原子物理学第二章习题答案

合集下载

原子物理学杨福家1-6章 课后习题答案(2020年7月整理).pdf

原子物理学杨福家1-6章 课后习题答案(2020年7月整理).pdf

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e −'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=−θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θasin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学第二章习题答案

原子物理学第二章习题答案

第二章原子得能级与辐射2、1 试计算氢原子得第一玻尔轨道上电子绕核转动得频率、线速度与加速度。

解:电子在第一玻尔轨道上即年n=1。

根据量子化条件,πφ2h nmvr p ==可得:频率21211222ma hma nhavπππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a vνπ米/秒加速度:222122/10046.9//秒米⨯===a v r v w2、2 试由氢原子得里德伯常数计算基态氢原子得电离电势与第一激发电势。

解:电离能为1E E E i -=∞,把氢原子得能级公式2/n Rhc E n -=代入,得:Rhchc R E H i=∞-=)111(2=13、60电子伏特。

电离电势:60.13==eE V ii 伏特第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特第一激发电势:20.1011==eE V 伏特2、3 用能量为12、5电子伏特得电子去激发基态氢原子,问受激发得氢原子向低能基跃迁时,会出现那些波长得光谱线?解:把氢原子有基态激发到您n=2,3,4……等能级上去所需要得能量就是:)111(22n hcR E H -=其中6.13=H hcR 电子伏特2.10)211(6.1321=-⨯=E 电子伏特1.12)311(6.1322=-⨯=E 电子伏特8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于12、5电子伏特,3E 大于12、5电子伏特。

可见,具有12、5电子伏特能量得电子不足以把基态氢原子激发到4≥n 得能级上去,所以只能出现3≤n 得能级间得跃迁。

跃迁时可能发出得光谱线得波长为:οοολλλλλλAR R ARR A R R H H H H H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=2、4 试估算一次电离得氦离子+eH 、二次电离得锂离子+iL 得第一玻尔轨道半径、电离电势、第一激发电势与赖曼系第一条谱线波长分别与氢原子得上述物理量之比值。

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学部份选择题答案

原子物理学部份选择题答案

原子物理学部份第二章原子的能级和辐射1.选择题:(1)假设氢原子被激发到主量子数为n的能级,当产生能级跃迁时可能发生的所有谱线总条数应为:(B )A.n-1 B .n(n-1)/2 C .n(n+1)/2 D .n(2)氢原子光谱赖曼系和巴耳末系的系线限波长别离为:DA.R/4 和R/9B.R 和R/4C.4/R 和9/RD.1/R 和4/R(3)氢原子赖曼系的线系限波数为R,那么氢原子的电离电势为:BA.3Rhc/4 B. Rhc C.3Rhc/4e D. Rhc/e(4)氢原子基态的电离电势和第一激发电势别离是:AA.13.6V和10.2V; B –13.6V和-10.2V; C.13.6V和3.4V; D. –13.6V和-3.4V(5)由玻尔氢原子理论得出的第一玻尔半径a的数值是:BA.5.2910⨯m B.0.529×10-10m C. 5.29×10-12m D.529×10-12m10-(6)依照玻尔理论,假设将氢原子激发到n=5的状态,那么:AA.可能显现10条谱线,别离属四个线系B.可能显现9条谱线,别离属3个线系C.可能显现11条谱线,别离属5个线系D.可能显现1条谱线,属赖曼系(7)欲使处于激发态的氢原子发出H线,那么至少需提供多少能量(eV)? BαA.13.6B.12.09C.10.2D.3.4(8)氢原子被激发后其电子处在第四轨道上运动,依照玻尔理论在观测时刻内最多能看到几条线?BA.1B.6C.4D.3(9)用能量为12.7eV 的电子去激发基态氢原子时,受激氢原子向低能级跃迁时最多可能显现几条光谱线(不考虑自旋); AA .3 B.10 C.1 D.4(10)玻尔磁子B μ为多少焦耳/特斯拉?CA .0.9271910-⨯ B.0.9272110-⨯ C. 0.9272310-⨯ D .0.9272510-⨯(11)依照玻尔理论可知,氦离子H e +的第一轨道半径是:CA .20a B. 40a C. 0a /2 D. 0a /4(12)一次电离的氦离子 H e +处于第一激发态(n=2)时电子的轨道半径为:BA.0.53⨯10-10mB.1.06⨯10-10mC.2.12⨯10-10mD.0.26⨯10-10m(13)夫—赫实验的结果说明:BA 电子自旋的存在;B 原子能量量子化C 原子具有磁性;D 原子角动量量子化(14)处于基态的氢原子被能量为12.09eV 的光子激发后,其轨道半径增为原先的 CA .4倍 B.3倍 C.9倍 D.16倍第四章 碱金属原子1.选择题:(1)单个f 电子总角动量量子数的可能值为:DA. j =3,2,1,0; B .j=±3; C. j= ±7/2 , ± 5/2; D. j= 5/2 ,7/2(2)已知一个价电子的21,1==s l ,试由s l j m m m +=求j m 的可能值:AA .3/2,1/2 ,-1/2 ,-3/2 ; B. 3/2 ,1/2 ,1/2, -1/2 ,-1/2,-3/2;C .3/2,1/2 ,0,-1/2, -3/2; D. 3/2,1/2 ,1/2 ,0,-1/2, -1/2,-3/2;(3)锂原子光谱由主线系,第一辅线系,第二辅线系及柏格曼系组成。

