四、教学过程本节课设计了六个教学环节:第一环节:复习引入;第二环节:知识探究;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第六环节:作业布置.第一环节:复习引入问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法(乘法)交换律、结合律,分配律.问题2:实数包含哪些数?答:有理数,无理数.问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题.意图:通过问题,回顾旧知,为导出新知打好基础。
北师大版八年级上册数学《实数》说课稿
谢谢
03
说教学目标
说教学目标
1. 理解实数的定义 和基本概念;
3. 能够运用所学知 识解决实际问题。
2. 掌握实数的分类 方法和比较大小的
方法;
04
说教学重难点
说教学重难点
本节课的教学重点是实数的定义和基本概 念,难点是实数的分类方法和比较大小的 方法。在教学中需要注意让学生理解实数 的概念和性质,同时要引导学生掌握实数 的分类方法和比较大小的技巧。
新课引入
教师可以通过一个实际问题引出实数 的概念和意义,例如:
小明在超市购买了一些商品,总共花 费了100元,但是他只有80元现金, 需要使用信用卡支付剩余的20元,请 问这个问题涉及到哪些数?
通过这个问题,引出有理数和无理数 的概念,并让学生了解实数的重要性 和应用价值。
实数的定义和基本概念
教师可以先介绍实数的定义和基本概念,例如: 实数是有理数和无理数的总称,有理数是可以表示为两个整数之比的 数,无理数是不能表示为两个整数之比的数。
05
说教法与学法
说教法与学法
在本节课的教学中,可以采用讲授、讨论、 练习等多种教学方法,同时也要注重启发 式教学,引导学生通过思考和实践来理解 和掌握所学知识。在学习过程中,学生应 该注重思考,积极参与课堂讨论和练习, 同时也要注重归纳总结,加深对所学知识 的理解和记忆。
06
说教学过程
说教学过程
07
说板书设计
说板书设计
实数 实数的定义、有理数和无理数的概念、实数的分类 方法和比较大小的技巧等内容。同时,板书应该清 晰明了,重点突出,便于学生理解和记忆。
08说教Βιβλιοθήκη 反思说教学反思在本节课的教学中,应该注重启发式教 学,引导学生通过思考和实践来理解和 掌握所学知识。同时,也要注重巩固和 拓展,让学生在课后能够进一步深化对 所学知识的理解和掌握。
北师大八年级数学上册第二章第6节实数教学设计
第二章 §6 实数教学目标:(一)知识与技能1、了解实数的意义,能对实数按要求进行分类;2、了解有理数范围内的相反数、倒数和绝对值的意义与在实数范围内的意义相同,能在实数范围内求相反数、倒数和绝对值;3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。
(二)过程与方法1.通过对实数进行不同方法的分类,培养学生的分类意识;2.用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想.教学重点:1、能对实数按要求进行分类;2、能求实数的相反数、倒数和绝对值。
教学难点:利用数轴上的点表示无理数。
教学工具:1、 投影课件;2、三角板、圆规。
教学过程:一、问题引入1、什么是有理数?有理数怎样分类?2、什么是无理数?带根号的数都是无理数吗?二、讲授新课教学一:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)小结:有理数和无理数统称为实数(real number ),即实数可以分为有理数和无理数。
教学二:你能把上面各数分别填入下面相应的集合内吗?小结:无理数和有理数一样,也有正负之分;即实数可以分为正实数、零、负实数。
总结:根据定义和性质,实数有两种分法。
分法一:正有理数有理数零 有限小数或无限循环小数负有理数 实数正无理数无理数 无限不循环小数 负无理数分法二:正实数 实数 零 负实数有理数集合无理数集合正数集合负数集合教学三:1、思考:2和( )互为相反数,35和( )互为倒数,|3|=( ),|0|=( ),|-π|=( )。
2、想一想:(1)a 是一个实数,它的相反数是_______,绝对值是_______;(2)如果a ≠0,那么它的倒数是_______。
总结:在实数范围内的几个概念在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(1)相反数:a 与-a 互为相反数,0的相反数是0. (2)倒数:若a ≠0,则a 与1a互为倒数. (3)绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,即a (a > 0) |a |= 0 (a = 0) -a (a < 0)教学四:议一议:(1)如图,OA=OB ,数轴上A 点对应的数表示什么?它介于哪两个整数之间? (2)如果将所有有理数都标到数轴上,那么数轴被填满了吗?总结:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数与数轴上的点是一一对应的。
