十字相乘法

合集下载

十字相乘法

十字相乘法

十字相乘法利用十字交叉线来分解系数,将二次三项式分解因式的方法叫做十字相乘法,主要分为以下两类:1.二次项系数是1的二次三项式的十字相乘法对首项是1的二次三项式的十字相乘法主要就是要能够运用公式进行因式分解.对于二次三项式,若存在则,即把常数项分解成两个数的积,且其和刚好等于一次项系数.技巧1:在对c的正负入手:若,则、同号,若,则、异号,然后根据一次项系数的正负进一步确定、的符号;技巧2:若中的b、c为整数时,要先将c分解成两个整数的积,然后再考虑这两个整数和能否等于一次项系数(再分解时,要考虑分解的多种可能,直至凑对为止).2.二次项系数不为1的十字相乘在二次三项式a可以分解成两个因数的积,常数项c也可以分解成两个因数的积,即,将、、、按照以下进行排列:按照斜线交叉相乘,再相加,得到若它正好等于二次三项式一次项系数b,即,那么二次三项式就可以分解成两个因式与之积,即.PS:若二次项系数是负数,可以先提个负号,分解括号里面的二次三项式,最后结果不要忘记添上负号.例1:二次项系数为1的二次三项式分解因式:(1)(2)(3)(4)见解析(1);(2)(3);(4)例2:二次项系数不为1的二次三项式分解因式:(1)(2)见解析(1);(2).例3:待定系数法求字母的值若能分解成两个一次因式的积,则的值为()A. 1B.C.D. 2C,,分以下两种情况考虑:由①可得m=1,故选C.例4:解决几何类问题已知长方形的长、宽分别为x、y,周长为16,求此长方形的面积.15或15.75又解得,∴长方形的面积为15或15.75.例5:十字相乘法综合求证:若是7的倍数,其中x、y都是整数,则是49的倍数.见解析证明:∵是7的倍数,设(m为整数),则,∵x、m也是整数,∴49的倍数.巩固练习一.选择题1.把多项式x2+x﹣2分解因式,下列结果正确的是()A.(x+2)(x﹣1)B.(x﹣2)(x+1)C.(x﹣1)2D.(2x﹣1)(x+2)Ax2+x﹣2=(x﹣1)(x+2),故选:A.2.下列因式分解正确的是()A.4m2﹣4m+1=4m(m﹣1)B.a3b2﹣a2b+a2=a2(ab2﹣b)C.x2﹣7x﹣10=(x﹣2)(x﹣5)D.10x2y﹣5xy2=5xy(2x﹣y)DA、4m2﹣4m+1=(2m﹣1)2,故本选项错误;B、a3b2﹣a2b+a2=a2(ab2﹣b+1),故本选项错误;C、(x﹣2)(x﹣5)=x2﹣7x+10,故本选项错误;D、10x2y﹣5xy2=xy(10x﹣5y)=5xy(2x﹣y),故本选项正确;故选:D.3.下列多项式不能分解的是()A.(ab+cd)2+(bc﹣ad)2B.x2﹣y2﹣6x+9C.x2﹣2xy﹣3y2+4x+8y﹣5D.x2+2x+4DA.(ab+cd)2+(bc﹣ad)2=(a2+c2)(b2+d2),故本选项能分解;B.x2﹣y2﹣6x+9=(x﹣3+y)(x﹣3﹣y),故本选项能分解;C.x2﹣2xy﹣3y2+4x+8y﹣5=(x+y﹣1)(x﹣3y+5),故本选项能分解;D.x2+2x+4不能分解,故本选项符合题意;故选:D.4.把多项式(x﹣y)2﹣2(x﹣y)﹣8分解因式,正确的结果是()A.(x﹣y+4)(x﹣y+2)B.(x﹣y﹣4)(x﹣y﹣2)C.(x﹣y﹣4)(x﹣y+2)D.(x﹣y+4)(x﹣y﹣2)C(x﹣y)2﹣2(x﹣y)﹣8,=(x﹣y﹣4)(x﹣y+2).故选:C.二.填空题5.若对于一切实数x,等式x2﹣px+q=(x+1)(x﹣2)均成立,则p2﹣4q的值是.9由题意得:﹣p=1﹣2,q=1×(﹣2),∴p=1,q=﹣2,∴p2﹣4q=1﹣4×(﹣2)=1+8=9.6.分解因式:x2﹣3xy﹣4y2=.(x﹣4y)(x+y)x2﹣3xy﹣4y2=(x﹣4y)(x+y),7.若x2+mx﹣15=(x+3)(x+n),则m﹣n的值为.3∵(x+3)(x+n)=x2+nx+3x+3n=x2+(n+3)x+3n,∴,解得:m=﹣2,n=﹣5,则m﹣n=﹣2+5=3.8.若x2+mx+n分解因式的结果是(x+2)(x﹣1),则m+n的值为.﹣1∵x2+mx+n分解因式的结果是(x+2)(x﹣1),∴x2+mx+n=x2+x﹣2,∴m=1,n=﹣2,∴m+n=1﹣2=﹣1.9.