原子物理 杨福家 第二章 答案

原子物理 杨福家 第二章 答案

原子物理杨福家第二章答案第二章习题解22 对于氢原子、一次电离的氦离子He+和两次电离的锂离子Li++,分别计算它们的:(1)(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)(2)电子在基态的结合能;(3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长、解:(1)由类氢原子的半径公式由类氢离子电子速度公式∴H: r1H =0、053×12nm=0、053nm r2 H =0、053×22=0、212nm V1H=2、19 ×106×1/1=2、19 ×106(m/s)V2H=2、19 ×106×1/2=1、095 ×106(m/s)∴He+: r1He+=0、053×12/2nm=0、0265nm r2He+=0、053×22/2=0、106nm V1 He+=2、19 ×106×2/1=4、38 ×106(m/s)V2 He+=2、19 ×106×2/2=2、19 ×106(m/s)Li++: r1 Li++=0、053×12/3nm=0、0181nm r2 Li++=0、053×22/3=0、071nm V1 Li++=2、19 ×106×3/1=6、57 ×106(m/s)V2 Li++=2、19 ×106×3/2=3、28 ×106(m/s)(2)∵ 基态时n=1H: E1H=-13、6eVHe+: E1He+=-13、6×Z2=-13、6×22=-54、4eVLi++: E1He+=-13、6×Z2=-13、6×32=-122、4eV(3)由里德伯公式=Z2×13、6×3/4=10、2 Z2注意H、He+、Li++的里德伯常数的近似相等就可以算出如下数值。

原子物理学 课后答案

原子物理学  课后答案

目录第一章原子的位形 (2)第二章原子的量子态:波尔模型 (8)第三章量子力学导论 (12)第四章原子的精细结构:电子的自旋....................... 错误!未定义书签。

第五章多电子原理:泡利原理 (23)第六章X射线 (28)第七章原子核物理概论.......................................... 错误!未定义书签。

1.本课程各章的重点难点重点:α粒子散射实验公式推导、原子能量级、氢原子的玻尔理论、原子的空间取向量子化、物质的波粒二象性、不确定原则、波函数及其物理意义和薛定谔方程、电子自旋轨道的相互作用、两个价电子的原子组态、能级分裂、泡利原理、电子组态的原子态的确定等。

难点:原子能级、电子组态、不确定原则、薛定谔方程、能级分裂、电子组态的原子态及基态的确定等。

2.本课程和其他课程的联系本课程需在高等数学、力学、电磁学、光学之后开设,同时又是理论物理课程中量子力学部分的前导课程,拟在第三学年第一学期开出。

3.本课程的基本要求及特点第一章原子的位形:卢瑟福模型了解原子的质量和大小、原子核式模型的提出;掌握粒子散射公式及其推导,理解α粒子散射实验对认识原子结构的作用;理解原子核式模型的实验验证及其物理意义。