原创北师大版八年级数学上册第二章2.6 实数教学设计
义务教育教科书数学八年级上册(北京师范大学出版社)2.6 实数一、教学内容与内容解析本节内容是北师大版《义务教育课程标准实验教科书·数学》八年级上册第二章“实数”第六节“实数”.本节内容主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
二、教学目标与目标解析(一)教学目标(1)了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小;(2)了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样;(3)在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想;(4)在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法;(5)了解数系扩展对人类认识发展的必要性。
(二)教学目标解析学生是数学学习的主人。
动手实践、自主探索、合作交流是学生学习数学的重要途径。
教师应将情境与学生的自主知识相结合,尽最大努力引导学生发现并解决问题。
通过独立思考、小组讨论和合作交流,学生在“自主探索、合作交流”中充分发挥主观能动性。
在学习方法上,主要采用观察法、独立探究法、讨论法、实践法等形式。
三、教学问题诊断分析(一)学情分析八年级学生初步认识了无理数,对平方根和立方根也有了一定的了解,实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
6实数-初中八年级上册数学(教案)(北师大版)
6.绝对值:掌握实数的绝对值定义,理解绝对值在几何和代数中的应用。
7.实数的应用:运用实数的知识解决实际问题,提高学生的数学应用能力。
二、核心素养目标
1.培养学生的逻辑思维能力:通过实数的概念和性质的学习,使学生能够运用逻辑推理分析实数相关问题,提高数学思维能力。
1.理论介绍:首先,我们要了解实数的基本概念。实数包括有理数和无理数,是数学中的一种更广泛的数集。实数在解决实际问题中具有重要意义,如科学计算、工程技术等领域。
2.案例分析:接下来,我们来看一个具体的案例。以圆的周长和直径的比值为例,介绍无理数π,并探讨实数在实际中的应用。
3.重点难点解析:在讲授过程中,我会特别强调实数的概念和实数的运算这两个重点。对于难点部分,如无理数的理解,我会通过举例和比较来帮助大家理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对实数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天实数的教学中,我发现学生们对于实数的概念和性质掌握得还不错,但无理数的理解和实数运算方面还存在一些问题。在课堂上,我尝试通过生活实例和具体案例来引导学生理解实数的抽象概念,感觉效果还可以,但显然这部分内容还需要进一步巩固。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实数》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过无法用分数表示的数?”(如圆周率π)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索实数的奥秘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6实数(2)
教学目标:
(一)教学知识点
1.了解有理数的运算法则在实数范围内仍然适用.
2.用类比的方法,引入实数的运算法则、运算律,并能用这些法则,运算律在实数范围内正确计算.
3.正确运用公式
错误!未找到引用源。
错误!未找到引用源。
.
(二)能力训练要求
1.让学生根据现有的条件或式子找出它们的共性,进而发现规律,培养学生的钻研精神和创新能力.
2.能用类比的方法去解决问题,找规律,用旧知识去探索新知识.
(三)情感与价值观要求
通过探索规律的过程,培养学生学习的主动性,敢于探索,大胆猜想,和同学积极交流,增强学习数学的兴趣和信心。
教学重点:
1.用类比的方法,引入实数的运算法则、运算律,并能在实数范围内正确进行运算.
2.发现规律:
错误!未找到引用源。
错误!未找到引用源。
.并能用规律进行计算.
教学难点:
1.类比的学习方法.
2.发现规律的过程.
教学方法:
类比法.