阅读下列文字与例题:将一个型如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).例如(1)x2+3x+2=(x+1)(x+2)(2)x2﹣3x﹣10=(x﹣5)(x+2).要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.﹣5,﹣1,1,5∵﹣6=﹣1×6=﹣2×3=1×(﹣6)=2×(﹣3),∴m=﹣1+6=5或m=﹣2+3=1或m=1+(﹣6)=﹣5或m=2+(﹣3)=﹣1.10.多项式kx2﹣9xy﹣10y2可分解因式得(mx+2y)(3x﹣5y),则k=,m=.9,3∵kx2﹣9xy﹣10y2=(mx+2y)(3x﹣5y),∴kx2﹣9xy﹣10y2=3mx2﹣5mxy+6xy﹣10y2,∴,解得:.三.解答题11.分解因式:x2+12x﹣189,分析:由于常数项数值较大,则将x2+12x﹣189变为完全平方公式,再运用平方差公式进行分解,这样简单易行.x2+12x﹣189=x2+2*6x+62﹣36﹣189=(x+6)2﹣225=(x+6)2﹣152=(x+6+15)(x+6﹣15)=(x+21)(x﹣9)请按照上面的方法分解因式:x2﹣60x+884.(x﹣26)(x﹣34)x2﹣60x+884=x2﹣2×30x+900﹣900+884=(x﹣30)2﹣16=(x﹣30+4)(x﹣30﹣4)=(x﹣26)(x﹣34).12.李伟课余时间非常喜欢研究数学,在一次课外阅读中遇到一个解一元二次不等式的问题:x2﹣2x﹣3>0.经过思考,他给出了下列解法:左边因式分解可得:(x+1)(x﹣3)>0,或,解得x>3或x<﹣1.聪明的你,请根据上述思想求一元二次不等式的解集:(x﹣1)(x﹣2)(x﹣3)>0.x>3或1<x<2由题意知x﹣1、x﹣2、x﹣3中负数的个数为偶数个,则①,解得:x>3;②,解得:1<x<2;∴x>3或1<x<2.13.在对某二次三项式进行因式分解时,甲同学因看错了一次项系数而将其分解为2(x﹣1)(x﹣9),乙同学因看错常数项而将其分解为2(x﹣2)(x﹣4),请你写出这个二次三项式,并将其进行正确的因式分解.2x2﹣12x+18=2(x﹣3)2甲:2(x﹣1)(x﹣9)=2x2﹣20x+18,乙:2(x﹣2)(x﹣4)=2x2﹣12x+16,∵甲同学看错了一次项系数,但没有看错常数项,乙同学看错了常数项,但没有看错一次项系数,∴原多项式为2x2﹣12x+18,将其分解因式为:2x2﹣12x+18=2(x﹣3)2.14.我们知道,多项式a2+6a+9可以写成(a+3)2的形式,这就是将多项式a2+6a+9因式分解,当一个多项式(如a2+6a+8)不能写成两数和(成差)的平方形式时,我们可以尝试用下面的办法来分解因式.a2+6a+8=a2+6a+9﹣1=(a+3)2﹣1=[(a+3)+1][(a+3)﹣1]=(a+4)(a+2)请仿照上面的做法,将下列各式分解因式:(1)x2﹣6x﹣27(2)x2﹣2xy﹣3y2.(1)原式=(x+3)(x﹣9);(2)原式=(x+y)(x﹣3y)(1)原式=x2﹣6x+9﹣36=(x﹣3)2﹣36=(x﹣3+6)(x﹣3﹣6)=(x+3)(x﹣9);(2)原式=x2﹣2xy+y2﹣4y2=(x﹣y)2﹣4y2=(x﹣y+2y)(x﹣y﹣2y)=(x+y)(x﹣3y).15.找出能使二次三项式x2+ax﹣6可以因式分解(在整数范围内)的整数值a,并且将其进行因式分解.见解析x2+x﹣6=(x+3)(x﹣2);x2﹣x﹣6=(x﹣3)(x+2);x2+5x﹣6=(x+6)(x﹣1);x2﹣5x﹣6=(x﹣6)(x+1).16.先阅读下列解题过程,然后完成后面的题目.分解因式:x4+4x4+4=x4+4x2+4﹣4x2=(x2+2)2﹣4x2=(x2+2x+2)(x2﹣2x+2)以上解法中,在x4+4的中间加上一项,使得三项组成一个完全平方式,为了使这个式子的值保持与x4+4的值保持不变,必须减去同样的一项.按照这个思路,试把多项式x4+x2y2+y4分解因式.见解析x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy).。