第二章原子的量子态:玻尔模型掌握氢原子光谱规律及巴尔末公式;理解玻尔原子模型的基本假设、经典轨道、量子化条件、能量公式、主量子数、氢能级图;掌握用玻尔理论来解释氢原子及其光谱规律;了解伏兰克---赫兹实验的实验事实并掌握实验如何验证原子能级的量子化;理解索菲末量子化条件;了解碱金属光谱规律。

第三章量子力学导论掌握波粒二象性、德布罗意波的假设、波函数的统计诠释、不确定关系等概念、原理和关系式;理解定态薛定谔方程和氢原子薛定谔方程的解及n,l,m 三个量子数的意义及其重要性。

第四章 原子的精细结构:电子的自旋理解原子中电子轨道运动的磁矩、电子自旋的假设和电子自旋、电子量子态的 确定;了解史特恩—盖拉赫实验的实验事实并掌握实验如何验证角动量取向的量子化;理解碱金属原子光谱的精细结构;掌握电子自旋与轨道运动的相互作用;了解外磁场对原子的作用,理解史特恩—盖拉赫实验的结果、塞曼效应。

原子物理学课后答案

原子物理学课后答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K M vctgb b Z eZ eαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Z e ctgctgb K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K M v α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为222121()(1)4s inm Z e r M vθπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2m in 22121()(1)4sinZ e r M vθπε=+1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220m in124pZ eM vKr πε==,故有:2m in 04pZ er Kπε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:m in r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学-杨福家第二章习题答案上课讲义

原子物理学-杨福家第二章习题答案上课讲义

原子物理学-杨福家第二章习题答案第二章习题2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的:(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能;(3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长.n eeZ n a∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nmV 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s)∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nmV 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nmV 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s)(2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它∵基态时n =1H: E 1H =-13.6eVHe+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×22(3) 由里德伯公式Z 2×13.6×3/4=10.2Z 2注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。

《原子物理学》部分习题解答(杨福家)

《原子物理学》部分习题解答(杨福家)
Bz dD z m v
gJ
2
z g J B
氢原子基态 氯原子基态
2
3 2 3
S1/ 2 P3 / 2

1 S ( S 1) L ( L 1) 2 2 J ( J 1)
两束
四束
2
gJ
1 S ( S 1) L ( L 1) 4 2 2 J ( J 1) 3
pc
E k ( E k 2m0c ) E k
2
所以
E k m in p m in c 6 2 M eV
4-2 解: 原子态
2
D3/2
1 2 , J 3 2
可得
gJ 3 2
L 2, S
mJ
1 2
,
3 2
1 S ( S 1) L ( L 1) 4 2 J ( J 1) 5
Ek Ek
3.1keV 0.0094keV
3-3 解:
Ek m0 c 0.511MeV
2
若按非相对论处理
Ek 1 2 m0 v ,有
2
1 2
m0 v m0 c
2
2
v 2c
显然不合理,需要用相对论来处理。
E Ek m0 c 2m0c
2 2
又E mc m0 c
有磁场
m mg
1 2
3
S
1
0
1
0
2
g 2
h 0
3
P0
0
0
m 2 g 2 m1 g 1
2
0
2
相邻谱线的频率差
c

原子物理学课后习题答案

原子物理学课后习题答案

第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:20222442K Mv ctgb b Ze Zeαθπεπε==得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为220121()(1)4sinmZe r Mv θπε=+,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min202121()(1)4sin Ze r Mv θπε=+ 1929619479(1.6010)1910(1)7.6810 1.6010sin 75ο--⨯⨯⨯=⨯⨯⨯+⨯⨯⨯143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

(整理)原子物理学杨福家1-6章 课后习题答案

(整理)原子物理学杨福家1-6章 课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学(褚圣麟)完整答案

原子物理学(褚圣麟)完整答案

2
(2)
t, 60º t
图 1.1
Word 资料
.
把(2)式代入(1)式,得:
dn n
Nt (
1 40
)2 (Mzev22 )2
d sin 4
……(3)
2
式中立体角元 d ds/ L2 ,t t' / sin 600 2t' / 3, 200
N 为原子密度。 Nt' 为单位面上的原子数, Nt' / m Ag (AAg / N )0 1 ,其中是单位
下式决定:
1 Mv2 2