教学过程:
Ⅰ.新课导入
上节课我们学习了实数的定义、实数的两种分类,还有在实数范围内如何求相反数、倒数、绝对值,它们的求法和在有理数范围内的求法相同.那么在有理数范围内的运算法则、运算律等能不能在实数范围内继续用呢?本节课让我们来一起进行探究.
Ⅱ.新课讲解
1.有理数的运算法则在实数范围内仍然适用.
[师]大家先回忆一下我们在有理数范围内学过哪些法则和运算律.
[生]加、减、乘、除运算法则,加法交换律,结合律,分配律.
[师]好.下面我们就来验证一下这些法则和运算律是否在实数范围内适用.我们知道实数包括有理数和无理数,而有理数不用再考虑,只要对无理数进行验证就可以了.
如:错误!未找到引用源。
,
错误!未找到引用源。
所以说明有理数的运算法则与运算律对实数仍然适用.下面看一些例题. 计算:
(1)错误!未找到引用源。
; (2)错误!未找到引用源。
;(3)(2错误!未找到引用源。
)2;(4)错误!未找到引用源。
.
2.做一做
填空:
(1)错误!未找到引用源。
=_________,错误!未找到引用源。
=_________;
(2)错误!未找到引用源。
=_________,错误!未找到引用源。
=_________;
(3)错误!未找到引用源。
=_________,错误!未找到引用源。
=_________;
(4)错误!未找到引用源。
_________,错误!未找到引用源。
=_________.
[师]通过上面计算的结果,大家认真总结找出规律.如果把具体的数字换成字母应怎样表示呢?
错误!未找到引用源。
(a≥0,b≥0);
错误!未找到引用源。
(a≥0,b>0)
并作一些练习. 化简:
(1)错误!未找到引用源。
; (2)错误!未找到引用源。
-4;(3)(错误!未找到引用源。
-1)2;(4)错误!未找到引用源。
;(5)错误!未找到引用源。
.
3.例题讲解
[例题]化简:
(1)错误!未找到引用源。
;(2)错误!未找到引用源。
;(3)(错误!未找到引用源。
+1)2;(4)错误!未找到引用源。
.
Ⅲ.课堂练习
(一)随堂练习
化简:(1)错误!未找到引用源。
;(2)错误!未找到引用源。
;(3)(1+错误!未找到引用源。
)(2-错误!未找到引用源。
);(4)(错误!未找到引用源。
)2.
(二)补充练习
1.化简:
(1)错误!未找到引用源。
;(2)(1+错误!未找到引用源。
)(错误!未找到引用源。
-2);(3)错误!未找到引用源。
;(4)错误!未找到引用源。
;
(5)错误!未找到引用源。
;(6)错误!未找到引用源。
2.一个直角三角形的两条直角边长分别为错误!未找到引用源。
cm和错误!未找到引用源。
cm,求这个直角三角形的面积.
解:S=错误!未找到引用源。
错误!未找到引用源。
答:这个三角形的面积为7.5 cm2.
Ⅳ.课时小结
本节课主要掌握以下内容.
1.在实数范围内,有理数的运算法则、运算律仍然适用,并能正确运用.
2.错误!未找到引用源。
(a≥0,b≥0);错误!未找到引用源。
(a≥0,b>0)的推导及运用.
Ⅴ.课后作业
习题2.9
1.化简:
(1)错误!未找到引用源。
;(2)错误!未找到引用源。
;(3)错误!未找到引用源。
;(4)错误!未找到引用源。
-21.
Ⅵ.活动与探究
下面的每个式子各等于什么数?
错误!未找到引用源。
.
由此能得到一般的规律吗?
对于一个实数a、错误!未找到引用源。
一定等于a吗?
当a≥0时,错误!未找到引用源。
=a.
当a<0时,有
错误!未找到引用源。
所以当a<0时,有错误!未找到引用源。
=-a.
板书设计:
教学反思:这节内容是两个公式的推导与运用。
当然计算的熟练始终是初中阶段的一个大的环节,只有让学生多做练习才能熟练。
有待另外花时间加大训练。