高中十字相乘法

高中十字相乘法

高中十字相乘法
十字相乘法是因式分解中12种方法之一,另外十一种分别都是:1分组分解法,2.拆添项法,3.配方法,4.因式定理(公式法),5.换元法,6.主元法,7.特殊值法,8.待定系数法,9.双十字相乘法,10.二次多项式,11.提公因式法。

十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。

对于像ax²+bx+c=(a₁x+c₁)(a₂x+c₂)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a₁,a₂的积,把常数项c分解成两个因数c₁,c₂的积,并使a₁c₂+a₂c₁正好等于一次项的系数b。

那么可以直接写成结
果:ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

十字相乘法的运算方法

十字相乘法的运算方法
上式的常数12可以分解为3×4,而3+4又恰好等于一次项的系数7,所以
上式可以分解为:x^2+7x+12=(x+3)(x+4)
又如:分解因式:a^2+2a-15,上式的常数-15可以分解为5*(-3).而5+(-3)又恰好等于一次项系数2,所以a^2+2a-15=(a+5)(a-3).
讲解:
x^2-3x+2=如下:
②kx^2+mx+n型的式子的因式分解
如果能够分解成k=ac,n=bd,且有ad+bc=m时,那么
kx^2+mx+n=(ax+b)(cx+d)
a b

c d
通俗方法
先将二次项分解成(1 X二次项系数),将常数项分解成(1 X常数项)然后以下面的格式写
1 1

二次项系数常数项
若交叉相乘后数值等于一次项系数则成立,不相等就要按照以下的方法进行试验。(一般的题很简单,最多3次就可以算出正确答案。)
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字相乘法分解因式了.
解(x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2
=2(x-y) ^2-3(x-y)-2
需要多次实验的格式为:(注意:此时的abcd不是指(ax^2+bx+c)里面的系数,而且abcd最好为整数)
a b

c d
第一次a=1 b=1 c=二次项系数÷a d=常数项÷b
第二次a=1 b=2 c=二次项系数÷a d=常数项÷b

十字相乘法的运算技巧

十字相乘法的运算技巧

十字相乘法的运算技巧十字相乘法,就是把一个二次三项式化为两个因式相乘的形式,是一元二次方程解法之一。

“十字相乘法”:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

对于某些首项系数是1的二次三项式2x Px q++【2()x a b x ab+++】的因式分解:即:一般地,∵2()()()x a x b x a b x ab++=+++,∴2()()()x a b x ab x a x b+++=++.这就是说,对于二次三项式2x Px q++,若能找到两个数a、b,使,, a b p a b q+=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b++=+++=++.(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个........数的积,且其和等于一次项系数,...............通常要借助画十字交叉线的办法来确定,故称十字相乘法。

)对于首项系数不是1的二次三项式:十字相乘法相对来说难学一些,但是一旦学会了它,用它来解题,会给我们带来很多方便。

一、十字相乘法的特点:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:①有些题目用十字相乘法来解比较简单,但并不适用于每一道题。

②十字相乘法只适用于二次三项式类型的题目。

二、十字相乘法的应用举例:例1. 十字相乘法的图解及待定系数已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.分析:用十字相乘法分解这个二次三项式有如下的图解:8-5=3=-m解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20∴-m=3m=-3(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?)再如例2:把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6 所以m²+4m-12=(m-2)(m+6)请观察比较例题中的各题,你能发现把常数q分解成两个整数a、b之积时的符号规律吗?⑴若q>0,则a、b同号.当p>0时a、b同为正,当p<0时a、b同为负.⑵若q<0,则a、b异号.当p>0时a、b中的正数绝对值较大,当p<0时a、b中的负数绝对值较大.⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解.例3、因式分解与系数的关系若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )A.5个B.6个C.8个D.4个分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n 为整数)因为16=2×8,16=(-2)×(-8)16=4×4,16=(-4)×(-4)16=1×16,16=(-1)×(-16)所以k=±10,±8,±16答案:B(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大) 例4.分组分解后再用十字相乘把2x2-8xy+8y2-11x+22y+15分解因式解:原式=(2x2-8xy+8y2)-(11x-22y)+15=2(x-2y)2-11(x-2y)+15=[(x-2y)-3][2(x-2y)-5]=(x-2y-3)(2x-4y-5)说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.例5.换元法与十字相乘法把(x2+x+1)(x2+x+2)-6分解因式分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.解:(x2+x+1)(x2+x+2)-6=[(x2+x)+1][(x2+x)+2]-6=(x2+x)2+3(x2+x)-4=(x2+x+4)(x2+x-1)说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.再如、例6、把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].(试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析)例6.因式分解与十字相乘法已知(x2+y2)(x2-1+y2)=12求:x2+y2的值解:(x2+y2)(x2-1+y2)=12(x2+y2)[(x2+y2)-1]-12=0(x2+y2)2-(x2+y2)-12=0[(x2+y2)-4][(x2+y2)+3]=0∵x2+y2≥0∴(x2+y2)+3≠0∴(x2+y2)-4=0∴x2+y2=4说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。

十字相乘法_非常非常好用

十字相乘法_非常非常好用
例1:
步骤:
x
x

x 6 x 5 ( x 1)( x 5) ①竖分二次项与常数项
2

1
②交叉相乘,和相加 ③检验确定,横写因式
5
顺口溜: 竖分常数交叉验, 横写因式不能乱。
x 5x 6 x
试一试:
(顺口溜:竖分常数交叉验,横写因式不能乱。)
小结:
x x
x 8x 15 ( x 5)(x 3)
十字相乘法
高一数学组
一、复习回顾
( x a)(x b) x (a b) x ab
2
x (a b) x ab
2

二、十字相乘法
“十字相乘法”是乘法公式: (x+a)(x+b)=x2+(a+b)x+ab的反 向运算,它适用于分解二次三 项式。
十字相乘法(借助十字交叉线分解因式的方法)
小结: 由多项式乘法法则
(x+a)(x+b)=x2+(a+b)x+ab
反过来用就得到一个因式分解的方法
2+(a+b)x+ab=(x+a)(x+b) ∴x
x x
a b
这个方法也称为十字相乘法
特别注意:验证一次项!
今日作业:
把下列各式分解因式: (1) x2-4xy-5y2 (2) m2+5mn-6n2 (3) y2-8xy+12x2 2-12ab+36b2 (4) a
(5) b2-7bx2-18x4 2-4(x+y)-5 (6)(x+y)
(7)2x2-3x-2
2