2Ze 2
/ 4
R0
3.78 1016 焦耳

2.36 103电子伏特
由此可见,具有106 电子伏特能量的粒子能够很容易的穿过铅原子球。粒子在到达原子
表面和原子内部时,所受原子中正电荷的排斥力不同,它们分别为:
F 2Ze 2 / 4 R0 2和F 2Ze 2r/ 4 R 30。可见,原子表面处粒子所受的斥力最大,越
解:散射角在 d 之间的粒子数 dn与入射到箔上的总粒子数 n 的比是:
d n N td n
其中单位体积中的金原子数: N / mAu N0 / AAu
而散射角大于 900 的粒子数为: dn' dn nNt d 2
dn ' 所以有: n
1.5 粒子散射实验的数据在散射角很小( 15)时与理论值差得较远,时什么原
因?
答:粒子散射的理论值是在“一次散射“的假定下得出的。而 粒子通过金属箔,经过
Word 资料
.
好多原子核的附近,实际上经过多次散射。至于实际观察到较小的 角,那是多次小角散射 合成的结果。既然都是小角散射,哪一个也不能忽略,一次散射的理论就不适用。所以, 粒

原子物理 习题2

原子物理  习题2
2 2 2 2
(m m0 )c 2 m c2 m0 c 2 ( 1 2 1) m 0 c Z 2 1 Z 2 ( ) [1 ( ) ] 2 n 4 n
2
一、选择题:
1. 已知一对正负电子绕其共同的质心转动会暂时 形成类似于氢原子的结构的“正电子素”,那么 该“正电子素”由第一激发态跃迁时发射光谱线 的波长应为: C [ A.3/(8R]) B) 3/(4R) C) 8/(3 R ) D) 4/(3R) 2.处于激发态的氢原子向低能级跃迁时,可能发出 的谱总数为: 【 B 】 A.4; B.6; C.8; D.12.
5.He+中的电子由某个轨道跃迁到另一轨道,相应物理量可能 发生的变化如下: [ C ] A. 总能量增加,动能增加,加速度增加,线速度增加; B. 总能量增加,动能减少,加速度增加,线速度减少; C. 总能量减少,动能增加,加速度增加,线速度增加; D. 总能量减少,动能增加,加速度减少,线速度减少。 6.氢原子由n=1的基态被激发到n=4的状态后,由于 不稳定又向低能级跃迁,则下列 选项中哪个是正确的? [ B ] (A) 可能辐射出的光子最大能量是13.6eV; (B) 可能辐射出六种不同能量的光子; (C) 可能辐射出三种不同能量的光子; (D) 这种情况下,能级间跃迁的n=1

7.夫兰克—赫兹实验证明了[ B ] A.原子内部能量连续变化 B.原子内存在能级 C.原子有确定的大小 D.原子有核心
8.如图表示从基态起汞原子可能的某些 能级(以eV 为单位),总能量为9eV的 自由电子与处于基态的汞原子碰撞,碰 撞之后电子所具有的能量(以eV为单位) 可能值是什么?(允许忽略汞原子动量 的变化)。 [ C ]
5.在波长从95nm到125nm的光带范围内,氢原子的 吸收光谱中包含哪些谱线? 解: 在通常情况下,氢原子都处在基态,所以吸收 光谱是从n=1能级向高能级跃迁产生的。

褚圣麟原子物理学习题解答

褚圣麟原子物理学习题解答

For personal use only in study and research; not for commercialuse原子物理学习题解答(褚圣麟编)第一章 原子的基本状况1.1 若卢瑟福散射用的α粒子是放射性物质镭'C 放射的,其动能为67.6810⨯电子伏特。

散射物质是原子序数79Z =的金箔。

试问散射角150οθ=所对应的瞄准距离b 多大?解:根据卢瑟福散射公式:得到:2192150152212619079(1.6010) 3.97104(48.8510)(7.681010)Ze ctg ctg b K οθαπεπ---⨯⨯===⨯⨯⨯⨯⨯⨯米式中212K Mv α=是α粒子的功能。

1.2已知散射角为θ的α粒子与散射核的最短距离为2202121()(1)4sin mZe r Mv θπε=+ ,试问上题α粒子与散射的金原子核之间的最短距离m r 多大?解:将1.1题中各量代入m r 的表达式,得:2min 202121()(1)4sin Ze r Mv θπε=+143.0210-=⨯米1.3 若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?解:当入射粒子与靶核对心碰撞时,散射角为180ο。

当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

根据上面的分析可得:220min124p Ze Mv K r πε==,故有:2min 04p Ze r K πε=19291361979(1.6010)910 1.141010 1.6010---⨯⨯=⨯⨯=⨯⨯⨯米由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-⨯米。

原子物理学 课后答案 全

原子物理学 课后答案 全

原子物理学课后答案全原子物理学课后答案全原子物理学习题解答刘富义第一章原子的基本状况1.1若卢瑟福散射用的?粒子是放射性物质镭c放射的,其动能为'求解:将1.1题中各量代入rm的表达式,得:rmin7.68?106电子伏特。

000散射物质是原子序数z?79的金箔。

试问散射角??150所对应的对准距离b多小?解:根据卢瑟福散射公式:2ze21()(1)240mvsin219479(1.601019)21910(1)6197.68?10?1.60?10sin75ctg获得:240kmv2b40b1.3若用动能为1兆电子伏特的质子射向金箔。

问质子与金箔。

问质子222zeze与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个?e电荷而质量就是质子的两倍,就是氢的一种同位素的原子核)替代质子,其与金箔原子核的最小距离多大?3.02?10?14米ze2ctg?79?(1.60?1019)2ctg150180?。

当入射粒子的动解:当入射粒子与靶核对心碰撞时,散射角为?1522b3.97?10?126?194??0k?(4??8.85?10)?(7.68?10?10)能全部转化为两粒子间的势能时,两粒子间的作用距离最小。

米2式中k??12mv是?粒子的功能。

根据上面的分析可以得:1.2已知散射角为?的?粒子与散射核的最短距离为1ze22mv?kp?,故存有:24??0rminrm2ze21?()(1?),何况上题?粒子与2?4??0mvsin21rminze2?4??0kp9散射的金原子核之间的最短距离rm多大?79?(1.60?10?19)2?13?9?10??1.14?10米6?1910?1.60?101原子物理学习题解答刘富义由上式窥见:rmin与入射光粒子的质量毫无关系,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为1.14?10?13米。

1.4钋放射治疗的一种?粒子的速度为1.597?107米/秒,负面横向入射光于厚度为10?7米、密度为1.932?104公斤/米3的金箔。

原子物理学第二章习题解答

原子物理学第二章习题解答

第二章习题解答2.1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长;(2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:光电效应方程 212mmv h =ν-Φ (1)由题意知 0m v = 即 0h ν-Φ=14151.9 4.59104.13610ev Hz h ev s -Φν===⨯⨯⋅ 1.24652.61.9c hc nm Kev nm ev λ⋅====νΦ(2) ∵ 21 1.52mmv ev = ∴ 1.5cev h h λ=ν-Φ=-Φ1.24364.71.5 1.5 1.9hc nm Kevnm ev ev evλ⋅===+Φ+2.2 对于氢原子、一次电离的氢离子He +和两次电离的锂离子Li ++,分别计算它们的:(1)第一、第二玻尔轨道半径及电子在这些轨道上的速度;(2)电子在基态的结合能;(3)由基态带第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长。

解:(1)由波尔理论及电子的轨道半径公式 zn r r n 21=, r 1为氢原子第一波尔半径22201122204()(197.3)0.0530.511e e c r a nm nm m e m c e 6πε====≈/4πε⨯10⨯1.44氢原子第二波尔半径可知: He + (Z=2)221140.212r n r r nm===112210.0265220.1062ar nmr a nm====Li + + (Z=3)电子在波尔轨道上的速率为 于是有 H : 61161212.19101371.1102v c m s m s c v m s 8--=α=⨯3⨯10/=⨯⋅α==⨯⋅He + :6116122 4.3810102v c m s c v m s--=α=⨯⋅2α==2.19⨯⋅ Li + + :6116123 6.5710102v c m s c v m s--=α=⨯⋅3α==3.28⨯⋅ (2) 电子在基态的结合能E k 在数值上等于原子的基态能量。