十字相乘法完整版

十字相乘法完整版

XX,a click to unlimited possibilities
十字相乘法完整版
目录
01
添加目录标题
02
十字相乘法的基本原理
03
十字相乘法的应用
04十字相乘法ຫໍສະໝຸດ 注意事项05十字相乘法的扩展应用
01
添加章节标题
02
十字相乘法的基本原理
定义与公式
定义:十字相乘法是一种解一元二次方程的方法,通过将方程的系数分解为两个因数的乘积,从而找到方程的解。
分解因式时,要注意符号的变化,特别是当多项式中含有括号时。
分解因式时,要注意符号的变化,特别是当多项式中含有分数时。
分解因式时要注意完全平方数的问题
分解因式时要注意完全平方数的问题,避免出现错误的结果。
分解因式时要注意符号问题,确保结果的正确性。
分解因式时要注意因式的分解是否彻底,避免出现不必要的错误。
应用场景:求解一元二次不等式时,当不等式的系数较大或较为复杂时,使用十字相乘法可以简化计算过程
注意事项:在使用十字相乘法时,需要确保分解后的两个一次项的乘积为正,否则会导致不等号方向错误
举例说明:通过具体的一元二次不等式实例,展示十字相乘法的应用和求解过程
求解一元二次函数极值
定义:一元二次函数极值是指函数在某点的导数为零,且该点两侧的函数值异号
代数方程:十字相乘法可用于解二次方程和一元高次方程
矩阵运算:十字相乘法在矩阵的乘法中也有应用
分式化简:十字相乘法可以用于化简分式,简化计算过程
在物理和工程领域的应用
线性代数方程组的求解
工程中的结构分析、流体动力学等领域
物理中的动力学方程求解
矩阵运算中的分块矩阵相乘

完整版)十字相乘法

完整版)十字相乘法

完整版)十字相乘法在进行因式分解时,首先要考虑能否提取公因式,然后再考虑运用公式或十字相乘法,最后考虑分组分解法。

对于还能继续分解的多项式因式,仍然要用这一步骤反复进行。

以上步骤可以用口诀来概括:“首先提取公因式,然后考虑用公式、十字相乘试一试,分组分解要合适,四种方法反复试,结果应是乘积式”。

二次三项式是指多项式ax+bx+c,其中a为二次项,b为一次项,c为常数项。

例如,x-2x-3和x+5x+6都是关于x的二次三项式。

在多项式x-6xy+8y中,如果把x看作常数,它就是关于y的二次三项式;如果把y看作常数,它就是关于x 的二次三项式。

同样地,在多项式2ab-7ab+3中,如果把ab 看作一个整体,它就是关于ab的二次三项式。

还有多项式(x+y)+7(x+y)+12,把x+y看作一个整体,就是关于x+y的二次三项式。

十字相乘法是一种分解二次三项式的方法。

对于二次项系数为1的二次三项式x+(a+b)x+ab=(x+a)(x+b),方法的特征是“拆常数项,凑一次项”。

当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同。

例如,对于7x+(-8x),我们可以得到原式=(x+7)(x-8)。

另外,对于x^2-10x+16,我们可以将其分解为(x-2)(x-8)。

对于二次项系数不是1的二次三项式ax^2+bx+c=a1x^2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2),它的特征是“拆两头,凑中间”。

当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同。

例如,对于-2x+(-8x),我们可以得到原式=-10x,而对于2x^2-11x-6,我们可以将其分解为(2x+1)(x-6)。

十字相乘法完整版

十字相乘法完整版
当常数项为负数时,拆分成的两个有理数异 号,绝对值大的数与一次项系数同号
练一练:将下列各式分解因式
x2 +7x 10 x2 -2x 8 y2 7 y 12 x2 7x 18
例2 分解因式: x2 6x 16
解: x2 6x 16
x2 6x 16
x 8x 2
提示:当二次项系数为-1时 ,先提出 负号再因式分解 。
因式分解 2x2+3xy–9y2+14x–3y+20。
通过十字相乘法得到 (2x–3y)(x+3y)
设原式等于(2x–3y+a)(x+3y+b)
通过比较两式同类项的系数可得:3aa23bb
14 3
解得:ab
4 5
,∴原式
=
(2x–3y+4)(x+3y+5)
= (a + d) (b – c)
配方法
配方法是一种特殊的拆项添项法,将多项式配 成完全平方式,再用平方差公式进行分解。
因式分解 a2–b2+4a+2b+3
解:原式 = (a2+4a+4) – (b2–2b+1)
= (a+2)2 – (b–1)2
= (a+b+1)(a–b+3)
拆项添项法
回顾例题:因式分解 x5+x4+x3+x2+x+1 。
(6)(x+y)2 + 4(x+y) - 5 (7) 2(a+b)2 + 3(a+b) – 2 (8) 2(6x2 +x) 2-11(6x2 +x) +5
分组分解法

十字相乘法

十字相乘法

例4
把(x-y)(2x-2y-3)-2分解因式. 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多 项式再因式分解。 问:以上乘积的因式是什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作 一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用十字分解法分解因式了。 解 (x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 = 2 ( x - y ) ²- 3 ( x - y ) - 2 1 -2 ╳ 21
十字相乘法
因式分解方法
01 原理
03 运算举例
目录
02 判定 04 分解因式
05 例题解析
07 注意事项
பைடு நூலகம்目录
06 重难点
基本信息
十字相乘法是因式分解中十四种方法之一。
十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等 于一次项。原理就是运用二项式乘法的逆运算来进行因式分解。
例题解析
例3 例1
例2
例4
例1
把 2 x ²- 7 x + 3 分 解 因 式 . 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分 别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数. 分解二次项系数(只取正因数,因为取负因数的结果与正因数结果相同。): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3). 用画十字交叉线方法表示下列四种情况: 13 ╳ 21

十字相乘法

十字相乘法

十字相乘法十字相乘法(1):二次项系数是1的二次三项式的分解方法:一个关于x的二次三项式x2+px+q,它的常数项q可以看做a与b的乘积,它的一次项系数恰是a与b的和,它就可以分解为(x+ a)(x+ b),也就是说,p =a+b、q=a·b时就有x2+px +q=x2+(a +b)x +ab=(x+a)(x +b).例:把下列各式分解因式:(1)x2+7x+6; (2)x2-7x+6. (3)x2+8x+12; (4)x2-5x+24.小结:根据所给的二次三项式,在寻求a、b的值时是怎样进行的,在处理它们的符号时的规律总结归纳如下:在分解二次三项式x2+px+q 时,如果常数项q是个正数,它可以分解成两个同号的因数,它们的符号应与一次项系数p的符号相同,选取它们的和等于p 的一对因数;如果常数项q是一个负数,它可以分解为两个异号的因数,其中绝对值较大的因数的符号与一次项系数p的符号相同,这时选取它们的和等于p 的一对因数,从而写出分解的结果.当q的所有分解的结果中,不存在两数的和恰是一次项系数p时,我们认为这个二次三项式是不能再分解的.练习:(1)x2+4x+3; (2)a2+7a+10; (3)y2-7y+12; (4)q2-6q+8 (5)x2+x-20; (6)m2+7m-18; (7)P2-5P-36; (8)t2-2t- 8十字相乘法(2):运用换元的数学思想方法分解一些比较复杂的二次三项式.例1 把下列各式因式分解:(1)x2y2+3xy+2; (2)m2-19mn+90n2; (3)x4-11x2+28;(4)(a+b)2-4(a+b)-12; (5)x4-3x3-28x2; (6)3a2x2-15a2xy-42a2y2.总结:1.今天我们在分解因式时运用了一些重要的数学思想,如换元的思想方法、转化的思想方法、把一个代数式看成一个字母,把比较复杂的问题转化为我们所熟悉的基本形式问题,这种数学思想我们今后还会经常遇到.2.分解因式时多项式的各项有公因式就一定要先提取公因式,然后再继续分解.(四)练习(1)x4-x2-20; (2)a2x2-7ax-8; (3)a2-9ab+14b2;(4)x2+11xy +18y24;(5)x2y2-5x2y-6x2;(6)-a3-4a2+12a;(7)x2-12xy+27y2; (8) (3p-r)2+9(3p-r)+ 8.。

初中十字相乘法

初中十字相乘法

初中十字相乘法
十字相乘法是一种数学计算方法,用来求解两个多位数的乘积。

它的步骤如下:
1. 将两个多位数竖直地排列在纸上,使得个位对齐。

2. 从右向左,逐位计算乘积。

将结果写在一条横线上,使得个位数字位于右侧,十位数字位于左侧。

3. 在横线下方,计算竖直相加的结果。

若相加的结果大于9,则将十位数字进位到十位数上。

4. 继续计算下一位数字的乘积和进位。

5. 最后将所有结果相加,就得到了最终的乘积。

十字相乘法有助于学生更好地理解多位数的相乘过程,提高计算精度和速度,并且减少了出错的可能性。

通过练习,学生可以熟练掌握这种计算方法,并在解决数学问题时更加得心应手。

数学十字相乘法公式

数学十字相乘法公式

数学十字相乘法公式摘要:一、引言二、数学十字相乘法公式简介1.公式定义2.公式结构三、数学十字相乘法公式的应用1.求解一元二次方程2.求解多项式因式分解四、数学十字相乘法公式的推导1.推导过程2.关键步骤解析五、总结正文:一、引言数学十字相乘法公式是数学中一种非常实用的公式,广泛应用于一元二次方程和多项式因式分解的求解。

本文将对其进行详细介绍,包括公式的定义、结构、应用以及推导过程。

二、数学十字相乘法公式简介1.公式定义数学十字相乘法公式,又称“双十字相乘法”,是一种求解一元二次方程和多项式因式分解的方法。

它利用两个十字交叉相乘的形式,将方程的系数与常数项分别填入,从而得到两个括号的形式,进一步求解方程。

2.公式结构数学十字相乘法公式具有简洁的结构。

它包含两个部分:一元二次方程的系数与常数项。

通过这两个部分的交叉相乘,我们可以得到一个双括号的形式,即(ax + b)(cx + d),其中a、b、c、d 分别代表方程的系数与常数项。

三、数学十字相乘法公式的应用1.求解一元二次方程数学十字相乘法公式可以用于求解一元二次方程。

假设我们有一个一元二次方程:ax + bx + c = 0,其中a、b、c 分别为方程的系数,我们可以利用数学十字相乘法公式,将方程的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d),从而进一步求解方程。

2.求解多项式因式分解数学十字相乘法公式同样适用于求解多项式因式分解。

假设我们有一个多项式:f(x) = ax + bx + c,其中a、b、c 分别为多项式的系数,我们可以利用数学十字相乘法公式,将多项式的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d),从而实现多项式的因式分解。