原子物理学杨福家1-6章_课后习题答案

原子物理学杨福家1-6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:222212121v m V M V M e +'=αα (1)ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,得)sin(sin ϕθθα+=VM v m e (4))sin(sin ϕθϕαα+='VM V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222sin sin )(sin +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90si n si n si n +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa2 sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学杨福家1_6章_课后习题答案

原子物理学杨福家1_6章_课后习题答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型第二章:原子的量子态:波尔模型第三章:量子力学导论第四章:原子的精细结构:电子的自旋第五章:多电子原子:泡利原理第六章:X射线第一章习题1、2解1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:ϕθααcos cos v m V M V M e +'= (2)ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sinθ±(3)×cos θ, (4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v,化简上式,得(6)可将(6)式改写为θϕμϕθμ222s i n s i n )(s i n +=+(7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0若sinθ=0, 则θ=0(极小)(8)(2)若cos(θ+2φ)=0 ,则θ=90º-2φ(9)将(9)式代入(7)式,有θϕμϕμ222)(90si nsi nsi n+=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值..解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来.(问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依: θa 2sin注意到即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

原子物理学杨福家1-6章-课后习题标准答案

原子物理学杨福家1-6章-课后习题标准答案

原子物理学课后前六章答案(第四版)杨福家著(高等教育出版社)第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线第一章 习题1、2解1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad.要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动.证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。

电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。

α粒子-电子系统在此过程中能量与动量均应守恒,有:(1)ϕθααcos cos v m V M V M e +'= (2) ϕθαsin sin 0v m V M e -'= (3)作运算:(2)×sin θ±(3)×cos θ,(4)(5)再将(4)、(5)二式与(1)式联立,消去V’与v化简上式,得(6)θϕμϕθμ222s i n s i n )(s i n +=+ (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有令sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0若 sin θ=0, 则 θ=0(极小) (8)(2)若cos(θ+2φ)=0 ,则 θ=90º-2φ (9)将(9)式代入(7)式,有θϕμϕμ2202)(90sin sin sin +=-θ≈10-4弧度(极大)此题得证。

1.2(1)动能为5.00MeV 的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大?(2)如果金箔厚1.0 μm ,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几?要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n 值.其他值从书中参考列表中找.解:(1)依金的原子序数Z2=79答:散射角为90º所对所对应的瞄准距离为22.8fm.(2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出)从书后物质密度表和原子量表中查出ZAu=79,AAu=197, ρAu=1.888×104kg/m3依θa 2sin即单位体积内的粒子数为密度除以摩尔质量数乘以阿伏加德罗常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 原子的能级和辐射试计算氢原子的第一玻尔轨道上电子绕核转动的频率、线速度和加速度。

解:电子在第一玻尔轨道上即年n=1。

根据量子化条件,πφ2h nmvr p ==可得:频率 21211222ma hma nh a v πππν===赫兹151058.6⨯=速度:61110188.2/2⨯===ma h a vνπ米/秒加速度:222122/10046.9//秒米⨯===a v r v w试由氢原子的里德伯常数计算基态氢原子的电离电势和第一激发电势。

解:电离能为1E E E i -=∞,把氢原子的能级公式2/n Rhc E n -=代入,得:Rhc hc R E H i =∞-=)111(2=电子伏特。

电离电势:60.13==eE V ii 伏特 第一激发能:20.1060.134343)2111(22=⨯==-=Rhc hc R E H i 电子伏特 第一激发电势:20.1011==eE V 伏特 用能量为电子伏特的电子去激发基态氢原子,问受激发的氢原子向低能基跃迁时,会出现那些波长的光谱线解:把氢原子有基态激发到你n=2,3,4……等能级上去所需要的能量是:)111(22nhcR E H -= 其中6.13=H hcR 电子伏特2.10)211(6.1321=-⨯=E 电子伏特1.12)311(6.1322=-⨯=E 电子伏特8.12)411(6.1323=-⨯=E 电子伏特其中21E E 和小于电子伏特,3E 大于电子伏特。

可见,具有电子伏特能量的电子不足以把基态氢原子激发到4≥n 的能级上去,所以只能出现3≤n 的能级间的跃迁。

跃迁时可能发出的光谱线的波长为:οοολλλλλλAR R A R R A R R H H H H H H 102598)3111(1121543)2111(1656536/5)3121(1322322221221==-===-===-=试估算一次电离的氦离子+e H 、二次电离的锂离子+i L 的第一玻尔轨道半径、电离电势、第一激发电势和赖曼系第一条谱线波长分别与氢原子的上述物理量之比值。