四、数学十字相乘法公式的推导1.推导过程数学十字相乘法公式的推导过程相对简单。

首先,我们需要将一元二次方程的系数与常数项填入公式,得到两个括号的形式(ax + b)(cx + d)。

十字相乘法

十字相乘法

一、十字相乘法
利用十字交叉线来分解系数,把二次三项式分解因式方法叫做十字相乘法。

即对于二次三项式x²+bx+c,若存在p+q=b,pq=c ,则x²+bx+c=(x+p)(x+q)
1.在对x²+bx+c分解因式时,要先从常数项c的正、负入手,若c>0,则p、q同号,若c<0,则p、q异号,然后依据一次项系数b的正负再确定p、q的符号。

2.若x²+bx+c中的b、c为整数时,要先将c分解成两个整数的积(要考虑到分解的各种可能),然后看这两个整数之和能否等于b,直到凑对为止。

二、首项系数不为1的十字相乘法
在二次三项式ax²+bx+c (a≠0)中,如果二次项系数a可以分解成两个因数之积,即a=a₁a₂,常数项c可以分解成两个因数之积,即c=c₁c₂,
把a₁,a₂,c₁,c₂排列如下:
若a₁c₂+a₂c₁=b,即ax²+bx+c=(a₁x+c₁)(a₂x+c₂)。

(1)十字相乘法分解思路为“看两端,凑中间”。

(2)二次项系数一般都化为正数,如果是负数,则提出负号,分解括号里面的二次三项式,最后结果不要忘记把提出的负号添上。

三、分组分解法
对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分组处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解即先对题目进行分组,然后再分解因式。

十字相乘法

十字相乘法

在数学其他领域的应用
线性代数:用于求解线性方程组 概率论与数理统计:用于求解概率分布 微积分:用于求解极限和导数 几何学:用于求解几何图形的面积和体积
十字相乘法的原理
第三章
十字相乘法的数学原理
原理:通过将方程组中的两 个方程相乘,得到新的方程 组
十字相乘法是一种解二元一 次方程组的方法
新的方程组可以通过十字相 乘法进行求解
几何学:十字相 乘法可以用于解 决几何问题,如 解三角形、解四
边形等。
概率论与数理统 计:十字相乘法 可以用于解决概 率论与数理统计 问题,如计算概
率、期望等。
微积分:十字相 乘法可以用于解 决微积分问题, 如求导、积分等。
十字相乘法的实际应用
第六章
在日常生活中的应用
Байду номын сангаас
解决二元一次方程组
解决线性规划问题
简化计算过程
观察题目,找出两个因数 找出两个因数的公因数 利用公因数进行分解 利用分解后的结果进行计算 得出答案
注意事项和常见错误
注意事项: a. 确保两个因式的符号相同 b. 确保两个因式的系数相同 c. 确 保两个因式的常数项相同
a. 确保两个因式的符号相同 b. 确保两个因式的系数相同 c. 确保两个因式的常数项相同
常见错误: a. 混淆因式的符号 b. 混淆因式的系数 c. 混淆因式的常 数项 d. 混淆十字相乘法的步骤和顺序 e. 混淆十字相乘法的应用范围
a. 混淆因式的符号 b. 混淆因式的系数 c. 混淆因式的常数项 d. 混淆十字相乘法的步骤和顺序 e. 混淆十字相乘法的应用范围
十字相乘法的扩展
第五章
十字相乘法可以快速、准确 地求解二元一次方程组

十字相乘法的运算技巧(精品)

十字相乘法的运算技巧(精品)

十字相乘法的运算技巧十字相乘法,就是把一个二次三项式化为两个因式相乘的形式,是一元二次方程解法之一。

“十字相乘法”:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

对于某些首项系数是1的二次三项式2x Px q++【2()x a b x ab+++】的因式分解:即:一般地,∵2()()()x a x b x a b x ab++=+++,∴2()()()x a b x ab x a x b+++=++.这就是说,对于二次三项式2x Px q++,若能找到两个数a、b,使,, a b p a b q+=⎧⎨⋅=⎩则就有22()()()x Px q x a b x ab x a x b++=+++=++.(掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个........数的积,且其和等于一次项系数,...............通常要借助画十字交叉线的办法来确定,故称十字相乘法。

)对于首项系数不是1的二次三项式:十字相乘法相对来说难学一些,但是一旦学会了它,用它来解题,会给我们带来很多方便。

一、十字相乘法的特点:1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。

(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:①有些题目用十字相乘法来解比较简单,但并不适用于每一道题。

②十字相乘法只适用于二次三项式类型的题目。

二、十字相乘法的应用举例:例1. 十字相乘法的图解及待定系数已知二次三项式2x2-mx-20有一个因式为(x+4),求m的值.分析:用十字相乘法分解这个二次三项式有如下的图解:8-5=3=-m解:2x2-mx-20=(x+4)(2x-5)=2x2+3x-20∴-m=3m=-3(由例1我们应该明白,“十字相乘”法,并非凭空而来,也没有什么新东西——像不像?只要懂(ax+b)(cx+d),就懂“十字相乘”,这样,十字相乘中各数的意义,你记得更清楚了吧?)再如例2:把m²+4m-12分解因式分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题解:因为 1 -21 ╳ 6 所以m²+4m-12=(m-2)(m+6)请观察比较例题中的各题,你能发现把常数q分解成两个整数a、b之积时的符号规律吗?⑴若q>0,则a、b同号.当p>0时a、b同为正,当p<0时a、b同为负.⑵若q<0,则a、b异号.当p>0时a、b中的正数绝对值较大,当p<0时a、b中的负数绝对值较大.⑶分解二项项系数、常数项有多种可能,即使对于同一种分解,十字图也有不同的写法,为了避免重或漏,故二次项系数的因数一经排定就不变,而用常数项的因数作调整;⑷用十字相乘法分解因式时,一般要经过多次尝试才能确定能否分解或怎样分解.例3、因式分解与系数的关系若多项式a2+ka+16能分解成两个系数是整数的一次因式的积,则整数k可取的值有( )A.5个B.6个C.8个D.4个分析:因为二次项系数为1,所以原式可分解为(a+m)(a+n)的形式,其中mn=16,k=m+n,所以整数k可取值的个数取决于式子mn=16的情况.(其中m、n 为整数)因为16=2×8,16=(-2)×(-8)16=4×4,16=(-4)×(-4)16=1×16,16=(-1)×(-16)所以k=±10,±8,±16答案:B(是不是有一点即通的感觉?这一层窗户纸不厚,数学要的就是心细,胆大) 例4.分组分解后再用十字相乘把2x2-8xy+8y2-11x+22y+15分解因式解:原式=(2x2-8xy+8y2)-(11x-22y)+15=2(x-2y)2-11(x-2y)+15=[(x-2y)-3][2(x-2y)-5]=(x-2y-3)(2x-4y-5)说明:分组后运用十字相乘进行因式分解,分组的原则一般是二次项一组,一次项一组,常数项一组.本题通过这样分组就化为关于(x-2y)的二次三项式,利用十字相乘法完成因式分解.例5.换元法与十字相乘法把(x2+x+1)(x2+x+2)-6分解因式分析:观察式子特点,二次项系数和一次项系数分别相同,把(x2+x)看成一个“字母”,把这个式子展开,就可以得到关于(x2+x)的一个二次三项式(或设x2+x=u,将原式化为(u+1)(u+2)-6=u2+3u-4,则更为直观)再利用十字相乘法进行因式分解.解:(x2+x+1)(x2+x+2)-6=[(x2+x)+1][(x2+x)+2]-6=(x2+x)2+3(x2+x)-4=(x2+x+4)(x2+x-1)说明:本题结果中的两个二次三项式在有理数范围内不能再分解了,若能分解一定要继续分解,如摸底检测第3题答案应当是C.再如、例6、把10x²-27xy-28y²-x+25y-3分解因式分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x²-27xy-28y²-x+25y-3=10x²-(27y+1)x -(28y²-25y+3)4y -37y ╳ -1=10x²-(27y+1)x -(4y-3)(7y -1)2 -(7y – 1)5 ╳ 4y - 3=[2x -(7y -1)][5x +(4y -3)]=(2x -7y +1)(5x +4y -3)说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为:[2x -(7y -1)][5x +(4y -3)]解法二、10x²-27xy-28y²-x+25y-32 -7y5 ╳ 4y=(2x -7y)(5x +4y)-(x -25y)- 32 x -7y 15 x +4y ╳ -3=[(2x -7y)+1] [(5x +4y)-3]=(2x -7y+1)(5x +4y -3)说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x +4y)-3].(试比一下“分组分解”与“十字相乘”适用的题目的类型特点,从各项的次幂的次数及各项系数去分析)例6.因式分解与十字相乘法已知(x2+y2)(x2-1+y2)=12求:x2+y2的值解:(x2+y2)(x2-1+y2)=12(x2+y2)[(x2+y2)-1]-12=0(x2+y2)2-(x2+y2)-12=0[(x2+y2)-4][(x2+y2)+3]=0∵x2+y2≥0∴(x2+y2)+3≠0∴(x2+y2)-4=0∴x2+y2=4说明:我们把(x2+y2)看成一个“字母”,则原式转化为关于这个“字母”的一个一元二次方程。

十字相乘法技巧

十字相乘法技巧

十字相乘法技巧
十字相乘法是因式分解中十四种方法之一。

十字相乘法的方法简单来讲就是:十字左边相乘的积为二次项,右边相乘的积为常数项,交叉相乘再相加等于一次项。

原理就是运用二项式乘法的逆运算来进行因式分解。

十字相乘法能用于二次三项式(一元二次式)的分解因式(不一定是在整数范围内)。

对于像ax2+bx+c=(a1x+c1)(a2x+c2)这样的整式来说,这个方法的关键是把二次项系数a分解成两个因数a1,a2的积,把常数项c分解成两个因数c1,c2的积,并使a1c2+a2c1正好等于一次项的系数b。


么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2)。

在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。

当首项系数为1时,可表达为
x2+(p+q)x+pq=(x+p)(x+q);当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。