解:在估算时,不考虑原子核的运动所产生的影响,即把原子核视为不动,这样简单些。

a) 氢原子和类氢离子的轨道半径:31,2132,1,10529177.0443,2,1,4410222012122220=======⨯==⋯⋯===++++++++-Li H H Li H H H He Z Z r r Z Z r r Z Li Z H Z H Z me h a n Z n a mZe n h r e径之比是因此,玻尔第一轨道半;,;对于;对于是核电荷数,对于一轨道半径;米,是氢原子的玻尔第其中ππεππεb) 氢和类氢离子的能量公式:⋯⋯=⋅=-=3,2,1,)4(22212220242n nZ E h n Z me E πεπ 其中基态能量。

电子伏特,是氢原子的6.13)4(2220421-≈-=h me E πεπ电离能之比:900,4002222==--==--+++++HLi HLi HHeHHe ZZ E E Z Z E Ec)第一激发能之比:91121132341121122222122122122112122212212212211212=--=--=--=--E E E E E E E E E E E E E E E E H H Li Li H H He He d) 氢原子和类氢离子的广义巴耳末公式:)11(~22221n n R Z v -=,⋯⋯=⋯⋯++=3,2,11112)2(),1({n n n n其中32042)4(2hme R πεπ=是里德伯常数。

氢原子赖曼系第一条谱线的波数为:HH R v λ1)2111(~221=-=相应地,对类氢离子有:++++++=-==-=Li Li He He R v R v 12221122211)2111(3~1)2111(2~λλ因此,91,411111==+++HLi H He λλλλ 试问二次电离的锂离子++i L 从其第一激发态向基态跃迁时发出的光子,是否有可能使处于基态的一次电离的氦粒子+e H 的电子电离掉解:++i L 由第一激发态向基态跃迁时发出的光子的能量为:+e H 的电离能量为:LiHe He Li He Li He He He M m M m R R hv hv hcR hcR v /1/1162716274)111(42++⋅===∞-=++++由于Li He Li HeM m M m M M /1/1,+>+<所以,从而有+++>He Li hv hv ,所以能将+e H 的电子电离掉。

氢与其同位素氘(质量数为2)混在同一放电管中,摄下两种原子的光谱线。

试问其巴耳末系的第一条(αH )光谱线之间的波长差λ∆有多大已知氢的里德伯常数17100967758.1-⨯=米H R ,氘的里德伯常数17100970742.1-⨯=米D R 。

解:)3121(122-=H HR λ,H H R 5/36=λ )3121(122-=D DR λ,D D R 5/36=λ ολλλAR R D H D H 79.1)11(536=-=-=∆已知一对正负电子绕其共同的质心转动会暂时形成类似于氢原子结构的“正电子素”。

试计算“正电子素”由第一激发态向基态跃迁发射光谱的波长λ为多少οA解:R mmR R e e 834311)2111(122=•+=-=∞-+λ ολA R 2430109737313138=⨯==∞米试证明氢原子中的电子从n+1轨道跃迁到n 轨道,发射光子的频率n ν。

当n>>1时光子频率即为电子绕第n 玻尔轨道转动的频率。

证明:在氢原子中电子从n+1轨道跃迁到n 轨道所发光子的波数为:])1(11[1~22+-==n n R v n n λ 频率为:Rc n n n n n Rc cv n 2222)1(12])1(11[++=+-==λ当n>>时,有3422/2/2)1(/)12(n n n n nn =≈++,所以在n>>1时,氢原子中电子从n+1轨道跃迁到n 轨道所发光子的频率为:3/2n Rc v n=。

设电子在第n 轨道上的转动频率为n f ,则3222222n Rcmr P mr mvr r v f n ===πππ 因此,在n>>1时,有n n f v =由上可见,当n>>1时,请原子中电子跃迁所发出的光子的频率即等于电子绕第n 玻尔轨道转动的频率。

这说明,在n 很大时,玻尔理论过渡到经典理论,这就是对应原理。

Li 原子序数Z=3,其光谱的主线系可用下式表示:22)0401.0()5951.01(~--+=n R R v。

已知锂原子电离成+++Li 离子需要电子伏特的功。

问如把+Li 离子电离成++Li离子,需要多少电子伏特的功解:与氢光谱类似,碱金属光谱亦是单电子原子光谱。

锂光谱的主线系是锂原子的价电子由高的p 能级向基态跃迁而产生的。

一次电离能对应于主线系的系限能量,所以+Li 离子电离成++Li离子时,有电子伏特35.5)5951.01()5951.01(221=+≈∞-+=∞hc R RhcRhc E ++Li 是类氢离子,可用氢原子的能量公式,因此+++++→Li Li 时,电离能3E 为:电子伏特4.12212223=≈=∞hc R Z Rhc Z E R。

设+++→LiLi 的电离能为2E 。

而+++→LiLi 需要的总能量是E=电子伏特,所以有电子伏特7.75312=--=E E E E具有磁矩的原子,在横向均匀磁场和横向非均匀磁场中运动时有什么不同答:设原子的磁矩为μ,磁场沿Z 方向,则原子磁矩在磁场方向的分量记为Z μ,于是具有磁矩的原子在磁场中所受的力为Z B F Z∂∂=μ,其中ZB∂∂是磁场沿Z 方向的梯度。

对均匀磁场,0=∂∂ZB,原子在磁场中不受力,原子磁矩绕磁场方向做拉摩进动,且对磁场的 取向服从空间量子化规则。

对于非均磁场,0≠∂∂ZB原子在磁场中除做上述运动外,还受到力的作用,原子射束的路径要发生偏转。

史特恩-盖拉赫实验中,处于基态的窄银原子束通过不均匀横向磁场,磁场的梯度为310=∂∂ZB特斯拉/米,磁极纵向范围1L =0.04米(见图2-2),从磁极到屏距离2L =0.10米,原子的速度2105⨯=v 米/秒。

在屏上两束分开的距离002.0=d 米。

试确定原子磁矩在磁场方向上投影μ的大小(设磁场边缘的影响可忽略不计)。

解:银原子在非均匀磁场中受到垂直于入射方向的磁场力作用。

其轨道为抛物线;在2L 区域粒子不受力作惯性运动。

经磁场区域1L 后向外射出时粒子的速度为'v ϖ,出射方向与入射方向间的夹角为θ。

θ与速度间的关系为:vv tg ⊥=θ 粒子经过磁场1L 出射时偏离入射方向的距离S 为:Z vL Z B m S μ21)(21∂∂= (1)将上式中用已知量表示出来变可以求出Z μ2212212112'2'/,,v L L Z B m d S d S v L L Z B m tg L S vL Z B m v v L t Z B m m f a at v ZZ Z∂∂-=-=∂∂==∂∂=∴=∂∂===⊥⊥μμθμμ把S 代入(1)式中,得:22122122vL Z B m v L L Z B m d Z Z ∂∂=∂∂-μμ 整理,得:2)2(22121dL L v L Z B m Z =+∂∂μ 由此得:特焦耳/1093.023-⨯=Z μ观察高真空玻璃管中由激发原子束所发光谱线的强度沿原子射线束的减弱情况,可以测定各激发态的平均寿命。

若已知原子束中原子速度秒米/103=v ,在沿粒子束方向上相距毫米其共振光谱线强度减少到1/。

试计算这种原子在共振激发态的平均寿命。

解:设沿粒子束上某点A 和距这点的距离S=1.5毫米的 B 点,共振谱线强度分别为10I I 和,并设粒子束在A 点的时刻为零时刻,且此时处于激发态的粒子数为20N ,原子束经过t 时间间隔从A 到达B 点,在B 点处于激发态的粒子数为2N 。

光谱线的强度与处于激发态的原子数和单位时间内的跃迁几率成正比。

设发射共振谱线的跃迁几率为21A ,则有202202122101N NN A N A I I =∝ 适当选取单位,使32.3/120201==N NI I , 并注意到 v S t e N N tA /,21202==-而,则有:32.3/121202==-t A e N N 由此求得:秒63321211025.132.3ln 10105.132.3ln 132.3ln )1ln 32.3(ln 1--⨯=⨯⨯====-=v s A t s vt A。

相关文档
最新文档