如需了解更多信息,建议查阅数学书籍或咨询专业人士。

十字相乘公式法

十字相乘公式法

十字相乘公式法
十字相乘公式法又称为交叉乘法,是一种用于求解二元一次方程组的方法。

该方法基于如下定理:在一个二元一次方程组中,如果两个方程的系数之比相等,且两个方程中的常数项之比也相等,那么这个方程组有解。

具体步骤如下:
1. 将给定的二元一次方程组写成标准形式,即将所有项移至等号右边,整理得到$ax + by = c$的形式(其中a, b, c分别为系数)。

2. 设方程组有解,将两个方程的系数与常数项分别设置成比值的形式,即$\frac{a1}{a2}=\frac{b1}{b2}=\frac{c1}{c2}$。

3. 随机选择其中一个比值,将其与另一个方程的系数和常数项的比值相乘,得到一个新的比值。

4. 将此新比值代入到另一个方程中,可以得到一个一元一次方程(以x为变量),求解得到x的值。

5. 将得到的x的值带入到任意一个原方程中,解得y的值。

6. 将求得的x和y的值代入到原方程组中,验证是否满足方程组的条件。

需要注意的是,在使用十字相乘公式法时,要确保方程组满足交叉乘法的条件,即两个方程的系数之比和常数项之比相等。

如果不满足该条件,则无法使用该方法求解方程组。

一元二次方程十字相乘法公式

一元二次方程十字相乘法公式

一、十字相乘法十字相乘法是用于解一元二次方程的一种方法。

一元二次方程是指一元二次多项式的根,即ax²+bx+c=0,其中a,b,c为实数,且a≠0。

十字相乘法是把原式分成两部分,分别乘积相等,并将乘积等式化简得到方程的解,而不需要分裂因式,它可以大大简化方程的求解步骤。

二、十字相乘法公式十字相乘法主要有以下公式:1.将一元二次方程ax²+bx+c=0化为两个乘积等式:ax²+bx=-cx(a x+b)=-c2.由乘法知识,可以将上式化简得:a x²+bx+c=0x=-b+√[b²-4ac]/2a或x=-b-√[b²-4ac]/2a三、应用实例1.解一元二次方程x²+8x+12=0将本方程化为两个乘积等式:x²+8x=-12x(x+8)=-12经化简可得:x=-8+√[64-48]/2=-8+√16/2=-8+4=-4又有x=-8-√16/2=-8-4=-12所以x²+8x+12=0的解是x1=-4,x2=-12。

2.解一元二次方程9x²-12x-6=0将本方程化为两个乘积等式:9x²-12x=6x(9x-12)=6经化简可得:x=12+√[144-108]/18=12+√36/18=12+6/18=12+1/3又有x=12-√36/18=12-6/18=12-1/3所以9x²-12x-6=0的解是x1=12+1/3,x2=12-1/3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学一元二次方程的特殊解法——十字相乘法(分解因式)
(一).先讲一种较为一般的一元二次方程的十字相乘法,即当二次项2
x 的系数为1时。

这就是十字相乘的一种形式,也就是利用()()()2x a b x ab x a x b +++⇒++对一元二次方程的分解,来达到快速解得方程的目的。

可想而知其中的难点就在于对20x px q ++=
分解因式时,准确地找出a 、b ,使ab q =、a b p +=。

这就是说,对于二次三项式2x px q ++,如果能够把常数项q 分解成两个因数a 、b 的积,并且a b +等于一次项的系数p ,那么它就可以分解因式。

可以用交叉线来表示: 20,(,)
1px q ab q a b p x a
++==+=
1b
之所以像如上的方式“交叉相乘”仅仅是对()()()2x a b x ab x a x b +++⇒++的一种速算法,其步骤为: ① 分别分解二次项2x 的系数和常数项q (q ab =),如图所示:20,(,)1px q ab q a b p x a
++==+=1b
② 同时使交叉线上的两个数字相乘之和为p (11a b p ⨯+⨯=)
③ 将分解的每行数字按照如下规则重整方程:
i.二次项2
x 的系数分解所得数字作为一次项x 的系数,常数项分解所得数字作为常数项;
ii.同行数字放在一个括号内,并相乘.
那么方程即可表示为()()0x a x b ++=
十字相乘的关键在于数字的拆分和组合。

例1 分解232x x ++。

分析:这里,常数项2是正数,所以分解成的两个因数必是同号,而2=1×2=(-1)(-2),要使它们的代数和等于3,只需取1,2即可。

例2 分解276x x -+。

答案:(1)(6)0x x --= 例3 分解2421x x --。

答案:(7)(3)0x x -+=
(二).熟练掌握这种较为一般的一元二次方程的十字相乘(二次项2
x 的系数为1)后,下面要解决的就是形如20Ax Bx C ++=的方程。

其原理还是来自多项式乘法,()()()2ax b cx d acx ad bc x bd ++⇒+++
反之,可得()()()2acx ad bc x bd ax b cx d +++⇒++
其难度增加在于分解后4个数字的交叉组合。

步骤与上相似:
① 分别分解二次项2x 的系数和常数项q (q ab =),如图所示:20,(,,)px q t mn ab q na mb p tx m a
++===+
=n b
② 同时使交叉线上的两个数字相乘之和为p (n a m b p ⨯+⨯=)
③ 将分解的每行数字按照如下规则重整方程:
i.二次项2x 的系数分解所得数字作为一次项x 的系数,常数项分解所得数字作为常数项;
ii.同行数字放在一个括号内,并相乘.
那么方程即可表示为()()0mx a nx b ++=
例1 分解241670x x ++=。

答案:(21)(27)0x x ++= 例2 分解241950x x --=。

答案:(41)(5)0x x +-= 例3 分解2611100x x --=。

答案:(32)(25)0x x +-=
小结:个人认为对于多项式相乘运算十分熟悉的同学较易理解十字相乘的原理,同时对数字较敏感,就可以对十字相乘应用自如。

高中数学的绝大多数一元二次方程都可以用该方法分解、求根,所以对它的要求十分之高!并且十字相乘自身作为一种分解因式的方法在初中..考试中考查十分频繁,要在平时训练中注意加强!。

相关文档
最新文档